

Delft University of Technology

A Symbolic Approach to Discrete Structural Optimization Using Quantum Annealing

Wils, K.A.; Chen, B. Y.

DOI
10.3390/math11163451
Publication date
2023
Document Version
Final published version
Published in
Mathematics

Citation (APA)
Wils, K. A., & Chen, B. Y. (2023). A Symbolic Approach to Discrete Structural Optimization Using Quantum
Annealing. Mathematics, 11(16). https://doi.org/10.3390/math11163451

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/math11163451
https://doi.org/10.3390/math11163451

Citation: Wils, K.; Chen, B. A

Symbolic Approach to Discrete

Structural Optimization Using

Quantum Annealing. Mathematics

2023, 11, 3451. https://doi.org/

10.3390/math11163451

Academic Editor: Jonathan

Blackledge

Received: 30 June 2023

Revised: 27 July 2023

Accepted: 4 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Symbolic Approach to Discrete Structural Optimization
Using Quantum Annealing
Kevin Wils and Boyang Chen *

Department of Aerospace Structures and Materials, Faculty of Aerospace Engineering,
Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
* Correspondence: b.chen-2@tudelft.nl

Abstract: With the advent of novel quantum computing technologies and the new possibilities
thereby offered, a prime opportunity has presented itself to investigate the practical application of
quantum computing. This work investigates the feasibility of using quantum annealing for structural
optimization. The target problem is the discrete truss sizing problem—the goal is to select the
best size for each truss member so as to minimize a stress-based objective function. To make the
problem compatible with quantum annealing devices, the objective function must be translated
into a quadratic unconstrained binary optimization (QUBO) form. This work focuses on exploring
the feasibility of making this translation. The practicality of using a quantum annealer for such
optimization problems is also assessed. A method is eventually established to translate the objective
function into a QUBO form and have it solved by a quantum annealer. However, scaling the method
to larger problems faces some challenges that would require further research to address.

Keywords: structural optimization; quantum annealing; discrete optimization; symbolic computing

MSC: 74P05

1. Introduction

Quantum computers are rather unique devices which leverage quantum mechanical
principles to solve certain types of problems much more efficiently than classical computers [1].
While classical computers use binary bits, 1’s and 0’s, to perform their computations,
quantum computers make use of quantum bits. Quantum bits, or qubits, can represent not
only the classical 0 and 1 states, but also the quantum superposition of these states. This
quantum superposition, when leveraged effectively, is one of the reasons why quantum
computers promise better performance in certain applications.

There are two main types of quantum computers currently in development, namely,
the general-purpose quantum computer (GPQC) and the quantum annealer (QA). With
the GPQC, most of the potential improvements stem from the fact that these systems can
run complex algorithms using quantum gates, allowing for more efficient problem-solving
methods to be devised. An overview of quantum algorithms is given by Montanaro [2].
On the other hand, a QA can only use the quantum annealing algorithm, which is an opti-
mization algorithm inspired by simulated annealing and quantum tunneling effects [3,4]. It
is based on the adiabatic theorem, where a time-dependent Hamiltonian is constructed
to gradually evolve the system from an initial, easily prepared Hamiltonian to the final,
problem-specific Hamiltonian. Quantum tunneling will allow the system to stay in the
ground state of the instantaneous Hamiltonian if the evolution is slow enough [5–7]. The
quantum annealing algorithm solves very specific types of optimization problems, known
as quadratic unconstrained binary optimization (QUBO) or Ising model problems [8].

Both quantum computing technologies are still in their infancy as compared to the
advanced state of classical computing technologies. However, some recent studies on
quantum(-inspired) computing applications have already shown promising results [9–16].

Mathematics 2023, 11, 3451. https://doi.org/10.3390/math11163451 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163451
https://doi.org/10.3390/math11163451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7393-4363
https://doi.org/10.3390/math11163451
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163451?type=check_update&version=1

Mathematics 2023, 11, 3451 2 of 29

A review of their application in structural mechanics is given by Tosti Balducci et al. [17].
Furthermore, in the industry, some companies are already pushing for the development
of early practical applications of quantum computing [18,19]. For example, Airbus posted
the Airbus Quantum Computing Challenge, where one of the problems was to optimize a
wingbox structure, the main load-bearing component in aircraft wings, using a quantum
computer [20]. Another example comes from Volkswagen, which investigated how a QA
could be used to optimize the traffic flow [10]. Volkswagen has already applied this research
for the real-time optimization of public transport routes in Lisbon [21].

In the aerospace industry, there is a continuous demand to develop the lightest struc-
tures possible, so as to increase fuel efficiency/payload capacity and reduce emissions. This
research investigates the use of a quantum computer to assist in the discrete optimization of
mechanical structures. More specifically, the discrete optimization of 2D truss structures are
targeted, as they are among the simplest structures to start with and are easily scalable to
arbitrarily complex forms. The recent work by Lee et al. has developed a quantum-inspired
algorithm, running on classical computing hardware, that has demonstrated good perfor-
mance for truss optimization problems with continuous sectional variables [15]. However,
the use of actual quantum algorithms for the discrete optimization of truss structures is yet
to be found by the authors. Between the two types of quantum computers, the QA is chosen
here due to its relatively higher level of technological maturity, offering significantly more
qubits than the GPQC. The main commercial supplier of QA technology is the company
D-Wave Systems Inc. In this research, the D-Wave 2000Q quantum annealer, which has
roughly 2000 qubits available, was used. During the execution of this research, a monthly
allowance of 60 s of quantum processing unit (QPU) access time was available, which
limited the scope of the testing performed. Because the QA can only solve specific types
of optimization problems, the central task of this work is to translate the discrete truss
optimization problem into a form compatible with the QA.

The rest of the paper will start with a brief background description of the QUBO and
Ising formulations in Section 2. The discrete truss optimization problem will be described
in Section 3. The method to solve the problem using the QA will be detailed in Section 4,
and the results in Section 5. Finally, conclusions are drawn in Section 6.

2. Background on QUBO and Ising Formulations

For any problem that one wishes to solve using a QA, the first step is to ensure the
problem is written with either a QUBO or an Ising formulation. In both cases, the QA
attempts to find a solution for which the Hamiltonian energy is minimal.

To define a QUBO problem, an N × N matrix Q is needed. The matrix Q is typically
written as an upper triangular matrix. The QA attempts to find the optimal binary bitstring
x of length N that minimizes the Hamiltonian energy H, as shown in Equation (1) [22].
When a solution to the QUBO problem is found, the binary variables in the solution vector
x will then have values of either 0 or 1.

min (H) = xTQx

s.t. xi ∈ {0, 1}∀i ∈ {1, 2, . . . , N}
(1)

In the Ising formulation, the system energy is given by a Hamiltonian function, as
shown in Equation (2) [8,23–30].

H(s) =
N

∑
i=1

hisi + ∑
i<j

Jijsisj (2)

In this equation, s = [s1, s2, . . . , sN] are Ising spins, which can take values of either −1
or 1. The parameters hi and Jij are qubit biases (self-interaction) and coupling strengths
(qubit–qubit interaction), respectively. The summation as defined in Equation (2) then
yields the Ising Hamiltonian H [8,25]. The QA will attempt to find a solution for the Ising
spins in s for which the Hamiltonian energy H is minimal.

Mathematics 2023, 11, 3451 3 of 29

For this research, the QUBO problem framework is used, because the binary nature
of the problem variables provides a convenient foundation to define a truss optimization
problem. This will be described in the upcoming section.

3. Problem Description

To explore the feasibility of casting the structural optimization problem into a QUBO
format, simple two-dimensional truss optimization problems are chosen as candidates for
subsequent investigation. A discrete truss sizing optimization problem can be defined,
whereby the cross-sectional area of truss members can be chosen from a predefined discrete
set (e.g., a finite number of cross-sectional configurations as provided by the truss supplier).
The objective of the optimization is to find the cross-sectional area of each truss member
such that the stress in every truss member is as close as possible to the material’s limit
stress, thereby achieving the optimal use of material and hence the minimum weight of
the structure.

The truss systems in this research are designed to incrementally increase in their
complexity. In total, three truss systems are defined: a basic two-truss system, a three-truss
system, and a slightly more complex four-truss system. The three sample truss systems are
shown in Figures 1–3.

The exact definitions of these truss systems, the boundary conditions, and the applied
loads are given in Table 1. For each system, the same fictitious material is used, with a
Young’s modulus of 200 GPa, and a material limit stress of 100 MPa. The material limit
stress is assumed to be identical for both compressive and tensile loads. Furthermore, for
every truss element, three different allowable choices for the truss cross-sectional area are
defined, as shown in Table 2.

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

N1

N2N3

Two-Truss System

Figure 1. Two-truss system.

600 400 200 0 200 400 600
X-Coordinate [mm]

400

200

0

200

400

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3

N1

N2

N3
N4

Three-Truss System

Figure 2. Three-truss system.

As this work is a proof of concept, these three simple structural problems are chosen
to have only a very small number of elements to ensure that their reference solutions can
be easily obtained via brute force. The increasing number of truss elements in the three

Mathematics 2023, 11, 3451 4 of 29

truss structures is used to test the scaling of the method developed in the next section,
where these discrete truss sizing optimization problems are cast into a QUBO format. In the
upcoming section, the details of this process will be described along with the difficulties
and pitfalls encountered.

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

400

200

0

200

400
Y-

Co
or

di
na

te
 [m

m
] E1

E2

E3

E4

N1

N2

N3 N4

Four-Truss System

Figure 3. Four-truss system.

Table 1. Nodal coordinate definitions, element connectivity, and load and boundary condition
definitions. Fx/y and dx/y are the prescribed nodal forces and displacements along the x/y directions,
respectively.

Two-Truss Three-Truss Four-Truss

Nodes

Node X (mm) Y (mm) Node X (mm) Y (mm) Node X (mm) Y (mm)
N1 0 0 N1 −500 500 N1 0 500
N2 1000 −1000 N2 −500 −500 N2 0 −500
N3 0 −1000 N3 500 100 N3 500 0
- - - N4 0 0 N4 1000 0

Elements

Element Start Node End Node Element Start Node End Node Element Start Node End Node
E1 N1 N2 E1 N1 N4 E1 N1 N3
E2 N2 N3 E2 N2 N4 E2 N2 N3
- - - E3 N3 N4 E3 N1 N4
- - - - - - E4 N3 N4

Load Node Fx (kN) Fy (kN) Node Fx (kN) Fy (kN) Node Fx (kN) Fy (kN)
N2 0 −70 N4 0 −100 N4 0 −100

BCs
Node dx (mm) dy (mm) Node dx (mm) dy (mm) Node dx (mm) dy (mm)
N1 0 0 N1 0 0 N1 0 0
N3 0 0 N2 0 0 N2 0 0
- - - N3 0 0 - - -

Table 2. Definition of discrete choices of cross-sectional area for truss system elements.

Two-Truss Choices (mm2) Three-Truss Choices (mm2) Four-Truss Choices (mm2)

Elements Small Mid Large Small Mid Large Small Mid Large

E1 800 900 1000 400 500 600 2400 2500 2600

E2 1400 1500 1600 950 1050 1150 2400 2500 2600

E3 - - - 700 800 900 1900 2000 2100

E4 - - - - - - 2400 2500 2600

4. Method
4.1. General Concept

For a truss system consisting of N truss elements, a set of C discrete choices is defined
for the cross-sectional area of each truss element. For truss element n, this set can be written
as shown in Equation (3).

An,set = {An,1, An,2, . . . , An,C} (3)

Mathematics 2023, 11, 3451 5 of 29

To define the cross-sectional area of truss n, a set of binary qubit variables is needed,
each corresponding to one of the choices of cross-sectional area, as shown in Equation (4):

qn,set = {qn,1, qn,2, . . . , qn,C}
With: qn,c ∈ {0, 1} ∀ c ∈ {1, 2, . . . C}

(4)

The total cross-sectional area of truss n can then be defined by the summation of the
products of the discrete choices and their corresponding binary qubit variables as shown in
Equation (5).

An =
C

∑
c=1

qn,c An,c (5)

In the case that, for truss n, only one of the qubits in qn,set is equal to 1, and the others
are equal to 0, then this binary variable would correspond directly to a particular choice
in cross-sectional area. For a truss system of N truss elements and C discrete choices per
truss element, the number of variables needed would become N × C in total. Together,
they form the solution vector of the problem. For example, for the two-truss problem, the
solution vector would be defined as:

q = [q1,1, q1,2, q1,3, q2,1, q2,2, q2,3] (6)

To select the mid-sized choice for each truss element in the two-truss problem, the
solution vector would evaluate to:

q = [0, 1, 0, 0, 1, 0] (7)

It may be noted at this point that it is technically possible to select multiple cross-
sectional areas for a single truss element. This would occur when a truss element has more
than one associated binary variable set to a value of 1. As per Equation (5), this would mean
that the area of the truss element becomes the summation of multiple available choices.
However, in this research the goal is to make a single distinct choice from the available
set of choices. Solutions will be considered valid when exactly one cross-sectional area is
selected per truss element. Any other potential solution, selecting either none or multiple
cross-sectional areas per truss element, will be considered invalid.

With the truss cross-sectional area defined in terms of qubit variables as shown above,
a symbolic solution process for the truss optimization problems has been conceived, such
that the objective function would eventually be expressed as a QUBO function of these
qubit variables. We would then use QA to find the solutions of these qubit variables which
would minimize the objective function. The following steps summarize this symbolic
solution process:

1. Using the expression for the truss cross-sectional area, the element stiffness matrices
of the truss members can also be written in terms of the qubit variables.

2. Using the FEM assembly procedure, the symbolic global stiffness matrix of the entire
truss structure can be assembled from each of the element stiffness matrices.

3. Proceed as normal with the FEM analysis, taking into account of the boundary con-
ditions and applied loads. By inverting the symbolic global stiffness matrix, and
multiplying this inverse matrix with the load vector, a symbolic vector of nodal
displacements can be obtained.

4. Using the symbolic vector of nodal displacements and the known initial length of every
truss element, symbolic expressions for the strains of the truss elements can be set up.

5. By multiplying the symbolic expressions of the truss strains with the Young’s modulus,
symbolic expressions for the truss stresses are obtained.

6. The symbolic expressions for the truss stresses will be used to construct an objective
function for which the minimum solution encodes the optimal choice of cross-sectional
area for every truss element in the structure.

Mathematics 2023, 11, 3451 6 of 29

7. The symbolic objective function will be transformed into a QUBO format, then sent to
D-Wave to find the minimum solution.

4.2. Symbolic Finite Element Method
4.2.1. Finding Expressions for Nodal Displacement

In the displacement-based linear finite element method for truss structures, the nodal
degrees of freedom (DoFs) are the displacements. The stiffness matrix of each truss element
can be defined by its nodal coordinates, cross-sectional area, and the Young’s modulus of
the material. These element stiffness matrices are then assembled according to the element’s
connectivity matrix to form a global system equation, typically as shown in Equation (8).

K u = f (8)

The matrix K is known, and represents the global stiffness matrix of the finite element
structure. The vector f is also known, as it defines the forces applied to the structure. The
goal for the linear finite element problem is to find the solution vector u, which contains the
displacements of every node in the structure. By knowing the displacements of all nodes in
the structure, other metrics such as the element strain and stress can also be calculated.

As the element stiffness matrix depends on the cross-sectional area, which is now
represented symbolically in Equation (5), the stiffness matrix of truss element n will then be
a function of the associated qubit variables in Equation (4). The assembled global stiffness
matrix will then be a function of all the qubit variables of this structure, i.e., K will be a
function of the vector q, as shown in Equation (6) for the two-truss example. A script has
been written that can set up the truss finite element system equation symbolically:

K(q)u = f (9)

The above symbolic system equation has been implemented and solved in both Python
and Matlab. Based on our experience, the Matlab backslash operator seems to solve for the
solution u faster than Python SymPy. Hence, it is used here to obtain the symbolic nodal
displacement vector:

u(q) = K(q)\f (10)

The obtained symbolic expressions for the nodal displacements tend to be extremely
long, even for such simple finite element problems. This constitutes a bottleneck of the
proposed approach, which we will discuss later. Nevertheless, once we have obtained these
expressions, the symbolic finite element process can be continued.

4.2.2. Finding Expressions for Strain

Engineering strain is a common choice of strain measure for truss elements:

ε =
Ldisp − L0

L0
(11)

where the original length of the truss element is denoted as L0, and the deformed length of
the truss element as Ldisp. However, when this strain was first implemented, it was found
that this would lead to a symbolic expression for the truss strain that would contain many
absolute functions. The appearance of these absolute functions was problematic as they
would prevent the symbolic expression from being written purely as a sum of quadratic
polynomial terms, a necessary requirement for the QUBO problem formulation.

To circumvent the appearance of the absolute functions in the symbolic expressions
for the truss strain, the Green–Lagrange strain formulation was implemented, as given
in Equation (12). Under the infinitesimal deformation assumption, when L0 ≈ Ldisp,
Equations (11) and (12) are equivalent.

Mathematics 2023, 11, 3451 7 of 29

ε =
1
2

(
L2

disp

L2
0
− 1

)
(12)

With the Green–Lagrange strain implementation, the absolute functions no longer
appear in the symbolic truss strain expressions. Thus, the symbolic expressions for the
strains of all the truss elements can be found. They can then be used to find the expressions
for the truss elements’ stresses.

4.2.3. Expressions for Stress

Expressions for truss stresses follow from Equation (13), in which the material’s
Young’s modulus is denoted by E.

σ = E ε (13)

As an example, Equations (14)–(16) give the stress in truss element 1 for the two-truss
problem. Note that the expression for the stress in the truss element takes a fractional form:

σ1 =
N1

D1
(14)

with:
N1 = 7.4046706× 1029 × q1,1

+ 9.3715363× 1029 × q1,2

+ 1.1569798× 1030 × q1,3

+ 9.0707215× 1030 × q2,1

+ 1.0412818× 1031 × q2,2

+ 1.1847473× 1031 × q2,3

+ 1.6660509× 1030 × q1,1 × q1,2

+ 1.8511677× 1030 × q1,1 × q1,3

+ 2.0825636× 1030 × q1,2 × q1,3

+ 1.4664165× 1034 × q1,1 × q2,1

+ 1.6833582× 1034 × q1,1 × q2,2

+ 1.6497186× 1034 × q1,2 × q2,1

+ 1.9152597× 1034 × q1,1 × q2,3

+ 1.893778× 1034 × q1,2 × q2,2

+ 1.8330206× 1034 × q1,3 × q2,1

+ 2.1546671× 1034 × q1,2 × q2,3

+ 2.1041978× 1034 × q1,3 × q2,2

+ 2.3940746× 1034 × q1,3 × q2,3

+ 1.943726× 1031 × q2,1 × q2,2

+ 2.0733078× 1031 × q2,1 × q2,3

+ 2.2214012× 1031 × q2,2 × q2,3

+ 3.1415357× 1034 × q1,1 × q2,1 × q2,2

+ 3.3509714× 1034 × q1,1 × q2,1 × q2,3

+ 3.5342277× 1034 × q1,2 × q2,1 × q2,2

+ 3.5903265× 1034 × q1,1 × q2,2 × q2,3

+ 3.7698428× 1034 × q1,2 × q2,1 × q2,3

+ 3.9269196× 1034 × q1,3 × q2,1 × q2,2

+ 4.0391173× 1034 × q1,2 × q2,2 × q2,3

+ 4.1887143× 1034 × q1,3 × q2,1 × q2,3

+ 4.4879081× 1034 × q1,3 × q2,2 × q2,3

(15)

Mathematics 2023, 11, 3451 8 of 29

D1 = 1.1847473× 1032 × q1,1 × q2,1

+ 1.3600415× 1032 × q1,1 × q2,2

+ 1.4994458× 1032 × q1,2 × q2,1

+ 1.547425× 1032 × q1,1 × q2,3

+ 1.7213026× 1032 × q1,2 × q2,2

+ 1.8511677× 1032 × q1,3 × q2,1

+ 1.9584598× 1032 × q1,2 × q2,3

+ 2.1250649× 1032 × q1,3 × q2,2

+ 2.4178516× 1032 × q1,3 × q2,3

+ 2.6656814× 1032 × q1,1 × q1,2 × q2,1

+ 3.0600935× 1032 × q1,1 × q1,2 × q2,2

+ 2.9618683× 1032 × q1,1 × q1,3 × q2,1

+ 3.4817064× 1032 × q1,1 × q1,2 × q2,3

+ 3.4001039× 1032 × q1,1 × q1,3 × q2,2

+ 3.3321018× 1032 × q1,2 × q1,3 × q2,1

+ 3.8685626× 1032 × q1,1 × q1,3 × q2,3

+ 3.8251169× 1032 × q1,2 × q1,3 × q2,2

+ 4.352133× 1032 × q1,2 × q1,3 × q2,3

+ 2.5387442× 1032 × q1,1 × q2,1 × q2,2

+ 2.7079938× 1032 × q1,1 × q2,1 × q2,3

+ 3.2130982× 1032 × q1,2 × q2,1 × q2,2

+ 2.901422× 1032 × q1,1 × q2,2 × q2,3

+ 3.4273047× 1032 × q1,2 × q2,1 × q2,3

+ 3.9667878× 1032 × q1,3 × q2,1 × q2,2

+ 3.6721122× 1032 × q1,2 × q2,2 × q2,3

+ 4.2312404× 1032 × q1,3 × q2,1 × q2,3

+ 4.5334718× 1032 × q1,3 × q2,2 × q2,3

+ 5.7121745× 1032 × q1,1 × q1,2 × q2,1 × q2,2

+ 6.0929861× 1032 × q1,1 × q1,2 × q2,1 × q2,3

+ 6.3468606× 1032 × q1,1 × q1,3 × q2,1 × q2,2

+ 6.5281994× 1032 × q1,1 × q1,2 × q2,2 × q2,3

+ 6.7699846× 1032 × q1,1 × q1,3 × q2,1 × q2,3

+ 7.1402181× 1032 × q1,2 × q1,3 × q2,1 × q2,2

+ 7.2535549× 1032 × q1,1 × q1,3 × q2,2 × q2,3

+ 7.6162327× 1032 × q1,2 × q1,3 × q2,1 × q2,3

+ 8.1602493× 1032 × q1,2 × q1,3 × q2,2 × q2,3

(16)

For reference, the symbolic expressions for the truss stresses of each of the sample
problems are available online [31].

With the stresses written in terms of qubit variables, the next step is to set up an
objective function that, when minimized, should yield the most optimal choice of cross-
sectional area for every truss element in the structure. However, this process uncovers
another challenge, which is discussed in the upcoming section.

4.3. Development of an Objective Function
4.3.1. Fractional Objective Function

Using the expression for the stress in a truss element, an objective function can be set
up to describe the difference between the truss element stress and the maximum limit stress
allowed by the material. If such a difference can be minimized, then the truss element

Mathematics 2023, 11, 3451 9 of 29

will be as close as possible to the material’s limit stress, meaning that the material is used
optimally and the weight of the truss is implicitly minimized.

When setting up the objective function, it is important to consider that the truss
element stress evaluates to a negative number under compression. However, because it is
not known beforehand which truss elements will experience compressive or tensile stresses,
this poses an issue. It is not possible to apply an absolute function to the truss element
stress, as such a mathematical function is incompatible with QUBO problem formulations.
As an alternative, the expression for the truss element stress can be squared to ensure that
it always evaluates to a positive number. To keep consistent units, this also means that the
maximum allowable stress is squared. A minimization problem is obtained by squaring the
difference between the squared material limit stress and the squared truss element stress.
As such, for a single truss element n, a minimization objective function can be defined as
shown in Equation (17).

Fn =
(

σ2
limit − σ2

n

)2
(17)

With Equation (17), the minimum solution should encode the choice of truss cross-
sectional area that minimizes the absolute difference between the material limit stress and
the truss stress. To set up an objective function that describes the entire system of truss
elements, the summation is taken over the objective functions of all truss elements, which
leads to Equation (18).

F =
N

∑
n=1

Fn =
N

∑
n=1

(
σ2

limit − σ2
n

)2
(18)

Equation (18) gives a general expression for the objective function of each of the sample
problems. It is important to note that, because the truss element stresses σn are fractional
in nature, as was shown in Equations (14)–(16), the objective function from Equation (18)
will also have a fractional form. Hence, the resulting objective function is referred to as
the fractional objective function. The fractional objective function was set up for each
of the three sample problems, and was evaluated by a brute-force analysis, i.e., it was
evaluated at every possible solution. The results for the three sample problems are shown in
Figures 4–6. They are produced using the Matlab code which is available online [31]. The
following global minimum solutions are found:

• Two-truss problem: minimum at solution number 7, [0, 0, 1, 1, 0, 0]
• Three-truss problem: minimum at solution number 21, [0, 0, 1, 1, 0, 0, 0, 0, 1]
• Four-truss problem: minimum at solution number 7, [1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0]

1 2 3 4 5 6 7 8 9

Solutions

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

F
un

ct
io

n
va

lu
e

2: Fractional Objective Function

Figure 4. Fractional objective function for the two-truss problem. Global minimum is found to be
solution number 7, corresponding to [0, 0, 1, 1, 0, 0].

Mathematics 2023, 11, 3451 10 of 29

0 5 10 15 20 25 30

Solutions

1

1.5

2

2.5

3

3.5

4

F
un

ct
io

n
va

lu
e

3: Fractional Objective Function

Figure 5. Fractional objective function for the three-truss problem. Global minimum is found to be
solution number 21, corresponding to [0, 0, 1, 1, 0, 0, 0, 0, 1].

0 10 20 30 40 50 60 70 80 90

Solutions

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

F
un

ct
io

n
va

lu
e

4: Fractional Objective Function

Figure 6. Fractional objective function for the four-truss problem. Global minimum is found to be
solution number 7, corresponding to [1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0].

The above brute-force results are used as references to benchmark the performance
of the QA. One may be tempted to directly send the objective function in Equation (18) to
the QA and see how it performs. However, one challenging aspect remains: the function
has a fractional form. Fractional objective functions are incompatible with the QUBO
formulation, and cannot be directly solved by the QA. As a result, in the next section, a
method is investigated where a potential non-fractional objective function can be formed
to approximate the original fractional one.

4.3.2. Non-Fractional Objective Function

In a QUBO-based objective function, only a summation of linear and quadratic terms
is allowed. Therefore, in this section a potential method is investigated to formulate a
non-fractional objective function for the discrete truss sizing optimization problem.

The reserve factor of a truss element gives a measure of how close the truss element is
to material failure. The reserve factor for a truss element n is calculated via Equation (19).

RFn =
σlimit
|σn|

(19)

Mathematics 2023, 11, 3451 11 of 29

To mitigate the absolute function for compatibility with QUBO, the material limit
stress σlimit and truss element stress σn can be squared, allowing a squared reserve factor
can be calculated, according to Equation (20).

RF2
n =

σ2
limit
σ2

n
(20)

Using Equation (20), the theoretical optimal value of the squared reserve factor shall
be 1 if the cross-sectional area can be varied arbitrarily. Given that the squared reserve
factor is written as a fraction, this means that the numerator and the denominator should be
equal to each other in the optimal case. In this case the numerator minus the denominator
should also yield a result of zero. However, assuming that the currently known symbolic
expression for the truss reserve factor actually describes a sub-optimal case, this will result
in an error term. An optimization problem can then be set up for which the goal is to
minimize this error by simply squaring the expression. This ensures that the optimum
solution will be the one where the squared error is closest to zero, giving an objective
function to minimize. The steps of this process are shown in Equation (21).

If: RF2
n =

σ2
limit
σ2

n
and σ2

n =
σ2

N,n

σ2
D,n

Rewriting: RF2
n =

σ2
limitσ

2
D,n

σ2
N,n

=
Nn

Dn

When: RF2
n =

Nn

Dn
= 1

Then: Nn = Dn

Optimally: Nn − Dn = 0

Sub-optimally: Nn − Dn = ε

Optimizing: min
(

ε2
)
⇒ min

(
(Nn − Dn)

2
)

(21)

With the above reasoning, the non-fractional objective function for a truss element n is
written in Equation (22).

Fn = (Nn − Dn)
2 =

(
σ2

limitσ
2
D,n − σ2

N,n

)2
(22)

The objective function for the complete truss system is then found by taking the sum
for all truss elements, as given in Equation (23).

F =
N

∑
n=1

Fn =
N

∑
n=1

(
σ2

limitσ
2
D,n − σ2

N,n

)2
(23)

This reformulated non-fractional objective function was also tested on the sample
problems, using the brute-force method [31], to see if the minimum solutions would remain
the same as those of the original fractional objective function. The results of these analyses
are shown in Figures 7–9, with the global minimum solutions indicated with small red
circles. The following global optimum solutions are obtained:

• Two-truss problem: minimum at solution number 7, [0, 0, 1, 1, 0, 0]
• Three-truss problem: minimum at solution number 1, [1, 0, 0, 1, 0, 0, 1, 0, 0]
• Four-truss problem: minimum at solution number 1, [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]

Mathematics 2023, 11, 3451 12 of 29

1 2 3 4 5 6 7 8 9

Solutions

0

2

4

6

8

10

12

14

16

18

F
un

ct
io

n
va

lu
e

1081 2: Non-Fractional Objective Function

Figure 7. Non-fractional objective function for the two-truss problem. Global minimum is found to
be solution number 7, corresponding to [0, 0, 1, 1, 0, 0].

0 5 10 15 20 25 30

Solutions

0

1

2

3

4

5

6

7

8

9

10

F
un

ct
io

n
va

lu
e

1097 3: Non-Fractional Objective Function

Figure 8. Non-fractional objective function for the three-truss problem. Global minimum is found to
be solution number 1, corresponding to [1, 0, 0, 1, 0, 0, 1, 0, 0].

0 10 20 30 40 50 60 70 80 90

Solutions

0

0.5

1

1.5

2

2.5

3

3.5

F
un

ct
io

n
va

lu
e

10114 4: Non-Fractional Objective Function

Figure 9. Non-fractional objective function for the four-truss problem. Global minimum is found to
be solution number 1, corresponding to [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0].

Mathematics 2023, 11, 3451 13 of 29

Using the non-fractional objective function, the expected solution for the two-truss
problem is returned. However, for the three- and four-truss problems, the results are
not those expected. Therefore, this method is presumed to be flawed. In this method,
the difference between Nn and Dn is considered, rather than their ratio. A solution that
minimizes the difference between Nn and Dn may not be the same as the one for which
the ratio between Nn and Dn is closest to 1. Hence, this may be the source of the flawed
results produced by this non-fractional objective function. In the next section, an alternative
method is employed, with which a fractional objective function can still be made compatible
with the QA.

4.4. Iterative Non-Fractional Approximations to the Fractional Objective Function

Ajagekar et al. have developed a method with which the optimum solution to frac-
tional objective functions can be found by iteratively solving an adaptive non-fractional
function [32]. The iterative scheme described by the authors is presented in Equation (24).

With : F =
N(q)
D(q)

0 : Initialize variables

iter = 0

λ = 0

obj = ∞

δ = 10−6

1 : while|λ− obj| > δ

2 : iter = iter + 1

3 : Fn f (q) = N(q)− λD(q)

4 : find q̂ s.t. min
(

Fn f (q̂)
)

5 : obj = λ

6 : λ = F(q̂)

(24)

In this scheme, the fractional objective function F(q), expressed in terms of the binary
problem variables q, is rewritten into a non-fractional form. This happens in step 3 of the
scheme, where the non-fractional objective Fn f (q) is formed. If this non-fractional function
can be written in a QUBO form, then its optimal solution q̂ can be found using the QA in
step 4. In step 6, the objective function value of the original fractional function is evaluated
using q̂. When the difference between the objective function values found in consecutive
iterations is less than δ, the while loop is broken and the analysis has converged. Ultimately,
the final solution that is found for q̂ will be the minimum solution to the original fractional
objective function.

The above-mentioned method has been implemented in Python scripts for the discrete
truss sizing optimization problems [31]. Here, the method has been slightly extended,
to include a user-defined maximum number of iterations. This has been added as an
additional condition to the while loop in step 1 of Equation (24). In other words, step 1 is
defined as:

while|λ− obj| > δ AND iter ≤ itermax (25)

Setting a maximum number of iterations will help prevent wasting excessive quantum
computational time in cases where the analysis has difficulty converging on an optimal
solution.

4.5. Objective Function Processing to Yield a QUBO Problem

With the iterative scheme by Ajagekar et al. [32], the solution to the fractional objective
function for the discrete truss sizing optimization problem can be found by iteratively min-

Mathematics 2023, 11, 3451 14 of 29

imizing an adaptive non-fractional function. Once this non-fractional form is determined,
there are a number of processing and simplification steps to take to eventually transform it
into a QUBO form. By reducing the complexity of the objective function, the QA might be
able to more easily identify the global optimum solution. The processing steps will allow
the user to fine-tune the performance of the QA and to aid in finding valid solutions to the
problem. In the following sections, the simplifications and processing steps are discussed.

4.5.1. High-Order Truncation

The first simplification to the rewritten non-fractional objective function is to truncate
the excessively high-order terms. Specifically, for a system with N truss elements, any term
in the objective function that is above Nth order can be truncated, since for a valid solution
to the truss optimization problem, only N qubits are expected to end in a 1 state, while all
other qubits should end in a 0 state. Therefore, all terms in the objective function that are
above Nth order do not contribute to valid solutions. These terms can, therefore, be safely
truncated to simplify the overall objective function without any influence on the validity of
the solution.

The objective functions generally contain every possible unique multiplication be-
tween the qubit variables. Therefore, truncating the excessively high-order terms from
the objective function can have a very large impact on the overall complexity of the objec-
tive function. This was investigated with a simple Excel sheet, which is made available
online [31]. For example, in the two-truss problem, a total of six qubit variables are used.
In total, this gives 63 different unique multiplications of qubit variables from first to sixth
order. For this problem, all terms above second order only contribute to the invalid solu-
tions, as valid solutions are expected to have exactly two qubit variables with a value of 1.
Therefore, terms above second order can all safely be removed from the objective function.
After truncating the terms above second order, only 21 total first- and second-order terms
remain in the objective function, resulting in a 66% reduction in the number of terms in the
objective function. In a similar vein, for the three-truss problem, this truncation reduces
the number of terms in the objective function by roughly 75%. For the four-truss problem,
the reduction is approximately 80%. It is expected that such a significant reduction in the
complexity of the objective function will allow the QA to more easily find valid global
minimum solutions to the truss sizing optimization problems.

4.5.2. Linear Scaling

When submitting problems to the QA, there are a number of parameters that can be
fine-tuned to alter or improve the performance of the QA. The relative magnitudes of these
parameters are typically what matters to the performance of the QA. To set a consistent
baseline for solving the truss sizing optimization problems, it is, therefore, convenient
to scale the magnitude of the objective function to a user-defined value. In this way, the
magnitude of other constraints can be scaled accordingly. Thus, a linear scaling of each
of the terms in the objective function can be performed, to ensure that the terms have
consistent and controllable magnitudes.

First of all, the term with the maximum absolute magnitude in the objective function,
cmax, must be found. Then, every term in the objective function F can be divided by this
magnitude to perform the linear scaling. A user-defined parameter, cuser, is introduced to
ensure that the maximum magnitude of the terms in the objective function can be exactly
specified. Thus, the linear scaling of the objective function F is performed as shown in
Equation (26).

Fscaled =
cuser × F

cmax
(26)

Inside the linearly scaled objective function Fscaled, the term with the maximum magni-
tude will have a magnitude of cuser. By altering the value of cuser, the user is able to control

Mathematics 2023, 11, 3451 15 of 29

the relative importance of the objective function with respect to other problem-specific
parameters such as constraints.

4.5.3. Non-Linear Scaling

During the brute-force testing of the objective functions for the different sample
problems in Section 4.3, it was seen that with certain objective functions the global minimum
solution and other local minimum solutions can have nearly identical function values. This
was especially the case for the three-truss problem with the original, fractional objective
function. When the differences between solutions are small, it becomes difficult for the QA
to find the global optimum solution. The very small differences between local minima and
the global minimum are mainly due to some terms in the objective function having very
small, high-precision coefficients.

Due to analog control errors, small and high-precision coefficients are difficult for
the QA to correctly take into account [33]. Furthermore, when a problem is submitted to
the D-Wave QA, it is by default automatically scaled (by auto_scale) to ensure the problem
coefficients fall inside the controllable range of the QA. For linear QUBO coefficients, this
range is between −2 and 2. For the quadratic QUBO coefficients, the maximum available
range is between −2 and 1 [34]. By default, the QA uses a range between −1 and 1. These
ranges can be directly queried from the D-Wave solver using Python commands:

DWaveSampler().properties[’h_range’]
DWaveSampler().properties[’j_range’]

It is good to be mindful of this automatic scaling before submitting problems to the QA to
prevent cases where a problem is unexpectedly scaled down to a magnitude that cannot
feasibly be controlled by the QA.

To assist the QA with small high-precision coefficients, it would be beneficial if these
coefficients could be amplified. In turn, this might also amplify the differences between
the global and other local minimum solutions. This would potentially help the QA find
the global optimum solution. Furthermore, this would also help the QA more effectively
utilize information from the objective function, as previously insignificant terms might be
amplified to a magnitude that the QA could actually take into account. With this idea in
mind, a non-linear scaling method has been developed, with which very small coefficients
in the objective function can be scaled to become larger and more influential, while terms
that are already significant are not scaled as much.

A Python function has been created to perform this non-linear scaling. The method
relies on simple user-defined parameters which allow for manual tweaking once the
objective function has been fully implemented for use on the QA. Given the user-defined
scaling parameter cNL, a positive coefficient cin+ from the objective function is input into
the non-linear scaling function. The non-linearly scaled coefficient cout+ is then expressed
by Equation (27).

cout+ =
cin+

cin+ + cNL
(27)

For negative input coefficients, cin−, the non-linear scaling is performed by Equation (28),
yielding the negative non-linearly scaled coefficient cout−.

cout− = − cin−
cin− − cNL

(28)

To determine if the input coefficient must be scaled using either Equation (27) or
Equation (28), a simple if statement is used. By setting cNL to be a certain small number,
such as 0.025, the amount of scaling applied to small coefficients is much higher than that
applied to large coefficients.

As a demonstration of the non-linear scaling, several plots are given in Figure 10,
showing the influence of changing the parameter cNL. It can be seen that the scaling is

Mathematics 2023, 11, 3451 16 of 29

much more significant for smaller coefficients than for larger ones. However, with very
aggressive values of cNL, such as 0.001, this can also cause all relatively large coefficients
to become essentially equal. The use of this non-linear scaling function will, therefore,
be a balancing act of increasing the importance of smaller coefficients without losing the
distinction between the larger ones. The Python code for the non-linear scaling function,
and for producing the plot from Figure 10, is available online [31].

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Input coefficient

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ou
tp
ut
 c
oe

ffi
cie

nt

Non-linear scaling function
Original input
Scaling constant = 0.1
Scaling constant = 0.05
Scaling constant = 0.025
Scaling constant = 0.001

Figure 10. Non-linear scaling function for input coefficients between −1 and 1. The output of the
function is shown for various values of the non-linear scaling parameter cNL.

The effect of the non-linear scaling was also investigated for the specific truss sizing
sample problems. The non-linear scaling was performed during the iterative solving
procedure. Specifically, it was performed between steps 3 and 4 of the procedure outlined
in Equation (24), and was applied to the rewritten non-fractional objective function. The
effect of the non-linear scaling was investigated for the first iteration of the sample problems.
This first iteration is convenient to investigate as Equation (24) shows that λ = 0, meaning
that the objective function in step 3 in Equation (24) only involves the numerator of the
original fractional objective function. The rewritten non-fractional function was firstly
linearly scaled, choosing the user-defined maximum coefficient to be cuser = 1. This
brought the function values to a reasonable range for the QA. Then, the non-linear scaling
was applied, using a scaling parameter of cNL = 0.1. The plots in Figures 11–13 show both
the original (linearly scaled) and non-linearly scaled energy landscapes of the first iteration
in the solving procedure for the sample truss problems. It can be seen that the small
fluctuations in the energy landscape are amplified, which should make the problem easier
to solve for the QA. Therefore, the non-linear scaling has been applied when submitting
problems to the QA.

It is important to note that this non-linear scaling method is developed solely for the
purpose of increasing the differences between the global and local minima in the energy
landscapes of this study. It is not intended to be used as a general-purpose tool for problems
with unknown energy landscapes, since using overly aggressive scaling factors for cNL may
cause the global minimum solution to change. However, this is not expected to be an issue
for the truss sizing optimization problems here. In step 6 of the iterative solving procedure
in Equation (24), the interim solution q̂ is evaluated with the original fractional objective
function, meaning that the iterative procedure should eventually converge on the global
optimum of the original fractional objective function.

Mathematics 2023, 11, 3451 17 of 29

1 2 3 4 5 6 7 8 9

Solutions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
un

ct
io

n
va

lu
e

10-7 2: Original vs. Scaled Numerators

Original
NL Scaled

Figure 11. Effect of non-linear scaling in two-truss problem for the first iteration of the iterative
non-fractional solving method.

0 5 10 15 20 25 30
Solutions

0

1

2

3

4

5

F
un

ct
io

n
va

lu
e

10-6 3: Original vs. Scaled Numerators

Original
NL Scaled

Figure 12. Effect of non-linear scaling in three-truss problem for the first iteration of the iterative
non-fractional solving method.

0 10 20 30 40 50 60 70 80 90

Solutions

0

0.2

0.4

0.6

0.8

1

1.2

F
un

ct
io

n
va

lu
e

10-14 4: Original vs. Scaled Numerators

Original
NL Scaled

Figure 13. Effect of non-linear scaling in four-truss problem for the first iteration of the iterative
non-fractional solving method.

Mathematics 2023, 11, 3451 18 of 29

4.5.4. Truncation of Insignificant Terms

Once the linear and non-linear scaling has been performed, it is possible to further
simplify the objective function. After all the scaling has been applied, certain terms in
the objective function may still have magnitudes very close to zero. Such terms would be
difficult for the QA to consider as there is a finite precision with which qubit biases can
be controlled within the QA hardware [33]. If the magnitudes of the terms in the objective
function were smaller than the analog control error of the QA for the qubit biases, they
would not be reliably taken into account by the QA. Thus, terms that are too small in
magnitude can simply be removed from the objective function, as including them is akin
to simply introducing noise into the function. A conservative truncation approach is to
remove terms with magnitudes smaller than 10−8, which is beyond the precision that the
QA can control. This reduces the complexity of the objective function, facilitating the QA
in finding the global optimum solution.

4.5.5. Unary Constraint

The majority of the solutions to the truss optimization problems are invalid, i.e., when
an incorrect number of cross-sectional areas are selected. In other words, when either
zero or more than one cross-section is selected for a truss member, the solution is invalid.
Solutions can only be valid when exactly one cross-sectional area is chosen for every truss
member. To promote the selection of valid solutions, the unary constraint is implemented.

For every truss element n in a truss system, with a total of C possible choices of cross-
sectional area, Equation (29) must hold for valid solutions to the truss sizing optimization
problem.

C

∑
c=1

qn,c = 1 (29)

Since only one of the qubits on which this constraint acts can take a value of 1, while
the others must all equal 0, this constraint is, therefore, referred to as the unary constraint.
Further elaboration on the unary constraint is given in [35]. In the context of the truss
optimization problem, it enforces that only one cross-section is chosen per truss element.
However, in the form shown in Equation (29), the constraint cannot be directly applied in
the QUBO problem framework because it is written as an equality constraint, which by
definition is incompatible with the quadratic unconstrained binary optimization format. For
the constraint to become QUBO-compatible, it must be rewritten as an objective function
of a minimization problem. A common method is to rewrite the equality constraint as
a penalty function using a ‘squared-error’ approach [36,37]. This approach is also used,
for example, in the work of Van Vreumingen et al. and Neukart et al. [10,11]. Here, the
constraint can be rewritten as shown in Equation (30).(

C

∑
c=1

qn,c

)
− 1 = 0

((
C

∑
c=1

qn,c

)
− 1

)2

= 0

(30)

Now, adding in a penalty scaling factor λ, the Hamiltonian energy penalty function
for the unary constraint becomes:

HU = λ

((
C

∑
c=1

qn,c

)
− 1

)2

(31)

Mathematics 2023, 11, 3451 19 of 29

For the truss sizing optimization problems, only three possible choices of cross-
sectional area are available per truss element, i.e., C = 3. Therefore, Equation (31) can be
expanded and simplified, as shown in Equation (32).

HU = λ(qn,1 + qn,2 + qn,3 − 1)(qn,1 + qn,2 + qn,3 − 1)

HU = λ
(

q2
n,1 + qn,1qn,2 + qn,1qn,3 − qn,1

+qn,1qn,2 + q2
n,2 + qn,2qn,3 − qn,2

+qn,1qn,3 + qn,2qn,3 + q2
n,3 − qn,3

−qn,1 − qn,2 − qn,3 + 1)

(32)

Knowing that qn,c ∈ {0, 1}, which means that q2
n,c = qn,c, the expression can be further

simplified:

HU = λ(2qn,1qn,2 + 2qn,2qn,3 + 2qn,1qn,3 − qn,1 − qn,2 − qn,3 + 1) (33)

Finally, the constant term can be dropped, since it is independent of the qubit variables,
and does not affect the minimization problem. This makes the unary constraint penalty
function compatible with the QUBO problem framework, since it can now be written as a
pure summation of linear and quadratic terms, as shown in Equation (34).

HU = λ(2qn,1qn,2 + 2qn,1qn,3 + 2qn,2qn,3 − qn,1 − qn,2 − qn,3) (34)

By adding the unary constraint of each truss element to the overall objective function,
the QA is more likely to find valid solutions. The strength of the unary constraint can be
fine-tuned by altering the value of the user-defined parameter λ. By trial and error, it has
been found that a good starting value of λ is twice the magnitude of the maximum term in
the objective function. However, if invalid solutions are consistently found, the strength of
the constraint can be increased until noncompliance with the constraint stops occurring.

4.5.6. Quadratization

Up until this point, the objective function has been manipulated, scaled, and truncated
in order for it to become more compatible with the QUBO problem formulation. However,
one key issue has yet to be solved: the function may still contain many terms that are higher
than second order. Therefore, it still cannot be used on the QA, since by definition the QA
can only solve quadratic problems. Performing a quadratization of a high-order objective
function ensures that it is rewritten as a quadratic function with equivalent solutions.

There are many different methods of quadratization in literature. An extensive
overview on the topic is given by Dattani [38]. Some of these methods utilize auxiliary
variables to rewrite the high-order objective function into an equivalent quadratic-order
expression, while others achieve this without the auxiliary variables. Each method has
its respective benefits and drawbacks. For example, it is convenient when no auxiliary
variables are needed, yet in that case it may require much more effort to rewrite the ob-
jective function in an equivalent quadratic form. Alternatively, if a method uses auxiliary
variables, it may be easier to find an equivalent quadratic form, but the additional variables
would increase the complexity of the objective function, making it more difficult for the
QA to find the optimum solution [38].

The quadratization has already been implemented in D-Wave [39]. In their imple-
mentation, all the high-order terms of the objective function are rewritten and replaced
by auxiliary variables, such that the final expression is at most quadratic. An additional
user-defined parameter is used to select the strength with which the quadratization is
enforced [39]. If the quadratization is not enforced correctly, this can result in a poor
approximation of the original high-order objective function. The quadratization strength is
problem-dependent and must be tuned such that the quadratization is always obeyed, so
as to have an accurate representation of the original high-order objective function.

Mathematics 2023, 11, 3451 20 of 29

With the quadratization, the discrete truss sizing optimization problems can finally be
written as QUBO problems. This vital step concludes all the necessary preparatory work
for the problems to be made compatible with the quantum computing hardware. They can
now be solved using the D-Wave QA. In the next section, some notable parameters that
influence the solution process of the QA are discussed.

4.6. Parameter Tuning

In the previous sections, a number of user-defined parameters have been introduced
which influence the objective functions of the three truss sizing problems. Their values
need to be chosen before the problems can be submitted to the QA. In summary, values for
the following parameters need to determined:

• Iterative solving procedure

– Maximum number of iterations allowed
– Iteration convergence threshold

• Objective function processing

– Highest order terms allowed
– Linear scaling magnitude
– Non-linear scaling strength
– Precision truncation magnitude
– Unary constraint strength
– Quadratization strength

• Quantum annealing

– Number of reads
– Chain strength

To aid in finding sensible values for most of the above parameters, without wasting
the limited amount of quantum computational time available, an alternative classical
solver was used before running on the QA. D-Wave provides a simulated annealing (SA)
algorithm, which can be used to solve QUBO problems. The SA solver only relies on the
local classical computing hardware and does not expend any of the quantum computational
time allowance. The SA solver was, therefore, used first to test the functionality of the
Python code, and to find initial values for the relevant problem parameters.

Values for the parameters related to the iterative solving procedure were determined
first. Testing via the initial SA analyses showed that around five iterations were needed
to find a converged solution. This value was tripled for the quantum annealing analyses
to give enough room for the iterations to converge. Thus, the maximum number of
iterations within one solving attempt was set to 15. If the procedure could not converge
after the maximum number of iterations was reached, the analysis would be stopped to
prevent excessive expending of computational time. The convergence threshold δ for the
iterative procedure (as seen in Equation (24)) was set to 10−6, the same as the one used by
Ajagekar et al. [32].

Starting values for the different objective function processing parameters were also
determined from the initial SA analyses. First of all, the highest order of terms allowed
in the objective function for each of the sample problems was set equal to the number of
truss elements. Second, the linear scaling maximum magnitude cuser was set to a value
of 1 for all analyses. Third, the non-linear scaling parameter cNL was set to a value of 0.1
for all analyses. During the brute-force testing, it was observed that this value improved
the distinction between minima in the energy landscapes of the sample problems, while
preserving the location of the global minima. Fourth, the unary constraint strength was set
to a value of 10 for the two- and three-truss problems. For the four-truss problem it was set
to a value of 20. Testing via SA showed that with these settings the constraint was obeyed
consistently, yielding valid solutions to the truss sizing problems. Fifth, terms that had a
magnitude smaller than 10−8 were truncated to slightly reduce the number of terms in the

Mathematics 2023, 11, 3451 21 of 29

objective functions. This is a conservative truncation as it is well beyond the precision that
the QA hardware can control. Finally, the quadratization strength was set to a value of 10
for the two- and three-truss problems, and a value of 20 for the four-truss problem, such
that it could match the strength of the unary constraint.

For the QA, some additional parameters are needed to solve the sample problems.
The number of reads describes the number of times a specific problem is solved by the QA
before the final best-performing solution is returned to the user. Increasing the number of
reads increases the likelihood of obtaining optimal solutions at the expense of additional
computational time. To minimize the expenditure of quantum computational time, a viable
number of reads needs to be firstly estimated.

Using the SA solver, some test runs were firstly performed in which the numbers of
reads were set to values of 16, 64, and 256, for each of the three sample problems. For the
two-truss problem, the global optimum results were obtained every single time, regardless
of the number of reads. For the three-truss problem, using 64 and 256 reads reliably gave
optimal or near-optimal results. For the four-truss problem, only when setting the number
of reads to 256 was the global optimum result reliably obtained. The settings for the number
of reads for the QA analyses were, therefore, chosen based on the above tests. Namely,
for the two-truss problem, the number of reads was set to 16 and 64. For the three-truss
problem the number of reads was set to 64 and 256. Finally, for the four-truss problem, the
number of reads was only set to 256.

The chain strength parameter for the QA relates to a physical issue called chain
break, which can occur while the QA is solving problems. To explain the fine-tuning of
the chain strength parameter, some context on the chaining of qubits is firstly given. A
QUBO problem is defined through an upper-triangular N × N matrix Q. The terms on the
diagonal of the matrix Q relate only to a single problem variable, while the off-diagonal
terms describe an interaction between two different variables. On the D-Wave 2000Q used
in this research, each qubit can only directly interact with at most six other qubits [8]. This
limited connectivity between qubits can present an issue for larger QUBO problems where
more connectivity may be needed. When a QUBO is submitted to the QA, it must be
embedded onto the physical architecture of the QPU. The embedding translates the logical
structure of a QUBO problem to the physical structure of the QA. This also means that the
logical problem variables are translated to the physical qubits on the QPU. However, when
the QUBO problem necessitates a high connectivity between logical problem variables, it
can become impossible to directly embed every logical variable onto an individual single
qubit. By chaining together strings of multiple qubits and forcing them to act as single
logical problem variables, the connectivity between the embedded logical variables can be
increased beyond the limitations of the physical hardware [40].

In practice, problems can become very challenging for the QA to solve if the num-
ber of interactions between variables is high. A QUBO problem with high connectivity
requirements will lead to embeddings with very long qubit chains. In turn, the longer
the qubit chains are, the more difficult it is to force the chained qubits to act in unison.
When a qubit chain is working as intended, the chained qubits will all end up in the same
final ground state, i.e., all being either 0 or 1. However, when a qubit chain is broken, the
qubits in the chain will end up in a mixture of 0 and 1 states. This makes the final state of
the qubit chain and the intended final state of the corresponding logical problem variable
unclear. By increasing the chain strength, the risk of chain breaks occurring is reduced.
However, overly high chain strength should be avoided as the relative strength of the
objective function itself is reduced, potentially making it more difficult to obtain the true
global optimum solution.

In this work, a chain strength of 10 was selected initially, but it was seen that chain
breaks would still occur for the three- and four-truss problems. For those problems a chain
strength of 30 performed better, preventing chain breaks from occurring.

There are many additional parameters that can be tuned to alter the performance of
the quantum annealer, but these are left in their default configurations [41]. In Table 3,

Mathematics 2023, 11, 3451 22 of 29

a summary is given for all the parameters used in each analysis. Parameters that are
irrelevant or not applicable for an analysis are indicated by NA.

Table 3. Parameters used for all analyses.

Parameters Brute Force Quantum Annealing

Truss system 2-truss 3-truss 4-truss 2-truss 3-truss 4-truss

Total number of times analyzed 3 3 3 10 10 10

Maximum number of iterations NA NA NA 15 15 15

Iteration convergence threshold NA NA NA 10−6 10−6 10−6

Number of reads per iteration NA NA NA {16, 64} {64, 256} {256}

Highest order terms allowed NA NA NA 2 3 4

Linear scaling maximum magnitude NA NA NA 1 1 1

Non-linear scaling strength NA NA NA 0.1 0.1 0.1

Unary constraint strength NA NA NA 10 10 20

Quadratization strength NA NA NA 10 10 20

Precision truncation magnitude NA NA NA 10−8 10−8 10−8

Chain strength NA NA NA 10 30 30

Annealing time (µs) NA NA NA 20 20 20

5. Results
5.1. Overview of Analyses Performed

This section gives an overview of the performed analyses, of which results are reported
in the following sections.

The fractional objective functions of the sample truss problems were firstly determined
according to the methods described in Section 4.3. The times taken in this process were
measured to gain insight into its efficiency and scalability.

Next, the brute-force evaluation of the original fractional objective functions was used
to obtain baseline solutions. There are other more efficient (and more complicated) classical
computing methods available for such problems, as reviewed by Stolpe [42], however,
for the purposes of this study, the simple brute-force method is sufficient to produce the
reference solutions as the problems are all small in size. Each of the brute-force analyses
was performed three times so that an average solving time could be calculated.

The QA by D-Wave was then used to solve the problems using quantum annealing.
Due to the probabilistic nature of the QA, it is not guaranteed that every analysis will
yield the same solution. Therefore, for the given sample problems, each QA analysis was
performed ten times. This allowed average computational times and standard deviations
to be measured, together with the probability of obtaining the global optimum solution.
The number of analyses could unfortunately not be increased due to limitations on the
amount of quantum computational time allotted to basic user accounts on the D-Wave
Leap platform.

The goal of performing these analyses is first to find out whether it is feasible to
use quantum annealing to solve these practical truss optimization problems. Second, the
gathered data on the computational times can give insights into the efficiency and scalability
of the quantum annealing approach.

The specifications of the local classical computing hardware used in this research are
given in Table 4.

Mathematics 2023, 11, 3451 23 of 29

Table 4. Classical computing hardware.

Item Specifications

Device Lenovo Legion Y540-15IRH

CPU Intel Core i7-9750H 2.6 GHz

Memory 16 GB DDR4 2667 MHz

GPU Mobile NVIDIA RTX 2060 6 GB

5.2. Results: Two-Truss Problem

The two-truss problem is the simplest of the three sample problems. It took approxi-
mately 13.5 s to set up its fractional objective function. Once this objective function was
found, it was written to a text file. The objective function was then imported whenever
needed in the subsequent steps of the solution process and no longer needed to be set up
from scratch. This saved some time when performing the three brute-force analyses. More
importantly, for the QA, where ten analyses were performed with different numbers of reads,
having the objective function ready significantly reduced the computational overhead.

For the brute-force analysis, when evaluating the fractional objective function for
valid solutions, an average of 0.234 s was needed to find the global optimum solution.
The baseline global optimum solution is [0, 0, 1, 1, 0, 0]. This indicates the largest possible
cross-sectional area should be chosen for the first truss element, while for the second truss
element the smallest cross-sectional area should be chosen.

Using the QA, the analyses were performed ten times to gain some insight into the
probability of obtaining the globally optimal solution. In Figure 14, the solutions obtained
by the QA are presented in a histogram. Superimposed on the histogram is a line plot of the
original fractional objective function previously calculated using the brute-force method.

1 2 3 4 5 6 7 8 9
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr

ob
ab

ilit
y

(B
ar

 c
ha

rt)

2-Truss System: QA: Result Probability and Objective Function

0.566

0.614

0.662

0.710

0.758

0.806

0.855

0.903

0.951

0.999

1.047

Ob
je

ct
iv

e
Fu

nc
tio

n
(L

in
e

pl
ot
)

 16 reads
 64 reads

Figure 14. Solution probability histogram of two-truss problem using the QA, compared to original
objective function. The global optimum solution is located at solution number 7.

It can be seen from Figure 14 that regardless of the choice for the number of reads, the
QA finds solution number 7, which corresponds to the same global optimum solution as
that obtained via the brute-force method.

When it comes to the computational time for the QA analyses, the following results
were obtained:

Mathematics 2023, 11, 3451 24 of 29

• With number of reads = 16

– Average total time = 19.52 s. Standard deviation = 5.10 s.
– Average QPU time = 59,176 µs. Standard deviation = 15,061 µs.

• With number of reads = 64

– Average total time = 19.06 s. Standard deviation = 0.21 s.
– Average QPU time = 118,207 µs. Standard deviation = 10.7 µs.

From these results, it is seen that setting the number of reads to 64 leads to more
consistent analysis times, as compared to using only 16 reads. On the other hand, by setting
the number of reads to 64, the amount of QPU access time is increased significantly.

5.3. Results: Three-Truss Problem

The three-truss problem is a more complicated problem to set up compared to the two-
truss problem, due to the increased number of variables. Setting up the fractional objective
function for this problem and writing that expression to a text file took approximately
81.4 s.

Considering the brute-force analysis of the fractional objective function, it took an
average of 0.9 s to find the global optimum solution [0, 0, 1, 1, 0, 0, 0, 0, 1]. This solution
indicates that the largest cross-sectional area should be chosen for the first and third truss
elements, and that the smallest cross-section should be chosen for the second truss element.

With the QA, the analyses were performed with the number of reads set to values of
64 and 256. The solution probability histogram in Figure 15 shows the results that were
obtained. The figure also shows the original fractional objective function, as calculated via
brute force. Analyses that ended with non-valid results are indicated by the ’NV’ column
in the histogram.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su
lt

pr
ob

ab
ilit

y
(B

ar
 c
ha

rt)

NV

3-Truss System: QA: Result Probability and Objective Function

1.230

1.485

1.740

1.995

2.250

2.505

2.760

3.015

3.270

3.524

3.779

Ob
je
ct
iv
e
Fu
nc
tio

n
(L
in
e
pl
ot
)

 64 reads
256 reads

Figure 15. Solution probability histogram of three-truss problem using the QA, compared to original
objective function. The global optimum solution is located at solution number 21.

From Figure 15, it can be seen that there is a large variation in performance depending
on the setting for the number of reads. Setting the number of reads to 64 leads to non-valid
solutions for most analyses. With this setting, the QA does not reliably produce usable
results. However, when the number of reads is increased to 256, optimal or near-optimal
valid solutions are obtained most of the time. From these results it is also clear that the
problem is more difficult for the QA to solve as compared to the two-truss problem.

Mathematics 2023, 11, 3451 25 of 29

As part of the QA analyses, the following computational times were measured:

• With number of reads = 64

– Average total time = 98.7 s. Standard deviation = 37.5 s.
– Average QPU time = 337,477 µs. Standard deviation = 117,808 µs.

• With number of reads = 256

– Average total time = 48.8 s. Standard deviation = 20.6 s.
– Average QPU time = 558,414 µs. Standard deviation = 244,331 µs.

It is observed that setting the number of reads to 256 leads to more consistent behavior,
as evidenced by the smaller standard deviation for the total analysis time. Furthermore, the
higher number of reads allows for the analysis to converge more quickly, as fewer iterations
are generally needed to find a solution. However, the consequence of choosing a higher
number of reads is that the amount of QPU access time is also increased.

5.4. Results: Four-Truss Problem

The last problem, with the highest number of variables involved, is the four-truss
problem. Using the symbolic finite element method, it took approximately 3431 s to set up
the fractional objective function. This is a very significant increase from the roughly 81 s
for the three-truss problem. In this case, it is a great benefit that the fractional objective
function is written to a text file. Testing of the analysis procedures is much faster when
the objective function text file can simply be imported and interpreted, as compared to
prefacing every analysis by a nearly hour-long setup process.

Via brute-force analysis, the global optimum solution [1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0] was
found in an average of 4.4 s. This solution indicates that the first, second, and fourth truss
elements should optimally use the smallest choice for the cross-sectional area. The third
truss element should use the largest available cross-sectional area.

The histogram of the results that were obtained by the QA are shown in Figure 16.
The figure also shows a line plot of the original fractional objective function, which was
determined by the brute-force analyses.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr

ob
ab

ilit
y

(B
ar

 c
ha

rt)

4-Truss System: QA: Result Probability and Objective Function

1.044

1.090

1.135

1.181

1.226

1.272

1.317

1.363

1.408

1.454

1.499

Ob
je

ct
iv

e
Fu

nc
tio

n
(L

in
e

pl
ot
)

256 reads

Figure 16. Solution probability histogram of four-truss problem using the QA, compared to original
objective function. The global optimum solution is located at solution number 7.

From Figure 16, it is seen that seemingly random, but valid, solutions are obtained
by the QA. Only one solution comes within 5% of the global optimum solution. Namely,

Mathematics 2023, 11, 3451 26 of 29

solution number 34 was found once and it has an an objective function value of 1.103. The
global optimum solution is located at solution number 7, and it has an objective function
value of 1.065. It is worth noting that seven out of the ten analyses ended with an iteration
run-out, rather than ending with a converged final solution.

The following computational time for the QA analyses was obtained:

• With number of reads = 256

– Average total time = 437 s. Standard deviation = 39.0 s.
– Average QPU time = 1,280,156 µs. Standard deviation = 251,109 µs.

The average solving time is approximately nine times longer than that for the three-
truss problem, using the same number of reads. Furthermore, the average of 1.28 s of QPU
access time per analysis meant that any further testing was not possible for this problem,
as this would consume more than the 60 s monthly QPU access budget.

6. Conclusions

This work has established a new method to apply quantum annealing to the discrete
optimization of truss structures. A symbolic FEM approach is employed to express the
objective function in terms of qubit variables. As the qubit variables encode the design
choices of the truss structure, they would inevitably take part in the formulation of the
stiffness matrix of the structure, which leads to a fractional form for the objective function.
Ajagekar et al’s iterative approach is used to approximate the original fractional objective
function with a non-fractional one such that it can be made compatible with the QA. The
proposed method has been applied on three discrete truss sizing optimization problems
with increasing complexity. It is found that the QA is able to find the global minimum
solution if sufficient reads can be afforded. However, there are several challenges that need
to be addressed for this method to be scalable to larger problems.

6.1. Symbolic Finite Element Method

The first bottleneck is related to the symbolic finite element method used for the
definition of the objective function in Section 4.3. The time to setup the objective function
for each of the three sample problems was measured and is shown in Table 5.

Table 5. Overview of objective function setup time.

Truss System Variables Setup Time (s) Growth Factor

2 6 13.504 -

3 9 81.390 6.0270

4 12 3430.542 42.1494

The timings given in Table 5 show that the symbolic finite element method implemen-
tation scales poorly as the number of problem variables increases. Solving the symbolic
finite element problem is essentially performing exact analytical work, rather than nu-
merical calculations with floating point numbers, on the computer. As was discussed in
Section 4.5.1, before any of the simplifications are applied, the objective function generally
contains every possible multiplication between qubit variables. As the number of variables
grows, so does the total number of possible multiplications, thereby increasing the amount
of algebra to be performed by the computer. To address this scalability issue, a more effi-
cient formula for solving symbolic systems of equations than those currently implemented
in Matlab would be needed. An alternative approach may be to employ an iterative solver,
such as the Krylov subspace method, for solving larger symbolic linear systems. However,
this would be a subject for future investigation. A deeper dive into this topic is in the field
of computer algebra, which is beyond the scope of the current work.

Mathematics 2023, 11, 3451 27 of 29

6.2. Fractional Objective Function

When the symbolic finite element method is used to set up an objective function for a
discrete truss sizing optimization problem, the resulting objective function has a fractional
form. This further complicates the journey to achieving a QUBO-compatible form. An
iterative method was implemented that rewrites the original fractional objective function
into a non-fractional form. This non-fractional function can then be further processed in
order to achieve the final QUBO problem. However, a number of points make the current
implementation difficult to use on the QA hardware.

Firstly, the objective function obtained from the symbolic finite element method
contains all possible multiplications between the available binary variables. This means that
the problem initially requires an all-to-all connectivity between qubits if it was to be directly
embedded on the QPU. This research describes a number of steps that were taken to reduce
the complexity of the truss sizing objective function, such as removing excessively high-
order terms, and truncating insignificant terms. Nevertheless, the connectivity requirements
for the truss sizing problems remain far beyond the natural capability of the QA, meaning
that long qubit chains are needed to embed the truss sizing problems. Not only do these
long qubit chains have a negative impact on the performance of the QA, but larger truss
sizing problems could eventually become infeasible to embed on the QPU, as the problem
requirements could easily outgrow the physical capabilities of the QA hardware.

Secondly, as the symbolic finite element method yields a fractional objective function,
the current approach relies on an iterative scheme in order to translate the objective function
to a QUBO format. This means that various sources of overhead are repeatedly added to
the solving process: repeatedly processing new non-fractional objective functions, waiting
for an embedding to be calculated, awaiting your turn in the D-Wave problem submission
queue, waiting to obtain the results from D-Wave, and repeatedly going through poten-
tially inefficient Python programming. All of this contributes to the long total solve time,
particularly for larger problems.

6.3. Quantum Annealing

When finally the objective function is successfully translated to a QUBO-compatible
form, it is submitted to the D-Wave QA to obtain a solution. From the results obtained
for the three sample problems, it is seen that the QA has increasing difficulty in finding
optimal or near-optimal solutions as the problem becomes larger. For the largest sample
problem, the optimum solution was not found within the allowable QPU time. Allowing a
higher number of reads and longer QPU calculation time would be expected to find the
solution.

Generally speaking, the method proposed in this research constitutes a proof of
concept in using quantum annealing for discrete structural optimization. The concepts of
setting up a symbolic objective function, finding ways to simplify the objective function,
and eventually translating it to a QUBO format may also be applicable to other optimization
problems to be applied on the QA. This is particularly the case when the qubit variables
form part of the stiffness matrix and a fractional objective function needs to be evaluated.
The identified challenges, as detailed in the above three sections, require further research
efforts in order to scale the proposed method to larger problems.

Author Contributions: Conceptualization, K.W. and B.C.; methodology, K.W. and B.C.; software,
K.W.; validation, K.W. and B.C.; formal analysis, K.W.; investigation, K.W.; resources, K.W.; data
curation, K.W.; writing—original draft preparation, K.W.; writing—review and editing, B.C.; visual-
ization, K.W.; supervision, B.C.; project administration, B.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Mathematics 2023, 11, 3451 28 of 29

Data Availability Statement: All Python and Matlab code produced during this research, as well as
the results that were obtained, are publicly available [31].

Acknowledgments: The authors would like to acknowledge the intellectual discussions with Giorgio
Tosti Balducci, candidate in the same department, during this project.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DOAJ Directory of open access journals
FEM Finite element method
GPQC General-purpose quantum computer
MDPI Multidisciplinary Digital Publishing Institute
QA Quantum annealer
QPU Quantum processing unit
QUBO Quadratic unconstrained binary optimization
SA Simulated annealing

References
1. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press:

Cambridge, UK, 2010. [CrossRef]
2. Montanaro, A. Quantum algorithms: An overview. npj Quantum Inf. 2016, 2, 15023. [CrossRef]
3. Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355–5363. [CrossRef]
4. Morita, S.; Nishimori, H. Mathematical foundation of quantum annealing. J. Math. Phys. 2008, 49, 125210. [CrossRef]
5. Santoro, G.E.; Martoňák, R.; Tosatti, E.; Car, R. Theory of Quantum Annealing of an Ising Spin Glass. Science 2002, 295, 2427–2430.

[CrossRef]
6. Denchev, V.S.; Boixo, S.; Isakov, S.V.; Ding, N.; Babbush, R.; Smelyanskiy, V.; Martinis, J.; Neven, H. What is the Computational

Value of Finite-Range Tunneling? Phys. Rev. X 2016, 6, 031015. [CrossRef]
7. Rajak, A.; Suzuki, S.; Dutta, A.; Chakrabarti, B.K. Quantum annealing: An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.

2023, 381, 20210417. [CrossRef]
8. D-Wave Systems Inc. Getting Started with the D-Wave System: User Manual; D-Wave Systems Inc.: Burnaby, BC, Canada, 2020.
9. Zheng, Y.; Song, C.; Chen, M.C.; Xia, B.; Liu, W.; Guo, Q.; Zhang, L.; Xu, D.; Deng, H.; Huang, K.; et al. Solving Systems of Linear

Equations with a Superconducting Quantum Processor. Phys. Rev. Lett. 2017, 118, 210504. [CrossRef]
10. Neukart, F.; Compostella, G.; Seidel, C.; von Dollen, D.; Yarkoni, S.; Parney, B. Traffic flow optimization using a quantum annealer.

arXiv 2017, arXiv:1708.01625.
11. Van Vreumingen, D.; Neukart, F.; Von Dollen, D.; Othmer, C.; Hartmann, M.; Voigt, A.C.; Bäck, T. Quantum-assisted finite-element

design optimization. arXiv 2019, arXiv:1908.03947.
12. Stollenwerk, T.; O’Gorman, B.; Venturelli, D.; Mandrà, S.; Rodionova, O.; Ng, H.; Sridhar, B.; Rieffel, E.G.; Biswas, R. Quantum

Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management. IEEE Trans. Intell. Transp. Syst. 2019, 21,
285–297. [CrossRef]

13. Dukalski, M.; Rovetta, D.; van der Linde, S.; Möller, M.; Neumann, N.; Phillipson, F. Quantum computer-assisted global
optimization in geophysics illustrated with stack-power maximization for refraction residual statics estimation. Geophysics 2023,
88, V75–V91. [CrossRef]

14. Ye, Z.; Qian, X.; Pan, W. Quantum Topology Optimization via Quantum Annealing. IEEE Trans. Quantum Eng. 2023, 4, 1–15 .
[CrossRef]

15. Lee, D.; Shon, S.; Lee, S.; Ha, J. Size and Topology Optimization of Truss Structures Using Quantum-Based HS Algorithm.
Buildings 2023, 13, 1436. [CrossRef]

16. Sandt, R.; Le Bouar, Y.; Spatschek, R. Quantum annealing for microstructure equilibration with long-range elastic interactions.
Sci. Rep. 2023, 13, 6036. [CrossRef]

17. Tosti Balducci, G.; Chen, B.; Möller, M.; Gerritsma, M.; De Breuker, R. Review and perspectives in quantum computing for partial
differential equations in structural mechanics. Front. Mech. Eng. 2022, 8, 75. [CrossRef]

18. Bayerstadler, A.; Becquin, G.; Binder, J.; Botter, T.; Ehm, H.; Ehmer, T.; Erdmann, M.; Gaus, N.; Harbach, P.; Hess, M.; et al.
Industry quantum computing applications. EPJ Quantum Technol. 2021, 8, 25.

19. Bova, F.; Goldfarb, A.; Melko, R.G. Commercial applications of quantum computing. EPJ Quantum Technol. 2021, 8, 2. [CrossRef]
20. Airbus. Airbus Quantum Computing Challenge: Bringing Flight Physics into the Quantum Era. 2019. Available online: https://

www.airbus.com/en/innovation/disruptive-concepts/quantum-technologies/airbus-quantum-computing-challenge (accessed
on 6 November 2019).

http://doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1063/1.2995837
http://dx.doi.org/10.1126/science.1068774
http://dx.doi.org/10.1103/PhysRevX.6.031015
http://dx.doi.org/10.1098/rsta.2021.0417
http://dx.doi.org/10.1103/PhysRevLett.118.210504
http://dx.doi.org/10.1109/TITS.2019.2891235
http://dx.doi.org/10.1190/geo2022-0253.1
http://dx.doi.org/10.1109/TQE.2023.3266410
http://dx.doi.org/10.3390/buildings13061436
http://dx.doi.org/10.1038/s41598-023-33232-w
http://dx.doi.org/10.3389/fmech.2022.914241
http://dx.doi.org/10.1140/epjqt/s40507-021-00091-1
https://www.airbus.com/en/innovation/disruptive-concepts/quantum-technologies/airbus-quantum-computing-challenge
https://www.airbus.com/en/innovation/disruptive-concepts/quantum-technologies/airbus-quantum-computing-challenge

Mathematics 2023, 11, 3451 29 of 29

21. Volkswagen. Volkswagen Optimizes Traffic Flow with Quantum Computers. 2019. Available online: https://www.volkswagen-
newsroom.com/en/press-releases/volkswagen-optimizes-traffic-flow-with-quantum-computers-5507 (accessed on 4 September
2020).

22. Glover, F.; Kochenberger, G.; Du, Y. A Tutorial on Formulating and Using QUBO Models. arXiv 2018, arXiv:1811.11538.
23. Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.;

et al. Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [CrossRef]
24. Boixo, S.; Albash, T.; Spedalieri, F.M.; Chancellor, N.; Lidar, D.A. Experimental signature of programmable quantum annealing.

Nat. Commun. 2013, 4, 2067. [CrossRef]
25. Borle, A.; Lomonaco, S.J. Analyzing the quantum annealing approach for solving linear least squares problems. In Proceed-

ings of the International Workshop on Algorithms and Computation, Guwahati, India, 27 February–2 March 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 289–301.

26. Shin, S.W.; Smith, G.; Smolin, J.A.; Vazirani, U. How “Quantum” is the D-Wave Machine? arXiv 2014, arXiv:1401.7087.
27. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [CrossRef]
28. Biswas, R.; Jiang, Z.; Kechezhi, K.; Knysh, S.; Mandrà, S.; O’Gorman, B.; Perdomo-Ortiz, A.; Petukhov, A.; Realpe-Gómez, J.;

Rieffel, E.; et al. A NASA perspective on quantum computing: Opportunities and challenges. Parallel Comput. 2017, 64, 81–98.
[CrossRef]

29. McGeoch, C.C.; Harris, R.; Reinhardt, S.P.; Bunyk, P.I. Practical Annealing-Based Quantum Computing. Computer 2019, 52, 38–46.
[CrossRef]

30. McGeoch, C.C. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice; Morgan & Claypool Publishers LLC:
San Rafael, CA, USA, 2014; Volume 5, pp. 1–93.

31. Wils, K. Truss Sizing Optimization: Symbolic Finite Element Method QUBO Repository. DataverseNL. 2020. Available online:
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/PYZGEX (accessed on 4 September 2020).

32. Ajagekar, A.; Humble, T.; You, F. Quantum Computing based Hybrid Solution Strategies for Large-scale Discrete-Continuous
Optimization Problems. arXiv 2019, arXiv:1910.13045.

33. D-Wave Systems Inc. Technical Description of the D-Wave Quantum Processing Unit: User Manual; D-Wave Systems Inc.: Burnaby,
BC, Canada, 2020.

34. D-Wave Systems Inc. QPU Properties: D-Wave 2000Q Online System (DW_2000Q_2_1): User Manual; D-Wave Systems Inc.:
Burnaby, BC, Canada, 2019.

35. Lucas, A. Hard combinatorial problems and minor embeddings on lattice graphs. Quantum Inf. Process. 2019, 18, 203. [CrossRef]
36. Kochenberger, G.; Hao, J.K.; Glover, F.; Lewis, M.; Lü, Z.; Wang, H.; Wang, Y. The unconstrained binary quadratic programming

problem: A survey. J. Comb. Optim. 2014, 28, 58–81. [CrossRef]
37. Vyskočil, T.; Pakin, S.; Djidjev, H.N. Embedding Inequality Constraints for Quantum Annealing Optimization. In Quantum

Technology and Optimization Problems; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 11–22.
38. Dattani, N. Quadratization in discrete optimization and quantum mechanics. arXiv 2019, arXiv:1901.04405.
39. D-Wave Systems Inc. dimod.make_quadratic. 2023. Available online: https://docs.ocean.dwavesys.com/en/stable/docs_

dimod/reference/generated/dimod.make_quadratic.html (accessed on 8 August 2023).
40. Fang, Y.L.; Warburton, P.A. Minimizing minor embedding energy: An application in quantum annealing. arXiv 2019,

arXiv:1905.03291.
41. D-Wave Systems Inc. D-Wave Solver Properties and Parameters Reference: User Manual; D-Wave Systems Inc.: Burnaby, BC,

Canada, 2020.
42. Stolpe, M. Truss optimization with discrete design variables: A critical review. Struct. Multidiscip. Optim. 2016, 53, 349–374.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-optimizes-traffic-flow-with-quantum-computers-5507
https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-optimizes-traffic-flow-with-quantum-computers-5507
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/ncomms3067
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1016/j.parco.2016.11.002
http://dx.doi.org/10.1109/MC.2019.2908836
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/PYZGEX
http://dx.doi.org/10.1007/s11128-019-2323-5
http://dx.doi.org/10.1007/s10878-014-9734-0
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.make_quadratic.html
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.make_quadratic.html
http://dx.doi.org/10.1007/s00158-015-1333-x

	Introduction
	Background on QUBO and Ising Formulations
	Problem Description
	Method
	General Concept
	Symbolic Finite Element Method
	Finding Expressions for Nodal Displacement
	Finding Expressions for Strain
	Expressions for Stress

	Development of an Objective Function
	Fractional Objective Function
	Non-Fractional Objective Function

	Iterative Non-Fractional Approximations to the Fractional Objective Function
	Objective Function Processing to Yield a QUBO Problem
	High-Order Truncation
	Linear Scaling
	Non-Linear Scaling
	Truncation of Insignificant Terms
	Unary Constraint
	Quadratization

	Parameter Tuning

	Results
	Overview of Analyses Performed
	Results: Two-Truss Problem
	Results: Three-Truss Problem
	Results: Four-Truss Problem

	Conclusions
	Symbolic Finite Element Method
	Fractional Objective Function
	Quantum Annealing

	References

