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1. Introduction
Urban drainage systems (UDS) are designed to convey wastewater and urban runoff away from populated areas. 
During rainfall events, those UDS can become overloaded and lead to transient pollution through combined 
sewer overflows (CSOs) or stormwater outfalls. CSOs specifically can introduce a variety of pollutants into the 
receiving surface water bodies, with potential degradation of those (natural) waters as a consequence (Owolabi 
et  al.,  2022). Increasingly, micro-pollutant pathways through overflows and outfalls are identified within the 
urban water cycle (Mintenig et al., 2017; Rieckermann et al., 2011), highlighting an additional need to reduce 
rainfall-induced pollution loads.

The reduction of CSO pollution can be realized through the construction of additional in-line storage (Liang 
et  al.,  2021), sustainable UDS (Fletcher et  al.,  2014; Joshi et  al.,  2021), or a combination of the two (Alves 
et al., 2016). Spatial constraints and related investment costs, however, can inhibit such measures. Optimal utili-
zation of the existing infrastructure, through the means of real-time control (RTC), is therefore a strategy worth 
exploring before large investments are made to the physical infrastructure (Pleau et al., 2005). RTC strategies 
use sensors and forecasts to control actuators (i.e., pumps, valves, and moveable weirs) aiming to reduce urban 
flooding (Mounce et  al.,  2020), CSOs (Dirckx et  al.,  2011; Jorgensen et  al.,  1995), pollution loading (Bach-
mann-Machnik et al., 2021; Weinreich et al., 1997) or environmental impact (Langeveld et al., 2013).

To achieve the aforementioned objectives, two control procedures can be distinguished: (a) Heuristic and (b) Real-
time Optimization (García et al., 2015). The former uses pre-defined rules to determine the settings of the system 
actuators, such as pumps and valves, whereas the latter computes the best possible settings in real time through, 
for example, Model Predictive Control (MPC). These real-time optimization procedures have been shown to 
outperform heuristic control procedures by better realizing the RTC performance potential (Lund et al., 2018; Van 
der Werf et al., 2022). The performance potential of RTC refers to the theoretical ability of the UDS operational 
improvement with respect to a pre-defined objective function (often the reduction of CSO volume) through the 
optimal control of actuators. However, for UDS with a relatively low RTC potential, the additional investments 
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needed compared to heuristic procedures might not outweigh the benefits (Mollerup et  al.,  2016). Real-time 
optimization can be implemented in a centralized or decentralized way. In centralized control systems, all the 
available data is sent to one central decision-maker, where the optimal set points for all actuators are calculated 
and sent back to the actuators. Given that the central decision-maker has all the information about the state of 
the UDS, the decisions it can make are likely to be as optimal as possible, but the complexity of the optimization 
problem is also relatively high. On the other hand, in distributed or decentralized control methods, the calculation 
of set-points is done semi-locally, with limited knowledge of the state of the full system (Giordano et al., 2014). 
This reduces the complexity of the optimization problem, but the costs and real performance associated with the 
set-pints determined this way are still unknown (Garofalo et al., 2017) and may not yet reach the full potential of 
centralized MPC strategies as it cannot consider potentially key interactions (Kändler et al., 2022).

The performance potential of RTC depends on various UDS characteristics. Larger UDS are more likely to have an 
increased performance potential compared to smaller ones (Quaranta et al., 2022; Schütze et al., 2008; Van der Werf 
et al., 2022). However, large catchments also suffer from higher computational costs as larger models are necessary to 
adequately describe the UDS dynamics. Furthermore, an increased number of actuators to optimize results in a larger 
search space, which increases the computational time further. To enable centralized MPC for larger UDS, (partial) 
linearization or oversimplification of the UDS dynamics are often used but can introduce significant uncertainties 
into the internal-MPC model, which can result in the loss of control performance potential (Van der Werf et al., 2023) 
or requires application of increasingly complex algorithms (e.g., Oh & Bartos,  2023; Svensen et  al.,  2021). As 
Naughton et al. (2021) point out, the lack of clarity on the performance potential of real time optimization as well 
as the complexity of the procedures and algorithms and mistrust for oversimplified models are clear barriers for the 
widespread implementation of MPC strategies. Using embedded non-linear internal-MPC models, which provide 
more interpretable handles for the optimization, makes MPC practically unachievable for larger UDS due to the curse 
of dimensionality (Sadler et al., 2019). Simplifying the control procedures, whilst retaining the performance potential 
of real-time optimization is therefore a potential route to ensure the implementation of MPC strategies.

Global Sensitivity Analyses (GSA) have previously been used to identify actuators with the highest level of 
impact on the UDS performance, for optimization within a control strategy for larger catchments with many actu-
ators (Langeveld et al., 2013; Saagi et al., 2018). However, the results of a GSA might differ depending on uncer-
tain parameters in the model (Ledergerber et al., 2020). Given this dependency on model parameters, changes 
in the sensitivity of the performance of the RTC procedure to each actuator might change during and in between 
events. Real-time optimization could then potentially be applied to only the most relevant actuators, limiting 
potential risks of unforeseen dynamics introduced through a new control procedure to a sub-section of the UDS.

This paper aims to assess if the dynamics of the relative importance of actuators within a RTC procedure changes 
and can be predicted. It further aims to utilize this to combine heuristic and optimization-based control. It 
proposes a methodology to enable near-global real-time optimization of the operation of large and complex, 
non-linear UDS by reducing actuator dependency and aims to understand key dynamics emerging from the oper-
ation of combined heuristic and real-time optimization control.

2. Methodology
To circumvent the inhibitive computational cost due to too many actuators or reduce the potential impact of 
uncertainties on the performance of RTC, a Heuristic And Predictive Policy (HAPPy) is proposed. The policy 
design framework is modular and consists of three stages: (a) the preparative steps, (b) the HAPPy procedure 
(which is the implementable control procedure) and (c) the evaluation stage (Figure 1a). The various preparative 
steps are detailed in Section 2.1. The real-time optimization procedure, hereafter the HAPPy procedure, follows 
an adjusted version of the MPC algorithm proposed by Sadler et al. (2019) (Figure 1b). The changes compared to 
the established MPC procedure structure are highlighted by dashed blue lines and further detailed in Section 2.2. 
All UDS modeling in this work was done using the SWMM5 (version 5.1.015, Rossman, 2015) software and 
using the python programming language interface PySWMM (McDonnell et al., 2020).

2.1. Preparative Steps

The following section, highlighted in Figure 1a, sets out the preparative steps within the HAPPy, to be done 
prior to the implementation of the real-time optimization part. The preparative steps are, similar to the entire 
policy design framework, modular, meaning that any of the respective parts within these steps can be updated or 
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changed without directly affecting the applicability of the other parts of the policy. Improvements or adjustments 
can therefore be made based on new algorithms or dependent on UDS-related preferences.

2.1.1. Objective Function, Model Development and Heuristic Control

The first three steps in the HAPPy follow the steps previously proposed to design offline, heuristic control 
strategies (Schütze et al., 2008). First, an objective function has to be set up. The HAPPy can take any objective 
function related to control strategies including CSO volume minimization, weighted CSO volume minimiza-
tion (when the impact of different CSOs is different), CSO pollution load minimization, environmental impact 
minimization, energy consumption or a combination). Here, a weighted volume-based minimization function is 
defined, following the definition used by Vezzaro and Grum (2014):

min

(

𝑁𝑁𝑎𝑎
∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖 ∗

𝑇𝑇𝐻𝐻
∑

𝑡𝑡=0

𝑄𝑄𝑖𝑖𝑖𝑡𝑡

)

 (1)

where Na is the number of actuators, wi is the dimensionless weight associated with the ith CSO structure, TH is 
the time horizon used in the analysis [s] and Qi,t is the overflow rate for the ith CSO structure at time t [m 3s −1].

Figure 1. (a) Overview of the steps of the HAPPy, following the outline of this paper. The offline section is highlighted by 
the dashed blue lines, the HAPPy procedure in black and the posterior analysis in red. This is followed by (b) the layout of 
the real-time optimization part of the HAPPy: the HAPPy procedure. The various blocks, including the optimization required, 
depend on operator preferences and will be discussed in more detail in Section 2.2.
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After the objective function is defined, a fit-for-purpose model has to be selected and calibrated. For the use in the 
HAPPy, the model, functioning as the internal MPC model, has to (a) retain the key topological structure (deter-
mined by the layout of the actuators) of the UDS, (b) have a low computational cost, (c) describe the desired UDS 
dynamics, (d) use available real-time data to generate all initial conditions and (e) include real-time rainfall fore-
casts as a forcing input. A set of virtual dynamic reservoirs linked through actuators is used here to represent the 
analyzed sewer system. Each virtual reservoir is modeled by defining the head-volume curves for the static and 
dynamic storages of the part of the sewer system that it represents. The dynamic virtual reservoir model set out 
by van Daal-Rombouts et al. (2016) is used for that purpose. The virtual reservoirs are linked through designated 
links representing pumps, orifices or other actuators. Virtual reservoir's outflow Qs (see Figure 2) links therefore 
either to a downstream virtual reservoir's inflow Qin or to a final sewer system outflow. As the actuators are the 
only links considered in the model (the rest of the conduits are simplified using the dynamic reservoir model), a 
topological graph is created this way. The chosen model structure needs to be calibrated to ensure the validity of 
simplified model outputs.

Using the selected model, the heuristic control procedure forming the foundation of the HAPPy is developed. 
Similar to the model structure, the nature of the heuristic control procedure depends on the operators' preferences. 
Methodological approaches to aid in the rule-making processes (Kroll et al., 2018; Mollerup et al., 2016) and 
formal optimization procedures (e.g., Van der Werf et al., 2021) can be followed to generate the set of heuristic 
procedures. Although all forms of heuristic control can be used, the preference here is given to rule-based control 
(RBC), with pre-defined thresholds used to determine the set points of the actuators in the UDS. RBC was chosen 
as the heuristic strategy as it is commonly used in practice and allows for more interpretable results and a better 
ability to understand the interactions between the HAPPy procedure and the pre-made heuristic control.

2.1.2. Global Sensitivity Analysis

To quantify the level of impact of the actuators on the UDS operation performance, a global sensitivity analysis 
can be used (Langeveld et al., 2013; Ledergerber et al., 2020). Using the heuristic control policy, a set of rainfall 
events {P} is simulated, with the system state yt saved as initial conditions and ϵt as the forecasted rainfall at time 

Figure 2. Schematization of the dynamic virtual reservoir model used. Qs either goes to the wastewater treatment plant (WWTP) (as per the example here), but can also 
connect to a downstream reservoir. All the inflows into the reservoir (wastewater and urban runoff) are represented by Qin. Qrw is the final CSO overflow rate, Hs the 
stored volume (Vs) derived head in the reservoir. Visualization is adapted from van Daal-Rombouts et al. (2016).
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step t. Here, a perfect forecast was used to assess the maximum theoretical performance of the HAPPy approach 
without practical uncertainties included. This is done for every control time step t during the simulation, creating 
a paired set of initial conditions and forecasted rainfall for each event. For each paired set, a GSA is performed, 
simulating the UDS over the time horizon of the forecasted rainfall. A forecasting horizon of 1 hr was chosen, 
balancing the computational cost associated with GSA and the available real-time forecast used in RTC (2 hr 
forecasts being available in real-time, updated every 5 min). Fifteen rainfall events were used to generate the data 
set used in the GSA. The start of a rainfall event was defined as the first moment rainfall falls in the catchment 
until the moment the UDS has returned to dry weather flow conditions.

The GSA uses a Monte Carlo type approach, sampling actuator settings using a Latin Hypercube technique, draw-
ing values 𝐴𝐴 {𝑘𝑘 ∈ ℝ

𝑛𝑛
| 0 ≤ 𝑘𝑘 ≤ 1} for n number of actuators, where 0 means a complete restriction of flow through 

the actuator (or the “off” setting for a pump) and 1 is fully open (or the “fully on” setting for a pump) and any value 
between partial opening or activation of the pumping station (subject to pumping station specifics). Each Monte 
Carlo simulation constitutes 1,500 model runs (in previous work, Benedetti et al. (2012) found 1,200 runs for the 
GSA in the wastewater modeling context sufficient).

For each run in each Monte Carlo simulation, the objective function value is calculated, with the final value for 
each run being estimated as the difference between the objective function value obtained for the run and the corre-
sponding value obtained using the heuristic control procedure (as set up in the previous section). A multi-linear 
regression between the actuator settings and the above difference in RTC performance is performed, generating a 
set of coefficients 𝐴𝐴 𝐴𝐴𝑖𝑖 = {𝑐𝑐mlr ∈ ℝ

𝑛𝑛
} where cmlr are the multi-linear regression coefficients and n is the number of 

actuators in the system for the ith unique combined set of initial conditions and forecasted rainfall. The computed 
coefficients are used as an indicator of the impactfulness (ability to influence the final objective function) of each 
actuator (note that all random samples are in the range [0, 1]). A ranking, R, based on the computed coefficient 
per actuator, is made per paired set of initial conditions and forecasted rainfall, following Ri = rank(|Ci|).

2.1.3. Random Forest of Decision Trees

To predict which actuators should be included in the optimization procedure, the set of initial conditions, rain-
fall forecast and impactfulness ranking results (based on the GSA results) are used to generate Decision Trees 
(DTs). In this process, let 𝐴𝐴 {𝑁𝑁 ∈ ℤ| 0 ≤ 𝑁𝑁 ≤ 𝐴𝐴𝑛𝑛} where An is the number of actuators in the system and N the 
number of actuators to be included in the optimization procedure. N is a pre-determined variable, to be set by the 
operator, based on an experimental understanding of the functioning of the HAPPy approach. The influence of 
the number of actuators included is explicitly investigated by changing the value of N and assessing the relevant 
RTC performances. A limit of 8 actuators was chosen as a threshold to balance the range of options investigated 
whilst retaining the computational improvement through the use of the HAPPy procedure. The ranking results for 
each combined set of initial conditions and forecasted rainfall are then transformed into a binary data set through:

BO𝑛𝑛𝑛𝑛𝑛 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑅𝑅𝑛𝑛𝑛𝑛𝑛 > 𝑁𝑁

1 if 𝑅𝑅𝑛𝑛𝑛𝑛𝑛 ≤ 𝑁𝑁

 (2)

where BOn,i is a binary value indicating inclusion (1) or exclusion (0) for the nth actuator in the system at the ith 
combined set of initial conditions and forecasted rainfall given its rank Ri,n. These binary values are combined 
into binary inclusion sets, BIS, per combined set of initial conditions and forecasted rainfall such that for all n 
actuators: BISi = {BOn,i}.

The data, consisting out of 261 unique initial condition and forecasted rainfall pairs and the binary inclusion 
sets, is then split (randomly) in a training and validation data set, with a 75/25 ratio respectively. The training 
set is used to generate a DT and the validation set is used to test and ensure the transferability of the DT results 
to unseen data, with a DT generated for each actuator. Rather than using one DT, an ensemble of DT forming 
a Random Forest model was used. Random forest models have previously been shown to have the potential 
to accurately predict complex UDS dynamics (Montes et al., 2021). The random forest model consists of 100 
individually trained DTs per actuator based on a randomly sampled subset of 50% of the training data to ensure 
the DTs are trained on different sets of data. Each DT within the random forest votes on the inclusion of the Nth 
actuator and the actuators with the most votes are selected for optimization.
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Due to the potentially skewed nature of the data set decisions (a relatively small portion of actuators is selected), 
an F1-score (the harmonic mean of the precision (ratio of correctly predicted positive values and total number of 
predicted positive values) and recall scores (ratio between all correctly predictive positive values and the number 
of positive values in the data set)) is used to determine the predictive prowess of the random forest of the DTs:

F1 =
2 ∗ Precision ∗ Recall

(Precision + Recall)
 (3)

Precision =
TP

TP + FP
 (4)

Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (5)

where TP is the number of true positives, FP is the number of false positives and FN is the number of false nega-
tives. The F1-score is a value bound between 0 and 1, with 0 indicating the worst possible performance and 1 a 
perfect prediction.

2.2. Real-Time Procedure

When the offline section of the HAPPy is done, the real-time optimization part can be implemented. The follow-
ing section expands on the HAPPy procedure. Here, the steps which are taken at every sampling interval (time 
step for optimization) in the optimization procedure, highlighted in Figure 1b, are expanded on. The procedure 
relies on the heuristic rules being applied to all the actuators, except for those selected using the random forest 
method, which are optimized in real-time following the procedure below. This procedure is run only when the 
objective function can be affected by the operation of the actuators (the optimization Required decision shown 
in Figure 1b).

2.2.1. Model Simplification

To decrease the computational time of the internal-MPC model, an algorithm to further simplify the internal-MPC 
model, based on the selected actuators, at every time step is set up. To simplify the model, the schematized topol-
ogy of the UDS, forming the basis of the internal MPC model as expanded in Section 2.1, is considered as a 
graph G = (V, E) where V are the virtual reservoirs and E are the actuators within the UDS. The virtual reservoirs 
encompass the storage of all the conduits and manholes within the UDS, except the optimizable actuators. Based 
on the random forest model output, a subset of optimizable actuators A ⊆ E is defined, where A has the size of 
the number of actuators selected by the DT (N). The internal model is then run following the heuristic procedure, 
with the lateral inflow time series per V defined as Infv.

A subset of the set of virtual reservoirs V*⊆V is defined such that all the reservoirs affected by the settings of the 
actuators A are included. For each of the virtual reservoirs in V*, every possible path to the most downstream 
node (usually the wastewater treatment plant (WWTP) is generated. For each path, the actuators included in the 
path are added to the set A and similarly, the virtual reservoirs are added to the set V*. Lastly, any actuators which 
are not in the subset A, but are dependent on the state (water level) of any of the virtual reservoirs in subset V*, 
through the heuristic control procedure, are added to the subset A. This procedure is run iteratively until all rele-
vant actuators are included in the simplified internal MPC model.

An example of the simplification of the model following this procedure, done at every time step, is graphically 
shown in Figure 3. This simplified internal MPC model can be run using the Infv and rainfall predictions as 
inflow to linear reservoirs in subset V*. This simplified internal MPC model is used to optimize the selected 
actuators, whilst the other actuators follow the predefined heuristic rules.

2.2.2. Optimization

The previously generated simplified internal MPC model is used to optimize the actuator settings following 
established MPC procedures (e.g., Sadler et al., 2019). Any optimization algorithm can be used for the opti-
mization process, but as the framework developed here is meant for both uncertainty reduction through infor-
mation dependency reduction and the potential application of real-time optimization of non-linearized UDS, a 
derivative-free optimization method had to be selected. Because of this, it was decided to optimize the operation 
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using the elitist genetic algorithm (GA). GA is a well-established optimiza-
tion algorithm in the urban water literature (Rauch & Harremoes, 1999) and 
remains a popular optimization algorithm in recent RTC publications (e.g., 
Abou Rjeily et al., 2018; Rathnayake & Anwar, 2019). It also has the poten-
tial to be parallelized, enabling a more efficient search for optimal solutions 
(Sadler et  al.,  2019). GAs can be applied to highly non-linear RTC prob-
lems (including impact-based RTC), making the application more generic. 
Other derivative-free optimization algorithms with similar characteristics 
could be selected (particle swarm optimization and simulated annealing) but 
their implementation has been less ubiquitous in the RTC literature and are 
unlikely to perform better compared to a GA. The hyper-parameters used for 
the GA optimization are dependent on the simplified internal MPC model 
and the number of actuators selected through the HAPPy algorithm. Hyper-
parameter optimization is therefore recommended to be performed separately 
for each RTC problem. In this work, a population size of 50, a parent portion 
of 0.16 and a mutation probability of 0.1 were used. There is no maximum 
number of iterations, but a time limit equal to the sampling interval was used. 
If prior to exceeding the sampling interval no improvement is found for 15 
generations, the GA terminates, at which point convergence to the optimal is 
assumed (see Section S4 in Supporting Information S1 for the details of the 
used parameters in the procedure and preparative work).

2.3. Performance Evaluations

To ensure the relative improvement of the HAPPy over the basic heuristic 
control procedure, a model-driven performance evaluation following the 
steps set out by van Daal et al. (2017) was followed. Previously developed 
absolute relative performance indicators (aRPI, van der Werf et al., 2021) and 
the relative CSO volume (the ratio between the CSO volume using the RTC 
procedure and the statically optimized performance of the UDS) were used 
to assess the functioning of the control procedure. The aRPI gives the ratio 
between the difference in RTC performance and a static baseline compared 
to the difference between the static baseline and the maximum potential 
performance. This maximum potential performance is computed based on 
an adjusted form of the Central Basin Approach (CBA), originally developed 
by Einfalt and Stölting (2002). This adjusted version explicitly considers the 
pumping capacities as a limiting factor in the procedure by iterating through 
the pumped catchments and generating a central basin per sub-catchment 
cascade, making it better suited for UDS which includes pumps. The mini-
mum CSO volume is generated for each subsection in each cascade (contain-
ing N-linked sub-catchments starting from the most upstream and adding a 
sub-catchment per iteration). From this set of minimum CSO volumes, the 
largest CSO volume is selected, as this reflects a limiting dynamic within 
the cascade of reservoirs. This largest CSO volume represents the maximum 
RTC potential per cascade in the UDS. A detailed breakdown of these steps 
can be found in van der Werf et al.  (2021). The static baseline here is the 
underlying optimized heuristic procedure, therefore not requiring additional 
settings to be generated for the computation of the aRPI.

Additionally, to compare the performance of the proposed procedure, a line-
arized model was created. The virtual dynamic reservoirs in the connected 
model are thereby replaced by simple static linear reservoirs connected 
through actuators, simplifying the model with respect to the dynamic stor-
age capacity and overflow dynamics (details on the implemented model are 
in Section 3). Within this linear reservoir model, any inflow exceeding the 

Figure 3. Here, the three stages of the model complexity reduction are shown. 
(a) Shows the full model of virtual reservoirs connected through pumps, 
followed by (b) the pumps (actuators) selected for optimization in red and 
(c) the topology of the final model. The final topology includes all selected 
pumps, as well as the pumps which can be influenced by the settings of the 
optimized pumps (i.e., when the setting of an actuator impacts the downstream 
district, which is part of the heuristic control of another pump, that last pump 
is included in the final model topology). Note that all the pumps are directed 
toward the WWTP (either directly or via downstream districts) or the pumped 
CSO outfalls (black triangles).
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available static capacity of the reservoir is assumed to be discharged through a 
CSO structure. The flow capacity of the actuators in the UDS is used as either 
continuous variables (for moveable gates or frequency-controlled pumps) or 
integers (in the case of binary decision variables). The performance of the 
HAPPy procedure is then compared to the performance of linearized opti-
mized MPC, using the linearized model as an internal-MPC model, the 
COIN-OR solver (originally developed by Lougee-Heimer  (2003)) as an 
optimization algorithm and the original model of connected virtual dynamic 
reservoirs as the representative model of the UDS. The details of the line-
arized models used here can be found in the following section.

A comparison is also made to the real-time optimization of the settings of the 
N-actuators statically selected as those being the most frequently important 
actuators (i.e., the HAPPy procedure without the dynamic selection of the 
relevant actuators). This statically selects the actuators for the optimization 
(Statically Selected Actuators Optimization, SSAO run) procedure and was 
used to assess the relevance of the dynamic selection of the actuators within 
the proposed procedure.

3. Case Descriptions
The urban runoff and wastewater of the city of Rotterdam discharge through 3,043 km of gravity and pressure 
pipes to three separate WWTPs: Dokhaven (564,000 p.e.), Kralingseveer (400,000 p.e.) and Hoogvliet (112,500 
p.e.). The sum of the impervious connected areas totals 3,035.6 ha, draining through combined sewer systems 
with an average storage capacity of around 9 mm. For brevity, WWTP Kralingseveer is omitted as the associ-
ated UDS characteristics are similar to WWTP Dokhaven. Conceptual models, following the dynamic reservoir 
model principle (see Section 2.1), of the two other UDS were implemented in EPA SWMM5 (version 5.1.015, 
Rossman, 2015). A detailed map of the UDSs is given in Figure 4.

During dry weather flow, the three WWTPs function independently from each other. During extreme wet weather 
flow conditions, due to rising water levels in the urban canals, the UDS can become interconnected and can 
therefore not be seen as separate catchments during these conditions. However, as the control strategy developed 
here focuses on the reduction of CSO volumes, events that can cause this interconnectedness of the UDS (i.e., 
extreme rainfall events with a return period above 1-in-2 years) were omitted from the rainfall data set. The two 
catchments are therefore considered to be strictly separate in their dynamics.

CSOs in all three sections of the UDS spill to either the city canals, with a relatively high ecological sensitivity 
to CSO discharges, or to the New Meuse river, characterized by large flow rates, intense shipping activity and 
saline intrusion. Due to the discrepancy in the sensitivity, the reduction of overflows in the city canals should 
be prioritized. In previous work, sensitive areas are penalized more within the objective function (Vezzaro & 
Grum, 2014) and the same method was used here, with a weight of 10 used for the more sensitive areas and 1 
for the discharges to the New Meuse river (as was previously proposed by Geerse and Lobbrecht (2002) for this 
catchment). Applying this, the objective function for the real-time optimization part of the HAPPy, the static 
version of the HAPPy procedure which doesn't select the relevant actuators dynamically (the SSAO run) and the 
two full-MPC procedures, adapted from Equation 1, becomes:

min

(

𝑤𝑤1

𝑁𝑁𝑎𝑎𝑎NM
∑

𝑖𝑖=1

𝑇𝑇𝐻𝐻
∑

𝑡𝑡=0

𝑄𝑄NM

𝑖𝑖𝑎𝑡𝑡
+𝑤𝑤2

𝑁𝑁𝑎𝑎𝑎CC
∑

𝑖𝑖=1

𝑇𝑇𝐻𝐻
∑

𝑡𝑡=0

𝑄𝑄CC

𝑖𝑖𝑎𝑡𝑡

)

 (6)

where Na,NM is the number of CSO structures discharging to the New Meuse River, w1 is the weight associated 
with these discharges (here, a value of 1 is used), TH is the horizon over which the objective function is solved 
(here a horizon of 2 hr was chosen), 𝐴𝐴 𝐴𝐴NM

𝑖𝑖𝑖𝑖𝑖
 is the overflow rate (in m 3/hr) of the ith CSO structure discharging into 

the New Meuse river at time t, Na,CC is the number of CSO structures discharging to the sensitive city canals, w2 
is the weight associated with these discharges (here, a value of 10 is used) and 𝐴𝐴 𝐴𝐴CC

𝑖𝑖𝑖𝑖𝑖
 is the overflow rate (in m 3/

hr) of the ith CSO structure discharging into the city canals at time t. Given that the objective function presented 
here only optimizes the UDSs with regard to CSO volumes, the optimization only runs when wet weather flow 

Figure 4. Spatial overview of the two UDSs used here.
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conditions are either observed or when it will occur within the objective function horizon (i.e., when rainfall will 
fall or when anywhere within the UDS the filling degree exceeds what can be expected from wastewater only). 
This, within the HAPPy procedure, is the Optimization Required section (see Figure 1b). The urban catchment 
connected to WWTP Dokhaven is characterized by 61 different sewer districts, connected through pumping 
stations, totaling an impervious area of 1,632 ha. The districts vary in their storage capacity from 7.45 to 14.7 mm 
(with a total storage of 10.13 mm). A total of 160 CSO structures discharge excess wastewater into city canals 
or the New Meuse river. Additionally, 8 pumped CSO were installed in the system, enabling the controlled 
discharge of wastewater to the New Meuse river. The WWTP Dokhaven catchment was used to assess the key 
dynamics of the HAPPy, including the influence of the number of actuators on the performance of the HAPPy 
procedure and the interplay between the optimization and the heuristic control. The HAPPy procedure applied 
to the WWTP Dokhaven catchment is compared to a full MPC procedure relying on a linearized version of the 
model and optimized using a linear programming solver (see Section 3.2 for further details on both the linearized 
model and the solver).

The WWTP Hoogvliet catchment is considerably smaller, with a total connected area of 286.8 ha, with five 
district storage capacities varying from 7.31 to 14.15 mm (with a total storage of 10.68 mm). From the five 
districts, three (districts 1, 2, and 3) discharge directly into the WWTP, whilst district 4 discharges into district 1 
and district 5 into 2. Both districts 2 and 3 have pumped CSOs, which can discharge wastewater directly into the 
New Meuse river. The HAPPy algorithm is therefore not necessary, as an MPC procedure applied to all five actu-
ators in the catchment would be possible. However, because of this, it allows for the comparison of the HAPPy 
algorithm and two full-scale MPC systems: using the linearized model in combination with the COIN-OR solver 
(expanded on further in Section 3.2) and the dynamic virtual model implemented in EPA SWMM5 combined 
with a GA. This allows the assessment of the proximity to optimality and potential difference in MPC methods.

Both the WWTP Hoogvliet and WWTP Dokhaven UDS were modeled using the virtual reservoir methodology 
highlighted in Section 2. Each district within the UDSs was modeled following this methodology. The reservoirs 
were implemented in the EPA SWMM5 software and linked through pumps (representing the pumping stations 
within the UDS) with the respective capacities and the control rules (set out in the following section) added. The 
layout of the WWTP Dokhaven model can be seen in Figure 3a.

3.1. Heuristic Control

The heuristic control procedure underpinning the HAPPy algorithm was developed as part of the Central Auto-
mated Control 2.0 (CAS2.0) project initiated by the municipality of Rotterdam. The control strategy is set up as 
a multi-objective heuristic control procedure, aiming to balance the reduction of urban flooding and total CSO 
volume (by activating all available in-sewer storage), emissions from the WWTPs (by limiting the flow toward 
the WWTPs during rainfall events) and minimize the CSO volume toward the urban canals (by prioritizing the 
CSOs spilling toward the Nieuwe Maas river). This is achieved through the offline optimization of set points 
(partial or complete activation and deactivation) of pumping stations with thresholds based on the current local 
filling degrees and the total flow toward the WWTPs. The offline optimization of the set points for the wet 
weather flow conditions as well as the relevant thresholds is driven by the same objective function as previ-
ously mentioned (Equation 6). This objective (weighted CSO reduction) is realized through the limiting pumping 
capacities to minimize CSO volume in sensitive areas throughout the catchment and effective use of the pumped 
CSO. The parameters of the heuristic if-then control procedure within the HAPPy procedure are relevant only 
during wet weather flow conditions, although part of the CAS2.0 procedure relates to the flattening of the dry 
weather flow loads. As the application of the procedure here focuses on the reduction of CSO loads, this part of 
the control procedure is not considered. Further details on the development of the heuristic control method can be 
found in Langeveld et al. (2022), whilst additional details are described below.

The control procedure details for the WWTP Hoogvliet UDS are set out further in Table 1. It can be seen that, 
to avoid overloading the treatment plant, the flows from districts 1 and 2 are reduced. The activation of the CSO 
pumps (PCSO 2 and 3) are both at filling degrees of 80% of the district in which the CSO pumps are situated, 
balancing the sufficiently early activation of the CSO pumps to reduce CSOs discharging to the urban canals 
whilst minimizing the pumped CSO overflow volume. The implementation of CAS2.0 for the WWTP Dokhaven 
takes a similar structure to that of the rules implemented for WWTP Hoogvliet and is shown in Supporting Infor-
mation S1 (Table S3).
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The set points of the actuators are changed at a 15 min intervals. The minimum setting duration of the pumps in 
the UDS is 15 min, meaning a shorter sampling interval would not be possible. This sampling interval is used as 
the re-run time for the real-time optimization procedures used and functions as a maximum number of iterations 
within the optimization algorithm.

3.2. Linearized Model and Model Predictive Control

To enable full centralized MPC for the WWTP Dokhaven case study, a linearized version of the linked dynamic 
reservoir model from EPA SWMM5 is developed based on the linear reservoir tank used by Sun et al. (2020). 
Every district in the two catchments is described as a linear reservoir, where the water volume in the tank at the 
kth time step is computed as:

𝑉𝑉𝑘𝑘 = 𝑉𝑉𝑘𝑘−1 −
(

𝑄𝑄out

𝑘𝑘
−𝑄𝑄in

𝑘𝑘

)

∗ Δ𝑇𝑇 (7)

𝑄𝑄out

𝑘𝑘
= 𝑄𝑄

pump

𝑘𝑘
+𝑄𝑄CSO

𝑘𝑘 (8)

where Vk is the volume of water in the reservoir at time step k in (m 3), 𝐴𝐴 𝐴𝐴in

𝑘𝑘
 is the sum of the runoff generated 

by the rainfall (computed using the EPA SWMM5 software), the wastewater inflow and the potential upstream 
reservoirs discharging into the linear reservoir at time step k (in m 3/s) and ΔT is the time step used in the simu-
lation (in seconds). 𝐴𝐴 𝐴𝐴out

𝑘𝑘
 is the outflow from the reservoir comprising the pumping capacities of the downstream 

pumping station and (where applicable) the pumped CSO (𝐴𝐴 𝐴𝐴
pump

𝑘𝑘
 in m 3/s) and CSO overflow (𝐴𝐴 𝐴𝐴CSO

𝑘𝑘
 in m 3/s). 

When the  static volume of a linear reservoir is set to be exceeded (i.e., 𝐴𝐴 𝐴𝐴𝑘𝑘−1 +𝑄𝑄in

𝑘𝑘
−𝑄𝑄

pump

𝑘𝑘
> 𝐴𝐴max ), 𝐴𝐴 𝐴𝐴CSO

𝑘𝑘
 is set to 

be equal to 𝐴𝐴 𝐴𝐴max − 𝐴𝐴𝑘𝑘−1 −𝑄𝑄in

𝑘𝑘
+𝑄𝑄

pump

𝑘𝑘
 . This oversimplifies the dynamic storage but allows for rapid optimization 

of the pumping capacities (the decision variables in the optimization problem).

The linear reservoirs are applied to all the districts of both the WWTP Hoogvliet and WWTP Dokhaven catch-
ments to create a linearized model. The pumping capacities are the decision variables used to solve the objective 
function (see Equation 6). The optimization only runs during predicted or occurring wet weather flow (i.e., from 
the moment rainfall is predicted within the prediction horizon) and has a sampling interval of 15 min (due to the 
physical constraints of the actuators). The optimization function is subject to minimum volume constraints (no 
negative volumes in the reservoirs), minimum pumping capacity constraints (no negative pumping capacities), 
and maximum volume and pumping capacity constraints (dependent on the maximum storage capacity of reser-
voirs and pumping capacity per pumping station). Both models use the maximum inflow to the treatment plants 
as a combined constraint, as is implemented in the CAS2.0 heuristic control logic (see Table 1 for the WWTP 
Hoogvliet case).

3.3. Rainfall Characteristics

To capture the spatial heterogeneity of the rainfall events, radar data was used. An open data set of rain-gauge 
adjusted radar data (merged from various C-band radars) covering the Netherlands, was available and used (see 
Overeem et al. (2009) for the details on the rainfall data calibration). This data set is available as a 1 km × 1 km 
raster with a temporal resolution of 5 min and is a merged product of a network of rain gauges and radar data from 
Dutch, German and Belgium radars. For the evaluation of the HAPPy procedure implemented in the Dokhaven 

Actuator ID Catchment ID Rule details

P1 District 1 If the total discharge to the WWTP > 3,300 m 3/hr, then 
reduce flow to 1,000 m 3/hr

P 2 District 2 If filling degree >80%, reduce flow to 380 m 3/hr

PCSO 2 District 2 If filling degree >80%, then Activate pump at full capacity

P3 District 3 If filling degree >80%, reduce flow to 0 m 3/hr

PCSO 3 District 3 If filling degree >80%, then Activate pump at full capacity

Note. The values in the Rule Details column highlighted in bold were determined using an offline optimization method. Note 
that these rules exclude other districts which cannot be controlled, but also discharge into the WWTP Hoogvliet.

Table 1 
Overview of the Heuristic Procedure Optimized for the WWTP Hoogvliet Catchment
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catchment, 7 rainfall events (distinct from those used for the generation of the random forest for the actuator 
selection process) from 2020 were selected for the detailed analysis of the influence of the number of actuators 
on the performance of the HAPPy procedure. The weighted mean rainfall over the catchments ranges from 6.77 
to 33 mm (mean 19.37 mm), with a total duration ranging from 3.28 to 11.86 hr (mean 7.71 hr and a maximum 
intensity ranging from 6.75 to 52 mm/hr (mean 18.49 mm/hr). This spread ensures to have a wide variety of 
CSO-inducing rainfall events (including events with a low expected CSO volume), enabling the analysis of the 
RTC performance for a range of conditions. For the final number of actuators (8) included in the HAPPy proce-
dure applied to the case of the WWTP Dokhaven, additional simulations were performed to better ascertain the 
HAPPy procedure performance. At total of 22 events (including the 7 rainfall events previously mentioned) were 
ran, with a mean weighted rainfall depth of 17.5 mm, a mean duration of 6.6 hr and a mean maximum intensity 
of 21.9 mm/hr. The range of these values for the 22 rainfall events is the same as in the case of seven previously 
described events.

The events considered for the WWTP Hoogvliet catchment, on the other hand, were larger (again distinct from those 
used for the generation of the random forest for the actuator selection process) with mean rainfall depths ranging from 
14 to 43 mm (mean 25.3 mm), total durations ranging from 5.6 to 10.8 hr (mean 8.67 hr) and maximum intensities 
ranging from 10.9 to 40.9 mm/hr (mean 26.4 mm/hr). These events were selected to test the performance of the 
HAPPy under scenarios which have a low potential for optimization through RTC. This was to test if the HAPPy 
would not exacerbate CSO volumes during challenging events, a key step necessary for a robust RTC system (Van der 
Werf et al., 2022). Two relatively small rainfall events were included to further test if the HAPPy approach was able 
to generate satisfactory results within the rainfall range where RTC has the highest potential (Vezzaro, 2021). More 
details of all the rainfall events (for both catchments) are included in Supporting Information S1 (Tables S1 and S2).

The observed radar data is also used as the forecasted rainfall used within the (simplified) internal-MPC model, 
in order to minimize the uncertainties and highlight the theoretical performance potential of the HAPPy. This is 
done for all real-time optimization procedure runs. The same rainfall-runoff is used for the prediction of lateral 
inflow in the internal-MPC models as the system-representative model (including the linearized MPC, where the 
first step is the calculation of the lateral inflows following the EPA SWMM rainfall-runoff calculation).

4. Results and Discussion
In the following section, the results from the GSAs are discussed, followed by the prediction performance of 
the Random Forest algorithm for both analyzed catchments. Then, the performance of the HAPPy procedure is 
compared to a static form of real-time optimization, a full MPC procedure based on a linear programming and a 
full MPC procedure using a GA for the smaller UDS to benchmark the HAPPy functioning. Then, the HAPPy 
procedure, using a differing number of actuators to optimize, is applied to the larger UDS and the key dynamics 
observed are discussed. Two events are further examined to highlight the functioning of the HAPPy procedure.

4.1. Actuator Ranking

Dynamically selecting the most influential actuators in the system assumes a priori that this changes during and 
for different rainfall events. The importance of each actuator was determined using the methodology described 
in Section 2.1, based on the 261 (based on 15 rainfall events) binary inclusion sets of multi-linear regression 
coefficients obtained for each UDS. The obtained frequencies of different ranks (ranks 1 to 5 for the 5 actuators 
in WWTP Hoogvliet UDS and ranks 1 to 51 for the 51 actuators in WWTP Dokhaven UDS) are shown here in 
Figure 5. In both cases, different actuators are the most relevant (i.e., rank 1) depending on the initial conditions 
in the UDS and the rainfall forecast. Furthermore, the set of most influential actuators changes, meaning that the 
dynamic selection of multiple actuators during the event can likely lead to an increased performance of the UDS. 
For the WWTP Dokhaven UDS case (Figure 5b), 21 of the 51 actuators were found to be never ranked within 
the top 10 most relevant actuators. These were predominately pumps at the upstream ends of the catchment, 
connected to relatively small sub-catchments, therefore causing only minor changes in the total CSO volume. 
These actuators were not included in the DTs generated for this reason.

4.2. Prediction of Most Impactful Actuators

The ability to correctly predict the impactfulness of the actuators is a key step to ensure the functioning of 
the HAPPy procedure. For the WWTP Hoogvliet UDS (with five actuators) the validation results indicate that 
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Figure 5. Overview of the frequency of the rank of each actuator for the (a) WWTP Hoogvliet catchment and (b) the WWTP Dokhaven catchment. The latter only 
shows the 6 foremost ranks, as these will be used in the optimization.
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the random forest method is able to accurately predict 3 actuators with the 
highest level of impactfulness (60% of the  actuators, the number used in 
the HAPPy procedure), given the relatively low occurrence of FN and FP 
(Table 2), combining to an F1-score of 0.92. When considering only the most 
impactful actuator (selecting 20% of the total actuators), this performance 
dropped to an F1-score of 0.82, correctly identifying the most impact actu-
ator 81.7% of the time. A lower performance was observed for the WWTP 
Dokhaven case for the correct identification of 20% of the most impactful 
actuators compared to the smaller WWTP Hoogvliet case (an F1-score of 
0.72 compared to 0.82, respectively). Despite the increased number of actu-
ators and catchment size, the proposed random forest method was able to 
accurately predict 73% of the actuators with the highest level of impactful-
ness (the so-called recall value). For the 60% actuator inclusion, the F1-score 
increased to 0.87, again a lower score compared to the WWTP Hoogvliet 
case study for the same fraction of actuators predicted.

4.3. Performance Comparison—WWTP Hoogvliet

The HAPPy procedure, with three (out of 5) actuators included in the opti-
mization, was benchmarked against a real-time optimization procedure using 

the three most impactful actuators (highest mean rank from the GSA) of the UDS (statically selected actuators 
optimization, SSAO), a full MPC procedure based on the linked dynamic reservoir models and a GA for optimi-
zation (full MPC (GA), using all actuators in the optimization procedure) and a full MPC procedure based on the 
linearized model using linear programming to optimize the UDS (full MPC (LP), using all actuators in the opti-
mization procedure). The HAPPy procedure reduced the total overflow in the catchment by 5.41% for the seven 
events analyzed when compared to the optimized heuristic control procedure (CAS2.0) baseline (Table 3). This is 
relatively low compared to the previously reported RTC performance levels (Quaranta et al., 2022; Van der Werf 
et al., 2022) but given the rainfall depth and intensity of the events, the potential for reduction was relatively low 
in this case, as reflected in the maximum reduction potential through RTC (the CBA value) of 14.45%. For the 
two smallest rainfall events within the data set, a reduction of 18.5% relative to the optimized heuristic control 
(the baseline) was observed. When considering the aRPI values, the HAPPy procedure outperformed the SSAO 
procedure runs and differed only 0.03 aRPI points (i.e., 7%) from the full MPC performance, indicating the poten-
tial increase in performance by dynamically selecting the actuators to optimize (equating to a 33.4% increase 
in the reduction compared to the SSAO procedure). Comparing the two full MPC methods, the results were 
comparable, with no significant difference in the output, with the GA-based optimization algorithm performing 
slightly better. The model simplification through linearization therefore did not significantly decrease the RTC 
performance and the GA managed to equally optimize the operation of the UDS compared to the linear solver.

To better understand the performances of the three optimization-based RTC algorithms, the distribution of the 
pumped, unpumped and total CSO volumes for the seven rainfall events were analyzed (Figure 6). The HAPPy 
procedure performed better compared to the procedure which relies on the real-time optimization of the same 
three actuators (the SSAO procedure) in both the pumped and unpumped CSO volumes, with an additional total 
reduction of 3.3 × 10 3 m 3 and 1.6 × 10 3 m 3 respectively. Furthermore, the SSAO procedure relied on the pumped 
CSOs to facilitate the reduction of the unpumped CSO, as should be prioritized (according to the objective func-
tion). This led to a more than 3.0 × 10 3 m 3 increase in pumped CSO volume for one event. As two of the three 

Catchment

WWTP Hoogvliet WWTP Dokhaven

Percentage 
Actuators

Predicted 
Actual Positive Negative Positive Negative

20% Positive 16.3% 3.7% 14.1% 5.0%

Negative 3.8% 76.3% 4.5% 76.4%

60% Positive 56.9% 3.1% 54.8% 5.2%

Negative 3.1% 36.9% 8.5% 31.4%

Note. The incorrectly predicted values are highlighted in red, and the correctly 
predicted ones are in green.

Table 2 
Confusion Matrices of the Random Forest Results as Applied to the 
Validation Data Set of Both of the Catchments Studied, Predicting the 20% 
and 60% Most Impactful Actuators Respectively

Baseline SSAO HAPPy procedure Full MPC (GA) Full MPC (LP) CBA

CSO Volume (in 1,000 m 3) 285.9 276.1 271.2 269.9 270.1 249.8

Reduction relative to Baseline (−) 3.55% 5.41% 5.93% 5.84% 14.45%

aRPI (−) 0.27 0.41 0.44 0.44 (−)

Note. The baseline refers to the heuristic control procedure developed under the CAS2.0 project.

Table 3 
Results for the Different Control Procedures
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included actuators for the SSAO procedure were the CSO pumps, the controllability of the UDS through the 
SSAO procedure was dominated by the usage of these pumps. In the HAPPy procedure, the dynamic selection of 
the actuators was able to reduce the unpumped CSO rate further compared  to  the SSAO procedure, but without 
the increase in the pumped CSO rate.

When compared to the full MPC systems, the HAPPy approach performed only slightly worse, with the 
GA-based and linear programming-based MPC systems having an additional reduction in total CSO volume of 
1.3 × 10 3 m 3 and 1.1 × 10 3 m 3 respectively (which is around 2% of the total CSO volume reduction through RTC). 
When  assessing the relative volumes discharged through each individual CSO structure in the UDS (the overflow 
volume per CSO structure divided by the total CSO volume), no significant differences between the three methods 
were found, indicating that the resulting dynamics of the two procedures were comparable. Due to the relatively 
small amount of rainfall events evaluated here, statistically significant differences (using an Anderson-Darling 
two-sample tests) in the distributions of the overflow volume reductions, comparing the SSAO, HAPPy and the 
two full MPC procedures, were not found. There was no significant difference in the total CSO volume, CSO 
volume to the New Meuse nor the CSO volume to the city canals. An overview of the distributions for the three 
CSO volume types is provided in Supporting Information S1 (Figure S2).

4.4. Large Catchment Performance– WWTP Dokhaven

For the large catchment (WWTP Dokhaven), the overall performance of the HAPPy procedure with the maximum 
number of actuators (8) was assessed, followed by the influence of the number of actuators (ranging from 1 to 
8 actuators) included in the HAPPy optimization procedure. The retrained RFs, to predict the specified number 
of actuators, showed only minor variations (F1-score deviation of below 0.3) for each of the included number of 
actuators). For each of the seven events (see Table S1 in Supporting Information S1 for the rainfall event char-
acteristics) the performance is compared to the baseline heuristic control procedure and a fully linearized MPC 
procedure.

Resulting from the selection of the rainfall events, two clusters of events were observed: two events (events 1 and 
5) had a large CSO reduction compared to a relatively low reduction observed for the five other events (shown as 
the two lowest lines in relative CSO Volume plot shown in Figure 7). As the total CSO volume in the system was 
dominated by the largest events (whose volumes are orders of magnitude larger than the smaller events), the total 
CSO volume reduction by using the HAPPy procedure was 5.2% (when 8 actuators were used), ranging from 0.9% 
to 100% for different events. This large range in relative reduction of CSO volume comes from the relatively large 
spatial spread of total rainfall depth and maximum rainfall intensity found in the analyzed events, impacting the 
RTC potential.

Figure 6. Comparison between three optimization forms for the Hoogvliet catchment: Statically Selected Actuator 
Optimization (using the global most important actuators), HAPPy algorithm (dynamically selected actuators) and Full MPC 
(using all actuators).
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A maximum total aRPI of 0.28 was obtained when 8 actuators were used in the HAPPy procedure when consid-
ering the seven events. Using the extended data set (with 22 rainfall events), the performance was slightly worse 
with an aRPI of 0.26, though the volume reduction increased from 5.2% to 7.1% (reducing the total CSO volume 
by 103.1 × 10 3 m 3 or 6.3 mm). A breakdown of all the results can be found in Supporting Information S1 (Tables 
S3 and S4). Although the influence of the number of actuators used in the optimization problem differs across 
events (Figure 7), a sigmoidal relation between the number of actuators and the total aRPI (using the sums of the 
CSO volume for the events for the baseline, HAPPy and CBA) seems to exist. A sigmoidal relation was expected 
as the increasing number of actuators allows for finer RTC resulting in increasing aRPI values, especially initially. 
A similar relation between RTC efficacy and number of actuators was found by Eulogi et al. (2020) when placing 
N number of actuators in a UDS for CSO volume reduction.

Comparing this sigmoidal relation to the performance of the fully linearized MPC procedure, a convergence of the 
HAPPy procedure toward the performance of the full MPC procedure can be observed (see Figure 7). However, 
the HAPPy procedure performance remained below the achieved performance of the full MPC procedure (with 

Figure 7. (a) Relation between the number of actuators included in the HAPPy procedure and performance compared to the 
baseline (full heuristic control) and aRPI. The dashed (blue) and dotted (orange) lines are the events further analyzed below, 
while the other of the events are displayed by the solid lines. (b) Shows the total aRPI dynamic with respect to the number 
of included actuators, showing a sigmoidal relationship. It also shows the results of the full MPC using the linearized MPC, 
showing the proximity of the 8 actuator HAPPy results.
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a total aRPI of 0.31 for the seven events combined). In the extended data 
set,  the relative performance of the LP-MPC increased to an aRPI of 0.35, 
with a total CSO volume reduction of 141.7 × 10 3 m 3 (8.7 mm, 9.7% total 
CSO volume reduction). The increase in CSO volume reduction compared to 
the HAPPy procedure is not statistically significant (p-value of 0.063 follow-
ing an Anderson-Darling 2-sample test), though the difference in aRPIs is 
(p-value <0.05 following the same Anderson-Darling 2-sample test). The 
additional uncertainties, introduced by the further linearization, therefore did 
not decrease the achievable potential of the MPC system for this case study. 
This can partially be attributed to the relatively small differences between the 
linearized model and the model used to represent the physical UDS (a simpli-
fied model following the linked dynamic reservoir model), as opposed to a full 
hydrodynamic model as per the example of Van der Werf et al. (2023). The 
ability, however, of the HAPPy procedure to improve the performance close to 
the full MPC procedure shows the potential of the procedure for UDS which 
cannot be linearized without excessive loss of model accuracy. Additionally, 
the distribution in total CSO volume reduction of the eight actuators' HAPPy 
procedure and the full MPC model was found to be not statistically significant 
(following an Anderson-Darling two-sample test), but the number of events 
analyzed likely accounts for this.

The investigated domain and the number of rainfall events used are too few to draw statistically significant conclu-
sions about the underlying relation between the number of actuators and the HAPPy procedure performance. After 
the maximum reduction potential by using the HAPPy procedure has been achieved, further increase in actuators 
may negatively impacts the UDS performance: as more actuators are included, the depth of the search and potential 
for convergence can decrease leading to sub-optimal results in terms of the objective function. As non-impactful 
actuators are considered but unlikely to have an impact on the final RTC performance. However, as the convergence 
time (including actuator selection time, model creation and optimization) was still below the sampling interval for 
all runs performed across events (see Figure 8), a decreased potential of the HAPPy procedure was not observed 
within the used range of included actuators. Although the speed of convergence is significantly larger compared 
to the linear optimization problem, the algorithm can reduce the complexity to allow for non-linear models to be 
optimized in real-time without significant uncertainties introduced in the internal-MPC model.

Aside from the difference in (realized) RTC potential per event, two further distinct dynamics within the events 
could be identified in both the aRPI and relative CSO volume results: those with and without the breaking point. 
Here, a breakpoint is defined as a point at which increasing the number of RTC actuators by one results in an 

Figure 8. Overview of the distribution of the time of convergence for the 
different number of actuators included in the HAPPy procedure.

Percentage change in total CSO volume reduction per actuator interval

Event 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8

#1 11.7 61.6 10.0 11.9 4.71 0.05 −0.05 0.05

#2 0 12.1 10.6 12.1 26.4 29.3 8.1 1.3

#3 0 −45.3 a 110.1 a 1.1 −32.4 a 7.7 39.1 19.7

#4 −6.8 3.0 46.5 −11.5 18.4 14.9 25.4 10.1

#5 85.5 8.3 5.9 0.3 0.0 0.0 0.0 0.0

#6 19.4 5.5 21.6 45.8 9.8 −1.3 −2.7 2.0

#7 6.1 10.2 24.3 24.6 10.5 8.9 9.7 5.8

Note. The bold values indicate identified breaking points within the data set.
 aDue to the relative loss in total CSO volume reduction at the 1–2 and 4–5 intervals, this value is above 100%. It should be 
noted that the increases in total CSO volume are due to an increase in pumped CSO rate, decreasing some of the unpumped 
CSOs.

Table 4 
Change in the Total CSO Volume Reduction Compared to the Heuristic Baseline (the CAS2.0 Procedure) Per Interval of 
Actuators Included in the HAPPy Procedure
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abrupt (more than 50%) reduction in the total CSO volume compared to the heuristic baseline. Following this 
definition, three events could be classified as having a breaking point (see bold values shown in Table 4). One of 
these events, Event #3, however, had an observed breaking point larger than 100% due to the relative increase in 
the CSO volume before the relevant interval. This increase was caused by an increase in the pumped CSO value  to 
reduce spills toward the urban canals, as specified by the optimization objective function (see Equation 6).

The other two events (events 1 and 5) have two main characteristics in common: (a) a large spatial distribution in 
the standardized rainfall (standardized by dividing by the mean total rainfall depth in space) and (b) a mean total 
rainfall depth below the static capacity of the system (highlighted with the gray boxes in Figure 9). The former 
indicates the presence of a breaking point for events that have the highest potential for improvement through RTC 
(Vezzarro, 2021). The combination of spatial heterogeneity and relatively low total rainfall depth in the events 
led to CSOs occurring in only a small part of the UDS, meaning a relatively small number of correctly predicted 
(i.e., selected) actuators could significantly reduce the total CSO volumes. To quantify the relation between both 
the total depth and the spatial heterogeneity of the rainfall on the number of actuators necessary to approach 
optimality, additional events should be included in the analysis.

As shown above, the importance of the number of actuators included in the HAPPy procedure was found to 
depend on the rainfall characteristics of the event and differs between rainfall events. The current implementation 
of the actuator selection relies on a fixed number of actuators to be selected and might therefore not be the opti-
mal strategy (as this maximum number is not always necessary, meaning computational costs could be further 
reduced).

Two rainfall events (#1 and #2) were further analyzed to better understand the differing importance of the number 
of actuators on the performance of the HAPPy procedure and the associated dynamics, the spatial distribution of 
the total rainfall depths shown in Figure 10. These two are represented by the dashed and dotted lines in Figure 9 
and were chosen to include an event with and without a breaking point as well as an event with high and relatively 
low RTC performance potential. The rainfall characteristics, UDS dynamics and interaction between the RTC 
performance, selected actuators, and optimization procedure are examined in further detail.

4.5. Analysis of Event 1

The first event is a highly spatially heterogeneous rainfall event, with rainfall depths exceeding the static capacity 
recorded only around the north-western section of the UDS (see Figure 10a), where the other parts received only 
between 4 and 7 mm over 36 hr (during a single peak with a mean duration of 3.3 hr). The total CSO volume of 

Figure 9. Standardized and total rainfall depth spatial distributions of the rainfall over the WWTP Dokhaven UDS. The 
distributions are based on the total depth of each pixel (a 1 × 1 km area) of the UDS urban catchment. The distributions 
highlighted by the dashed gray boxes are the events categorized as including a breaking point. Whiskers indicate the full 
range of observations during the event.
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the event was caused by the activation of two pumped CSOs (located in districts 4 and 12) and one uncontrolled 
CSO event in district 913 (marked with the purple squares and the black star in Figure 10a, respectively). The 
uncontrolled CSO event could not, with the given actuator configuration, be reduced. This is reflected in the 
results from the CBA analysis, where the minimum amount of CSO volume discharged during the event was 
equal to the volume discharged through the uncontrolled CSO structure.

Given this equality between the CBA method and uncontrolled CSO discharge, the pumped CSO discharges 
could theoretically have been prevented. To understand the cause of the “unnecessary” discharge, the relevant 
heuristic rules should be examined. Within the heuristic control, the two pumped CSOs are activated at an 80% 
filling degree, ensuring redundancy, due to the dependency:

Figure 10. Overview of the spatial distribution of the total rainfall (in mm) of the two analyzed events. (a) Shows the high 
spatial heterogeneity associated with Event 1, with the two activate pumped CSO locations highlighted with the purple boxes 
and one uncontrolled CSO event marked with a black star, and (b) the distribution of rain from the second event. Note that the 
rainfall depth scale is represented by the color changes between the events.
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PCSO4
⋀

PCSO12

⎧

⎪

⎨

⎪

⎩

1 FD3 ≥ 0.8 |FD4 ≥ 0.8|FD12 ≥ 0.8

0 otherwise
 (9)

where PCSOn is the setting of the pumped CSO at district n and FDn is the filling degree at district n. These CSOs 
are activated to alleviate the downstream area, such that when the pumped CSOs are activated, the sewer pumps 
are deactivated following the inverse rules:

𝑃𝑃4→3 ∧ 𝑃𝑃12→3

⎧

⎪

⎨

⎪

⎩

0 FD3 ≥ 0.8 |FD4 ≥ 0.8| FD12 ≥ 0.8

1 otherwise

 (10)

where 𝐴𝐴 𝐴𝐴𝑛𝑛→𝑚𝑚 is the setting of the pump from the upstream district n to the downstream district m. During the event, 
the 80% filling degree threshold was exceeded for around 45 min at district 12 (Figure S3a in Supporting Infor-
mation S1), leading to the activation of the pumped CSOs.

Due to the nature of the heuristic settings, minimal CSO reduction could be achieved when 1 actuator was 
included (see Section S5 in Supporting Information S1 for a detailed description of the underlying mechanism). 
This limitation could be largely overcome by the inclusion of one additional actuator. Including 3, 4, and ≥5 
actuators allowed for the reduction (3 and 4) and negation (≥5) of the pumped CSO at both districts 4 and 12 (see 
for detailed breakdown Figures S3–S5 in Supporting Information S1). The inclusion of 4 actuators should have 
been enough in the way that the HAPPy procedure was implemented, but due to the incorrect inclusion of other 
pumps (and therefore the exclusion of pumps related to the relevant districts), a reduction in total CSO volume 
was observed between 4 and 5 actuators (Figure 7a). No additional CSO volume reduction was observed for the 
inclusion of more actuators, but no performance drop was observed either. The linearized MPC showed similar 
actuator behavior to that of the HAPPy procedure when optimizing more than five actuators.

Although the synergy between the real-time optimization and the heuristic part of the HAPPy procedure managed 
to negate the pumped CSO event, it required the selection of 5 actuators for optimization, although the inclusion 
of the two CSO pumps could have sufficed. The heuristic portion of the HAPPy procedure, however, would have 
to be adjusted in order to allow for this. This suggests a shift in the optimality of the rules could occur when 
local actuators are optimized in real-time, able to more effectively synergize between real-time optimization and 
heuristic procedures.

4.6. Analysis of Event 2

The second event was of a considerably larger magnitude, with the total rainfall exceeding the static capacity 
throughout the catchment (Figure 10b). This means a combination of controlled and uncontrolled CSOs discharg-
ing throughout the catchment, which led to a more complex set of settings necessary to reduce the total CSO 
volumes. This is typified by a changing prediction of the most relevant actuators, especially when a limited (up 
to four actuators) were included, though still evident when the maximum number of actuators considered here 
(8) were included (Figure 11). This changing of the most relevant actuators led to frequent changes in the pump 
settings, a UDS behavior that is often undesirable and optimized against in an RTC context (Mounce et al., 2020; 
Sun et al., 2020). This dynamic was also evident in the other large rainfall events, meaning this might be an inher-
ent attribute of the proposed HAPPy procedure. Safeguards against this have to be included in future modifica-
tions and are a shortcoming of the proposed procedure. Future work should examine the potential to improve this 
behavior through the selection of the actuators or by including a set-point change penalty within the optimization 
function. The development of these safeguards, however, is deemed outside the scope of this work.

Local CSO reductions were especially pronounced when multiple actuators affecting the same part of a cascade 
were selected in the optimization procedure also visible in the continuous improvement when multiple actuators 
are included. Utilizing this increased potential of interactions between pumps in the same cascade more effi-
ciently, by changing the actuator selection procedure, could be a future improvement of the HAPPy procedure, 
but would require a redesign of the selection procedure.

Although the analysis of these two events gave an insight into the potential role of the number of actuators on 
the performance of the HAPPy procedure, the heterogeneity in results and dominant dynamics of the influence 
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suggests a high level of case-study and rainfall dynamic specificity. The ability of the HAPPy to optimize different 
UDS, however, shows a level of transferability of the principles behind the HAPPy. Further testing on additional 
rainfall events and other case studies to better understand the potential of the HAPPy procedure are necessary to 
quantify and further understand the performance.

5. Conclusions and Future Work
This work proposes a new HAPPy for the near-optimal RTC of large UDS. The HAPPy utilizes a set of offline 
determined characteristics to optimize the actuators of an UDS with the highest level of impact. This procedure 
can reduce computational costs through search space reduction without significant performance loss.

Based on the results presented here, the following conclusions can be drawn:

•  Selecting only a few actuators within a UDS and optimizing the set points of those in real-time ensured 
near-global optimal operation of a smaller UDS, with only a minor performance loss when compared to a 
full-scale MPC-based RTC for both catchments tested. Dynamically selecting those actuators following the 
proposed procedure showed a better control performance when compared to both the RTC with statically 
selected actuators and the heuristic rule-based RTC;

•  For larger catchments, the relevance of actuators for the performance of RTC procedures varies between and 
during rainfall events. The rank of the impactfulness of the actuators can be assessed using a global sensitivity 
analysis and predicted using machine learning techniques such as Random Forest used here. This allows for 
the effective reduction in the optimization search space by selecting which actuator should be included in the 
optimization procedure. In turn, this allows large real-life RTC challenges to be addressed;

•  The number of actuators included in the HAPPy procedure impacts the outcome. For smaller, spatially hetero-
geneous events, a critical number of included actuators can be observed: the breaking point. Including at least 
this critical number of actuators within the procedure ensures the most optimal functioning of the HAPPy 
approach;

•  The performance potential of the HAPPy procedure for rainfall events with a high total rainfall depth increases 
with the inclusion of additional actuators but seems to level out after approximately 15% of the total number of 
available actuators are used. The selection of the most relevant actuators during these rainfall events, however, 
was more spurious, leading to potentially undesirable frequent changes in the settings of the actuators during 
the optimization.

Although the initial results and conclusions indicate the potential of the HAPPy procedure, several key points 
should be addressed prior to implementation in a physical UDS. The relative influence of rainfall forecast and 

Figure 11. Temporal changes on the actuator IDs which are included in the HAPPy procedure (indicated by white) for the 
run with the three actuators included (top figure) and eight actuators (bottom figure).
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model uncertainty on the performance of the HAPPy procedure compared to conventional MPC procedures 
has to be determined. A key aspect of the proposed procedure is the reduction of model uncertainties induced 
through oversimplification and linearization of the internal-MPC model. However, the double reliance on rain-
fall forecasts within the HAPPy procedure (used as an input for both the real-time optimization and the actuator 
selection algorithm) may lead to a decrease in the UDS performance. Understanding these trade-offs is a key part 
of the further development of the procedure. Robustness against actuator failure and the long-term validity of the 
predictive algorithms and optimization are other aspects that should be explicitly understood.

As the work here highlights the ability of MPC to co-optimize the operation of the UDS with heuristic control, 
inclusion of a HAPPy-based procedure to optimize part of the UDS during failure events (loss of communication 
between the central decision makers and the local implementation) could be an effective method to improve the 
fault-tolerance of implemented MPC methods. Work investigating how to implement a HAPPy-based fail-safe 
would be required. Further optimization of the HAPPy procedure, by changing the actuator selection procedure 
from a binary to a numerical prediction algorithm, could further improve the function of the HAPPy procedure. 
Comparison between the HAPPy procedure and distributed, decentralized and local RTC procedures would also 
give a better insight into the potential use of the proposed methodology.

Acronyms
aRPI Absolute realized potential indicator
CBA Central basin approach
CSO Combined sewer overflow
DT Decision tree
GA Genetic algorithm
GSA Global sensitivity analysis
HAPPy Heuristic and predictive policy
LP Linear programming
MLR Multi-linear regression
MPC Model predictive control
RB-RTC Rule-based real-time control
RTC Real-time control
SSAO Statically selected actuators optimization
UDS Urban drainage system
WWTP Wastewater treatment plant

Data Availability Statement
Rainfall data used in this research is available from the KNMI website (dataplatform.knmi.nl). Models are prop-
erty of the relevant parties, and can be made available to readers only with the specific consent from those parties. 
Readers are encouraged to contact the corresponding author in order to start the data acquisition process. Figures 
in this work were made with Matplotlib, available under the license https://matplotlib.org/. Models were made 
in the EPA SWMS 5 open-source software, using the PySWMM python interface, available under the license 
at https://www.pyswmm.org/citing. Furthermore, the SWMM API interface was used for interacting with the 
SWMM input files, using the MIT License at https://pypi.org/project/swmm-api/ (Pichler, 2022).
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