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Abstract. The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere
to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to
microscale models for the use case of wind energy development and operation. Several coupling methods and
techniques for generating turbulence at the microscale that is subgrid to the mesoscale have been evaluated for
a variety of cases. Case studies included flat-terrain, complex-terrain, and offshore environments. Methods were
developed to bridge the terra incognita, which scales from about 100 m through the depth of the boundary layer.
The team used wind-relevant metrics and archived code, case information, and assessment tools and is making
those widely available. Lessons learned and discerned best practices are described in the context of the cases
studied for the purpose of enabling further deployment of wind energy.

1 Introduction

Whether one is planning for where to deploy future wind
farms, micrositing turbines within a wind farm, or design-
ing optimal wind farm control, it is crucial to include the
impacts of the large-scale (mesoscale, meaning thousands to
hundreds of thousands of meters) flow as well as to model at
the microscale (on the order of meters to tens of meters). As
much of the energy of the atmosphere resides in the largest
scales, correctly modeling those scales as well as the turbu-
lence and energy dissipation at the microscale provides the
most accurate picture of the flow and energy available for
harvest.

The models for the two scales tend to be disparate, how-
ever. Although both sets of models are numerical discretiza-

tions of the Navier–Stokes equations, they are built for dif-
ferent purposes. The mesoscale models are formulated for
weather forecasting; have larger grid spacing over larger do-
mains; and include parameterizations of many of the pro-
cesses that are important for correctly modeling atmospheric
flow, such as radiative transfer (shortwave incoming and
longwave outgoing), boundary layers, surface layers, cloud
microphysics, land surface models, and more. Including such
parameterizations is necessary to predict the flow accurately.
Mesoscale models are also initialized with initial and bound-
ary conditions from global models, which include the day-
to-day weather fluctuations. On the other hand, microscale
models are able to resolve details of terrain and wind tur-
bines at a scale not available to the mesoscale models. But
the microscale models do not include all of the atmospheric-
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physics parameterizations of the mesoscale models. Thus,
the solution to obtaining accurate flow prediction represent-
ing all relevant scales is to couple the mesoscale models to
the microscale model.

Such coupling has long been a goal of modelers, but there
have been a myriad of issues to work out. Some issues in-
clude the following:

– The mesoscale models are usually fully compressible,
while microscale models are typically incompressible
or Boussinesq, where density differences are ignored
except as they change buoyancy.

– The gap between the typical resolutions of the two
types of models – between about 100 m and tradition-
ally 1000 m – known as the inner “grey zone” or the
terra incognita, has been difficult to bridge (Wyngaard,
2004) (see Sect. 2.1).

– Treatment of surface conditions is often inherently dif-
ferent due to surface inhomogeneities that become im-
portant at the microscale (see Sect. 2.2).

– The best ways to couple the two models must be identi-
fied (see Sect. 2.3).

– One must find ways to initiate turbulence at the mi-
croscale that is not resolved at the mesoscale (see
Sect. 2.4).

– Adding complexity, whether it comes from complex ter-
rain or coupling atmosphere to ocean and wave models,
complicates the picture and requires separate treatment
(see Sect. 2.6).

– Assessing how the models perform must be accom-
plished in the context of wind energy needs (see
Sect. 2.7).

– The uncertainty in the model results should be quanti-
fied to be most useful (see Sect. 2.5).

– There is room for improvement in model parameteriza-
tion (see Sect. 4.1 and 4.2).

– And finally, how can modern techniques such as im-
proved parameterizations and machine learning be
leveraged to improve modeling (see Sect. 4.2 and 4.3)?

As part of the U.S. Department of Energy (DOE) Atmo-
sphere to Electrons (A2e) initiative, the Mesoscale to Mi-
croscale Coupling (MMC) team was charged with studying
these issues and more. The goal of the project has been to
improve coupling between mesoscale and microscale simu-
lations via enhanced guidance and create new strategies for
setting up simulations and for the development of new tools
that can be used across the community. This philosophy rec-
ognizes that including the mesoscale forcing is critical to
modeling the full energy transfer across scales in the atmo-
sphere. Specific objectives include the following:

– apply verification and validation techniques to the new
modeling tools and develop estimates of the uncertainty,

– reduce turbulence spin-up time in microscale simula-
tions and hence decrease their computational cost,

– improve the surface-layer treatment in microscale mod-
els to more accurately simulate wind speed and shear
over the rotor diameter,

– develop best-practice guidance for the community,

– prepare and document a suite of software tools that can
be used across the community, and

– transition MMC research to the offshore environment.

Figure 1 illustrates the team’s approach. The goal is to pro-
vide more realistic turbulence-resolving simulations through
coupling these scales. The team leveraged a case study ap-
proach to address these issues (Haupt et al., 2019a). By work-
ing in the framework of studying particular situations for
which we have observations, we can better develop and as-
sess tools to best match real-world situations, which is par-
ticularly important for studying nonstationary meteorologi-
cal conditions (such as frontal passages, thunderstorm out-
flows, baroclinic systems, and low-level jets) or when con-
sidering changes in atmospheric stability associated with the
diurnal cycle. In essence, the objective is to have the mi-
croscale model “follow” the mesoscale model through dy-
namic changes while appropriately modeling the fine-scale
behavior of the flow. The approach is to select case studies
from field programs or observational data to identify chal-
lenging atmospheric conditions and test methods to simulate
them. Most of these datasets are from DOE-sponsored fa-
cilities in flat and complex terrain as well as from offshore
sites and are available on the Wind Data Hub (Atmosphere
to Electrons, 2023). The mesoscale modeling has focused on
a widely used community model, the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2008). Several
microscale models have been tested, including the large-eddy
simulation (LES) version of WRF (WRF-LES) that can be
run online, where the inner nest derives the conditions di-
rectly from the outer nest during the simulation, and sev-
eral offline models, such as Nalu-Wind (Kaul et al., 2020)
and the Simulator fOr Wind Farm Applications (SOWFA;
Churchfield et al., 2012), which are run after the mesoscale
model with inputs derived from those previous runs. Some
aspects of the coupling that merit study include the surface
and boundary conditions; bridging the terra incognita; ini-
tializing turbulence at the microscale that is not resolved at
the mesoscale; the coupling methods themselves; and deal-
ing with multiple sources of flow complexity, including com-
plex terrain, coastal flows, and offshore flows. The testing
is grounded in rigorous verification and validation config-
ured specifically for wind energy plus uncertainty quantifica-
tion, emphasizing determining parametric uncertainty in tur-
bulence modeling in microscale simulations.
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Figure 1. The MMC team’s case-based approach to addressing challenges of coupling the mesoscale to the microscale. Flat-terrain image
from the DOE Scaled Wind Farm Facility site at https://www.depts.ttu.edu/nwi/research/facilities/swift.php (last access: 23 July 2023).
Complex-terrain figure taken by Sue Ellen Haupt. Offshore-wind figure from the DOE Wind Energy Technologies Office at https://www.
energy.gov/eere/wind/wind-energy-technologies-office (last access: 23 July 2023). Mesoscale example thanks to Raj Rai and microscale
image by Matthew Churchfield.

An emphasis of the project is testing, evaluating, and com-
paring multiple methods of coupling the outer mesoscale
flow to the microscale flow. Some methods use a single
model (currently, WRF) at both scales, which ensures conti-
nuity across scales (internal coupling). Other methods incor-
porate forcing information from the mesoscale into a stand-
alone microscale model (external coupling). This work is
based on several preliminary investigations using WRF for
both internal (Liu et al., 2011; Mirocha et al., 2014b; Muñoz-
Esparza et al., 2014, 2015) and external (Zajaczkowski et al.,
2011; Gopalan et al., 2014) MMC, showing both promise
and direction for future development. Rigorous comparisons
of methods for different conditions and use cases provide
insight into best practices. Another effort seeks to compare
different methods of generating turbulence in the microscale
models that is unresolved by the mesoscale forcing. The tur-
bulence generation intercomparison was greatly facilitated
by the development of Python-based assessment tools that
are used via shared Jupyter Notebooks. This effort includes
design, testing, and deploying common code bases to sim-
ulate and assess the flows, which are now available on the
public MMC GitHub (Quon et al., 2023a).

The team has archived simulation codes and model work-
flows for a range of case studies that can be used as a start-
ing point for users to develop their own applications. Model
codes and preprocessing and postprocessing scripts are avail-
able on GitHub in Quon et al. (2023a, b, c), Gill et al. (2023),
and Hawbecker et al. (2023a). Online documentation resides
in a “Read the Docs” format (Mesoscale-to-Microscale Cou-

pling, 2023). The goal of the code and workflow release is
to promote high-fidelity coupled simulation capability to ad-
vance wind energy deployment through better knowledge of
the atmospheric conditions that drive energy harvest in wind
farms. Modelers are invited to test our models and workflows
available in the GitHub references listed above.

This paper describes what we have learned about some
of the difficult issues of coupling (Sect. 2); presents case
studies that were accomplished (Sect. 3); and discusses how
enhanced methods, such as improved parameterizations and
machine learning, can help accomplish our goals (Sect. 4).
Section 5 concludes with a summary and a list of lessons
learned plus suggests where future research should focus.
Recommendations for best practices are sprinkled through-
out the paper.

2 Some lessons learned

The course of the research has investigated the topics laid out
in Sect. 1, and here we summarize the work that has led to
lessons we have learned.

2.1 The terra incognita

In coupled mesoscale–microscale simulations, including hor-
izontal grid resolutions falling within the terra incognita is
almost inevitable. The terra incognita, coined by Wyngaard
(2004), is the range of horizontal grid spacings where tur-
bulence models used in both mesoscale and LESs do not
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work properly. The MMC project investigated the impact of
the terra incognita in coupled simulations (Rai et al., 2017,
2019). Our work suggests that the impact of the terra incog-
nita can be minimized using an appropriate choice of the
horizontal grid spacing, turbulence modeling (dependent on
the horizontal grid spacing), and grid refinement ratio (GRR)
applied between the mesoscale and microscale simulations.
The most important consideration is that the horizontal grid
spacing of the mesoscale simulation should be at least com-
parable to the boundary layer depth. Horizontal grid spacing
smaller than the boundary layer depth produces erroneous
structures in the simulated flow. Applying a GRR that al-
lows for simulations to jump over the terra incognita not
only alleviates the problem but also reduces the number of
computational domains. A larger value of GRR, however,
also increases the fetch needed to generate turbulence on
nested domains due to the inertia of larger structures trans-
ported from the parent domain. The need for a larger fetch
can be mitigated by applying perturbations along the inflow
boundaries of the domain (Sect. 2.4). In situations when the
GRR (between mesoscale and microscale domains) becomes
large, it can be beneficial to use the LES three-dimensional
(3D) turbulence model (e.g., Smagorinsky, 1963) in the terra
incognita region, provided that the horizontal grid spacing is
closer to 100 m, and then jump to grid spacing larger than
the boundary layer depth using the GRR (Rai et al., 2019).
However, the use of a 3D LES closure when the grid spac-
ing is too coarse to resolve any of the motions responsible
for momentum transport can result in incorrect stress pro-
files, leading to significant errors in wind speed within the
atmospheric boundary layer (ABL). The recently developed
3D planetary boundary layer (PBL) Mellor–Yamada scheme
(Juliano et al., 2022) fills a critical gap in this regard, pro-
viding for a consistent representation of transport at scales
finer than traditional mesoscale applications but at scales too
coarse to rely upon a 3D LES turbulence closure (Sect. 4.1).

2.2 Surface layer

The surface layer (SL) traditionally represents approximately
the lowest 10 % of the atmospheric boundary layer (ABL),
within which the vertical fluxes of heat, momentum, and
other constituents are assumed to approach nearly constant
distributions with height above the surface. Parameteriza-
tion of the exchanges of these quantities between the sur-
face and the atmosphere within atmospheric models relies
upon various SL scaling relationships, since the vertical grid
spacing in such models is generally too coarse to use a no-
slip boundary condition. The particular SL scaling employed,
along with characteristics of the model spatial discretization
and the turbulence closure employed to model turbulent ex-
changes above the surface, all interact to influence the ap-
plication of the surface boundary condition in atmospheric
models and subsequently impact resulting flow and other SL
and ABL characteristics.

The most commonly employed SL scaling relationship
used within atmospheric models is the Monin–Obukhov sim-
ilarity theory (MOST; Monin and Obukhov, 1954). MOST
provides relationships to parameterize the fluxes between the
surface and atmosphere based on a small number of surface
and near-surface atmospheric-flow parameters. While MOST
is well established, relatively simple, and widely used, it is
based on a number of assumptions, including uniform terrain,
horizontal homogeneity of both surface and atmospheric
variables of interest, steady flow and forcing conditions over
time, and the appropriateness of ensemble mean values of the
parameterized fluxes. These assumptions are reasonably well
satisfied in most historical numerical weather prediction and
mesoscale atmospheric simulations, due in part to the use of
coarse grid spacing, which satisfies the appropriateness of
ensemble mean representations within each grid cell, while
also not resolving sharp transitions in terrain features, hori-
zontal heterogeneities, and meteorological forcing. However,
the recent transition toward the use of higher resolution in
many mesoscale applications sharpens the representation of
some or all of these features, all of which increasingly violate
the assumptions upon which MOST is based.

While the use of high horizontal resolution violates the ap-
plicability of MOST for one set of reasons, the use of high
vertical resolution can create additional problems, especially
in settings for which a logarithmic mean profile shape is not
expected, such as within forest canopies or over significant
surface waves or ocean swell. Moreover, care must be taken
not to place the lowest model grid cell too close to the sur-
face.

Microscale atmospheric LES models also routinely apply
MOST to formulate the surface stresses at each surface grid
cell based on the instantaneous time-varying horizontal ve-
locities above. Even under highly idealized conditions satis-
fying the assumptions of MOST in the aggregate, such mod-
els violate the appropriateness of the ensemble mean assump-
tion.

Despite the abovementioned caveats, MOST is still rou-
tinely applied in atmospheric simulations at all scales, ow-
ing primarily to a dearth of alternatives. To improve its ap-
plicability, as well as the performance of simulating flow
within the SL more generally, numerous approaches have
been developed, including various damping (Mason and
Thomson, 1992) and correction factors (Khani and Porté-
Agel, 2017), the use of more advanced turbulence subgrid-
scale (SGS) models (Bou-Zeid et al., 2005; Chow et al.,
2004), taking care to properly set the computational mesh
to have the proper width-to-height ratio (Brasseur and Wei,
2010), and the use of additional near-wall stress parameteri-
zations (Brown et al., 2001) to distribute the surface stresses
vertically. The impacts of many of these methods on im-
proving LES performance within the WRF model in wind-
energy-relevant applications has been examined in Mirocha
et al. (2010), Kirkil et al. (2012), Mirocha et al. (2013), and
Mirocha et al. (2014b).
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SL modeling has also been extended to applications over
forested landscapes for which a logarithmic vertical profile
of mean wind speed is not observed (see review by Patton
and Finnigan, 2012). These methods are based on the ad-
dition of momentum sink terms to the governing horizontal
momentum equations to account for the increased drag ef-
fects of foliage, with the magnitude of the drag expressed
in terms of a leaf area index, which represents the surface
area of vegetation as a function of height. Modifications to
elements of the SGS model, including eddy viscosity coef-
ficients and SGS turbulence kinetic energy (TKE), may also
be included in such formulations.

Arthur et al. (2019) implemented the plant canopy model
of Shaw and Patton (2003) into the WRF model and demon-
strated the ability of WRF-LES to recover expected distri-
butions of winds and turbulence quantities in an idealized
plant canopy. Arthur et al. (2019) additionally combined con-
cepts from the plant canopy approach and the near-wall stress
models used in various LES SGS formulations (Kirkil et al.,
2012) to develop a novel distributed drag implementation for
the parameterized surface stresses. This model applies the ex-
pected surface momentum stresses as drag terms in the hor-
izontal momentum equations, distributed vertically over the
several lowest model grid cells. When applied in LESs using
the MOST surface boundary condition, this approach signif-
icantly improves agreement between simulated mean wind
speed profiles and their expected similarity relationships.

In addition to improving the implementation of MOST
within atmospheric solvers, significant progress has also
been achieved in developing an alternative to MOST using
machine learning (ML) to relate surface exchange to relevant
atmospheric and surface parameters obtained from observa-
tions. Details of this approach are provided in Sect. 4.2.

2.3 Coupling methods

Over the course of this project, we have explored differ-
ent frameworks for coupling mesoscale simulations to mi-
croscale LESs. Figure 2 depicts the various ways of classi-
fying coupling strategies. Coupling approaches can be clas-
sified according to the following properties: communication
directionality (i.e., one-way or two-way coupling), commu-
nication strategy (i.e., online through system memory or of-
fline through file system), information transferred (i.e., di-
rect quantities such as wind speed, temperature, and sur-
face fluxes or indirect quantities such as tendencies from
the mesoscale budget), and the information transfer location
(i.e., inflow/surface planes at the LES boundary or through
the entire flow volume). A comparatively low-cost method
for coupling the mesoscale to the microscale is via an offline,
periodic LES, which includes internal height–time-varying
source terms that provide mesoscale influence on the mi-
croscale. For this approach, mesoscale simulation output is
saved over a one-dimensional (1D) column at a regular tem-
poral interval (e.g., 10 min); this information is used with

data assimilation techniques to force the periodic simulation
toward the desired mesoscale behavior. One way to achieve
this forcing is through what we term “profile assimilation”,
in which the microscale velocity and potential temperature
solutions are plane-averaged at each height at a given time.
Those resultant mean profiles are compared with the desired
mesoscale profiles, and the difference is used to determine
the amount of forcing required to drive the microscale mean
vertical profiles to match those of the mesoscale. One of the
key lessons learned in this study is that with a strong forcing
that enforces the microscale mean vertical profiles to very
closely match those of the mesoscale (what we term “direct
profile assimilation”), unrealistic turbulent fields sometimes
form in the microscale simulation. This may be a natural LES
response to mesoscale profiles that are superadiabatic over
too much of their vertical extent. To deal with this, we devel-
oped a method that allows the microscale simulation more
freedom to depart from the exact mesoscale vertical struc-
ture (what we term “indirect profile assimilation”) but which
will follow all the mesoscale trends in time (Allaerts et al.,
2020, 2023). Alternatively, the mesoscale forcing can be in-
cluded by imposing height–time-varying source terms in the
microscale LES. The forcing accounts for large-scale advec-
tion and the driving pressure gradient and is extracted from
the mesoscale simulation (Draxl et al., 2021). Any of these
methods, though, assume a horizontally homogeneous forc-
ing field and are applicable only to homogeneous cases that
are well represented by periodic boundary conditions. Al-
though it is theoretically possible to apply an internal source
term that varies three-dimensionally in space to represent
horizontally heterogeneous situations, we have not explored
that approach; however, others (Sanz-Rodrigo et al., 2021)
have demonstrated the validity of that approach. Instead, for
horizontally heterogeneous domains or simulations that re-
solve turbines, we have focused our attention on boundary-
coupled simulations, which provide the highest degree of
generality. Boundary-coupled simulations can be conducted
via online or offline coupling.

For offline coupling, the mesoscale output once again
needs to be saved at regular temporal intervals to provide
boundary forcing for the LES. However, instead of 1D pro-
files, two-dimensional (2D) planes must be saved, which in-
creases the input/output (I/O) and storage requirements con-
siderably. Boundary coupling allows for simulation of a het-
erogeneous domain for resolving complex terrain, mesoscale
flows with significant horizontal gradients, or wind farms.

Online-coupled cases downscale from the mesoscale
through nesting, usually within a single code; this allows for
a potentially streamlined workflow, as the downscaling usu-
ally involves setting runtime input parameters. Advantages
of an online-coupled simulation is the ability to use consis-
tent numerics and complete atmospheric physics across spa-
tial scales, as well as the ability to perform two-way cou-
pling. However, because mesoscale meteorology models are
usually not developed with LES applications in mind, this
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Figure 2. Four ways of classifying coupling approaches.

coupling approach requires greater overhead and poorly op-
timized parallelization of computing resources for the LES
domain, imposing severe restrictions on the ability to conduct
large numbers of simulations. Note that a current DOE initia-
tive focuses on development of mesoscale (ERF, Energy Re-
search and Forecasting model) and microscale (AMR-Wind;
adaptive mesh refinement) models that are aimed at exas-
cale high-performance computing (HPC) platforms. How-
ever, also note that online coupling of mesoscale and mi-
croscale models that are based on the same formulation, i.e.,
equations, and use the same numerical discretization sim-
plifies coupling and results in more consistent simulations
across scales. Offline boundary-coupled simulations, how-
ever, are able to achieve higher simulation throughput, which
is crucial for parameter selection, sensitivity studies, or wind
plant design applications. We conducted a series of case stud-
ies directly comparing these approaches: one in a flat, fairly
homogeneous onshore environment (Sect. 3.1, Allaerts et al.,
2020; Draxl et al., 2021; Allaerts et al., 2023) and one in the
offshore environment (Sect. 3.5, Thedin et al., 2023). Fur-
ther case studies demonstrate the use of these techniques
in complex terrain (Sect. 3.3 and 3.4), resolving the coastal
boundary (Sect. 3.6), or in the offshore environment with
variable shallow-water roughness and sea surface tempera-
ture (Sect. 3.6).

We note that while the stand-alone microscale solver adds
complexity to the setup, it allows for greater flexibility. Most
importantly, it allows for the study of the interaction of real-
istic weather conditions, complex terrain, and turbines. The
turbines can be coupled with aero-servo-elastic models us-
ing OpenFAST (2022; see Sect. 3.5.2). In the workflows pre-
sented in this paper, the turbine can be represented by actu-
ator disk or actuator line models. Note that the stand-alone,

offline approach even allows for the use of blade-resolved
approaches.

2.4 Initializing turbulence

LESs are designed to explicitly resolve the energetically
important scales of turbulence and the resulting fluxes and
transport those motions generate within the flow. Models us-
ing grid spacings that are too coarse to resolve those motions
must instead rely on parameterizations (e.g., PBL schemes)
to represent those processes. Therefore, when forcing LESs
with mesoscale atmospheric data at the domain boundaries,
either online or offline, a domain fetch is required for the
resolved scales of motion to appear within the LES flow
field, since those motions are not resolved within the inflow
data. A similar issue is encountered when forcing LESs with
observations, as most observational datasets do not contain
sufficient spatiotemporal frequency to specify the turbulence
field. In each of these cases, the fetch required for resolved-
scale turbulence motions to form and equilibrate to the large-
scale forcing within the LES domain can be extensive and
represents a significant computational burden. The amount of
fetch required depends on multiple contributing factors, in-
cluding surface roughness and terrain, wind speed, and atmo-
spheric stability. Generally, for a computation using specified
inflow conditions during unstable conditions, the reduction in
fetch due to perturbations can be small, perhaps only around
100 grid cells in the direction of the mean flow. However,
during neutral or stable conditions, perturbation can fore-
shorten the fetch by several hundred grid points, which can
constitute a computational savings of 50 % or more. More-
over, the flow field within the fetch will not represent either
the mean or turbulence fields during the process of turbu-
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lence spin-up and equilibration well.1 To ameliorate both the
computational overhead and flow inaccuracies within LESs
forced in this manner, several inflow perturbation methods
have been developed and examined within the MMC project.
These methods have been shown to successfully promote
the formation and equilibration of resolved-scale turbulence
within LESs driven by mesoscale data and low-frequency
observations, leading to substantial reductions in computa-
tional expense by permitting the use of smaller LES do-
mains while simultaneously improving the accuracy of the
flow field beyond the fetch. The inflow turbulence perturba-
tion approaches that were examined within the project are
briefly described below.

2.4.1 Stochastic cell perturbation method

The cell perturbation method (CPM) is based on the appli-
cation of perturbed values of atmospheric temperature or ve-
locity to “cells” (groups of contiguous model grid points in
the horizontal and vertical directions) located just within the
lateral edges of an LES domain (Muñoz-Esparza et al., 2014,
2015; Mazzaro et al., 2019). Optimal choices for the ampli-
tude, size, and number of cells impart variability upon the in-
flow that rapidly generates resolved-scale turbulence. Since
the magnitude of the perturbation applied within each cell
is drawn from a random distribution with a mean of zero,
the method does not impose spatial correlations or turbu-
lence structure explicitly. Rather, the mixture of random am-
plitudes and spatial correlations among the cells leads to the
development of turbulence that is consistent with the large-
scale forcing, defined by the ABL depth, surface roughness
and temperature fluxes, and the distributions of mean winds
and temperature – the latter contained within the inflow.

The CPM has been successfully applied in both idealized
and real-data simulations for wind energy applications, in-
cluding a diurnal cycle over an area of wind energy develop-
ment in the US Midwest region (Muñoz-Esparza and Koso-
vić, 2018), during a ramp event interacting with a param-

1Within the fetch region, both the turbulence and mean flow
statistics change rapidly, with turbulence developing and the mean
flow responding to those changes. Random perturbations applied
just inside the inflow plane(s) produce uncorrelated gradients that,
through the action of the governing equations, develop into robust
turbulence features with expected correlations and energetics. Dur-
ing this process, there is often an associated reduction in mean wind
speeds and a small change in wind direction near the surface, due
to a temporary reduction in downward momentum transport – since
the mesoscale closure is no longer providing that within the LES
domain and the turbulence within the LES domain has not yet de-
veloped the correlated structures responsible for downward momen-
tum transport. The length of this region varies with stability and
mean wind speed, with more stable and higher wind speeds gen-
erating longer transitional fetches. However, the mean and turbu-
lence statistics of the flow do asymptotically approach their equilib-
rium values, after which no significant changes are observed with
increasing distance from the inflow.

eterized wind farm in the central Great Plains (Arthur et al.,
2019), and in offshore resource characterizations in the North
Sea (Thedin et al., 2023) and US East Coast regions (Haw-
becker et al., 2023a), in each case showing improvement in
the LES wind field relative to unperturbed simulations.

2.4.2 Synthetic turbulence method

Synthetic turbulence, such as the Mann method (Mann,
1998), is applied along the inflow boundaries of the LES do-
main to help generate realistic turbulence. The Mann syn-
thetic method produces the turbulent winds in the three-
dimensional volume, which is converted to a time series of
inflow planes employing the frozen turbulence hypothesis.
This method uses the spectral tensor of wave vectors to gen-
erate the isotropic turbulence and makes it anisotropic by ap-
plying the rapid distortion theory to the turbulent wind field.
The inputs for controlling the variances of the turbulent field
are the length scale and scaling intensity factor that controls
the turbulent energy in the flow. If observations are avail-
able, we usually adjust the turbulence intensity by scaling the
square root of the variances from the observations before ap-
plying it to the microscale model within the boundary layer
depth. Similarly, the frequencies of the turbulent inflow field
at the domain boundaries can be adjusted based on the inflow
wind speed. In addition to the Mann method, synthetic tur-
bulence methods, such as TurbSim (Jonkman, 2006; Kelley,
2011; Rinker, 2018), can also generate turbulence along the
inflow boundaries. Unlike the Mann method, TurbSim gen-
erates inflow planes in the time domain. If observations are
available, the simulated turbulence can be forced to match
an input time series, and the structure of the turbulence can
be controlled through empirical coherence functions. These
methods have been compared to the CPM for flat terrain
(Haupt et al., 2019b, 2020) as well as for offshore environ-
ments (see Sect. 3.5).

2.5 Quantifying uncertainty

Modeling the atmosphere, at both meso- and microscales,
is subject to uncertainty from a variety of sources. Uncer-
tainty propagates from the data used to specify initial and
boundary conditions (e.g., reanalysis-based flow fields, land
surface properties, sea surface temperature data), from the
form of model closures, and from specific parameter values
used within a closure. Sensitivities to these uncertain fac-
tors may display complex, nonlinear interactions. Therefore,
constraining the impacts on model predictions – particularly
when considering coupled mesoscale–microscale modeling –
is difficult. A powerful, albeit computationally intensive, ap-
proach to evaluating uncertainty in atmospheric-model clo-
sures is to generate an ensemble of simulations that sample
across a range of parameter values. To adequately capture
potential nonlinearities in the atmospheric-model response,
several dozen or more ensemble members are typically re-
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quired. However, once such a perturbed parameter ensemble
is generated, it may be extensively interrogated using a vari-
ety of meta-modeling techniques. For example, generalized
linear models were used by Yang et al. (2017, 2019) and Berg
et al. (2019) for this purpose, while Kaul et al. (2022) per-
formed analyses using random forest representations of the
atmospheric-model response.

In the context of wind energy applications, quantities of
interest such as hub-height wind speeds, turbulence levels,
shear, and veer are known to generally show sensitivity to
parameterizations of boundary layer turbulence and surface
fluxes, and these kinds of parameterizations have been most
extensively targeted for uncertainty quantification under the
MMC project and related A2e projects. For example, uncer-
tainty in mesoscale model predictions over complex terrain
owing to parameter values of PBL and surface schemes was
examined by Yang et al. (2017, 2019) and Berg et al. (2019).
Reassuringly, these studies found that only a few parame-
ters accounted for most of the model uncertainty, although
the identity of these parameters could vary diurnally and sea-
sonally based on the dominant state of atmospheric stabil-
ity. Uncertainty owing to LES subgrid-scale turbulence clo-
sure parameters in realistic coupled mesoscale–microscale
simulations was examined by Kaul et al. (2022) and found
to trace predominantly to a single parameter (an eddy vis-
cosity coefficient). However, the sensitivity of the modeled
flow to variations in this parameter was noted to vary sig-
nificantly between two case studies with nominally similar
large-scale flow conditions but different smaller-scale flow
structures (convective cells vs. rolls) and to show nonlin-
earity of response. For example, the hub-height wind speed
showed much greater sensitivity to the eddy viscosity co-
efficient, across the full range of eddy viscosity coefficient
values that were tested, in the case with roll-type structures.
TKE was also more sensitive in the case with rolls to changes
in the coefficient value through the lower half of the range of
values tested. At higher values of the coefficient, turbulence
was effectively damped so that the sensitivity of TKE to fur-
ther increases in the coefficient became slight. In contrast, the
case with a cellular flow structure was better able to sustain
turbulence, so sensitivity of TKE to the eddy viscosity co-
efficient persisted across the full range of tested values, and
sensitivities were greater at higher values of the coefficient.

Looking forward, much work remains to better charac-
terize uncertainties within both mesoscale and microscale
model predictions across a wider range of flow condi-
tions, especially offshore. However, these initial studies give
promising indications that uncertainty can typically be traced
to a small number of model parameters and that the impor-
tance of these specific parameters can be interpreted in terms
of flow physics considerations. Furthermore, the application
of meta-modeling techniques and leveraging machine learn-
ing approaches can greatly aid in detecting relationships and
patterns within atmospheric-model responses. Thus, efforts
at uncertainty quantification not only meet a practical need to

bound variability in atmospheric-model predictions but also
can provide deeper insights to modelers that may ultimately
drive improvements in parameterizations.

2.6 Challenges of complexity and ways to approach

Complexity comes into play in many manners for atmo-
spheric flow. For the purposes of enhanced MMC for wind
energy applications, we have focused on issues relating to
complex-terrain and offshore environments, including issues
of correctly modeling atmospheric gravity waves but avoid-
ing generating spurious ones.

2.6.1 Complex terrain

The coupling of mesoscale to microscale models using an
offline approach (see Sect. 2.3) allows for the use of a stand-
alone microscale LES solver, which brings the ability to
use high-quality (in terms of mesh orthogonality) terrain-
conforming meshes. In complex-terrain simulations, the as-
sumption of horizontal homogeneity (often assumed in mi-
croscale simulations of the boundary layer) is no longer
valid. Adding complex terrain to the simulation implies that
periodic boundary conditions are not appropriate, and thus
mesoscale coupling must be performed at the boundaries by
means of spatiotemporally varying boundary conditions. A
few additional complexities arise when performing this cou-
pling.

To initialize the flow field in the microscale, the mesoscale
solution is mapped onto the microscale domain. However,
this mesoscale solution is obtained at significantly coarser
resolutions. In order to avoid unnecessary computational ex-
pense, a coarse grid must first be created to allow for the map-
ping. After the mapping, further grid refinement should be
performed to bring the domain to the desired microscale res-
olution. An additional terrain-conforming step must be taken
to ensure the high-resolution LES grid is properly conformed
to the underlying terrain elevation map. The boundary con-
ditions that come from the mesoscale models only contain
mean quantities, and thus the LES-resolved turbulence must
be initiated in some way. Due to the inflow–outflow bound-
ary conditions, two main strategies are used: applying the
cell perturbation method (see Sect. 2.4.1) or allowing for
the terrain itself to trigger the turbulence. We found that a
perturbation technique is recommended because the terrain
is only effective at generating the turbulence if it is suffi-
ciently complex, in addition to significant fetch requirements
(Hawbecker and Churchfield, 2021). For flat terrain Mirocha
et al. (2014b) showed that under neutral stratification fetch
can be virtually infinite. An additional complication can be
present in the mesoscale boundary condition, where a sin-
gle microscale boundary may experience inwards and out-
wards fluxes, and one must make an appropriate choice of
the boundary conditions for both the velocity and pressure,
depending on the LES code of choice. Finally, the terrain
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can trigger atmospheric gravity waves under certain stabil-
ity conditions. The real atmosphere extends for tens of kilo-
meters vertically and infinitely horizontally, but a simulation
domain is finite. Atmospheric gravity waves reflect off of
these domain boundaries and constructively or destructively
interact, creating spurious behavior. Approaches used to mit-
igate these spurious reflections and interactions are detailed
in Sect. 2.6.2.

2.6.2 Atmospheric gravity waves

As discussed in Sect. 2.6.1, complex terrain can trigger at-
mospheric gravity waves, which microscale simulations that
include buoyancy effects will capture. In addition to complex
terrain, atmospheric gravity waves can be triggered by cer-
tain mesoscale weather patterns, land–sea interfaces, or wind
farms themselves. The flow induced by these atmospheric
gravity waves can be of significant importance. But if these
waves, whether significant or not to the simulated problem,
are allowed to reflect off of domain boundaries unchecked,
they can cause spurious wave interactions with unreasonable
wave amplifications that completely pollute the rest of the
flow. Our approach of choice to mitigate spurious reflections
is Rayleigh damping. Rayleigh damping is a simple but flex-
ible concept. A layer of some thickness is placed adjacent
to a domain boundary in which a source term is introduced
in the momentum equation that forces the velocity toward a
reference velocity with some timescale. Often we choose to
damp only the vertical velocity component to a zero refer-
ence state. However, Rayleigh damping is completely gen-
eral in that the reference velocity can be as complex as a
3D, time-varying field. Challenges with Rayleigh damping
include choosing an adequate thickness and proper timescale
to effectively damp atmospheric gravity waves. Too weak
a damping layer will not completely damp reflected waves,
but waves will reflect off too strong a layer. We suggest a
damping layer thickness of 3–5 km with a damping time con-
stant of 0.005 1 s−1, but additional tuning likely will be re-
quired. An additional challenge arises if the inflow bound-
ary needs to be damped, which we find to be the case in
all inflow–outflow simulations because upstream propagat-
ing atmospheric gravity waves must be damped but one does
not want to damp incoming turbulence.

2.6.3 The complexity of modeling offshore wind

When switching from simulating onshore complex terrain to
the offshore environment, our initial assumption was that the
problem became simpler. The offshore environment, due to
a “flat” sea surface, seemed ideal for periodic idealized sim-
ulations. Additionally, there are no heterogeneous surfaces
to consider such as trees and cities, only water. This seem-
ingly simpler problem turns out to be very complex and has
fewer observational datasets to compare against, meaning
that it is very difficult to verify simulation accuracy. First,

the ocean surface is generally covered in waves of varying
sizes, traveling in different directions, with different peri-
ods. These waves have a complex relationship with the at-
mosphere and ocean depth (see, for example, Jiménez and
Dudhia, 2018) that needs to be carefully considered in or-
der to accurately simulate wind speeds within the boundary
layer. Secondly, sea surface temperature (SST) and SST gra-
dients play an important role in determining the stability of
the atmosphere above. When considering SST gradients in
simulations, we are often unable to utilize periodic boundary
conditions. Additionally, while many satellite-derived SST
products exist and are used as the lower boundary condition
for temperature in a model, they are commonly only avail-
able once per day and rely heavily on gap-filling techniques
to produce estimates of SST where clouds have blocked their
measurement, leading to biases in SST datasets (Zuidema et
al., 2016). These impacts may be more significant in the near-
shore environment in which offshore wind is focused due to
the occurrence of coastal upwelling, seasonal and climato-
logical changes in ocean currents such as the Gulf Stream,
and the propensity for cloud coverage. Finally, there are also
characteristics of the offshore environment that are infre-
quently observed over land. Offshore low-level jets in the
New York Bight – where offshore wind plants are being de-
veloped – have been frequently observed to have jet noses be-
low 100 m. This means that the shear across the rotor will be
extremely complex, as hub height for offshore turbines will
be above the jet nose. Another example is the propensity of
extreme weather events in the offshore and coastal environ-
ments. Hurricanes and other tropical disturbances commonly
weaken as they move onshore due to increased friction or
over colder seas, reducing the latent energy that powers them.
Such storms can remain quite strong while located over warm
ocean waters; however, the rate of storm motion can also play
a role, as slower storm movement can mix cooler water from
below the thermocline up toward the surface, reducing the
energy supply. Upper-level wind shear can also reduce the or-
ganization of the storm, leading to weakening or dissolution.
All of this leads to a very complex modeling framework re-
quiring the coupling of ocean and atmospheric models (Shaw
et al., 2022).

2.7 Wind-energy-relevant assessment and code
availability

To enable accurate assessment and repeatability of our sci-
ence results, we have made all the essential components of
our studies publicly available. These components include
(1) the problem definition, including data exploration, cura-
tion, and transformation into useful simulation inputs; (2) the
actual simulation inputs, including model configuration files
and scripts; and (3) postprocessing and synthesis of the out-
put. For this purpose, we have established the A2e–MMC
GitHub organization for archiving and disseminating our
work archived in Quon et al. (2023a, b, c), Gill et al. (2023),
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and Hawbecker et al. (2023b). This public GitHub organiza-
tion hosts Python analysis code, Python analysis notebooks,
code-specific input files, and our MMC-specific version of
the WRF model that tracks the community version (currently
v.4.3), each constituting a separate version-controlled repos-
itory. For every study in this project, the team has adopted
workflows based on a common set of analysis and simulation
codes within this framework, thus ensuring apples-to-apples
comparisons between results. To complement the technical
content on GitHub, we have also created a Read the Docs
documentation site to provide an easily accessible high-level
overview of our project’s accomplishments, describe our ca-
pabilities, and link to the resources on GitHub wherever ap-
propriate (Mesoscale-to-Microscale Coupling, 2023). We be-
lieve that in combination the GitHub and Read the Docs doc-
umentation will serve as a living record of the MMC project,
as well as provide flexible and adaptable documentation for
future related projects.

3 The value of case studies

The team has developed and archived simulation codes and
model workflows for a range of case studies that can be used
as a starting point for users to develop their own applications.
The value of using a case study approach includes the abil-
ity to choose real-world phenomena to model where obser-
vational data exist to validate our models. That allows us to
test different modeling approaches and techniques to discern
which are most appropriate for the particular situation. The
cases that are curated are described briefly in the following
sections, along with some lessons learned for each.

3.1 Flat-terrain diurnal cycle

To develop and test methods for coupling so that the mi-
croscale follows changes at the mesoscale, an early case
study of a diurnal cycle in flat conditions was chosen. This
nonstationary case includes time-varying hub-height wind
speed and direction, shear and veer, and turbulence inten-
sity. For such a case, accurate downscaling of energy from
the mesoscale is important for predicting realistic turbulent
flow features in the wind farm operating environment.

Surrounded by grassland with no significant terrain
changes within hundreds of miles, the Scaled Wind Farm
Technology (SWiFT) facility located in the southern Great
Plains in West Texas forms an ideal flat-terrain test site.
There are several meteorological measurement facilities near
the SWiFT site hosted by Texas Tech University’s National
Wind Institute (Sandia National Laboratories, 2023), includ-
ing a tall meteorological tower and a radar wind profiler with
a radio acoustic sounding system. In addition to the ideal ter-
rain and availability of observational data, the site is also cho-
sen for its relevance to onshore wind energy installations in
the United States. Details of the atmospheric characterization
are provided in Kelley and Ennis (2016).

From available data, the evening transition from 8 to 9
November 2013 was identified as a synoptically quiescent
diurnal cycle leading to nonstationary flow conditions at
heights relevant to wind energy. The evolution of flow pa-
rameters including wind speed, turbulence intensity, and vir-
tual potential temperature follows a typical diurnal pattern,
featuring a morning transition, daytime convective bound-
ary layer, afternoon–evening transition, and nocturnal low-
level jet. The relatively simple geographical and meteorolog-
ical conditions of the SWiFT diurnal cycle make it an ideal
case to study the performance of internal coupling methods
throughout various atmospheric-stability regimes. The case
has been used to evaluate existing coupling methodologies
(Draxl et al., 2021) as well as to develop new techniques
(Allaerts et al., 2020, 2023). The WRF mesoscale simula-
tion setup contains three nested domains with 27, 9, and 3 km
grid spacing, centered at the SWiFT site. The LES domains
included 270, 90, and 30 m resolutions.

Among the various lessons learned from this flat-
terrain diurnal-cycle case, perhaps the most important one
was regarding the division of responsibilities between the
mesoscale and the microscale solvers in an MMC frame-
work. The trends in the mean flow are set at the mesoscale
level, and the microscale solver cannot correct for large bi-
ases in mean flow quantities or erroneous timing of large-
scale events like the evening transition. The task of the mi-
croscale solver is to fill in information on the unsteady, three-
dimensional turbulent structures, which was often accompa-
nied by an improvement in the prediction of wind shear and
mean turbulence statistics inside the boundary layer, even in
the relatively simple conditions of the SWiFT diurnal cycle.
Further, the SWiFT case also highlighted the need for more
high-quality data extending up to higher altitudes for vali-
dation purposes. Despite the available meteorological tower
being taller than typically deployed towers, many boundary
layer processes with relevance to wind energy take place
above 200 m. For example, the low-level jet that developed
during the SWiFT diurnal cycle was predicted to attain its
maximum wind speeds at a height between 250 and 350 m,
but there were insufficient data to validate this finding. More-
over, meteorological towers only present observations from
a single column, which means they cannot be used to assess
how well the spatial variations in the turbulent flow fields are
predicted. Note that similar work has been carried out using
data from the GABLS3 diurnal-cycle case that included high-
altitude measurements to over 1000 m. Benchmark results
are archived at Sanz Rodrigo et al. (2017a) with mesoscale–
microscale coupling results described by Sanz Rodrigo et
al. (2017b) and archived in Sanz Rodrigo (2017b, c).

3.2 Frontal passage causing a wind ramp

A second case study (Arthur et al., 2020) leveraged MMC
techniques to conduct simulations of a wind farm during a
frontal passage, for which rapid changes in wind speed, di-
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rection and temperature, and atmospheric turbulence were
observed. One of the key benefits of mesoscale–microscale
coupling is the ability to examine wind energy phenomena
at the wind plant scale while resolving time-varying forc-
ing from the mesoscale. The simulations demonstrated the
ability to capture the relevant mesoscale meteorological phe-
nomena on a typical mesoscale simulation domain; down-
scale those features to an LES domain containing a section
of an operating wind plant, represented as generalized actu-
ator disks (GADs; Mirocha et al., 2014a); and simulate the
interactions between the time-varying meteorological flow
and turbines, including wakes, power extracted, and turbu-
lence phenomena. This case study demonstrates the viability
of fully online-coupled MMC simulations in WRF to address
important issues in wind plant behavior under realistic atmo-
spheric operating conditions.

3.3 Complex-terrain case with high wind speeds and
convective conditions

The purpose of a first complex-terrain case study was to ex-
amine the flow structures near the surface, which depend on
many factors, including surface forcing. We investigated co-
herent structures present in the flow measured using scan-
ning lidar deployed near Wasco, Oregon, during the WFIP2
(Wind Forecast Improvement Project) campaign (Wilczak et
al., 2019; Shaw et al., 2019) and those simulated using WRF
LES. The simulations utilized WRF to WRF-LES for the un-
stable condition case on 21 August and stable conditions on
14 August 2016 for the westerly flow. The model output was
sampled in a way consistent with scanning lidar data using
plan position indicator scanning. We used the wind field of
the innermost domain that has a horizontal grid spacing of
10 m.

For both stability conditions, 90 east sectors, each 1 min
apart, were selected from the simulations and used to com-
pute the spatial proper orthogonal decomposition (POD)
modes and energy (Berkooz et al., 1993). The actual lidar
data for the unstable case uses 49 east sectors with wind
speed and heat flux values similar to those in the simula-
tions, 5–7 m s−1 and ∼ 350 W m−2, respectively. For the sta-
ble case, the actual lidar data employ 160 east sectors with a
wind speed of 10–12 m s−1 and heat flux of ∼−30 W m−2,
similar to the simulated values. Figure 3 shows the spatial
POD modes 1 and 21 and the POD energy (λ, which denotes
kinetic energy per unit mass of the flow) distributed among
many modes for the simulated and actual lidar data for two
stability conditions. The first POD mode in all cases shows
the most significant coherent structures, followed by smaller
structures for increasing mode numbers. For the given sta-
bility conditions, the simulated and lidar cases showed sim-
ilar shape and size variations for all modes. The first few
modes (modes< 5) show similar spatial structures in the
POD modes for all stability conditions. However, they ex-
hibit different spatial structures for the higher POD modes.

For instance, mode 21 in the unstable case shows large open-
cell-like structures, whereas mode 21 in the stable case shows
streak-like structures oriented in the predominant wind di-
rection. This variation in flow structures in different modes
can be attributed to the forcing function. POD energy shown
in Fig. 3 (right panels) depicts the turbulent energy associ-
ated with each coherent structure starting from mode 2. The
unstable conditions consistently exceed the POD energy (for
mode> 1) in both simulated and observed lidar data. The cu-
mulative energy (Fig. 3, inset) indicates that the first mode of
the stable condition case contains larger POD energy than the
unstable condition case and requires larger modes to repre-
sent the energy in the flow in observational data. Although
the trend of varying POD energy shows similarities between
the two cases, the magnitude and the energy spread among
the modes differ. Overall, the POD modes of the different
stability cases demonstrate that the simulations capture the
important features of coherent structures present in actual li-
dar data.

3.4 Complex-terrain case using 3D PBL

This second complex-terrain case also leverages measure-
ments made during the WFIP2 campaign, which covered
many stability conditions, including cold-air pools (CAPs)
that tend to develop during synoptically quiescent periods.
To study the ability of the 3D PBL scheme to capture such
features, we chose a case from 10–20 January 2017 when
a robust CAP was observed in the Columbia River Gorge.
Such events are often challenging to represent accurately
in mesoscale simulations due to the relatively small-scale
boundary layer processes that must be parameterized. To
better understand the spatial variability in meteorological
and turbulence characteristics during the CAP lifecycle, we
conducted WRF simulations following the High-Resolution
Rapid Refresh (HRRR) reforecast configurations that were
run for the WFIP2 project. For these simulations, the Mellor–
Yamada–Nakanishi–Niino (MYNN; Nakanishi and Niino,
2006) scheme is run in the inner domain (horizontal grid cell
spacing, 1= 750 m) of a nested two-domain setup. A nov-
elty of this study is the use of NCAR’s (National Center for
Atmospheric Research) 3D PBL parameterization (Kosović
et al., 2020; Juliano et al., 2022; Eghdami et al., 2022; Ry-
bchuk et al., 2022), which was implemented into the WRF
model for high-resolution mesoscale simulations. More in-
formation about the modeling setup and codes may be found
in Mesoscale-to-Microscale Coupling (2023).

Several key findings emerged from the WFIP2 CAP study,
with additional details reported by Arthur et al. (2022). First,
turbulence kinetic energy (TKE) measurements from the pro-
filing lidar at the Gordon’s Ridge site reveal that, compared
to MYNN, the 3D PBL simulation more accurately repre-
sents the vertical and temporal variability in TKE. As a re-
sult, wind speed errors were lower in the 3D PBL simulation,
especially during the CAP erosion period, which has been es-
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Figure 3. Spatial POD modes 1 and 21 for the unstable (first and second columns) and stable (third and fourth columns) condition cases and
POD energy (λ) among the first several modes (fifth column) and their cumulative energy (in the inset). Panels in the top and bottom rows
represent the results from observed and the simulated data, respectively.

pecially difficult to model (Adler et al., 2021). To better un-
derstand the leading cause of the improved performance by
the 3D PBL compared with MYNN, we performed a sensi-
tivity analysis using the 3D PBL scheme framework. More
specifically, we modified the turbulence closure approach as
well as the turbulent length scale–closure constant formula-
tion. The main reason for the improvement in TKE prediction
is primarily related to the different turbulent length scale–
closure constant formulation. For 3D PBL simulations under
convective conditions, Juliano et al. (2022) reported similar
findings regarding the primary importance of the turbulent
length scale–closure constant formulation.

3.5 Offshore-wind case with a long offshore fetch

The MMC techniques developed for onshore studies were
tested for a first offshore scenario at the FINO1 research
tower, located in the North Sea. This case is representative
of low roughness and low turbulence and leverage measure-
ments from the FINO towers and data from the Alpha Ventus
wind energy plant.

3.5.1 Comparison of coupling methods and turbulence
generation methods

Comparisons are made between members of an ensemble
of mesoscale simulations, different coupling methods with
several models, and different turbulence generation schemes.
The goal of the comparison is to assess the performance of
each approach and highlight their strengths and weaknesses.
The approaches compared include the following:

– WRF to SOWFA (Simulator fOr Wind Farm Applica-
tions) using the indirect profile assimilation (IPA) tech-
nique,

– WRF to SOWFA using the CPM at the inflow bound-
aries,

– WRF to WRF-LES without any added turbulence gen-
eration (control simulation),

– WRF to WRF-LES using the CPM at the inflow bound-
aries, and

– WRF to WRF-LES using the Mann model to generate
the large-scale turbulence.

The domains used were 6× 6 km, with the exception of
SOWFA IPA, which had a 3× 3 km extent. All cases have a
uniform 10 m grid resolution. Initial numerical experiments
explored time-averaged vertical profiles at several locations
in the fetch to determine an appropriate size. Convergence of
vertical profiles of turbulent metrics was observed within a
3 km fetch distance. Thus, all the boundary-coupled scenar-
ios considered were set up with a large 3 km extent fetch re-
gion to allow for turbulence development. The results shown
here represent the developed-flow region, near the outlet
boundaries. A qualitative visualization of the resulting flow
field is given in Fig. 4.

Comparisons across the methods and observation data
were made in terms of vertical profiles, power spectral den-
sity content, correlations, and integral scales. Figure 5 shows
the energy spectrum during 1 h of the 4 h period of interest.
The spectrum was obtained using 10 min Hamming windows
with a 50 % overlap. To obtain smoother curves, we con-
sidered an ensemble average of several locations within the
3× 3 km subdomain shown in Fig. 4, leveraging horizontal
homogeneity. WRF Mann and both CPM methods overesti-
mated the energy content, with the SOWFA IPA matching the
content well with respect to observations up to a frequency
related to the LES cutoff. The WRF control case showed very
little content, as expected. The SOWFA IPA case is the only

Wind Energ. Sci., 8, 1251–1275, 2023 https://doi.org/10.5194/wes-8-1251-2023



S. E. Haupt et al.: Lessons learned in coupling atmospheric models 1263

Figure 4. Wind speed at 01:00 local time on 16 May 2010 around the FINO1 location for the different methods investigated. The original
domains contain the fetch region. Shown here is a developed-turbulence 3× 3 km subdomain.

Figure 5. Wind speed at 01:00 local time on 16 May 2010 around the FINO1 location for the different methods investigated. The original
domains contain the fetch region. Shown here is a developed-turbulence 3× 3 km subdomain.

one where the turbulence was not triggered by a numerical
method but rather developed using doubly periodic boundary
conditions. All of the vertical profiles are comparable, with
the exception of the control simulation, which due to the lack
of resolved turbulence exhibited a larger shear profile. For a
horizontal plane at 80 m, correlation maps were calculated
for every point with respect to the central point, and correla-
tion curves were obtained in the along-wind and cross-wind
directions. Taylor’s hypothesis was observed to be valid for
this case, by means of spatial correlation and temporal au-
tocorrelation. The correlation drop matched the correlation
from observations well. The correlations dropped to zero
faster in the cell perturbation method cases for both SOWFA
and WRF-LES, which results in lower integral scales. Inte-
gration of the correlation curves yields the integral scales of
the flow, shown in Fig. 6.

The integral scales present in the cases that used the
cell perturbation method to generate turbulence are smaller
throughout the interval of interest. That is likely a result
of the way the perturbation method works, by imposing
small-scale disturbances in the temperature field, thus trig-
gering high-frequency, small-scale turbulence that does lit-
tle to change the integral scales of the flow as a whole. The
Mann method, on the other hand, imposes large-scale turbu-
lence, and the LES resolves the smaller scales. The larger
scales imposed on the field are clearly observed when com-
paring the integral scales of the flow to those obtained using
perturbation methods. Lastly, the SOWFA IPA case resulted
in integral-scale values comparable to the Mann method in
WRF-LES. For this SOWFA approach, the turbulence is de-

Figure 6. Integral length scales calculated at 80 m in the along-wind
and cross-wind directions for each coupling method.

veloped by the use of periodic boundary conditions, which
allows (in both space and time) for the development of
large-scale structures, ultimately resulting in long correlation
fetches and, thus, large values of the integral length scale.
While the SOWFA IPA domain was overall smaller, it was
nonetheless able to resolve scales of the order of 150 m as
shown in Fig. 6. The integral scales in the cross-wind direc-
tion were of comparable magnitude in all cases investigated.
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Figure 7. Wind speed at 01:10:00 local time on 16 May 2010 in the domain containing the turbine (AV10) location using the WRF-LES-
GAD approach for (a, c) no CPM and (b, d) CPM. The entire domain is shown in (a) and (b). A subset of the domain appears in (c)
and (d).

3.5.2 The Alpha Ventus wind farm with a generalized
actuator disk – turbine comparison

This section examines turbine wakes at the Alpha Ventus
wind farm where the FINO1 tower is located and extends
the analysis described in Sect. 3.5.1. WRF–WRF-LES and
WRF–SOWFA coupling approaches were extended to in-
clude a wind turbine parameterization using a GAD formu-
lation (Mirocha et al., 2014a). We refer to them as WRF-
LES-GAD and WRF–SOWFA-GAD, and each compares us-
ing the CPM at the inflow boundaries vs. not adding any tur-
bulence. The time window of interest is a 2 h window starting
at 01:00 local time (00:00 UTC) on 16 May 2010. We con-
sider a single turbine (AV10) for the purpose of this study.

Figure 7 presents a qualitative visualization of turbine
wakes in the horizontal plane at hub height for the WRF-
LES-GAD approach. As in Sect. 3.5.1, the LES domain is
6× 6 km with a horizontal grid resolution of 10 m, which
provides a large fetch as well as downstream distance for
wake propagation. As expected, the simulation without the
CPM does not resolve turbulence, and the resulting wake is
what would be caused by an obstacle in the flow without
any mixing. The simulation with the CPM includes resolved
turbulence and hence mixing in the shear region, leading to
a realistic wake. A comparison simulation using the WRF–
SOWFA-GAD approach with the CPM (not shown) also con-

cludes that modeling realistic wakes requires using a turbu-
lence generation method.

3.6 Offshore US Northeast coastal case

A second offshore case is archived that studies the impact
of different ways of representing surface roughness and pro-
viding sea surface boundary conditions. The offshore envi-
ronment in the United States Northeast is an active area of
research for wind energy development. Observations have
recorded occurrences of persistent low-level jets (LLJs) with
jet noses commonly below hub height (Debnath et al., 2021).
In this study we assess the sensitivity of LLJ characteris-
tics (e.g., jet nose height, maximum wind speed, low-level
shear) to SST. We utilize six freely available satellite-derived
SST datasets from the Group for High Resolution Sea Sur-
face Temperature website (Table 1 and Fig. 8) to vary the
lower boundary condition of surface temperature in online
WRF simulations.

The simulations consist of five domains with grid spacing
spanning from 6250 down to 10 m. We used 88 vertical levels
with 20 m spacing below 1 km. We compare model results
against observations from the New York State Energy Re-
search and Development Authority floating lidars. We assess
model performance in capturing the LLJ nose height, max-
imum wind speed, and low-level shear on each domain in
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Table 1. Sources of SST datasets used in this study. UKMO: UK Meteorological Office.

Dataset source Organization (year) Resolution (◦)

Naval Oceanographic Office (NAVO) NASA (2018) 1
Canadian Meteorological Centre (CMC) CMC (2017) 1
Office of Satellite and Product Operations (OSPO) OSPO (2015) 0.54
Operation Sea Surface Temperature and Ice Analysis (OSTIA) UKMO (2005) 0.54
GOES-16 NOAA (2019) 0.02
Multi-scale Ultra-high Resolution (MUR) NASA (2015) 0.01

Figure 8. Sea surface temperature datasets of varying resolution
used as initial and surface boundary conditions over water.

order to compare how sensitive the results are to SST on the
mesoscale and microscale. With this comparison, we aim to
determine whether model sensitivity on the mesoscale trans-
lates directly to the microscale. In other words, can we ex-
pect the best-performing mesoscale model setup to be the
best setup on the microscale?

Results indicate that ensemble mean error and spread for
various characteristics of the offshore LLJ vary between
the mesoscale solutions and microscale solutions. However,
variance within the microscale domains (domains 4 and 5)
is small. The ensemble mean error of EME=

√
(so− s)2

(where so is the observed quantity and s is the ensemble
mean) and bias of the low-level shear, hub-height wind speed

(assumed to be at 118 m in this case), and jet nose height vary
across scales from the mesoscale to the microscale (Fig. 9).
Additionally, the best mesoscale performer did not lead to
the best-performing microscale setup in this case when con-
sidering these metrics. On the mesoscale, the shear produced
in the lowest levels was lower than what was observed. The
LES results improved upon the low-level shear but over-
corrected the lowest-level wind speeds and produced values
lower than what were observed. It is suspected that using a
drag force locally consistent with MOST within the hetero-
geneous microscale simulation is the root cause of this over-
correction of low-level winds. Future work must focus on
generalizing this finding in order to determine if mesoscale
simulations can inform performance on the microscale prior
to running simulations.

4 Contributions of enhanced methods

The MMC team additionally tested ways to improve the
models both in terms of improved physics as well as to test
the efficacy of machine learning methods.

4.1 Three-dimensional planetary boundary layer
parameterization

Traditional PBL schemes in mesoscale models are one-
dimensional – that is, they parameterize only the vertical tur-
bulent mixing under the assumption of horizontal homogene-
ity. In this sense, the vertical turbulent fluxes of momentum
(<u′w′> and <v′w′>), potential temperature (<θ ′w′>),
water vapor mixing ratio (<q ′vw

′>), and any other relevant
scalars (<ϕ′w′>, where ϕ is a scalar variable, such as the
cloud water mixing ratio) are computed. By definition, the
horizontal homogeneity assumption neglects horizontal gra-
dients in resolved quantities, as well as the vertical gradient
in vertical velocity. Therefore, the vertical turbulent fluxes
are dependent on only vertical gradients. However, this as-
sumption is not justified at model resolutions in the terra
incognita (1≈ 100–1000 m), where turbulence is partially
resolved, and, thus, horizontal gradients play an important
role (e.g., Kosović et al., 2021). A main consequence of ig-
noring horizontal gradients in the terra incognita and under
convective conditions is the development of spurious struc-
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Figure 9. (a, b, c) Error and (d, e, f) bias for each case on each domain for (a, d) low-level shear, (b, e) hub-height wind speed, and (c, f) LLJ
height. Units for error are (a, d) per second, (b, e) meters per second, and (c, f) meters.

tures (termed modeled convectively induced secondary cir-
culations, or M-CISCs, by Ching et al., 2004), which can
have a deleterious effect on the model solution. Furthermore,
most 1D PBL parameterizations rely on the 2D horizontal
diffusion scheme of Smagorinsky; however, this scheme was
originally introduced for numerical stability and is therefore
not physically motivated (Smagorinsky, 1990).

To address the fundamental research challenge of model-
ing in the terra incognita, our team has implemented the 3D
PBL parameterization of Mellor and Yamada (Mellor, 1973;
Mellor and Yamada, 1974, 1982) into the WRF model. This
new parameterization does not impose the assumption of hor-
izontal homogeneity; thus, it considers both vertical and hor-
izontal gradients when computing all six momentum stresses
and the full tensor for scalars (namely, θ and qv), in addi-
tion to all components of the flux divergences. As a result,
this approach does not require the use of Smagorinsky’s 2D
horizontal diffusion scheme and shows promise at grid res-
olutions in the terra incognita, especially under convective
conditions. To examine the influence of accounting for hori-
zontal gradients, we set up different idealized model config-
urations under convective conditions and at a high-resolution
mesoscale grid spacing (1= 250 m). This grid spacing is
considered to be mesoscale resolution because it is not fine
enough to fully resolve the most energetic eddies (i.e., the
LES limit) due to the model’s effective resolution. The three
single-domain, doubly periodic configurations are homoge-
neous surface forcing (rolls and cells), sea breeze front initi-
ation, and mountain–valley circulation. Results clearly de-
pict the suppression of M-CISCs by the 3D PBL scheme
compared to a traditional 1D PBL scheme (Kosović et al.,
2021; Juliano et al., 2022). The impact of the turbulent length
scale–closure constant formulation is found to be very im-
portant, such that M-CISCs may be present in the 3D PBL

solution when the length scale is insufficiently large and thus
vertical mixing is not strong enough. In general, we believe
that the 3D PBL parameterization has the potential to be
useful both as a mesoscale-only approach and as part of a
mesoscale–microscale coupling strategy.

4.2 Machine learning surface-layer scheme

Specifying lower boundary conditions in numerical simula-
tions of high-Reynolds-number atmospheric boundary layer
flows requires estimating turbulent fluxes of momentum,
heat, moisture, and other constituents. However, these fluxes
are not known a priori and therefore must be parameterized.
Parameterization of surface fluxes in atmospheric-flow mod-
els at any scale, from global to turbulence-resolving large-
eddy simulations, are based on MOST where atmospheric-
stability effects are accounted for through universal, semi-
empirical stability functions. The stability functions are a
function of the nondimensional stability parameter, a ratio
of distance from the surface and the Obukhov length scale
z/L (Monin and Obukhov, 1954). However, their functional
form is determined based on observations using simple re-
gression that cannot represent the surface-layer structure and
governing parameters under a wide range of conditions. We
have therefore developed and tested a neural network (NN)
ML model for surface-layer parameterization (McCandless
et al., 2022). We trained and tested the ML model using
long-term observations from the National Oceanic and At-
mospheric Administration’s Field Research Division tower
in Idaho and the Cabauw mast in the Netherlands. The of-
fline comparison of MOST and the NN model surface-layer
parameterizations with observations from the Cabauw mast
are shown in Fig. 10. We then implemented the ML model in
the FastEddy GPU-native LES model (Muñoz-Esparza et al.,
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Figure 10. Comparison of the MOST (top row) and an offline NN model (bottom row) surface-layer parameterizations of surface friction
velocity (left panels), sensible heat flux (middle panels), and moisture flux (right panels) with observations from the Cabauw mast. Figure
originally appeared in Muñoz-Esparza et al. (2022).

2022) and the WRF single-column model. The ML model
implementation in FastEddy demonstrates that it can accu-
rately capture the diurnal evolution of an atmospheric bound-
ary layer as shown in Fig. 11.

The ML model implementation in the WRF model was
tested using a single-column model (SCM) based on the
GABLS3 intercomparison study case defined by Bosveld et
al. (2014). The comparison of SCM simulations using the
ML model surface-layer parameterization with observations
and the MOST parameterization demonstrates that it can cap-
ture the sensible heat flux, the skin temperature, the surface
friction velocity, and the planetary boundary layer height
well but underestimates the latent heat flux (Fig. 12).

A potential reason for discrepancies between the ML-
model-predicted and observed latent heat flux is that the ML
model for the surface-layer parameterization implemented in
WRF interacts with a land–surface model, which is based on
MOST.

The ML model for surface-layer parameterization demon-
strates the potential to provide better estimates of surface
fluxes in comparison to commonly used MOST-based param-
eterizations. However, to develop a generally applicable ML
model it must be trained using long-term, consistent, com-
plete, and quality-controlled observations from a wide range
of environments. Future research could focus on expanding
the training dataset and testing the model in mesoscale sim-
ulations over diverse locations.

4.3 Downscaling with deep learning

Microscale simulations, like WRF-LES (30 m), generated
over the Columbia River basin for the Wind Forecast Im-
provement Project 2 (WFIP2), are able to model the very
complicated flow associated with complex terrain includ-
ing downslope flows, mountain wakes, mountain–valley cir-
culations, gravity waves, cold pools, and gap flows. How-
ever, such simulations are currently too complex to config-
ure and computationally expensive for use outside the scien-
tific research community. Here we tested using deep artifi-
cial neural networks on the LES to directly downscale from
the mesoscale to the microscale in complex terrain. Once
trained, deep learning models can generate high-resolution
simulations from a coarse image in just a few seconds from
mesoscale input. In addition, we wished to demonstrate that
the deep network models can then potentially be applied
to regions other than the LES domain on which they were
trained.

We created high-resolution–low-resolution training sam-
ple pairs by subtiling relevant vertical levels of the LES
on the eastern portion of the domain and coarsening
the tiles with average filters. We trained two separate
enhanced super-resolution generative adversarial networks
(ESRGANs; Ledig et al., 2017; Wang et al., 2018) to ac-
complish the downscaling by training one GAN to downscale
from 960 to 240 m and the second GAN to downscale from
240 to 30 m and applying the models successively. We set
aside data from every third time step in the LES for testing.
Visually, the performance of the compound GAN architec-
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Figure 11. Comparison of the diurnal evolution of an ABL using the FastEddy LES model with the MOST and NN model surface-layer
parameterizations: surface friction velocity (top panel), sensible heat flux (second panel), moisture flux (third panel), and boundary forcing
from surface skin temperature (bottom panel). The shaded areas show 1 standard deviation from the mean over the simulation domain. Figure
originally appeared in Muñoz-Esparza et al. (2022).

Figure 12. Output from the SCM simulation of a GABLS3 intercomparison study case using an idealized WRF model. The figure compares
WRF simulations using MOST (M-O) and a neural network (NN) parameterization. The black line shows the observed data from GABLS3
(Cabauw) for comparison. “Ug and Vg only” refers to the single-column simulations only being forced by changes to the geostrophic wind.
The bottom portion of the figure shows heat flux (HFX), skin temperature (TSK), u∗ (UST), moisture flux (QFX), latent heat (LH), and PBL
height (PBLH).
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Figure 13. Example of using the GAN to downscale from (a) a coarsened 960 m resolution simulation to (b) four example panels showing
high-resolution 30 m generated images. The colors overlaid on (a) correspond to the same color outlined image on (b).

ture on testing data samples and the larger domain was im-
pressive (Fig. 13). We performed statistical analysis of the
high-resolution GAN-generated wind and compared it with
the LES, finding good agreement in the power spectra, veloc-
ity gradient distributions, and wind speed and wind direction
distributions (Dettling et al., 2023). We found high Pearson
correlation coefficients and very low mean bias between the
tiles of GAN-generated wind components and LESs, as well
as good agreement in the moments of GAN-generated wind
components with the LES, even in the higher-order moments,
skewness, and kurtosis (Dettling et al., 2023).

To demonstrate the potential of transfer learning, we ex-
tended the testing sample set to include the western half of
WRF-LES, which contains part of the Cascade Range includ-
ing Mt. Hood. The western region is not only very unique
when compared to the training region in the east but also to-
pographically much more complex. We performed the same
statistical analysis to compare the GAN-generated wind to
the LES in the transfer learning region, and the results were
encouraging (Dettling et al., 2023).

5 Conclusions

We have summarized the results of the U.S. Department of
Energy-sponsored (DOE) Mesoscale to Microscale Coupling
(MMC) project that has focused on the best ways to couple
the mesoscale to the microscale in order to better understand
and model the transfer of energy from the largest scales of
the atmosphere to those scales that directly affect harvesting
that energy via wind turbines. The approach of using case
studies based on observations has been a productive approach
to test methodologies and has kept the findings grounded in
real-world atmospheric behavior. The approach has required
that we choose progressively more difficult cases, bringing
in real-world complexity to better understand the implica-
tions of that complexity and how to best model it. We have

studied how the mesoscale setup impacts the microscale re-
sults, applying consistent and appropriate boundary condi-
tions, multiple methods of applying the coupling between
scales, bridging the terra incognita, initializing turbulence
at the microscale that is not resolved at the mesoscale, and
applying these methods in complex terrain and in coastal and
offshore environments. We additionally explored improving
model parameterization (3D PBL and an ML-based surface-
layer model) and demonstrated deep learning methods for
downscaling from the mesoscale to the microscale. It is im-
portant to apply assessment metrics that are most appropri-
ate for uses in wind energy, considering more than merely
mean winds but also sheer, veer, turbulence intensity, and
turbulent kinetic energy via metrics such as energy spectra,
PDFs (probability density functions) along the flow, covari-
ance, and proper orthogonal decomposition.

Some specific lessons learned include the following:

– Microscale simulations cannot necessarily improve
matches to measurements if forced with an inaccurate
mesoscale simulation (Sect. 3.1).

– Idealized simulations may not represent real-world phe-
nomena well and may be more difficult to initialize well
than real cases.

– Microscale data assimilation (through profile assimila-
tion on a periodic domain) requires an approach that al-
lows for the microscale to deviate from the mesoscale;
otherwise wind and temperature profiles may not be in
the correct equilibrium, resulting in unrealistic turbu-
lence (Allaerts et al., 2020, 2023).

– High-quality potential temperature profiles, in addition
to wind profiles, are necessary when performing mi-
croscale data assimilation with observational data (Al-
laerts et al., 2023; Jayaraman et al., 2022; Quon, 2023).
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– Accurately capturing transitional atmospheric boundary
layers and intermittent stable boundary layers remains a
challenge (Allaerts et al., 2023; Quon, 2023).

– Without coupling across scales, even mesoscale flow is
underresolved (Rai et al., 2019).

– Proper orthogonal decomposition analysis clearly indi-
cates that the microscale contains energetic modes that
originated from the mesoscale flow (Rai et al., 2019).

– The upper limit of the terra incognita is the boundary
layer depth, indicating that horizontal spacing smaller
than that (but larger than about 100 m) is likely to result
in spurious secondary structures (Rai et al., 2019).

– Spurious roll features from the terra incognita can
translate into unrealistic flow in the microscale (Rai et
al., 2019).

– Turbulence generation methods are necessary to avoid
long fetches in developing turbulence at the microscale
that is not resolved at the mesoscale (Sect. 2.4).

– Temperature perturbation methods create turbulent
fields with artificially small integral scales (Sect. 3.5)

– Uncertainty can typically be traced to a small number of
model parameters, and the importance of these specific
parameters can be interpreted in terms of flow physics
considerations (Sect. 2.5).

– Certain conditions, such as complex terrain, can force
gravity waves that reflect off of boundaries and grow to
spurious amplitudes. Such gravity waves can be miti-
gated by Rayleigh damping (Sect. 2.6.2).

– The best mesoscale simulations do not always translate
to the best match to wind-relevant metrics for the mi-
croscale simulation (Sect. 3.6).

– A three-dimensional planetary boundary layer scheme
can alleviate M-CISCs in the terra incognita (Sect. 4.1;
Juliano et al., 2022).

Much research remains to be done to continue to enhance
our understanding of the scales of atmospheric motion most
relevant for harvesting wind energy. This team and the com-
munity have more work to do on the plethora of complex
cases. More research is needed to further improve coupling
technologies. For instance, more research is needed to under-
stand why direct/indirect profile assimilation is successful in
some cases and unsuccessful in others. We should also con-
tinue to explore topics of complexity, both onshore and off-
shore. Much remains to be learned through judiciously ap-
plying uncertainty quantification methods.

Although the current A2e MMC project has formally
ended, we expect that its impact will live on, both in terms of
providing code and methodologies that can be used by a wide

range of wind farm modelers and in terms of being integrated
into subsequent DOE wind energy projects. Specifically, the
DOE is initiating projects in offshore wind energy, complex-
terrain modeling for wind energy, and the impact of extreme
events on modeling for wind energy.

In deploying renewable energy, we have become more
cognizant of issues of fairness and justice to the people being
impacted. In the United States, the Biden administration’s
Justice40 Initiative (White House, 2022), which seeks to de-
liver 40 % of the overall benefits of climate investments to
disadvantaged communities and inform equitable research,
development, and deployment within the DOE, has recently
highlighted the importance of energy justice considerations
within the development of new energy systems. One of the
major challenges of working in this space is finding action-
able, effective paths forward while acknowledging and re-
specting the existing legacy of noninclusivity. Organizations
such as the Initiative for Energy Justice and the Energy Eq-
uity Project (Initiative for Energy Justice, 2022) have estab-
lished guidelines for working in the space of energy justice.
Specifically these include addressing the current perceptions
that have been built on past practices, identifying uniquely
disadvantaged people, promoting procedural fairness, mak-
ing sure that access is equally tenable, making sure the qual-
ity of service is equal across groups, and ensuring the desired
impacts. Defined metrics can be used to determine whether
or not a project is successful in working toward energy jus-
tice. While fairly centered on policymaking, these assess-
ment points can help guide the focus of renewable energy
development and act as a compass for what research objec-
tives will have a meaningful impact.

Finally, the MMC team wishes to thank colleagues and
community members for input throughout the course of this
project. Our industry advisory panel and attendees to our var-
ious webinars and workshops have provided valuable input
as to the directions that we have chosen and solutions that
may be most practical for application to real-world needs.
The biggest lesson learned is that it is through community
cooperation that we are most likely to advance the science
and technology needed to deploy the amounts of wind en-
ergy that the world will need for a carbon-free energy future.

Code availability. The team has archived simulation codes
and model workflows for a range of case studies that can
be used as a starting point for users to develop their own
applications. The MMC version of the WRF code is at
https://doi.org/10.5281/zenodo.7765891 (Gill et al., 2023)
and WRF setups at https://doi.org/10.5281/zenodo.7766133
(Hawbecker et al. 2023b). SOWFA input decks are at
https://doi.org/10.5281/zenodo.7764348 (Quon et al., 2023c).
Python utilities for data analysis, simulation setup, and post-
processing are at https://doi.org/10.5281/zenodo.7768674
(Quon et al., 2023b). Jupiter notebooks for assessment
are at https://doi.org/10.5281/zenodo.7768670 (Quon, et
al., 2023a). Online documentation resides in a “Read the
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Docs” format (Mesoscale-to-Microscale Coupling, 2023,
https://mmc.readthedocs.io/en/latest/).

Data availability. Data for the flat and complex ter-
rain cases are available on DOE’s Wind Data Hub
(https://a2e.energy.gov/data#ProjectFilter=["wfip2"], DOE,
2023). Datasets of differing SSTs used for the offshore
US Northeast coast case study are available from NASA
(2018) (https://doi.org/10.5067/GHK10-L4N01), CMC (2017)
(https://doi.org/10.5067/GHCMC-4FM03), OSPO (2015)
(https://doi.org/10.5067/GHGPB-4FO02), UKMO (2005)
(https://doi.org/10.5067/GHOST-4FK01), NOAA (2019)
(https://doi.org/10.5067/GHG16-3UO27), and NASA (2015)
(https://doi.org/10.5067/GHGMR-4FJ04).
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