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Fig. 1. Foveated graphics techniques rely on eccentricity-dependent models of human vision. However, existing models of contrast sensitivity (left, purple line,
shown for a fixed eccentricity) do not take into account allocation of visual attention across the visual field. Our work is the first to experimentally derive a
model for eccentricity-dependent attention-aware sensitivity (left, yellow line). As illustrated on the right, when the user is focused on a task in the fovea, less
attention is directed to the periphery and a higher level of foveation (i.e., peripheral blur) is possible without impacting the perceived visual quality.

Foveated graphics is a promising approach to solving the bandwidth chal-
lenges of immersive virtual and augmented reality displays by exploiting
the falloff in spatial acuity in the periphery of the visual field. However, the
perceptual models used in these applications neglect the effects of higher-
level cognitive processing, namely the allocation of visual attention, and are
thus overestimating sensitivity in the periphery in many scenarios. Here,
we introduce the first attention-aware model of contrast sensitivity. We con-
duct user studies to measure contrast sensitivity under different attention
distributions and show that sensitivity in the periphery drops significantly
when the user is required to allocate attention to the fovea. We motivate
the development of future foveation models with another user study and
demonstrate that tolerance for foveation in the periphery is significantly
higher when the user is concentrating on a task in the fovea. Analysis of
our model predicts significant bandwidth savings over those afforded by
current models. As such, our work forms the foundation for attention-aware
foveated graphics techniques.

CCS Concepts: • Hardware → Displays and imagers; • Computing
methodologies → Computer graphics;Mixed / augmented reality.
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1 INTRODUCTION
Virtual and augmented reality (VR/AR) are next-generation display
systems that promise perceptually realistic user experiences by
matching the resolution of human vision across a wide field of view.
However, the necessary bandwidth for rendering, streaming, and
displaying the required visual data is not yet possible with current
technology. Foveated graphics has emerged as a suite of techniques
that exploits the eccentricity dependent acuity of human vision to
minimize bandwidth in an imperceptible manner. In VR/AR, this
is often implemented using gaze-contingent rendering, shading,
compression or display (see Sec. 2.1). While these methods build
on the insight that the human visual system has a limited ability to
sense spatio-temporal changes in light, they have yet to consider
how this might be dependent on higher-level cognitive processing.
Indeed, research shows that we rarely see what we are looking

at unless we direct sufficient cognitive resources [Mack 2003]. This
explains many phenomena, including change blindness or tunnel
vision. Visual attention refers to a set of cognitive operations that
helps us selectively process the vast amounts of information with
which we are confronted, allowing us to focus on a certain location
or aspect of the visual scene, while ignoring others. Most often, we
direct our attention overtly, by moving our eyes towards a location,
but we can also direct attention to an area in the periphery covertly,
via a mental shift. Several studies have demonstrated that, under
many conditions, increasing the amount of attention allocated to
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a visual task can enhance performance [Lee et al. 1997; Sperling
and Melchner 1978]. In a similar manner, dividing attention be-
tween tasks reduces contrast sensitivity [Huang and Dobkins 2005;
Mahjoob and Anderson 2019], visual acuity [Mahjoob et al. 2022],
and speed of information accrual [Carrasco et al. 2006].

However, existing models of contrast sensitivity and visual acuity
across the visual field are built on experiments where subjects are
asked to covertly direct high levels of visual attention to a discrim-
ination task in the periphery. Thus, for most scenarios in the real
world and VR/AR, where most of our attention is directed overtly (at
our gaze position), we are likely overestimating our perceptual abil-
ities in the periphery. Consequently, current efficacies of foveated
graphics are too conservative in most real-use cases.
In this paper, we propose to account for the effect of covert at-

tention when modeling human contrast sensitivity. To this goal, we
investigate the effect of modulating the amount of attention allo-
cated to the contrast discrimination task in the periphery, by forcing
attention to the fovea with a visually demanding task. Specifically,
we compare the standard approach to measuring contrast sensitivity,
where a low amount of attention is directed to the fovea (“low” ),
to scenarios where part or most of the attention is directed there
(“medium” and “high” ). We show that in such instances, peripheral
contrast discrimination thresholds elevate significantly, introduce
the first attention-aware contrast sensitivity model, and motivate
the development of future foveation models that take this into ac-
count.
To summarize, we make the following contributions:

• We design and conduct user studies to measure and validate
eccentricity-dependent effects of attention on contrast dis-
crimination and foveation efficacy.

• We introduce the first analytic model of contrast sensitivity
across eccentricity under varying attention.

• We analyze bandwidth considerations and demonstrate that
our model may afford significant bandwidth savings over
existing foveated graphics techniques.

Overview of Limitations. The primary goals of this work are to
develop the first perceptual model for attention-dependent contrast
sensitivity and to demonstrate its potential benefits to foveated
graphics. However, we do not attempt to derive a measurement
instrument for attention allocation across the visual field, nor do we
propose new foveated rendering algorithms or specific compression
schemes that directly use this model.

2 RELATED WORK

2.1 Foveated Graphics
Foveated graphics techniques exploit eccentricity-dependent aspects
of human vision, such as acuity, to minimize the bandwidth of a
graphics system by optimizing bit depth [McCarthy et al. 2004],
color-fidelity [Duinkharjav et al. 2022], level-of-detail [Luebke and
Hallen 2001; Murphy and Duchowski 2001], or by simply reducing
the number of vertices or fragments a graphics processing unit has to
sample, ray-trace, shade, or transmit to the display; see [Duchowski
et al. 2004; Koulieris et al. 2019] for a review of this area. Foveated
rendering is perhaps the most well-known example of this class

of algorithms [Deng et al. 2022; Friston et al. 2019; Geisler and
Perry 1998; Guenter et al. 2012; Kaplanyan et al. 2019; Patney et al.
2016; Sun et al. 2017; Tariq et al. 2022; Tursun et al. 2019]. The
perceptual models underlying foveated graphics usually exploit
spatial aspects of eccentricity-dependent human vision but, to the
best of our knowledge, none of them model cognitive or attentional
effects of human vision, which we aim to address with our work.

2.2 Eccentricity-dependent CSF Models
The human visual system (HVS) is limited in its ability to sense
variations in light intensity over space and time. Such visual perfor-
mance is often described by the spatio-temporal contrast sensitivity
function (CSF), defined as the inverse of the contrast discrimination
threshold, that is, the smallest contrast of sinusoidal grating that
can be perceived at each spatial and temporal frequency [Robson
1966]. The CSF can be used to describe the gamut of visible spatio-
temporal signals as well as the decrease in relative sensitivity with
retinal eccentricity.

While the CSF has been studied for over 70 years [Robson 1966],
Kelly [1979] was the first to fit an analytical function, although
limited to the fovea and a single luminance. Similarly, Watson et
al. [2016] devised the pyramid of visibility, a simplified model that
can be used if only higher frequencies are relevant. This model also
captured luminance dependence and was later refit to model station-
ary content at higher eccentricities [Watson 2018]. Recently, models
capturing eccentricity dependence for the full spatio-temporal do-
main were also presented [Krajancich et al. 2021; Mantiuk et al. 2021;
Tursun and Didyk 2022]. Notably, Mantiuk et al. [2022] proposed a
unified model, StelaCSF, which accounts for all major dimensions
of the stimulus: spatial and temporal frequency, eccentricity, lumi-
nance, and area by combining data from several previous papers.
Similar to luminance contrast, sensitivity to color contrast has also
been studied and a spatio-chromatic CSF for foveal vision has re-
cently been fitted [Mantiuk et al. 2020].
However, the data used to fit eccentricity-dependent models is

collected from experiments where subjects covertly direct high lev-
els of visual attention to the contrast discrimination task in the
periphery. Such a scenario is unlikely to be representative of view-
ing conditions in the real world or in VR/AR settings, and may
overestimate perceptual thresholds.

A related perceptual quality relevant for foveation is visual acuity
defined as the smallest resolvable image detail. While our work
focuses on measurements of the CSF alone, we expect similar effects
to apply to acuity as well, because acuity can be understood as the
outer limit of the CSF gamut where the sensitivity of vision drops
sharply.

2.3 Attention–dependent CSF
Visual attention lies at the crossroads between perception and cog-
nition, allowing us to select relevant sensory information for pref-
erential processing. It is often modeled as a “zoom” or "variable-
power lens”, that is, the attended region can be adjusted in size,
but defines a tradeoff between its size and processing efficiency be-
cause of limited processing capacities [Eriksen and St. James 1986].
Physiologically, attention modulates neuronal responses and alters
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the profile and position of receptive fields near the attended loca-
tion [Anton-Erxleben and Carrasco 2013]. Behaviorally, it improves
performance in various visual tasks. One prominent effect of at-
tention is the modulation of performance in tasks that involve the
visual system’s spatial resolving capacity [Carrasco 2018].

In line with the “zoom lens” model, several studies have shown
that covert attention enhances contrast sensitivity at the attended
location at the cost of decreased sensitivity at unattended locations
across the visual field, at different eccentricities and isoeccentric
(polar angle) locations [Cameron et al. 2002; Carrasco 2011; Carrasco
et al. 2000; Mahjoob and Anderson 2019]. In such studies, attention
is typically modulated by visual means, e.g., pre-cueing the location
of the visual target [Cameron et al. 2002; Carrasco et al. 2000], or
by drawing attention away from the stimuli by use of a concurrent
visual task presented elsewhere [2005; 2004]. Carrasco et al. [2000]
found that pre-cuing attention to the visual target enhanced contrast
sensitivity between 0.05 and 0.1 log units over a broad range of
spatial frequencies, and later, Carrasco et al. [2006] described this
attention effect as equivalent to applying an effective contrast gain to
the stimulus. A similar effect also occurs for visual acuity [Montagna
et al. 2009] and speed of information accrual [Carrasco et al. 2006].
Also in line with the “zoom lens” model, and most similar to

our work, Huang and Dobkins [2005] showed that when attention
is divided across several points in the visual field, this reduces its
enhancement effect at each location. In particular, they showed that
drawing attention to the fovea with a rapid serial visual presentation
task reduced contrast discrimination performance in the periphery
by up to a factor of 10.
However, each of these studies measures a single position in

eccentricity in the perifovea (5− 10◦) and often only for 1 or 2 users.
To the best of our knowledge, this effect has not been modeled over
the visual field, nor is there any available data for the effect in the
periphery (> 10◦), which we hope to rectify with our work.

3 A MODEL FOR PERCEPTION UNDER DIVIDED
ATTENTION

While modulating the amount of attention has been shown to affect
contrast discrimination thresholds (see Sec. 2.3), insufficient data
and a lack of existing models prevent this effect from being applied
to existing CSF models and hence foveated graphics. In this section,
we provide a detailed discussion of the user study we conducted
and the model we fit to predict the effect of modulating peripheral
attention on the CSF.

3.1 Measuring CSF
The CSF model we wish to acquire could be parameterized by tem-
poral frequency, spatial frequency, rotation angle, eccentricity (i.e.,
distance from the fovea), direction from the fovea (i.e., temporal,
nasal, etc.) and other parameters. However, due to the fact that each
data point needs to be recorded for multiple subjects and for many
contrasts per subject to determine the respective CSFs, sampling all
dimensions at once seems infeasible. Instead, we nominally select
3 points across the eccentricity (𝑒) available with our display (see
Sec. 3.3), a spatial frequency (𝑓𝑠 ) of 2 cpd, and a diameter of 5◦ for
the furthest point. We then use the cortical magnification factor to

Table 1. Parameters of tested Gabor patches. For measuring the model
(shown above the divider), we chose a diameter of 5◦ at the highest eccen-
tricity of 21◦ to utilize the full field of view of our display and a spatial
frequency 𝑓𝑠 of 2 cpd, then use the cortical magnification factor to scale
these parameters at 7◦ and 14◦ eccentricity. Gabor’s sigma was defined as
20% of the diameter. For validation, we chose 2 sets of Gabor parameters
(shown below the divider) used to fit StelaCSF [2022], namely measure-
ments taken by Virsu and Rovamo [1979] and Wright and Johnson [1983].
Stimulus No. 5 was also tested at 2 additional adaption luminances, 58 and
116 cd/m2 (No. 6 and 7).

No. Eccentricity
(◦)

Diameter
(◦)

Spatial
Freq. (cpd)

Adaptation
Lum. (cd/m2)

1 7 2.16 4.62 28
2 14 3.58 2.79 28
3 21 5 2 28

4 9.25 1.7 2 28
5 15 5 4 28
6 15 5 4 58
7 15 5 4 116

scale the spatial frequencies and diameters at the other retinal posi-
tions (see stimuli No. 1–3 in Table 1) such that the discrimination
thresholds should be approximately the same (see Supplement for
more detail).

In order to obtain the contrast discrimination thresholds, we use
Gabor patches, i.e., sinusoidal gratings modulated by a Gaussian
function (see Supplement for more detail), as is used by most pre-
vious works (Table 1, [Mantiuk et al. 2022]). During each trial, 2
patches are simultaneously presented for 500ms, centered at a given
eccentricity, to the left and right side of the central fixation position.
Each grating is randomly orientated either horizontally or vertically
and the user is asked to discriminate whether the patches are of the
same or different orientations.

3.2 The Attention-modulating Task
Inspired by Huang and Dobkins [2005], we present a rapid serial
visual presentation (RSVP) at the fixation cross in order to modulate
the amount of attention paid to the peripheral contrast discrimi-
nation task. The RSVP stimulus consists of 𝑁 1◦ × 1◦ letters, each
lasting 500/𝑁 ms with 0ms blank in between, such that the task
lasts the total display duration of the peripheral Gabor patches. The
color of the letters alternate between red and green (scaled to be
approximately isoluminant with the background), where the initial
color is randomized across trials, and the user is asked to identify the
color of the “target letter” (the letter “T”, which appears only once in
a given sequence). Increasing 𝑁 increases the difficulty of the task
and should force more attention to the fovea, at the cost of reduced
attention to the periphery. Consequently, three task levels were
chosen to have an 𝑁 of 1 (easy), 4 (medium) and 6 (hard), to force
“low” , “medium” , and “high” levels of attention to the fovea. The
target letter “T” was also adjusted such that for the “medium” and
“high” attention tasks it would not appear in the first 3rd of letters to
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Fig. 2. Photograph of the user study setup. The inset shows an enlarged
illustration of the stimulus on the screen; the central RSVP letter task with
the Gabor patches centered at 𝑒 to the left and right. The brightness of the
letter T has been exaggerated for visibility.

avoid users obtaining the color early enough to shift their attention
to the periphery before the trial ended.

3.3 User Study
Setup. Due to the need to display high resolution stimuli across a

wide field of view, we conduct our study using a 34 inch, 144 Hz Dell
Curved Gaming Monitor (Model No. S3422DWG, see Fig. 2). This
display has an adjustable backlight, allowing us to tune luminance.
For this study we use a setting that gives a minimum and maximum
luminance of 0.6 cd/m2 and 104 cd/m2, respectively, and a gamma of
1.89. The neutral gray background triggered luminance adaptation
to 28 cd/m2. A 2×2 spatial dithering was used to avoid visible color
banding in the low-contrast stimuli. We used Python’s PsychoPy
toolbox [Peirce 2007] and a custom shader to stream frames to the
display by wired HDMI connection. All subjects were tested in a
well-lit room and viewed the video display binocularly from an SR
Research headrest situated 94 cm away, thus giving a field of view
of 46◦ × 20◦ and a resolution of 71 pixels per degree of visual angle.
Pupil Labs Core eye trackers were mounted to the headrest to verify
central gaze fixation throughout all studies.

Subjects. Ten adults participated (age range 23–29, 2 female). Due
to the demanding nature of our psychophysical experiment, only a
few subjects were recruited, which is common for similar low-level
psychophysics (see e.g. [Patney et al. 2016]). All subjects in this
and subsequent experiments had normal or corrected-to-normal
vision, no history of visual deficiency, and no color blindness, but
were not tested for peripheral-specific abnormalities. All subjects
gave informed consent. The research protocol was approved by the
Institutional Review Board at the host institution.

Procedure. To begin the study, subjects were set up in a com-
fortable position on the headrest and the eye tracker was cali-
brated using a 5-point screen calibration [Kassner et al. 2014]. The
thresholds for each contrast condition (stimuli No. 1–3 in Table 1)
were then estimated in a random order. For each condition, a two-
alternative forced-choice (2AFC) adaptive staircase designed using
QUEST [Watson and Pelli 1983] was used to measure the contrast
discrimination threshold for each attention condition, starting with
the “low” , then the “medium” and ending with the “high” foveal
attention condition. At each step, the subject was shown a small (1◦)
white fixation cross for 1.2 s to indicate where they should fixate,

followed by the attention-modulating task and contrast stimuli for
500ms, then a Gaussian white noise screen for 1 s (to reduce after
images). The subject was then given 10 s to indicate via different sets
of marked buttons on a keyboard whether the target letter “T” was
red or green, followed by whether the contrast patterns were of the
same or different orientations. If the subject failed to answer during
that time, the trial would be replayed. Each of the 3 test conditions
at each of the 3 attention conditions were tested twice per subject,
taking approximately 90 minutes, with subjects encouraged to take
breaks between staircases.

Results. Mean contrast thresholds across subjects are shown in
Fig. 3a (see Supplement for table of values). It can be seen that the
contrast thresholds are almost identical for the “low” attention con-
dition, agreeing with the theory of cortical magnification described
by Virsu and Rovamo [1979; 1979]. For the “medium” attention con-
dition, however, the contrast thresholds do increase significantly
with eccentricity (𝑝 < 0.05, paired t-test between neighboring ec-
centricities), almost 2× for 7◦ and over 3× for 21◦ (see Fig. 3b).
Similarly, the “high” attention condition exhibits up to 4× threshold
increase within our measured eccentricity range (𝑝 < 0.05). The
increase in gain factors with eccentricity is consistent with work
by Staugaard et al. [2016] who showed a decrease in attentional
capacity with increasing stimulus eccentricity, when stimuli are
scaled in size to account for cortical magnification. Furthermore, we
observe significant differences between individual attention modes
across the eccentricity ranges (𝑝 < 0.01 for most pairs, 𝑝 < 0.05 for
the “medium” and “high” attention, paired t-test with Bonferroni
correction). This confirms our assumption that increasing the task
difficulty will shift attention towards the fovea at a cost to sensitiv-
ity in the periphery. On the other hand, despite the considerable
difference between the “low” and “medium” condition gradients,
the gradients of the “medium” and “high” conditions are surpris-
ingly similar, suggesting that the effect of attention modulation is
non-linear.

3.4 Per-condition Model
The observed increase in thresholds for larger eccentricities is nearly
linear with a small distortion which we describe using the square
root of eccentricity to fit attention-dependent contrast threshold
models:

𝑡𝑎 (𝑒) = 𝑝0
√
𝑒 + 𝑝1 (1)

where 𝑎 is denotes one of our foveal attention conditions (“low” ,
“medium” or “high” ). See Table 2 for parameters and Fig. 3a for plots.

Table 2. Fitted parameters of our attention-aware contrast threshold model
𝑡𝑎 (𝑒 ) (Eq. 1). R2 is the coefficient of determination.

𝑎 𝑝0 𝑝1 R2

“low” 9.672 · 10−4 2.741 · 10−2 0.705
“medium” 2.737 · 10−2 −1.620 · 10−2 1.000
“high” 2.714 · 10−2 1.612 · 10−2 0.956

As contrast sensitivity varies among observers, we are primarily
interested in the relative attention gain represented by threshold
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Fig. 3. Main study: (a) The mean measured contrast thresholds and the fitted attention curves for the per-condition model 𝑡𝑎 (𝑒 ) (Eq. 1, full lines) and the
unified model 𝑡 (𝑒, 𝑎𝑐 ) (Eq. 4, dotted lines). The horizontal bars display extent of the Gabors. The vertical error bars show standard error. (b) A continuous
attention-eccentricity fit of the unified model 𝑡 (𝑒, 𝑎𝑐 ) (Eq. 4). (c) The attention gains 𝑔𝑎 (𝑒 ) relative to the “low” foveal attention condition computed for each
of the two models.

elevations defined with respect to the “low” attention baseline con-
dition as:

𝑔𝑎 (𝑒) =
𝑡𝑎 (𝑒)
𝑡low (𝑒)

(2)

Assuming orthogonality of the attention effect and other inde-
pendent parameters of the stimulus, we can formulate the attention-
aware contrast sensitivity as:

𝑆𝑎 (𝑒, · · · ) = 𝑆 (𝑒, · · · ) 1
𝑔𝑎 (𝑒)

(3)

where 𝑆 is any of the CSF models discussed in Sec. 2.2. In Sec. 3.6
we use the StelaCSF [Mantiuk et al. 2022] model.

3.5 Unified model
Additionally, we explore a speculative model unifying the eccen-
tricity 𝑒 with a continuous interpretation of the attention condition
𝑎𝑐 ∈ [0, 1] where {“low”→ 0, “medium”→ 0.5, “high”→ 1}. We
design this model as an attention-dependent sweep between the
per-attention curves, parameterized relative to our lowest eccen-
tricity of 7◦. We model the dependency for the slope and intercept
separately using two gamma curves 𝑎𝛾𝑠𝑐 and 𝑎𝛾𝑖𝑐 to account for the
non-linear perception of the different attention conditions. Due to
the extreme non-linearity of the slope development we constrain 𝛾𝑠
to 0.5 and fit:

𝑡 (𝑒, 𝑎𝑐 ) = Ψ
(
𝑠0, 𝑠1, 𝑎

𝛾𝑠
𝑐

)
·
(√

𝑒 −
√
7
)
+ Ψ

(
𝑖0, 𝑖1, 𝑎

𝛾𝑖
𝑐

)
(4)

to our measured data. Here, {𝑠0, 𝑠1, 𝑖0, 𝑖1, 𝛾𝑖 } = {0.00243, 0.0307,
0.0285, 0.0844, 0.771} are the fitted parameters (DoF-adjusted R2 =
0.973) and Ψ(𝛼, 𝛽,𝑤) = 𝛼 (1 − 𝑤) + 𝛽𝑤 is a linear interpolation
function.
We compare the resulting unified model to our per-condition

models 𝑡𝑎 (𝑒) in Fig. 3a. Despite the lower parameter count, the
unified model fits the measured data within the measurement er-
rors. While the unified model allows for convenient interpolation,
we argue for fitting task-specific models in practice, because the
connection between the task and attention is highly individual and
not well understood. Hence, we use our per-condition models 𝑡𝑎 (𝑒)
(Eq. 1) throughout the rest of this paper wherever not explicitly
specified otherwise.

3.6 Validation
In Eq. 3, we apply attention correction as a multiplicative factor
under an assumption of orthogonality between the two functions.
If this assumption holds, the difference between new thresholds
predicted by our model and their measured values should be low.
We test this by measuring the attention gains for 4 new stimuli

with different cortical magnifications and adaptation luminance
levels than in our main study. We then compare the thresholds
obtained by direct measurement with the thresholds predicted by
our attention gain 𝑔𝑎 (𝑒).

Experiment. We use the same experiment procedure as for the
main study, except with 2 parameter sets used to fit StelaCSF [2022],
a recently demonstrated unified model of CSF (see stimuli No. 4 and
5 in Table 1). These points were selected from the only 2 available
datasets measured using stationary stimuli outside the fovea, with
spatial frequency, eccentricity and size as different as possible to
the stimuli used to fit our attention-aware CSF model. Additionally,
we test effect of varying luminance adaptation on one of these
datapoints by adjusting the backlight of our display (see stimuli No.
5–7) .

Subjects. Eleven adults participated (age range 23-29, 5 female),
six for stimuli No. 4 and 5 and five for stimuli No. 6 and 7. Only
three of these subjects participated in the main study.

Results. We measured mean thresholds for the validation stimuli
(No. 4–7) and the “low” attention condition as 0.032, 0.045, 0.57 and
0.51, which we use as baselines for a relative multiplicative adjust-
ment of our measurements to corresponding predictions of StelaCSF.
We compute Interquartile Range (IQR) of this multiplicative factor to
detect outliers. We treat each of the 2 per-user repetitions as a single
data sample and we remove a total of 3 strong outliers with offset of
4 or more IQR from the quartiles.We then apply this base adjustment
consistently to all individual measurements to remove variability of
the base sensitivity performance among users and instead focus on
relative gains between attention conditions (see Fig 4b). The result-
ing adjusted measurements are then compared with the contrasts
predicted by the original attention-unaware StelaCSF model and
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Fig. 4. Validation studies: (a) Two different views of an eccentricity vs. spatial frequency plot for the original StelaCSF [Mantiuk et al. 2022] model (the top
surface, in purple) and our scaled models 𝑆medium (𝑒, 𝑓𝑠 ) (in magenta), 𝑆high (𝑒, 𝑓𝑠 ) (in yellow) for a static stimulus with an area of 1 deg2 and an adaptation
luminance of 28 cd/m2 (same as our model study in Sec. 3.3). (b) Slices of the same models describing dependency on spatial frequency for the conditions used
in our validation study (see No. 4–7 in Table 1). The points denote directly measured sensitivities scaled relative to the baseline. The bars are 95% confidence
intervals. (c) Corresponding threshold prediction errors of StelaCSF vs. our model (lower is better). The error bars are 95% confidence intervals and significance
is indicated at the 𝑝 < 0.05 and 0.01 levels with * and ** respectively (Wilcoxon test).

our derived attention-aware CSF model 𝑆𝑎 (𝑒, · · · ). We compute the
error of both models in Fig. 4c.
For the 2 stimuli isoluminant with our model data (No. 4 and 5),

we observe statistically significantly lower error between our and
the original StelaCSF predictions with respect to the experimentally
measured thresholds in all conditions except for one. The lower
observed difference between “low” and “medium” attention for the
lower frequency stimulus (No. 4) points to an overestimation of
the gain by our model here. Notably, even in this worst case, the
prediction error is still lower than that of the baseline StelaCSF.
As a practical example, our measurements indicate that with

“high” attention and a 28 cd/m2 display, a spatial pattern with 𝑓𝑠 =

2 cpd shown at eccentricity of 15◦ will be just discriminable if ren-
dered with an amplitude value of 32 (for a 0–255 signal range of
an 8-bit display with gamma of 2.2) while our model would yield
amplitude of 30 and the baseline model would adhere to the original
stelaCSF prediction of amplitude 8.

The favorable performance of our model also holds for the other
2 luminance levels (stimuli No. 6 and 7). Despite this, we observe a
trend of attention gain reduction with increasing luminance which
is significant for the “medium” attention at 116 cd/m2 (𝑔𝑎 : 3.03 →
2.15, 𝑝 < 0.05, Mann-Whitney U test) and “high” attention at
58 cd/m2 (𝑔𝑎 : 4.12 → 3.37). This compression could be caused
by the overall increase of sensitivity under such conditions and
should be considered by users of our model.

To summarize, our experiment suggests that while the assumption
of full orthogonality is unlikely to hold everywhere, the relative
benefit of including the attentionmodel may still be stronger relative
to the cost of this simplification.

4 ATTENTION-AWARE FOVEATED RENDERING
The goal of foveated rendering is to reduce computational cost with-
out introducing perceptible artifacts by exploiting the reduction of
vision performance in the periphery, typically by adjusting sampling
rate with respect to peripheral acuity drop (see Sec. 2.1). The quality
of such foveation can be assessed by visual difference predictors,
for example, FovVideoVDP [Mantiuk et al. 2021], a state-of-the-art
metric that models the spatial, temporal, and peripheral aspects
of perception. In this section, we experimentally validate whether
integration of our attention-aware perceptual model improves the
performance of FovVideoVDP in predicting visibility of foveation ar-
tifacts under varying attention conditions. To that end, we emulate
a simple foveated renderer and separately calibrate the foveation in-
tensity for three different attention regimes in a user study. We then
compare the perceptual errors of the calibrated stimuli predicted
by FovVideoVDP with and without our attention-aware model to
assess their agreement with human judgment.

4.1 Measuring imperceptible foveation
Similar to the contrast discrimination task in Sec. 3, we create a
space-multiplexed comparison of foveated images. In particular, we
split the screen into left and right sides, apply foveation to one side
only (randomly selected) and ask subjects which of the sides ap-
peared more visually degraded (see Fig. 5a). Then, by modifying the
parameters of the foveated side, we can find the threshold for which
the foveation is nearly imperceptible to the subject. The central
transition around the fixation was replaced by a neutral background
vertical bar with 6◦ width and Gaussian fall-off (standard deviation
of 0.5◦) and the attention-modulating RSVP task, as in Sec. 3.2, was
then displayed centrally.
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For the foveation, we base our approach on the work of Guenter
et al. [2012] and the linearminimum angle of resolution (MAR) model
describing the reciprocal of acuity as:

𝜔 (𝑒) =𝑚𝑒 + 𝜔0 (5)

where the bias𝜔0 = 1/48◦, as in the original work, and the slope𝑚 is
a free variable measured as a threshold in our study. The peripheral
resolution decrease was simulated by an approximated Gaussian
filter with spatially varying standard deviation:

𝜎 (𝑒) = 𝜔/𝜔𝑠 − 1
2𝜎𝑐

(6)

where 𝜔𝑠 = 0.0283◦ is the peak MAR of our display and 𝜎𝑐 = 2 is
the chosen cut-off determining the assumed bandwidth of the filter.
Note that this particular choice primarily affects the absolute value
of our slopes and not the relative ratios between conditions.

4.2 User study
Setup. We used the same experimental setup as in Sec. 3.1. The

stimuli consisted of one of four foveated images displayed across
the entire screen with the gaze fixation directed to the center.

Subjects. Thirty adults participated (age range 23–29, 10 female).
Subjects were first shown the original images, to avoid exploratory
saccades during the study, and then shown an example of the
foveation effect.

Procedure. As in the studies in Sec. 3.1, subjects were instructed
to always fixate on the central RSVP task and observe the foveation
task concurrently in their periphery. The thresholds for each image
were estimated in a random order for each subject. For each image,
a 2-AFC adaptive staircase using QUEST [Watson and Pelli 1983]
was used to measure the threshold of the foveation slope 𝑚 for
each attention condition, starting with the “low” , followed by the
“medium” and ending with the “high” foveal attention condition.
Similar to the previous studies, at each step, the subject is shown the
attention-modulating task and foveation detection task for 500 ms.
The subject then indicated the color of the target letter “T”, and if
correct, were asked which side of the image (left or right) was more
visually degraded. Whenever the subject incorrectly answered the
RSVP task, they were forced to start the step again. Each subject
viewed 2 images, either “Tulips” and “City” or “Mountain” and
“Forest” (see Fig. 5a) at each of the 3 attention conditions, to keep
the study duration to approximately 45 minutes (including breaks).

Results. In Fig. 5d, we show the measured MAR slopes𝑚 aver-
aged across the users (labeled “Measured”). We applied the same
IQR procedure as in Sec. 3.6 but we did not detect any outliers. As
expected, for all images the slope significantly increases (𝑝 < 0.001,
paired t-test with Bonferroni correction) for both “medium” and
“high” compared to “low” attention conditions. This means that a
more aggressive foveation becomes acceptable as attention shifts
from periphery towards fovea. Furthermore, we note that there are
statistically significant differences between slopes measured for at
least some image pairs with “low” (one-way ANOVA, 𝐹 (3, 116) =
4.99, 𝑝 = 0.003), “medium” (𝐹 (3, 116) = 10.26, 𝑝 < 0.001) and
“high” (𝐹 (3, 116) = 3.87, 𝑝 = 0.011) attention. This points to a
content-dependent nature of the problem. In the next section, we

discuss whether a visual difference predictor could be used to predict
foveation parameters for a specific image.

4.3 Foveated quality prediction
Setup. Acuity-driven foveation algorithms conservatively account

for the worst-case scenario of the smallest detectable image de-
tail [Tariq et al. 2022]. As seen in our results, distribution of contrast
in specific images affects the acceptable foveation intensity. This is
modeled by visual difference predictors such as FovVideoVDP [Man-
tiuk et al. 2021], which decomposes an image into spatio-temporal
frequency bands and models their visibility by utilizing the CSF and
a contrast masking model. However, while explicitly modeling reti-
nal eccentricity, the original CSF does not account for attention. We
experimentally modify the authors’ implementation and integrate
our model as an orthogonal scaling factor of the CSF component.
We then apply the original and the modified predictor to assess the
quality of the foveated images with the per-image calibrated slopes
from Sec. 4.2. Furthermore, we evaluate whether an inverse process
could be used to optimize the foveation intensity.

Quality metric. In Fig. 5b, we display quality scores produced by
the original FovVideoVDP metric compared to our modified pre-
dictor obtained by computing visual difference between a foveated
image calibrated by each individual subject and the full-quality ref-
erence. The scores were averaged for each image, for each of the
“medium” and “high” attention conditions. We compare these to the
expected value (labeled “Measured”) which was obtained by Fov-
VideoVDP for foveated images calibrated with the “low” attention
condition. We assume that this represents the personal subject-
specific threshold of the perceived quality for the given image and
that it should remain constant under varying attention.

Following our previous results, we expect that images with larger
objective degradation should be judged as having equivalent quality
and that a successful prediction should reflect that. Consequently, we
observe that the error measured as a relative difference between our
prediction and the “Measured” value is consistently lower than that
for FovVideoVDP (𝑝 < 0.001, Wilcoxon test). This suggests that our
modified predictor is better aligned with the attention-modulated
perception.
In Fig. 5c, we additionally compare maps of Just-Objectionable-

Differences (JOD) produced by both predictors for the mean cali-
brated slopes at each condition. FovVideoVDP indicates a strong
increase of perceived artifacts even as attention towards the fovea
(“high” attention condition). Our method instead predicts errors on
the boundary of visibility for all conditions which is consistent with
our assumption.
Finally, we note that the “low” attention score predicted by Fov-

VideoVDP based on the directly measured slopes is significantly dif-
ferent between at least some of the images (9.375 for “Tulips”, 8.383
for “City”, 9.470 for “Mountain” and 9.314 for “Forest”, 𝐹 (3, 116) =
150.5, 𝑝 < 0.001, one-way ANOVA). Since this is the baseline con-
dition, this discrepancy is orthogonal to our primary objective of
exploring the overall impact of attention, and thus we defer its
investigation to future work.
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Fig. 5. Foveation study: (a) Stimuli from our study showing the attention-modulating RSVP task in fovea and the peripheral foveation detection task. One side
(randomly selected) is foveated while the other is left at full resolution. The foveation effect and the color and size of the RSVP task are exaggerated for visibility.
(b) Quality scores predicted by the original FovVideoVDP metric vs. our modified predictor (closer to Measured is better) for the foveated images calibrated in
our user study. The error bars show 95% confidence intervals. TheMeasured quality refers to the actual quality threshold measured in the “low” condition.
(c) Comparison of visual difference maps produced by the original FovVideoVDP metric vs. our modified predictor for the calibrated MAR slopes. Colors
visualize Just-Objectionable-Differences (JOD) with respect to the original “Tulips” and “Mountain” images (small section from the right periphery shown). (d)
Comparison of MAR slopes (intensities) predicted by the original FovVideoVDP metric vs. our modified predictor for each image compared to the Measured
slopes (closer to Measured is better). The legend is shared with panel (b). The error bars show 95% confidence intervals of the measured values. Note that the
model-based slope predictors do not yield variance (no error bars shown).

MAR slope prediction. The visual difference prediction potentially
allows us to optimize foveation parameters by posing it as a con-
strained problem:

Θ = argmin
Θ

𝐶 (Θ) subject to 𝑄 (Θ) ≥ 𝑄thr (7)

where Θ is a set of rendering parameters, 𝐶 (Θ) is the cost of the
rendering (typically time and power consumption),𝑄 (Θ) is an image
quality predictor and𝑄thr the required threshold. In our caseΘ =𝑚,
𝐶 (Θ) is a monotonically decreasing function of𝑚,𝑄 (Θ) is provided
by our visual difference predictor (with access to the reference
image) and𝑄thr is obtained from the “low” foveal attention condition
in Sec. 4.2. The resulting problem of one variable can be efficiently
solved by bisection.
Ideally, we could use a single 𝑄thr for any image. However, due

to the significant difference between “low” attention thresholds ob-
tained for our images, we opt to use scene specific 𝑄thr of 9.375 for
“Tulips”, 8.383 for “City”, 9.470 for “Mountain” and 9.314 for “Forest”.
This simulates a correction function that calibrates the underlying
predictor for content-dependent effects and development of which
is outside of the scope of this work.

Fig. 5d compares the MAR slopes obtained by solving the inverse
problem with 𝑄 (Θ) implemented using the original FovVideoVDP
metric and our modified predictor. While our predicted slopes do not
always match the directly measured values, for the “high” attention
the errors are consistently lower than those from FovVideoVDP
(𝑝 < 0.05 for the “Mountain”, 𝑝 < 0.01 for the rest, non-parametric
Wilcoxon test). This is remarkable given the large domain gap be-
tween the model and foveation stimuli. It suggests that our model is

useful for attention-aware foveated rendering. Similarly, we observe
statistically lower prediction errors of our model with the “medium”
attention for the “Tulips” and “City” images (𝑝 < 0.01) while no
statistically significant differences were measured for the rest.

The remaining error could originate from a multitude of sources,
among them the orthogonal assumption of CSF scaling as well as
other higher level effects not accounted for in either model. To illus-
trate the impact, in the worst case of the “City” image with “high”
attention and the extreme periphery of 46◦ in our experimental
display setup, this error would lead to removal of spatial details
in the 0.25–0.35 cpd band which might be noticeable based on our
measured data.

Importantly, we observe that the bias towards overestimation of
the slopes is consistent. This hints to feasibility of fine tuning for
a specific foveation algorithm. Even without such treatment, the
relative preference of our model over the baseline is most prominent
for the “high” attention which is particularly relevant for many
applications where users focus at a specific target on the screen.

4.4 Bandwidth analysis
In this section we analyze the additional computation gain that
can theoretically be obtained by using our attention-aware model
when the user is focused on a task in the fovea. While we could
analyze the bandwidth by decomposing the image into frequency
bands and discarding the signal following the CSF predictions, we
decided on amore conservative approach that instead uses our direct
perceptual measurements of vision performance under the specific
foveal (RSVP) task. Therefore, we model the foveation algorithm by
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Fig. 6. Computational gain analysis as a fraction of original and retained
pixel sampling density depending on pixel size and the covered visual field
(horizontal axis). Note the difference in the gain axes scales.

Guenter et al. [2012] together with the global mean MAR slopes𝑚
obtained for the “low” , “medium” and “high” attention conditions
as 0.0198, 0.0420 and 0.0596.
Unlike the discrete segmentation in the original algorithm, we

simplify the analysis by assuming that sampling rate of each pixel
can be controlled independently and hence we directly map the
local MAR 𝜔 (𝑒) (Eq. 5) to the computational gain Ψ derived from
local areal sampling density as:

Ψ(FOV) =
(∫

FOV
1 d𝑥

)
·
(∫

FOV
max

(
𝜔 (𝑥)
𝜔𝑠

, 1
)−2

d𝑥

)−1
(8)

where𝜔𝑠 is the peak MAR of a given display with a two dimensional
field of view FOV.
In Fig. 6, we display computational gains obtained as a function

of display field of view for a common 20 ppd (pixels per degree)
and future high-density 60 ppd displays as an upper bound for the
analyzed algorithm. It must be noted that gains in real applications
are influenced by efficiency of a particular renderer. As our con-
tributions are independent of such design choices, more advanced
foveation approaches such as noise-based enhancement [Tariq et al.
2022] can be considered for additional gains.

5 DISCUSSION
The experimental data we measure and the models we fit to them
further our understanding of human perception and lay the foun-
dation of future attention-aware foveated graphics techniques. Yet,
several important questions remain to be discussed.

Limitations and Future Work. While our studies clearly demon-
strate that modulating attention distribution between the periphery
and fovea strongly impacts contrast sensitivity and foveation effi-
cacy, we do not propose a method to measure attention. In contrast
to overt attention, which is readily measurable using eye tracking,
covert attention is much more challenging. A promising direction
for exploration is the relation between pupil dilation and attentional
effort [Hoeks and Levelt 1993] and in some scenarios pupillary light
response [Mathôt et al. 2013]. One might also investigate the com-
bination of eye tracking with image salience [Itti and Koch 2000]
or other metrics. It should also be noted that training and practice
can significantly improve the ability to split attention between the
fovea and periphery [Zhang et al. 2022]. This could lead to decrease

in attention dedicated to the foveal RSVP task. To mitigate this, we
randomize trial order and encourage sufficient rest time, yet such an
approach is time consuming and limits the CSF gamut that can be
measured in one sitting. While we show that our orthogonal scaling
approach still leads to favorable performance when compared to
baselines, we emphasize that our attention model should not be
extrapolated outside of the measured eccentricities. Finally, rather
than proposing a novel foveation algorithm, we focus on demon-
stration of the perceptual effect as a whole. Future work should
investigate more advanced foveation algorithms and explore the
effect of attention in the temporal domain.

Conclusion. At the convergence of applied vision science, com-
puter graphics, and wearable computing system design, foveated
graphics techniques will play an increasingly important role in
future VR/AR systems. With our work, we hope to motivate the
importance of cognitive science in human perception and inspire a
new axis of approaches within foveated graphics.
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