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Computer science people spend a lot of their time talking about
whether or not man is merely a machine, whether his brain
is just a powerful computer that might one day be copied.

Richard P. Feynman



Summary

Samenvatting

CONTENTS

1 Introduction
1.1 Efficient combinatorial optimization algorithms . . . . . . . ... .. ..

1.1.1
1.1.2

1.1.3
1.14
1.1.5

Combinatorial optimization . . . . . . ... .. ... ... . ...
From simple genetic algorithms to state-of-the-art

model-based evolutionary algorithms . . . . .. .. ... ... ..
Parameterless evolutionary algorithms . . . . . ... ... .. ..
Expensive combinatorial optimization. . . . . . ... ... .. ..
Algorithms for expensive combinatorial optimization . . . . . . . .

1.2 Deep learning for computer vision . . . . . . . . .. ..o L.

1.2.1

Neural architecturesearch. . . . . . . . . .. .. .. .. .....

1.3 Medical image segmentation . . . . . . . . .. ... ...

References

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7

The task of medical image segmentation. . . . . . . ... ... ..
Segmentation qualitymetrics . . . . . . ... ... ... ... ..
Neural network architectures for medical image segmentation . . .
Datavariation . . . . . . . ... o Lo
Observer variation-aware medical image segmentation . . . . . . .
Data variation taken into account in deep learning . . . . . . . . .
Explicitly capturing and exploiting observer variation for segmenta-

Hon . .. ..

Parameterless gene-pool optimal mixing evolutionary algorithms

2.1 Introduction . . . . . . . . . . L e
2.2 From genetic algorithms to EDAs and backagain. . . . . . ... ... ..
2.3 The GOMEA family of evolutionary algorithms . . . . . .. ... ... ..

2.4

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

Family Of Subsets (FOS) as alinkagemodel . . . . . .. ... ...
Gene-pool Optimal Mixing (GOM). . . . . . .. . ... ... ...
Conditional Gene-pool Optimal Mixing (CGOM) . . . ... .. ..
GOMEA with a traditional, single population . . . . ... ... ..
Going parameterless: removing the need to set the population size .

Experiments . . . . . . . .. .. o e

24.1
2.4.2
243
244

Benchmarkproblems . . . . . ... ... ... ... ... ..
Sizesofproblems . . . . ... .. ... . .. 0 e
Finding the best settings for single-population GOMEA . . . . . . .
Addingthe CGOMoperator . . . . . . . . .« v v v v v v v v ..



viii CONTENTS

2.4.5 Benchmarking algorithms using the optimal population

2.4.6 Finding the best settings for parameterless algorithms. . . . . . . .
2.4.7 Statisticaltesting. . . . . . . . .. ... .. oo
2.4.8 Implementationdetails . . . . .. ... ... ... ... ...
25 Results . . . . . . L e
25.1 GOMEA design choicessearchresults . . . . . . .. ... ... ..
252 CGOMEAperformance . . . . .. ... ... ... ... .....
2,53 ParameterlessEAs . . . . . . . ... oo o
26 Discussion . . . .. ... L L o e
27 Conclusion . . . . . . . Lo e
References . . . . . . . . . . . L e e

3 Anovel approach to designing surrogate-assisted genetic algorithms by com-
bining efficient learning of Walsh coefficients and dependencies
3.1 Introduction . . . . . . . . . L Lo e e e
3.2 Background. . . . . . . ... e e e e e e e
3.2.1 Notationandtheory. . . .. . .. ... ... .. ... ... ...
3.2.2 Gene-pool optimal mixing evolutionary algorithm. . . . . . . . ..
3.3 Surrogate-assisted genetic algorithms . . . . .. .. ... ... ...,
3.3.1 General outline of the proposed approach. . . . . . ... .. ...
3.3.2 GOMEA with the external Efficient Linkage Learning (ELL-GOMEA).
3.3.3 The considered alternative approaches . . . . ... ... ... ..
3.3.4 Holdoutpopulationsize . . . . . . . .. ... ... ...
3.4 Experiments . . . . . . . o i i i e e e e e e e e e e e e e e e e
3.4.1 Benchmarkproblems . . . ... ... .. ... ..........
3.4.2 Implementationdetails . . . . . . ... .. ... ... ...
3.4.3 Experimentsdesign . . . . . . .. ... ..o
344 Results. . . . ..o L e
3.45 Discussion. . . . . . ..o e e e e e e
35 Conclusion . . . . . . . . L. L e
References . . . . . . . . . . . . . L e

4 Convolutional neural network surrogate-assisted GOMEA
4.1 Introduction . . . . . . . . ... L e
4.2 CNNsurrogatemodel. . . . . . .. ... ... ... . 0 ..
4.2.1 Pairwiseregression. . . . . . . . . . ..ot e e e e e
4.2.2 Trainingprocedure. . . . . . . . . . . . e e e e e e
4.2.3 CNNarchitecture . . . . . . . ... . 0
4.24 Surrogatemodelquality . . . . . . ... ..o oL
4.3 Convolutional surrogate-assisted GOMEA . . . . . ... ... ... ...
43.1 GOMEA . . . . o e e
4.3.2 Adding the surrogate modelto GOMEA . . . . . ... ... .. ..



CONTENTS ix
4.4 Experiments . . . . . . . . ... e e e e e e e e e e e e 108
4.4.1 Optimizationproblems . . . . . . ... ... ... ........ 108

4.4.2 Experimentalsetup . . . . . . .. . . .. ... ..o 109

443 Results. . . . . . . e e e 110

4.4.4 Statisticaltests. . . . . . . . L L. 111

45 DISCUSSION . . . . v . e e e e e e e e e e e e e e e e e e e e e 111
4.6 Conclusions. . . . . . . . . . . . e e e e e e e 113
References . . . . . . . . . o o i i e e e e e e e e e 114

5 Anovel surrogate-assisted evolutionary algorithm applied to partition-based

ensemble learning 117
5.1 Introduction . . . . . . . . . .. i e e e 118
5.2 Search problemsandalgorithms . . . . . . ... ... 00000, 119
5.2.1 Problem formulation. . . . . ... ... .00 119
522 Localsearch . . . . .. ... . ... ... ..o 0. 119
5.2.3 An adaptation of P3 for non-binary problems . . . . . .. ... .. 120
5.2.4 Surrogate-assistedEA . . . . . ... ... Lo oo 122

5.3 Partition-based ensemblelearning . . . . . .. ... o000, 125
5.3.1 Evaluationoffitness . . . . . . . . . .. ... .o 0., 125

5.4 Experimentalsetup. . . . . . . . . .. .. L. oo 126
54.1 Datasets . . . . . . o L e e 126
54.2 Ensembletraining . . . . . . ... ... . 0oL, 126
5.4.3 Considered optimization algorithms. . . . . . .. ... ... ... 126
5.4.4 Problemsizes and runtimebudget. . . . . .. ... .00 L., 127
5.4.5 Implementationdetails . . . .. ... ... ... ......... 127

5,5 Results . . . . . L 128
55.1 Runtime . . . . . ... . e 129
5.5.2 Statistical significancetests . . . . . . . . . ... ... ... 129
5.5.3 Generalizationstudy. . . . . . . . . .. ... 0. 129

5.6 Discussionand futurework. . . . . . ... o L0000, 133
57 Conclusion . . . . . . . . L L e e 134
References . . . . . . . . . . o o e e e e 136
6 Heed the noise in performance evaluations in neural architecture search 139
6.1 Introduction . . . . . . . . . . .. L e 140
6.1.1 Neural architecturesearch. . . . . . .. .. ... ... ...... 140
6.1.2 Medical image segmentation . . . . . ... ... ... .. 140
6.1.3 Neural architecture search for medical image segmentation. . . . . 141
6.1.4 Potentiallyimpactfulissue:noise . . . . . . . . .. ... ... .. 141

6.2 NASmethod . . ... .. ... . ... . . 143
6.2.1 Searchalgorithms . . . . . . ... ... .. L0000, 143
6.2.2 Segmentation quality metrics . . . . . . . . ... ... 144
6.2.3 NAStaskformulation . . .. ... ... ... ..., . 144

6.2.4 Network performance evaluation . . . . ... ... ... ..... 144



CONTENTS

6.3 Searchspace . . . . . . . . . . . i e e 145
6.3.1 Topologysearchsubspace . . . . . ... ... ... ........ 146
6.3.2 Cellssearchsubspace . . . . . .. .. ... ... 147
6.3.3 Searchspacedetails . . . ... ... ... ... ... ... 148

6.4 Experiments . . . . . . . . . . . . it e 148
6.4.1 Experimentalsetup . . . .. ... ... ... ... 148
6.42 Datasets . . . . . . .. 0oL e e e e e 149
6.4.3 Preprocessingandtraining. . . . . . ... ... ... ... 149
6.4.4 Implementationdetails . . . . . ... ... ... ... ... .. 150

6.5 Results . . . . . . L . L e 150
6.5.1 Searchperformance . . . . ... .. .. ... ... .. ... 150
6.5.2 Qualityoffoundnetworks . . . . . . ... .. ..o L. 151
6.5.3 Explaining performance differences . . . . . . ... ... .. ... 152
6.5.4 Comparison to alternative network architectures . . . . . ... .. 152

6.6 DiIsCussion . . . . . . . .. L e e e e e e e e 159

6.7 Conclusion . . . . . . . . .. L e e e 159

References . . . . . . . . . . o . e e e e 160

Observer variation-aware medical image segmentation by combining deep

learning and surrogate-assisted genetic algorithms 163
7.1 Introduction . . . . . ... .. . L e 164
7.1.1 Background . . . . .. ... ... Lo o 164
7.1.2 Theproposedapproach . . . . ... ... ... ... ....... 164
72 Method . . . . . . . . . e 165
7.2.1 Algorithmoutline . . . . . . ... ... ... .. ... ..... 165
7.2.2 Segmentation quality evaluation. . . . . . . ... ... ... .. 165
7.2.3 Optimizationprocedure . . . . . . . . . . ... ... ... 166
7.2.4 Neural network architecture and training . . . . . . . .. ... .. 168
7.3 Experiments . . . . . . . ... ... e e e e e e e e 168
731 Data. . ..o e 168
7.3.2 Simulatedvariations. . . . . . . . ... ... Lo oL 168
7.3.3 Objective functionsanalysis . . . . . . . ... ... ... ... .. 169
74 Results . . . . . .. L e 170
7.5 Discussion . . . ... Lo oo e 172
7.6 Conclusions. . . . . . . .. L L e 174
References. . . . . . . . . . o o o e 175
Data variation-aware medical image segmentation 177
8.1 Introduction . . . . . . . . . ... e 178
82 Method . . . . . . . . . . . . e 178
8.2.1 Multi-path segmentationnetworks . . . . . . ... ... .. ... 178
8.2.2 Optimizationprocedure . . . . . . . . . . .. ... ... ... .. 179
8.2.3 Segmentation quality evaluation. . . . . . . . ... ... ... .. 179

8.2.4 Segmentation neural network architecture. . . . . . . ... .. .. 180



CONTENTS xi
8.3 Experiments . . . . . . . . ... e e e e e e e 181
8.3.1 Data. . . . . . e e e e e e e e 181

8.3.2 Experimentalsetup . . . . . ... ... .. oo, 181

8.4 Results . . . . . . . . e e e e e e 181
8.5 DISCussion . . . . . . . . e e e e e e e e e e e e e e 183
8.6 Conclusions. . . . . . . . . e e e e 184
References . . . . . . . . o o i i e e e e e e e e e e 185

9 Limitations, discussion, and conclusions 187
9.1 Answers to theresearch questions . . . . . ... ... ... ....... 187
9.2 Generaldiscussion . . . . . . . . .. ... 193
9.3 Futurework. . . . . . . . . .. e e e e e e 196
References . . . . . . . . o 0 i i i e e e e e e e e e e e e e e e 198
Acknowledgements 201
Curriculum Vitee 203
List of publications 205

SIKS dissertation series






SUMMARY

Recently great achievements have been obtained with Artificial Intelligence (AI) methods
including human-level performance in such challenging areas as image processing, natu-
ral language processing, computational biology, and game playing. Arguably, one of the
most societally important application fields of such methods is healthcare.

Al is a broad term, which in general refers to systems and methods (components of
systems), capable of solving complex tasks and ultimately doing it autonomously, i.e.,
without human participation, or, if necessary (e.g., in healthcare) with some human
supervision. Machine Learning (ML) is a subfield of AI that consists of diverse methods
which utilize available data to extract meaningful and actionable knowledge. Three key
factors have contributed to the recent success of ML methods: 1) Novel algorithms; 2)
Highly efficient hardware, the computational capabilities of which are perfectly aligned
with the currently most popular component of Al systems - deep neural networks (a
computational abstraction that vaguely resembles a brain and can be efficient in solving
different ML problems); 3) Huge amounts of digitally available data which can be used
to train ML models. In this thesis, we mainly focus on the combination of algorithm
development and data-related aspects.

Optimization and ML are strongly connected, simply because an essential part of the
development of an ML model (its training) entails solving an optimization problem. The
training procedure depends a lot on the type of ML model and the optimization algorithm
used, but in general, it means adjusting learnable model parameters to fit the data as well
as possible. Deep Learning (DL) is a subfield of ML that uses neural networks to extract
features and learn dependencies from data. Gradient descent-based algorithms enabled
a breakthrough in ML by making DL (using large neural networks with millions and even
billions of learnable parameters) possible through effective training (optimization) of
neural networks of such size. However, not all optimization problems have gradient
information available. In such cases, derivative-free methods can be used. Of these,
Evolutionary Algorithms (EAs) are of particular interest.

EAs are an Al method, particularly, a special type of optimization algorithm, forming
the subfield of meta-heuristics inspired by the natural evolution process. In EAs, instead
of gradually improving one solution (as, for instance, in gradient descent), a collection
of solutions called a population is evolved simultaneously. The main working principle
of all EAs mimics the natural evolution process: survival of the fittest individuals (with
respect to the optimization objective, also called the fitness function) and combining
good individuals in order to obtain offspring that are hopefully even better. In this
thesis, we focus on so-called model-based EAs. In such EAs, the generation process of
new solutions is governed by a configurable model that is aligned as well as possible
with specific properties associated with the problem at hand. Such alignment may be
done manually, or automatically, during optimization, leveraging previously evaluated
solutions. This feature makes model-based EAs the most efficient type of EAs currently

xiii
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existing for many types of problems. In particular, in this thesis, we focus on algorithms
from the Optimal Mixing Evolutionary Algorithms family (OMEAs) which showed state-of-
the-art performance in different optimization domains such as discrete and real-valued
optimization, genetic programming, and multi-objective optimization. Moreover, one of
the key research subjects in this thesis is the optimization of computationally expensive
functions (expensive optimization). This means that good solutions must be found by
using only a few evaluations, as these are computationally expensive. To use EAs for
this purpose, we study and design the integration of surrogate modeling techniques: an
approach to replace evaluating the true, expensive optimization function with a much
cheaper to compute, yet imprecise, approximation. In this thesis, we focus on the discrete
expensive optimization domain, for which the literature on the use of EAs is scarce.

While DL has enormous capabilities, there are almost always also many components
that need to be configured properly to get the best possible performance on a particular
dataset and task. These include data preprocessing, training hyperparameters (stochastic
gradient descent configuration, regularization strength, etc.), and, importantly, neural
network architecture choice. The number of possible design choices of neural networks
has been rapidly growing recently, raising the question for practitioners what is the best
architecture for a particular task and dataset. In the Neural Architecture Search (NAS)
field, the aim is to automate the search for the best possible neural network architecture.
Although various efforts on NAS have been published, a question that did not yet get much
attention is how problematic the stochasticity of architecture quality evaluation is and
whether this can be alleviated in order to allow for finding better-performing architectures.
In this thesis, we study this in more detail and find that for finding better-performing
architectures, it is beneficial to spend more computational resources on diminishing the
noise of architecture quality estimates.

Just like is the case for natural image processing tasks, DL has been successfully
applied to medical image analysis tasks. A common example of such a task is organ
segmentation on a Magnetic Resonance Imaging (MRI) or Computed Tomography (CT)
scan. Performing such tasks automatically (followed by human approval or correction if
necessary) can contribute to making diagnosis and treatment procedures faster and more
accurate and reduce the workload of medical professionals. One of the largest challenges
in this field is bringing automatic methods into actual clinical use. With regard to the task
of image segmentation (also called contouring or delineation), it means that a method
needs to automatically produce such segmentations (e.g., of specific organs) which are
found acceptable by a clinician to be used for the task at hand. One of the reasons why
this is challenging is the phenomenon called observer variation. It is noticed that different
clinicians can have (slightly) different ways of performing segmentation. Moreover, even
one clinician might end up with a different result when asked to perform the same task
again with some time interval between the segmentation sessions. Therefore, it might
be concluded that there is no single correct way of performing organ segmentation.
Consequently, it stands to reason that an automatic segmentation method that can
automatically produce multiple segmentation variants instead of just one can increase
the chances of acceptance of one of the presented variants by a clinician. In contrast
to the standard use of DL (which produces one segmentation variant), this approach to
automatic segmentation is relatively under-explored. In this thesis, we aim at bridging this
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gap between developing new segmentation methods and making them more acceptable
in clinical practice.

The main contributions of this thesis are as follows:

1. The current state-of-the-art in model-based black-box discrete optimization is
improved by presenting a new version of the Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GOMEA) (Chapter 2). Besides an analysis of the impact of
different design choices for GOMEA, a modification of the Gene-pool Optimal Mix-
ing (GOM) variation operator (one of the key components of GOMEA) called CGOM
is presented. The main idea behind CGOM is taking into account not only strong
dependencies between variables but also weak ones using the notion of conditional
dependence. In experiments on a set of common benchmark functions, the new
version of GOMEA outperformed previously published ones and other prominent
model-based EAs such as P3 and DSMGA-II.

2. We explore an extreme case of surrogate-assisted EA design: aiming at having a
perfectly accurate surrogate model (Chapter 3). For a specific class of functions
(decomposable functions with a linear number of subfunctions and a constant
number of variables in them), it is shown that a Walsh decomposition can be used
to obtain such a surrogate model with excellent scalability.

We introduce a more generally applicable surrogate-assisted GOMEA for dis-
crete optimization problems with expensive function evaluations (Chapter 4). Fur-
thermore, a variant that is capable of solving discrete optimization problems with
arbitrary alphabets (beyond binary problems) is proposed (Chapter 5). Noteworthy,
our proposed algorithm has an automatic population size management
scheme and discards the need for manual population size tuning, a commonly
known difficulty in EAs. We compare the proposed algorithm to the most com-
mon choice for solving expensive optimization problems - Bayesian optimization
algorithms. In our experiments, we use both synthetic benchmark functions and
a real-world optimization problem from the ML field, namely, dataset partition-
ing for maximizing the performance of an ensemble of classifiers. The proposed
surrogate-assisted GOMEA outperformed Bayesian optimization alternatives as
well as non-surrogate-assisted GOMEA and simple search algorithms such as ran-
dom and local search.

3. The problem of NAS is studied in regard to understanding whether noisy fitness
functions form a significant problem for NAS algorithms (Chapter 6). It is shown
that the noise originating from the stochastic nature of neural network initialization
and the training and validation procedure can indeed significantly hinder the per-
formance of NAS algorithms (in an independent test evaluation). It is proposed to
use more robust network evaluation procedures involving cross-validation. Under
the same computational budget, it is shown that a more robust evaluation leads to
finding better-performing architectures. Experiments were conducted for the task
of NAS for medical image segmentation.



Xvi SUMMARY

4. A novel method for automatic medical image segmentation is introduced. Its
main difference from standard DL approaches is that it is able to produce multiple
segmentation variants. We base our method on the idea that instead of training
one neural network on all available data and therefore getting the best "average"
result, we can train multiple (sub)networks on more homogeneous data subsets
and get multiple, but different, "specialized" results. To obtain such subsets, we
propose to use a combinatorial optimization algorithm. In particular, we use the
surrogate-assisted GOMEA algorithm presented earlier in this thesis (Chapters 4, 5).
Our proposed segmentation method has been first shown to correctly identify data
subsets pertaining to artificially introduced variations (Chapter 7). Then, we show
that in the case of clinical data (CT scans used for brachytherapy treatment without
any artificially added variations), our algorithm is as well capable of producing
better segmentations than a standard DL approach (Chapter 8).

Summing up, in this thesis we improve and propose novel EAs continuing the re-
search line of the OMEA family of algorithms, focusing on, but not limited to expensive
combinatorial optimization problems. We also study the existing problem of the impact
of optimization function stochasticity in NAS on the performance of optimization algo-
rithms and propose a way to alleviate it. Finally, we demonstrate how efficient EAs can be
combined with DL in order to design a novel medical image segmentation method that is
potentially more applicable in clinical practice than standard DL methods.

We conclude that GOMEA and its surrogate-assisted version have strong potential in
solving combinatorial optimization problems, including the ones where fitness function
evaluations are computationally expensive. Combining EAs with DL can result in novel
approaches, some of which can provide added value in such societally important domains
as healthcare, in particular, medical image analysis.
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Onlangs zijn er grote prestaties behaald met methoden voor Kunstmatige Intelligentie (KI),
waaronder prestaties op menselijk niveau op uitdagende gebieden zoals beeldverwerking,
natuurlijke taalverwerking, computationele biologie en het spelen van games. Naar
alle waarschijnlijkheid is één van de belangrijkste toepassingsgebieden van dergelijke
methoden voor de samenleving de gezondheidszorg.

KI is een brede term die over het algemeen verwijst naar systemen en methoden
(onderdelen van systemen) die in staat zijn om complexe taken op te lossen en uiteindelijk
autonoom te handelen, dat wil zeggen zonder menselijke tussenkomst, of indien nodig
(bijv. in de gezondheidszorg) met enige menselijke supervisie. Machine Learning (ML) is
een subgebied van KI dat bestaat uit diverse methoden die gebruikmaken van beschikbare
data om betekenisvolle en bruikbare kennis te extraheren. Drie belangrijke factoren
hebben bijgedragen aan het recente succes van ML-methoden: 1) Nieuwe algoritmen; 2)
Zeer efficiénte hardware, waarvan de rekenkracht perfect aansluit bij de momenteel meest
populaire component van KI-systemen - diepe neurale netwerken (een computationele
abstractie die vaaglijkt op een brein en efficiént kan zijn bij het oplossen van verschillende
ML-problemen); 3) Enorme hoeveelheden digitaal beschikbare data die kunnen worden
gebruikt om ML-modellen te trainen. In dit proefschrift richten we ons voornamelijk op
de combinatie van de ontwikkeling van algoritmen en aspecten die verband houden met
data.

Optimalisatie en ML zijn sterk met elkaar verbonden, simpelweg omdat een essentieel
onderdeel van de ontwikkeling van een ML-model (het trainen ervan) het oplossen van
een optimalisatieprobleem omvat. Het trainingsproces is sterk athankelijk van het type
ML-model en het gebruikte optimalisatie-algoritme, maar het houdt over het algemeen
in dat leer- of trainbare modelparameters worden aangepast om zo goed mogelijk bij
de data te passen. Deep Learning (DL) is een subgebied van ML dat gebruikmaakt van
neurale netwerken om kenmerken te extraheren en athankelijkheden te leren uit data.
Algoritmen op basis van gradient descent hebben een doorbraak mogelijk gemaakt in
ML door DL (het gebruik van grote neurale netwerken met miljoenen en zelfs miljarden
trainbare parameters) mogelijk te maken door effectieve training (optimalisatie) van
neurale netwerken van dergelijke omvang. Echter is gradiéntinformatie niet voor alle
optimalisatie problemen beschikbaar. In dergelijke gevallen kunnen methoden zonder
afgeleiden worden gebruikt. Van deze methoden zijn Evolutionaire Algoritmen (EAs) van
groot belang.

EAs zijn een KI-methode, in het bijzonder een speciaal type optimalisatie-algoritme,
die het subveld van metaheuristieken vormt die geinspireerd zijn door het natuurlijke
evolutieproces. Een EA evolueert een verzameling oplossingen, die een populatie wordt
genoemd, gelijktijdig in plaats van geleidelijk één oplossing te verbeteren (zoals bijvoor-
beeld bij gradient descent). Het belangrijkste werkingsprincipe van alle EAs bootst het
natuurlijke evolutieproces na: overleving van de fitste individuen (met betrekking tot

xvii
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het optimalisatiedoel, ook wel de fitnessfunctie genoemd) en het combineren van goede
individuen om hopelijk nog betere nakomelingen te verkrijgen. In dit proefschrift richten
we ons op zogenaamde modelgebaseerde EAs. In dergelijke EAs wordt het generatie-
proces van nieuwe oplossingen gestuurd door een configureerbaar model dat zo goed
mogelijk is afgestemd op specifieke eigenschappen van het probleem waarvoor geopti-
maliseerd wordt. Deze afstemming kan handmatig worden gedaan of automatisch tijdens
de optimalisatie, waarbij in dit laatste geval eerder geévalueerde oplossingen worden
gebruikt. Deze eigenschap maakt modelgebaseerde EAs de meest efficiénte vorm van
EAs die momenteel bestaat voor veel soorten problemen. In het bijzonder richten we ons
in dit proefschrift op algoritmen uit de familie genaamd Optimal Mixing Evolutionary
Algorithms (OMEAs). Binnen verschillende optimalisatie domeinen, waaronder discrete
en continue optimalisatie, alsook genetische programmering en problemen waarbij er
meerdere doelen tegelijkertijd geoptimaliseerd moeten worden, zijn met algoritmen van
het OMEA type state-of-the-art resultaten behaald. Bovendien is één van de belangrijkste
onderwerpen van onderzoek in dit proefschrift de optimalisatie van rekenkundig dure
functies (dure optimalisatie). Dit betekent dat goede oplossingen moeten worden ge-
vonden met slechts een paar evaluaties, aangezien deze rekenkundig duur zijn. Om EAs
hiervoor te gebruiken, bestuderen en ontwerpen we de integratie van technieken voor
surrogaatmodellering: een aanpak om de werkelijke, dure optimalisatiefunctie te vervan-
gen door een veel goedkopere, maar minder nauwkeurige benadering. In dit proefschrift
richten we ons op het domein van discrete dure optimalisatie, waarbinnen er weinig
literatuur is over het gebruik van EAs.

Hoewel DL enorme mogelijkheden biedt, moeten er bijna altijd ook veel compo-
nenten goed geconfigureerd worden om de best mogelijke prestaties te behalen op een
specifieke dataset en taak. Deze omvatten het voorbewerken van de data, het trainen van
hyperparameters (configuratie van stochastic gradient descent, regularization strength,
enz.) en in het bijzonder de keuze van de architectuur van het neurale netwerk. Het aantal
mogelijke ontwerpkeuzes van neurale netwerken is de laatste tijd snel toegenomen, wat
voor vakmensen de vraag oproept: wat is de beste architectuur voor een specifieke taak
en dataset? In het veld van Neural Architecture Search (NAS) is het doel om de zoektocht
naar de best mogelijke architectuur van het neurale netwerk te automatiseren. Hoewel
er verschillende inspanningen op het gebied van NAS zijn gepubliceerd, is er nog niet
veel aandacht besteed aan de problematiek van de stochasticiteit van de evaluatie van
de architectuurkwaliteit en of dit kan worden verminderd om beter presterende archi-
tecturen te vinden. In dit proefschrift bestuderen we dit in meer detail en vinden we dat
het gunstig is om meer rekenkracht te besteden aan het verminderen van de ruis van de
architectuurkwaliteitsschattingen om beter presterende architecturen te vinden.

Vergelijkbaar met het succes van het toepassen van DL op natuurlijke beeldverwer-
kingstaken, is DL ook met succes toegepast op taken binnen de medische beeldanalyse.
Een veelvoorkomend voorbeeld van zo'n taak is orgaansegmentatie op een Magnetic
Resonance Imaging (MRI) of Computed Tomography (CT) scan. Het automatisch uit-
voeren van dergelijke taken (gevolgd door goedkeuring door mensen of correctie indien
nodig) kan bijdragen aan het versnellen en nauwkeuriger maken van diagnose- en be-
handelingsprocedures en de werklast van medische professionals verminderen. Eén van
de grootste uitdagingen in dit vakgebied is om automatische methoden daadwerkelijk
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in de klinische praktijk te gebruiken. Met betrekking tot de taak van beeldsegmentatie
(ook wel contouring of delineatie genoemd) betekent dit dat een methode automatisch
dergelijke segmentaties moet produceren (bijvoorbeeld van specifieke organen) die door
een clinicus als acceptabel worden beschouwd voor de betreffende taak. Eén van de
redenen waarom dit uitdagend is, is het fenomeen dat bekend staat als variatie onder
waarnemers. Het is bekend dat verschillende clinici (lichtelijk) verschillende manieren
kunnen hebben om segmentatie uit te voeren. Bovendien kan zelfs één clinicus een
ander resultaat krijgen wanneer hem/haar wordt gevraagd dezelfde taak opnieuw uit te
voeren met een tijdsinterval tussen de segmentatiesessies. Daarom kan geconcludeerd
worden dat er geen enkele juiste manier is om orgaansegmentatie uit te voeren. Het staat
dan ook redelijkerwijs vast dat een automatische segmentatiemethode die automatisch
meerdere segmentatievarianten kan produceren in plaats van slechts één, de kans op
acceptatie van één van de gepresenteerde varianten door een clinicus kan vergroten. In
tegenstelling tot het standaard gebruik van DL (dat één segmentatievariant produceert),
is deze benadering van automatische segmentatie relatief onderbelicht. In dit proefschrift
streven we ernaar om deze kloof te overbruggen tussen het ontwikkelen van nieuwe
segmentatiemethoden en het acceptabel maken ervan in de klinische praktijk.

De belangrijkste bijdragen van dit proefschrift zijn als volgt:

1. Huidige toonaangevende modelgebaseerde black-box discrete optimalisatie wordt
verbeterd door een nieuwe versie van het Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) te presenteren (Hoofdstuk 2). Naast een analyse van de im-
pact van verschillende ontwerpkeuzes voor GOMEA, wordt er een wijziging van
de Gene-pool Optimal Mixing (GOM) variatie-operator (één van de belangrijkste
componenten van GOMEA) gepresenteerd, genaamd CGOM. Het voornaamste
idee achter CGOM is om rekening te houden met zowel sterke afhankelijkheden
tussen variabelen als zwakke afthankelijkheden met behulp van het concept van
conditionele afhankelijkheid. In experimenten op een set van veelvoorkomende
benchmarkfuncties presteerde de nieuwe versie van GOMEA beter dan eerder
gepubliceerde versies en andere prominente modelgebaseerde EAs zoals P3 en
DSMGA-II.

2. We onderzoeken een extreme situatie voor de integratie van technieken voor sur-
rogaatmodellering met het EA, namelijk het creéren van een perfect nauwkeurig
surrogaatmodel (Hoofdstuk 3). Voor een specifieke klasse van functies (ontbind-
bare functies bestaande uit een lineair aantal subfuncties en een constant aantal
variabelen), wordt aangetoond dat een Walsh-decompositie kan worden gebruikt
om zo'n surrogaatmodel te verkrijgen met uitstekende schaalbaarheid.

We introduceren een meer algemeen toepasbare variant van GOMEA waarbij
gebruik gemaakt wordt van een surrogaat model voor discrete optimalisatieproble-
men met dure functie-evaluaties (Hoofdstuk 4). Bovendien wordt er een variant
voorgesteld die in staat is om discrete optimalisatieproblemen met willekeurige al-
fabetten op te lossen (buiten binaire problemen) (Hoofdstuk 5). Bijzonder hierbij is
dat ons voorgestelde algoritme automatisch de populatiegrootte beheert waardoor
de handmatige afstemming van de populatiegrootte niet langer nodig is, wat een
veelvoorkomend probleem bij EAs is. We vergelijken het voorgestelde algoritme
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met de meest gebruikelijke keuze voor het oplossen van dure optimalisatiepro-
blemen - Bayesiaanse optimalisatiealgoritmen. In onze experimenten gebruiken
we zowel synthetische benchmarkfuncties als een optimalisatieprobleem in de
praktijk uit het ML-veld, namelijk het partitioneren van datasets om de prestaties
van een ensemble van classifiers te maximaliseren. De voorgestelde GOMEA, dat
gebruikmaakt van een surrogaat model, presteerde beter dan Bayesiaanse optima-
lisatiealgoritmen, evenals klassieke GOMEA en eenvoudige zoekalgoritmen zoals
random en local search.

3. Het probleem van NAS wordt bestudeerd om te begrijpen of fitnessfuncties met
ruis een significante uitdaging vormen voor NAS-algoritmen (Hoofdstuk 6). Er
wordt aangetoond dat de ruis die voortkomt uit de stochastische aard van de initia-
lisatie van het neurale netwerk en het trainings- en validatieproces inderdaad de
prestaties van NAS-algoritmen aanzienlijk kan belemmeren (in een onafthankelijke
testevaluatie). Er wordt voorgesteld om robuustere netwerkevaluatieprocedures
te gebruiken, zoals cross-validation. Bij gebruik van hetzelfde computationele
budget wordt aangetoond dat een robuustere evaluatie leidt tot het vinden van
beter presterende architecturen. De experimenten werden uitgevoerd op NAS voor
medische beeldsegmentatie.

4. Een nieuwe methode voor automatische medische beeldsegmentatie wordt ge-
introduceerd. Het belangrijkste verschil met standaard DL-aanpakken is dat het
in staat is om meerdere segmentatievarianten te produceren. Onze methode is
gebaseerd op het idee dat we in plaats van één neuraal netwerk te trainen op alle
beschikbare data en daardoor het beste "gemiddelde" resultaat te krijgen, meerdere
(sub)netwerken kunnen trainen op meer homogene subsets van data en meerdere,
maar verschillende, "gespecialiseerde" resultaten kunnen verkrijgen. Om dergelijke
subsets te verkrijgen, stellen we voor om een combinatorisch optimalisatiealgo-
ritme te gebruiken. In het bijzonder maken we gebruik van het GOMEA algoritme
met surrogaatmodellering dat eerder in dit proefschrift is gepresenteerd (Hoofdstuk-
ken 4, 5). Eerst wordt aangetoond dat onze voorgestelde segmentatiemethode op
correcte wijze datasubsets kan identificeren die betrekking hebben op kunstmatig
geintroduceerde variaties (Hoofdstuk 7). Vervolgens laten we zien dat in het geval
van klinische data (CT-scans die ingetekend waren door artsen ten behoeve van het
opstellen van brachytherapie behandelplannen) ons algoritme in staat is om betere
segmentaties te produceren dan een standaard DL-aanpak.(Hoofdstuk 8).

In dit proefschrift verbeteren we bestaande EAs en stellen we nieuwe EAs voor, voort-
bouwend op het onderzoek van de OMEA-familie van algoritmen. We richten ons op,
maar beperken ons niet tot, kostbare combinatorische optimalisatieproblemen. We
onderzoeken ook het bestaande probleem van de impact van de stochasticiteit van de
optimalisatiefunctie in NAS op de prestaties van optimalisatiealgoritmen en stellen een
manier voor om dit te verlichten. Tot slot laten we zien hoe efficiénte EAs gecombi-
neerd kunnen worden met DL om een nieuwe methode voor medische beeldsegmentatie
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te ontwerpen die mogelijk beter toepasbaar is in de klinische praktijk dan standaard
DL-methoden.

We concluderen dat GOMEA en de variant die gebruikmaakt van een surrogaat model
een sterk potentieel hebben om combinatorische optimalisatieproblemen op te lossen,
inclusief de problemen waarbij de evaluatie van de fitnessfunctie rekenkundig duur is.
Het combineren van EAs met DL kan leiden tot nieuwe aanpakken, waarvan sommige
toegevoegde waarde kunnen bieden in maatschappelijk belangrijke domeinen zoals de
gezondheidszorg, met name in de medische beeldanalyse.






INTRODUCTION

1.1. EFFICIENT COMBINATORIAL OPTIMIZATION ALGORITHMS

Optimization problems arise in various aspects of human life. From classical problems
like the Travelling Salesman problem to recently emerged ones like tuning hyperparam-
eters of deep learning models, all of them require efficient and effective optimization
algorithms in order to solve them and have practical application value as well. Opti-
mization problems vary in many aspects including search domain (real-valued, discrete,
permutations, etc.), problem size (number of variables), and computational costs to
compute the objective (fitness) function value. Therefore, optimization algorithms also
vary, as it follows from the No Free Lunch Theorem [1] that no algorithm can be the most
efficient at finding the optimal solution for all problems in the world. However, if we limit
the scope of the problems we are interested in, then it is potentially possible to design an
algorithm that outperforms available alternatives. This has resulted in the emergence of
various algorithms tailored to different problem types. This thesis focuses on combina-
torial optimization problems, explicitly also including problems with computationally
expensive fitness evaluations. In other words, problems for which good, or ideally, opti-
mal solutions should be found within a budget of a few objective function evaluations
(typically a few hundred or thousand at best). In this thesis, novel Evolutionary Algorithms
(a nature-inspired class of heuristic-based optimization algorithms) are proposed for
this class of problems. The best performance on an optimization problem (i.e., finding
better solutions within a given computational budget) with specific characteristics is
usually achieved with an algorithm tailored to it. However, a highly-tailored algorithm
may not generalize to other problems. In contrast, some of the ideas about designing
Evolutionary Algorithms proposed in this thesis are more generic, aiming to generalize to
other problem domains, while also including a basis for problem-specific tailoring.

1.1.1. COMBINATORIAL OPTIMIZATION
Combinatorial optimization problems form one of the most well-known and important
classes of optimization problems. Famous examples of combinatorial optimization prob-
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lems are Maximum cut (Max-Cut), and Maximum satisfiability (MAXSAT). The Max-Cut
problem formulated as an optimization problem entails finding a partitioning of graph
nodes into two sets such that the sum of weights of edges between pairs of nodes in
opposite sets is maximized. The MAXSAT optimization problem is finding an assignment
of Boolean values to variables such that the number of true clauses in a logic formula is
maximized. Many well-known combinatorial optimization problems are NP-hard and,
therefore, it is reasonable to use search heuristics to find a good solution (i.e., non-optimal,
but high quality) within a reasonable amount of time as the optimal solution for an ar-
bitrary problem instance cannot be expected to be found in polynomial time (unless
P = NP). Such search problems as hyperparameter tuning (searching for the best combi-
nation of hyperparameters of an ML model in order to maximize its quality) and Neural
Architecture Search (searching for the architecture of a neural network that performs the
best on a given dataset), which have been recently attracting a lot of attention, can also
often be formulated as combinatorial optimization problems.

Without loss of generality, an unconstrained (all solutions in the defined search space
are considered feasible) global, single-objective, combinatorial optimization problem
can be defined as follows:

r;le'gf (x),
where

f(x): 2 — Ris the objective function,
9 is the search space, 2 = {(x1, x2,...,x¢) | x; €{1,2,...,a;} },

¢ is the number of variables, and «; is the alphabet size of variable i for i = 1.

In this thesis, we will focus on a particular type of optimization algorithms, evo-
lutionary algorithms, where the objective function is often referred to as the fitness
function. Moreover, we focus on the black-box formulation of the combinatorial optimiza-
tion problem, which means that the function is not known beforehand. This includes
any dependence relationships between variables (the case in which they are known is
usually called gray-box optimization in the literature). Often in literature, solving a com-
binatorial optimization problem means finding its global optimum: a solution x* that
f(x*) = f(x) Vx € 2. The number of fitness evaluations required to find the global opti-
mum is a common performance metric of optimization algorithms. If the global optimum
is not known (this might often be the case for real-world problems), then the best found
solution up to a particular number of fitness evaluations might be alternatively used to
measure algorithm performance. Generally, optimization algorithms can be classified
into the following categories:

1. Exact optimization algorithms. The goal of this type of algorithms is to find an
optimal solution to the optimization problem with a theoretical guarantee of the
computational complexity.

2. Approximation algorithms. Such algorithms lack the ability to find the optimal
solution but have theoretical guarantees of how close to the optimal solution the
found solutions are.
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3. Heuristics. Algorithms of this type can be used to find non-optimal, but good
enough solutions when using approximation algorithms is computationally in-
tractable or hard to design. However, usually, heuristics do not have theoretical
guarantees in contrast to approximation algorithms.

4. Metaheuristics. This class of algorithms includes various types of algorithms, and
they differ from heuristics by usually being more complex and general, i.e., poten-
tially applicable to a wide range of problems instead of being designed to solve a
specific problem.

1.1.2. FROM SIMPLE GENETIC ALGORITHMS TO STATE-OF-THE-ART

MODEL-BASED EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms (EAs) have been shown to be a powerful metaheuristic for solv-
ing optimization problems (e.g., [2, 3]). During the search, a population of individuals
(solutions) is maintained and (gradually) evolved with the goal of improving their quality
(fitness). EAs resemble the natural Darwinian evolution process by implementing two
key elements of it: selection (the fittest individuals survive) and variation (producing
offspring by combining genomes of the parents). A subclass of EAs which was one of the
first to become popular for solving optimization problems is called Genetic Algorithms
(GAs). In classical GAs, variation consists of recombination (crossover): fit individuals
are combined to produce an offspring, and mutation: random changes are made in the
offspring genotype. Over decades of research, it became clear that to make a GA efficient,
these operators, especially the variation, should be aligned with the optimization problem
structure. In one of the fundamental works in the field [4] it was hypothesized that GAs
work by preserving and propagating through the population high-performing building
blocks: schemata (i.e., an expression which represents multiple solutions by fixing the
values of some of the variables while leaving others unspecified). Such building blocks
contribute to the above-average fitness value of the defined solutions.

Example 1.1.1. Consider the maximization of a function f(x) of four binary variables,
x = (x1, X2, X3, X4) such that f(x) = x; x» + x3x4. The solutions that adhere to the following
expression (x; = 1, x» = 1, x3 = *, x4 = %), with arbitrary values of x3 and x,, will then have
an above-average fitness and thus the expression represents a building block. Similarly,
the expression (x; = *,x2 = *,x3 = 1, x4 = 1) is also a building block.

This hypothesis, also called Holland’s Schema Theorem, created a foundation for
so-called model-based EAs. In [5] it was shown that recombination without disruption
of the building blocks is crucial for good scalability of GAs. The main idea of model-
based EAs is to use information about building blocks during the variation in order to
find better solutions more efficiently. If this information is a priori unknown, it can be
learned during evolution. To identify building blocks, information about interactions
between variables (also called linkage) is required. For example, it can be concluded that
two variables x; and x, are dependent (linked) if the effect of x; on the solution fitness
depends on the value of x», and vice versa. In such a case, it is important to take their
linkage into account during evolution, i.e., preserve a building block {x;‘ , x; } with high
fitness contribution (i.e., an instance of variables x; and x, that is good for the solution
in general) as soon as such an instance is found. Disrupting a good, high-performing
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building block is detrimental to the search performance, as the interaction between
variables of such building block ensures the high fitness of solutions in which it is present.
In the black-box optimization scenario, it is not known a priori how variables interact
with each other and whether a fitness function can be decomposed into independent
subfunctions. In Example 1.1.1 the knowledge that the function f(x) consists of two
independent subfunctions fj (x1, x2) = x1x2 and f,(x3,x4) = x3x4 is useful to find the
correct building blocks. However, this information can be extracted (learned) from the
evolving population. Though in most cases the learned problem structure is only an
approximation of the true problem structure, it was shown that it can be very useful when
used in variation operators for making the optimization process [6, 7, 8] more efficient.

One type of model-based EAs is Estimation-of-Distribution Algorithms (EDAs). Al-
gorithms of this type use a probability distribution over the problem variables which is
maintained during search. The distribution is estimated, typically once each generation,
from a selection of the fittest individuals. Rather than doing crossover and/or mutation as
in classical GAs, EDAs generate new offspring solutions by sampling from this probability
distribution. During evolution, the distribution adapts such that better solutions (with
better fitness) become more likely to sample. One of the most prominent EDAs for com-
binatorial problems is the Bayesian Optimization Algorithm (BOA) [6] and its follow-up
development that is better suited for solving problems with hierarchical dependencies
between variables, called hierarchical BOA [9] (hBOA). BOA and hBOA work by learning
a Bayesian network (i.e., the concept of conditional dependencies between variables is
used), and sampling new solutions from it. They outperformed classical GAs by orders of
magnitude in terms of population size and the number of fitness evaluations required to
find the global optimum of several standard benchmark functions [6, 9, 10].

Despite the strong search performance potential, BOA and hBOA have a large compu-
tational overhead due to the learning of the Bayesian network. To overcome this issue,
a conceptually similar yet rather different idea was later proposed with the family of
algorithms called Optimal Mixing Evolutionary Algorithm(s) (OMEA) and its subfamily
Gene-pool Optimal Mixing Evolutionary Algorithms (GOMEAs). The OMEA family of
algorithms started with the introduction of the Linkage Tree Genetic Algorithm (LTGA) in
2010 [7]. In GOMEA the most important ideas of LTGA are kept and further built upon.

One key feature contributing to the success of the GOMEA family of algorithms is the
so-called linkage learning: the extraction of information about dependencies between
variables during the evolution process. This information is stored in a linkage model.
The linkage model in the OMEA family of algorithms is represented as the Family of
Subsets (FOS). The main idea of FOS is to store sets of variables that are (presumably)
dependent on each other. Assuming that a problem has variables x;, x», ..., x, (¢ is the
number of variables), and that the variable indices form a set S ={1,2,...,¢}, an FOSis a
set of subsets of S. In principle, different FOS variants can be used, the most simple of
which is the univariate FOS: {{1},{2},...{¢}}. It implies that all variables are independent.
The most commonly used FOS in the GOMEA family of algorithms and well-performing
on a variety of problems [11] is called the Linkage Tree (LT). An LT is a binary tree with
2¢ -1 nodes. LT leaves are singletons of problem variables. The root of an LT is the set
of all problem variables, and all other nodes are subsets. Moreover, each node except
the leaf nodes is a union of disjoint subsets of the children of that node. The first step of
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linkage learning is measuring pairwise dependencies between variables, which, in the
discrete case, can be done, for instance, using Mutual Information measured from the
population. Mutual Information can capture dependencies between variables as after a
population is evolved for several generations, more building blocks are expected to be
present in it since selection is expected to make them more prominently featured, and
recombination is meant to preserve and mix them. Then, hierarchical clustering is used
to merge subsets of dependent variables together.

In contrast to EDAs, in GOMEA the aim is not to explicitly model the probability
distribution of variable values corresponding to high fitness, but to use the learned FOS
during variation. An elaborate variation operator called Gene-pool Optimal Mixing (GOM)
is the second key feature of GOMEA. With GOM, dependencies between variables as stored
in the FOS are explicitly exploited, following the principle derived from Holland’s Schema
Theorem that good building blocks should be preserved and exploited in the population.
This is achieved by treating sets of linked variables together in GOM, and ensuring that
already found high-performing building blocks are not disrupted. In GOMEA, GOM is
applied to each population member. First, the solution is cloned. Next, in each iteration
of GOM, all FOS elements are considered. For each FOS element {i1, i2,..., ix}, arandom
donor is selected from the current population. Its corresponding genes
{xi,, Xi,,..., Xi,} are copied to the current solution. During variation, it is ensured that the
changes made to a solution do not lead to fitness deterioration (otherwise, a change is
simply reverted). Such a greedy approach also works as a replacement for the selection
step in traditional GAs. Finally, the resulting solution is added to a pool of offspring and
after each population member has undergone GOM, the offspring replace the population.

The GOMEA family of algorithms includes algorithms for different types of optimiza-
tion problems: real-valued, multi-objective, permutations, etc. It has been demonstrated
to show outstanding performance on both standard benchmarks and, notably, real-world
problems. One such example is the usage of Real-Valued Multi-Objective GOMEA (RV-
MO-GOMEA) [12] for brachytherapy treatment planning optimization that is currently
used in clinical practice at the Amsterdam University Medical Centers for the treatment
of prostate cancer patients [13]. Another example is GOMEA for Genetic Programming
(GP-GOMEA) [14]. GP-GOMEA has been shown to be applicable to an important medical
problem, 3D radiation dose reconstruction [15, 16]. Many cases of GOMEA outperforming
alternative optimization algorithms and successful applications show the potential of the
GOMEA family of algorithms and model-based EAs in general.

1.1.3. PARAMETERLESS EVOLUTIONARY ALGORITHMS

For practical usage of EAs, or any algorithm for that matter, it is important to reduce the
number of hyperparameters (which determine the settings of an algorithm and control the
(optimization) process) as much as possible, or, at least, have an algorithm that performs
well with the default hyperparameters across a wide range of problems. An illustrative
example of why a strong dependence of performance on chosen hyperparameters is
problematic is the following. Suppose that a GA is used for hyperparameter tuning of a
Machine Learning (ML) model, but the GA has a number of hyperparameters as well. This
is an undesirable situation because it only shifted the tuning from one type of problem to
another.
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GOMEA does not have the typical tunable hyperparameters that most GAs have, such
as mutation rate, crossover, and selection types. In principle, the linkage learning model
type can be selected from a few possible options, but in practice, the Linkage Tree model
was shown to perform well on a variety of different problems. This makes GOMEA very
convenient to use for solving real-world optimization problems.

Arguably the most crucial hyperparameter for an EA is the population size. It is
highly problem dependent to set it to the right size, and there is no universal solution
to determine it. Setting the population size to a large value means slower convergence
and potentially, a huge amount of unnecessary computation, while setting it to a lower
value restricts the diversity of solutions, and might limit the search process too much to
get good solutions. One of the first proposed approaches to automatic adjustment of the
population size as well as other parameters is called the Interleaved Multistart Scheme
(IMS) which is inspired by the parameterless GA [17]. It works by automatically creating
and managing multiple populations of increasing sizes at the same time so that small
populations might converge, but if the optimization problem is difficult to solve, larger
populations will be used. This scheme was also used in some GOMEA versions, e.g., in
[12] and Chapter 4. In this thesis, we also use the more recent population parameter-free
scheme called Parameterless Population Pyramid (P3) [18]. It was shown to be more
efficient in terms of the number of required fitness evaluations [18] which is crucial for
expensive optimization applications. The idea behind P3 is to gradually expand the set of
solutions by adding new solutions one-by-one. In detail, it is described, for instance, in
[18]. This population management scheme removes the necessity of manually setting the
population size hyperparameter, while not inducing any additional hyperparameters.

Lots of different versions and modifications of GOMEA have been proposed, but a
study that analyzes them all and concludes what is the best-performing version of GOMEA
for unconstrained combinatorial optimization problems is missing in the literature. This
is an important question to be answered for both researchers of EAs and practitioners
who apply GOMEA to real-world optimization problems.

RESEARCH QUESTION 1

What is the best configuration of parameterless GOMEA for solving unconstrained
combinatorial optimization problems?

In Chapter 2 we address this question by studying what are the best design choices (linkage
model, linkage measure, etc.), population management scheme, and, importantly, GOM
variation for GOMEA. Moreover, we study what design choices have the most impact on
performance. Experiments are done on a diverse set of commonly used combinatorial
optimization benchmark problems. The ultimate goal of this study is to obtain a version
of GOMEA that shows state-of-the-art performance on a set of diverse problems. The
contents of this chapter are based on the following publication:

A. Dushatskiy, M. Virgolin, A. Bouter, D. Thierens, and P. A. N. Bosman. “Param-

eterless Gene-pool Optimal Mixing Evolutionary Algorithms”. In: Evolutionary

Computation (June 2023), pp. 1-28.
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1.1.4. EXPENSIVE COMBINATORIAL OPTIMIZATION

Expensive combinatorial optimization is a special case of combinatorial optimization.
Though there is no standard formal definition of it, it is usually presumed that the fitness
calculation is so computationally expensive that the use of common approaches to solv-
ing combinatorial optimization problems becomes infeasible. Important examples of
expensive combinatorial optimization problems can be found in ML. For instance, tuning
the hyperparameters of an ML model on a large dataset might be quite computationally
costly. The problem of expensive fitness evaluations is even more aggravated in deep
learning-related problems, such as hyperparameter tuning of a neural network training
process, and searching for the best possible architecture of a deep neural network for a
specific dataset (Neural Architecture Search or NAS). In a traditional NAS approach, a
fitness evaluation entails full deep neural network training (e.g., [19]), and it might take
hours, if not days, even on a modern system equipped with Graphics Processing Units
(GPUs). This raises the question of the feasibility of adopting traditional optimization
algorithms. In the expensive optimization scenario, it is usually acceptable that the global
optimum is not reached (and it is often not known in real-world applications). Rather, it is
important to find good solutions within a few fitness evaluations. The number of allowed
fitness evaluations depends on the computational cost of the problem and the available
computational resources, but for a typical expensive optimization problem it is between
a hundred and a few thousand evaluations. It is radically different from standard combi-
natorial optimization where sometimes millions or even billions of function evaluations
is considered to be acceptable to solve the problem, i.e., to find the global optimum. The
quantitative performance of expensive optimization algorithms is usually evaluated as
the best fitness value found after performing a particular number of function evaluations.

1.1.5. ALGORITHMS FOR EXPENSIVE COMBINATORIAL OPTIMIZATION

The challenge of creating an efficient combinatorial optimization algorithm is two-fold:
first, effective navigation of the search space to find good solutions is important, and, sec-
ondly, some special mechanisms should be integrated in order to reduce the computation
costs as much as possible.

The most common approach to reducing the number of performed fitness evaluations
is integrating a so-called surrogate model into an optimization algorithm. The purpose of
a surrogate model is to estimate the fitness of a solution without performing an actual
fitness calculation. Such a fitness estimate is further referred to in this thesis as surrogate
fitness, as opposed to real fitness which is the fitness value produced by the original fitness
function. The surrogate model usage is beneficial if it can estimate fitness much faster
than performing a real fitness evaluation would take. However, the challenging part of
surrogate model integration is that usually it can only approximate fitness, i.e., it will
exhibit some degree of error.

A surrogate model is, formally, a function that takes as input a solution x from the
search space 2, and outputs its fitness estimate: f :x €9 — R. The goal is to have a
surrogate model which is as accurate as possible, thus, surrogate modeling can be seen
as a standard regression task. Hence, a surrogate model can be any regression model
used in ML, e.g., a linear regression, a random forest [20], or a neural network. It can
be trained on a set of solutions for which the real fitness is known. Standard regression
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loss and metrics (e.g., the mean squared error and the R? coefficient respectively) can be
naturally used for training and model evaluation. Identical to regression in ML, evaluation
should be done on a set of examples previously unseen in the training set. Common
evaluation techniques known from ML, such as cross-validation, can also be used. There
are no fundamental differences in using a surrogate model for real-valued and discrete
search spaces. However, in the discrete case, solutions should be preprocessed similarly
to the preprocessing of categorical variables in ML. For instance, the one-hot encoding
technique might be utilized. For some types of surrogate models, such as neural networks,
additional preprocessing techniques such as normalization might also be required.

Probably the most straightforward way of using a surrogate model divides the search
process into two stages: 1) Collecting a number of solutions (for instance, sampling
random solutions from the search space), performing real fitness evaluations for them,
and training a surrogate model on them; 2) Using this surrogate model solely in the
optimization algorithm which means that no real evaluations are further performed and
only estimates made by the surrogate model are used as solution fitness. Hypothetically,
if a surrogate model is perfectly accurate (its fitness estimation always precisely matches
with the real fitness), there is no need to perform more real fitness evaluations: one can
just use this surrogate model and always use its fitness prediction instead of real fitness
as there is no difference between them. An efficient (in terms of required solutions with
known fitness values) creation of such a model for an arbitrary optimization problem
seems unrealistic. However, it is interesting to study whether it is possible at least in some
specific cases, such as for binary variables. Moreover, the linkage learning problem is
closely related to the problem of creating such a surrogate model. Indeed, if all depen-
dencies between variables are known, one can use a so-called Walsh decomposition to
represent any fitness function of binary variables [21]:

f= Y ways,

s€{0,1}¢

where

w; are so-called Walsh coefficients,

Ws(0) = (=P,

bc(i) is a bit counting function that indicates the number of ones in a vector i,
and A is the bitwise binary AND operator.

Hence, the Walsh decomposition can be seen as a surrogate model (with learnable co-
efficients wg) which approximates the true fitness function f. We address the question
of whether a perfectly accurate surrogate model can be obtained within a reasonable
computational budget.

' RESEARCH QUESTION 2

Is it possible to efficiently create a perfectly accurate surrogate model in a black-
box optimization scenario (and then use it to solve an optimization problem)?
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We use the Walsh decomposition as a surrogate function and propose how to ef-
ficiently learn the linkage structure of a problem, and then the Walsh decomposition
coefficients. After a perfect surrogate model is obtained, for instance, GOMEA can be used
to solve the optimization problem without performing more real evaluations. The favor-
able computational complexity of the Walsh surrogate model creation can be potentially
obtained and proved for a specific type of fitness function. This is studied and discussed
in Chapter 3. The contents of this chapter are based on the following publication:

A. Dushatskiy, T. Alderliesten, and P. A. N. Bosman. “A novel approach to designing
surrogate-assisted genetic algorithms by combining efficient learning of Walsh
coefficients and dependencies”. In: ACM Transactions on Evolutionary Learning
and Optimization 1.2 (2021), pp. 1-23.

Though there are works using an approach of first training a surrogate model and then
fully relying on it during the optimization for practical applications such as NAS [22, 23],
the main drawback of it (assuming that the surrogate model is not perfectly accurate) is
that the surrogate model does not adapt and focus on more promising parts of the search
space as the search process proceeds. A natural modification of this approach includes the
interleaved usage of surrogate fitness and real fitness evaluation during the second stage
of an algorithm (when the actual search using the trained surrogate model is performed).
Namely, the second stage of the above-mentioned approach can be modified as follows:
2.1) Run an optimization algorithm to find the best solutions according to the surrogate
fitness; 2.2) Perform real evaluations for a selection of top solutions (selected using a
specified criterion); 2.3) Update the surrogate model using these newly real-evaluated
solutions and go to 2.1 again. Such an approach can demonstrate a good performance
when the number of allowed fitness evaluations is very limited [24].

A wide class of algorithms for expensive optimization is called Bayesian Optimization
(BO) algorithms. The key idea of BO algorithms is to have a surrogate model which
can estimate not only the fitness value of a solution but also the variance of such an
estimate. In step 2.1 of the above-described algorithm, the surrogate fitness can then be
replaced with a so-called acquisition function. Acquisition functions are used to calculate
the performance score of a solution, taking into account both its fitness estimate and
its variance. The most promising solutions are selected according to their acquisition
function value, rather than just their surrogate fitness estimate. As the variance of the
fitness estimate should be higher for solutions in under-explored regions of the search
space, such an approach can, potentially, automatically ensure a good balance between
the search space exploration and exploitation of its most promising regions. While
many BO algorithms focus on real-valued optimization problems [25], there are a few
works on BO algorithms for combinatorial optimization. One such algorithm which is
commonly used in practice is Sequential Model Algorithm Configuration (SMAC) [26].
Another example is the Tree Parzen Estimator (TPE) [27] of which the most commonly
used implementation can be found in the Hyperopt optimization framework [28]. Both
algorithms are capable of dealing with discrete, real-valued, and mixed search spaces
and were developed specifically for the expensive optimization scenario. In this thesis,
we use SMAC and Hyperopt as baselines in order to evaluate the ability of the developed
algorithms for expensive optimization to attain state-of-the-art performance.
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X1

Figure 1.1.1. Illustration of the conceptual work principle of a surrogate-assisted EA. The objective
function here is of two variables x; and x». The isolines of the true fitness function and its surrogate
approximation are shown in green (contours on the background) and blue (lines), respectively.
The true function maximum is shown with an orange star, while the maximum according to the
surrogate model (i.e., the solution with the largest so far obtained surrogate fitness value) is shown
with the pink star. The surrogate model is trained on a limited number of samples, therefore, it does
not perfectly approximate the true fitness function. Cyan points show considered points during
the search. For all points, a surrogate evaluation is performed first. For certain points (depicted as
larger dots) also a real evaluation is performed. A real evaluation is performed for a solution if its
surrogate fitness is close enough to the best obtained surrogate fitness (it is located inside the black
dashed line).

An alternative approach is to integrate a surrogate model into an optimization algo-
rithm, for instance, an EA, by replacing a part of the real fitness evaluations it performs by
surrogate ones. In contrast to BO algorithms, real and surrogate evaluations can be mixed
together during the search process (depending on a certain criterion, it is decided whether
to use a real evaluation or a surrogate one). Potentially, such an approach can preserve
the search capability of an EA, but at the same time reduce the number of performed
real function evaluations as for some solutions only surrogate ones are used. EAs with an
integrated surrogate model are usually called surrogate-assisted EAs.

The GOMEA family of algorithms has been demonstrated to achieve excellent per-
formance in various search domains. We hypothesize that a modification of GOMEA
which uses a surrogate model might also show state-of-the-art performance compared to
existing approaches (including BO algorithms) on expensive combinatorial optimization
problems. Therefore, in this thesis, we propose and study the approach of adapting EAs
(specifically, GOMEA) to solving expensive optimization problems.
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RESEARCH QUESTION3

How can GOMEA be adapted to effectively find high-quality solutions for expen-
sive combinatorial optimization problems and show state-of-the-art performance
on various problems (including real-world ones) with up to hundreds of binary
and higher cardinality discrete variables?

In the proposed approach, most of the time, the search relies on surrogate evaluations,
however, for the most promising solutions, real evaluations are performed. In contrast
to BO algorithms, the promising solutions for which real evaluations are performed are
selected based on their surrogate fitness only (the variance of the prediction is not taken
into account). For instance, one possible way to select such solutions is to check, whether
a solution has a surrogate fitness that is close to the currently best obtained surrogate
fitness value. The idea of the proposed approach is shown schematically in Figure 1.1.1.
We study not only how a surrogate model can be integrated into GOMEA, but also what
types of surrogate models show the best performance. We show how to integrate a
surrogate model for computationally cheap fitness estimation into GOMEA. Performance
comparisons are made against standard GOMEA and BO algorithms. In Chapter 4 we
show the proof of principle of this idea on benchmark functions with binary variables. We
call this developed algorithm Convolutional neural network Surrogate-assisted GOMEA
(CS-GOMEA). This research is followed up in Chapter 5 by extending CS-GOMEA to non-
binary real-world combinatorial optimization problems. This algorithm is further referred
to as Surrogate-Assisted GOMEA (SAGOMEA).

The content of Chapters 4 and 5 are based on the following publications:

1. A. Dushatskiy, A. M. Mendrik, T. Alderliesten, and P. A. N. Bosman. “Convolutional
neural network surrogate-assisted GOMEA ”. In: Proceedings of the Genetic and
Evolutionary Computation Conference. ACM. 2019, pp. 753-761.

2. A.Dushatskiy, T. Alderliesten, and P. A. N. Bosman. “A novel surrogate-assisted evo-
lutionary algorithm applied to partition-based ensemble learning”. In: Proceedings
of the Genetic and Evolutionary Computation Conference. ACM. 2021, pp. 583-591.
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1.2. DEEP LEARNING FOR COMPUTER VISION

Neural networks were originally proposed as a computational model which approxi-
mately imitates the neurons, the connections between them, and the signal propagation
mechanism in the human brain. Neural networks consist of artificial neurons which
are computational units (functions) and produce an output for a given input. A neural
network is typically composed of layers (which in turn are composed of neurons). This is
schematically shown in Figure 1.2.1 for the case of a simple feed-forward network (i.e.,
the computations are performed sequentially from the first layer to the last one).

Deep learning is a more recent development of this field. In deep learning, deep
neural networks are used which formally can be characterized by the presence of multiple
layers, and, informally, denote more complex networks, with different types of neurons
with which sophisticated operations can be performed. Arguably, the modern deep
neural networks are not necessarily related to the structure of a human brain [29], but are
nevertheless powerful computational models.

2 ‘ _— o o )
. Output layer
Input layer .

Hidden layer

Figure 1.2.1. Schematic illustration of a simple feed-forward neural network with input/output
layers and (multiple) hidden layers. Colored cirlces denote neurons and arrows depict the direction
of the computation (the hidden and output layers use the outputs of the previous layer as the input).

Deep learning has significantly changed many challenging fields of computer science
and expanded the limits of artificial intelligence capabilities, in many cases bringing them
a level of performance equivalent to that of humans. Examples of such domains where
deep learning has had much impact are natural language processing, reinforcement
learning, and computer vision. There are multiple factors contributing to the success of
deep learning (their order by impact is arguable and difficult to determine): 1) Progress
in computational capabilities of GPUs, supported by the development of more efficient
low-level (CUDA) and high-level (for instance, PyTorch) software for programming using
GPUs; 2) Algorithmic developments in various aspects of deep learning: more capable
architectures [30, 31], regularization techniques [32], and training procedure refinements,
(e.g., for faster and better training [33]); 3) More available training data [34]. The synergy
between these factors allowed the recent huge progress in deep learning, making it the
de-facto approach to solving problems in various domains, including computer vision.
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A key component of a neural network is its collection of learnable (adjustable) weights.
Weights are parameters of the computational units of neural networks. In general, a neural
network can be represented as a function f which has parameters (weights) 8 and pro-
duces an output j for the input x: y = f(x,0). The idea behind learning the weights (this
process is called network training) is adapting them so that the function f better aligns
with the data. Using the given data, the computational function of the neural network is
changed in order to produce an output tailored to the task this network is supposed to
solve, for instance, classifying the input into two categories (binary classification).

A deep learning model can be defined by a triplet (7,0, #°), where « is the archi-
tecture defining a computational graph which transforms the input and produces the
output, 0 represents the learnable weights, and / denotes the hyperparameters of the
training procedure. In the case of traditional supervised learning, the training dataset
consists of pairs of input data and associated labels (also called the training samples):
Dirain ={(x;,yi) | i =1... N} (I is the dataset size). Having as input a tensor x (a multi-
dimensional array, e.g., an RGB image), a deep neural network produces an output j.

To learn the weights, firstly the loss function £ (3, y) needs to be defined. The learning
goal is to minimize the loss function over the training samples. The loss function should
be differentiable to allow efficient optimization using a gradient-based method (usually,
the number of weights is extremely large which makes the usage of other optimization
algorithms infeasible). For instance, a commonly used loss function for a regression task
is the mean squared error: £p,, ., = % Zfil (¥i— yi)z.

The most simple gradient-based optimization algorithm for training neural networks
is Stochastic Gradient Descent (SGD) which is a modification of standard Gradient De-
scent (GD). In GD and SGD training is started with random initialization of the weights.
The weights are then updated in multiple steps. At each step, the weights are updated in
the opposite direction of the gradient, i.e., in the direction of the steepest descent of the
function. This way, a local minimum of the function can be effectively found. However,
calculating the true gradient (using the loss £p,, ,;, over the whole training dataset) is in
most cases computationally intractable. In contrast to GD, SGD does not use the true
gradient and instead uses its approximate estimate on subsets of the data (called batches)
B S Dyygip- Training is performed on randomly composed batches. Typically, batch size
|B| << N. The update of the weights from step # to step ¢+ 1 in SGD is then defined as
follows:

0141 =0;—aVZLp(0)),

where the loss £5 is computed only using the samples from the current batch B. Update
step size a (learning rate) is a hyperparameter of SGD. The loss gradient is therefore
calculated with respect to the current batch, and updating the weights is performed
accordingly. Weights in the hidden layers of a neural network are updated using the
backpropagation technique, which, basically, uses the chain rule of differentiation to
calculate the loss gradient with respect to the weights of a hidden layer. There exist
numerous more advanced modifications of SGD, such as SGD with Momentum [35] and
Adaptive Moment Estimation (ADAM) [36], but all of them share the general principle
of SGD: at each training step (on one batch of data) weights are updated using the
gradient information of the loss function. Hyperparameters of the optimizer (for instance,
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the learning rate), as well as the loss function definition, are included in the model
hyperparameters /.

The computational graph of a neural network, also commonly called an architecture,
defines the transformations applied to the input data. A typical deep learning model
works by learning the weights associated with transformations that allow to extract and
process features from the data, starting from more low-level (abstract) ones, progressively
moving to consider more high-level features. While feature extraction operations may
vary depending on the data type (image, sound, text, graph, tabular data), one of the key
ideas which allowed rapid progress in computer vision, and that is widely used in this
thesis is the convolution operation. The main principle of this operation is to apply a filter
that acts as a feature extractor with the same weights to different locations of the image.
Thus, a specific image feature is aimed to be captured independently of its location. A
schematic example of the application of the convolution operation (one convolutional
filter in one convolutional layer) is shown in Figure 1.2.2. Typically, many convolutional
(tens or even hundreds) layers are stacked and applied sequentially.

Input (K x W x H)

Feature map (W' x H')

x .

— - f x . =
Weights x

Weights

Figure 1.2.2. Illustration of a convolution operation scheme. A filter with learnable weights is
slid over the input of the dimensionality K x W x H (an RGB image, in this case, channel-wise
flattened). At each location, the standard inner product of a corresponding sub-matrix of the input
and the weights matrix is calculated. Usually, the summation of these products is followed by
adding a bias term (learnable) and applying a non-linear transformation (activation function).
The commonly used activation function in modern convolutional neural networks is the Rectified
Linear Unit (ReLU): f(x) = max(0,x). Thus, a single value in the corresponding position of the
output (typically called the feature map) is obtained. In hidden layers of the neural network, the
convolution operations use outputs from the previous layers as inputs. A single convolutional filter
of size Fyy x Fpy over a single-channel input has Fyy F + 1 learnable weights (including the bias
term). If an input has more than one channel (K channels), then a separate weights matrix is used
for each channel, and their multiplication results over corresponding channels are summed up.
Then, the number of learnable weights becomes KFyy Fpy + 1 (bias terms are typically identical for
all input channels). Usually, more than one filter is applied, each having its own weights. Thus, a
convolution operation with D filters has DK Fyy Fy + D weights. The output dimensionality after
applying a single filter is W/ x H' (D x W' x H' when multiple filters are applied) and it is not
necessarily identical to the input dimensionality.

+ Bias term
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1.2.1. NEURAL ARCHITECTURE SEARCH

Computer vision tasks vary a lot: even the subclass of image classification might mean
classification of natural images (photographs) or classification of medical images (for
instance, for the purpose of deciding if an image contains a tumor). Using a deep neural
network tailored for a specific combination of an image dataset and task (classification,
object detection, segmentation, etc.) might, potentially, provide better performance
than using a general-purpose network. However, the number of options for architecture
design is immensely large, making it virtually impossible to optimize the architecture
by hand. This raises the question of whether neural network architecture design can
be done automatically and what gains are possible by doing so. The study of this type
of automation is called Neural Architecture Search. Its general overview is shown in
Figure 1.2.3.

It should be noted that while an architecture of a neural network might have a sig-
nificant effect on its performance, it was also shown in [30, 32, 37], that there are other
crucial components, such as data preprocessing, the hyperparameters of the training
procedure, and data augmentations, that might have a significant impact on the perfor-
mance. Moreover, the amount and the quality of the collected data have arguably, the
largest influence. Nevertheless, in a real-world scenario, it is often impossible to increase
the dataset size, leaving NAS (as well as training of the hyperparameters) to be considered
as a possible option for improving the performance of a deep learning model.

NAS can be considered as an expensive combinatorial optimization problem. What
makes it particularly interesting are the noisy fitness evaluations. One fundamental
reason for fitness evaluations being noisy is that neural network training is a stochas-
tic process. Multiple factors contribute to this: 1) Different random initial weights of a
network usually result in slightly different final performance; 2) The training algorithm
is SGD which means that batches of training data are sampled randomly; 3) Data aug-
mentations (a commonly used regularization technique) are usually applied with some
probability (e.g., an image flip can be applied with probability 0.5). Therefore, the same
architecture initialized and trained with different random seeds usually has a (slightly)
different performance per random seed. The second reason for noisy fitness evaluations
in NAS comes from the way performance is measured. Usually, a fixed validation set is
used, however, it might happen that a network shows different performance on different
validation sets, making the performance estimate on just one validation set unreliable.
This noise problem is naturally more aggravated in the case of relatively small and hetero-
geneous datasets, a situation that often happens in NAS for medical image analysis tasks,
e.g., segmentation.

To the best of our knowledge, it has not been studied in detail to what extent noise in
the network performance evaluation (i.e., NAS fitness function) has a negative impact
on the performance of optimization algorithms for NAS. We believe however that this
question is important to take into consideration when new NAS algorithms are designed
and then applied in practice. A better understanding of the trade-off between a more
computationally expensive evaluation of an architecture (for instance, by averaging over
multiple random seeds used for network training) and the amount of noise it contains
might potentially allow for finding better-performing architectures using NAS.
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Architecture a € S
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Performance estimate of a

Figure 1.2.3. A general overview of NAS as formulated in [38]. After defining a search space
of possible architectures, an optimization algorithm can be used to find the best-performing
architecture. During optimization, iteratively a new architecture is probed and a performance
score is determined by the performance estimation strategy (e.g., a score on the validation set).
Optimization is continued until the computational budget is exhausted.

RESEARCH QUESTION 4

Does the innate stochasticity of fitness evaluations in Neural Architecture Search
represent a significant hurdle for optimization algorithms, and, if yes, can it be
alleviated?

This research question is discussed in Chapter 6. We focus on NAS for medical image
segmentation and use two open-source datasets (tasks of multi-class segmentation of
the prostate and heart areas) for experiments. Different optimization algorithms are
considered, including those which are designed specifically for problems with expensive
fitness evaluations. The contents of this chapter are based on the following publication:

A. Dushatskiy, T. Alderliesten, and P. A. N. Bosman. “Heed the noise in performance
evaluations in neural architecture search”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. ACM. 2022, pp. 2104-2112.
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1.3. MEDICAL IMAGE SEGMENTATION

Similar to other domains mentioned in Section 1.2, in medical image segmentation great
progress has been recently achieved with the use of deep learning. It has been shown that
deep learning models are capable of achieving human (expert) level performance in some
important applications: organs at risk segmentation for head and neck radiotherapy [39]
on computed tomography scans and lungs and heart segmentation on chest radiographs
[40]. However, even with these advances, challenges remain to achieve wider adoption of
deep learning-based segmentation methods in clinical practice [41]. We study some of
these challenges in more detail in this thesis.

1.3.1. THE TASK OF MEDICAL IMAGE SEGMENTATION

Medical image segmentation is one of the most practically important tasks in computer
vision. The goal of it is to automatically segment, or, in other words, contour, areas
of interest on medical images (scans). In this thesis, we call a segmentation method
automatic even though it is assumed that in clinical practice a machine-performed
segmentation might be followed by a manual correction if needed. We also note that our
focus is on developing the segmentation algorithms which do not use the paradigm of
human-in-the-loop learning [42] (e.g., receiving feedback from clinicians during training
to improve the segmentation model).

The type of medical scan can be Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), X-ray, or, in general, any type of medical image used in clinical practice.
What particularly should be segmented, depends on the medical goal. It can, for example,
be an organ of interest, a tumor, or an individual bone. Generally, the input can be a
combination of images of different modalities (for instance, MRI and CT). The output can
also be a joint segmentation of different targets, in most cases, they are mutually exclusive.
Formally, the segmentation task can be defined as follows:

D: Ty xxyxz— SCxXxVxZ
where

® is a segmentation model, for instance, a deep neural network,

T and S are tensors representing the scan (input) and the segmentation (output),
X x Y x Z is the spatial dimensionality of the scan and its segmentation,

M is the number of input modalities,

C is the number of segmentation classes,

the scan and model output are, in general, real-valued tensors.

The output of a deep learning model, usually, represents the probabilities of segmen-
tation classes in a particular voxel. The value p in position (c, x, y, ), (i.e., Scxyz) means
that the voxel with coordinates (x;, y, z) belongs (according to the model) to class ¢ with
probability p. For practical usage, the class with the largest predicted probability can
be selected, and the segmentation prediction can be binarized. Then, the value one in
position (¢, x, y, z), means that the voxel with coordinates (x, y, z) belongs to class c. In
general, the segmentation task can be considered to be a voxel-wise classification.
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While the above-given formulation of the medical image segmentation task is general,
there are potential pragmatic choices in practice that change the original input before
executing the task. For instance, for 3D medical images, the segmentation is sometimes
performed in 2D, which means that instead of getting a 3D volumetric scan as an input,
the model gets 2D slices obtained from the scan. In general, 3D segmentation has the
potential for better performance [37] as the model can capture dependencies between
parts of the scan in all dimensions. However, in practice, 2D segmentation is often used
due to much larger computational resources needed to train a deep neural network to
perform a 3D segmentation.

1.3.2. SEGMENTATION QUALITY METRICS

For measuring performance and achieved progress in medical image segmentation, just
as in any other ML subfield, it is critically important to have commonly used performance
metrics. Likely, the most commonly used metric in medical segmentation is the Dice
coefficient [43]. For multi-class segmentation (C classes) it is defined by the formula
%Zgzl |21|§|C ﬂii ll’ where R, and P, are, correspondingly, the reference and the predicted
segmentation masks for class c. Usually, the background class (which does not represent
any particular organ) is omitted from the calculation. Dice coefficient values range be-
tween 0 (completely wrong segmentation) and 1 (perfectly accurate segmentation). This
metric is easy to calculate and it provides a general notion of how good the predicted seg-
mentation is. The main drawback of it is that it does not reflect all aspects of the practical
usage of automatically produced segmentations. Specifically, an automatically produced
segmentation that is very similar to the reference (meaning a high Dice coefficient, close
to 1), but with a small area of the image segmented in a very wrong way, still requires
a manual correction from a clinician. At the same time, it might be that an algorithm
produces a segmentation that is slightly less accurate in general (resulting in a smaller
Dice coefficient value) but does not require any manual correction, because there are no
critical (according to the clinician) inaccuracies in the segmentation. Another negative
aspect of the Dice coefficient is that it is easier to obtain a large value for regions of interest
that are large, i.e., missing one voxel (or pixel in the 2D case) in a small object has the
same loss in Dice as missing quite a large part in a very large object. For these reasons, it
is useful to also consider other metrics, in particular, the Surface Dice coefficient [39].

The Surface Dice value denotes the fraction of the segmentation contour which devi-
ates from the reference contour by no more than T mm (needs to be set as a parameter).
Similar to the Dice coefficient, the Surface Dice coefficient has values ranging between 0
(segmentation needs major manual adjustment, i.e., the whole predicted contour deviates
from the reference contour by more than 7 mm) and 1 (segmentation can be used without
manual adjustment, i.e., the whole predicted contour does not deviate from the reference
contour by more than T mm). In this thesis, both Dice and Surface Dice (with a vary-
ing threshold value) coefficients are used to evaluate the performance of segmentation
methods.
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1.3.3. NEURAL NETWORK ARCHITECTURES FOR MEDICAL IMAGE SEGMENTA-
TION

Probably the most commonly used neural network architecture for segmentation is the
U-Net [44]. The main idea behind it is to use an encoder-decoder structure. The encoder
works like a typical deep neural network for classification: it gradually reduces the spatial
dimensionality of the input while extracting more features from it. While the purpose of
the encoder is to extract and compress features from the input scan (or a slice in the 2D
case), the decoder translates these features into the segmentation. It works by gradually
upsampling the compressed features until their spatial dimensionality becomes equal
to the input. Importantly, in the decoder, the feature maps of the corresponding spatial
dimensionality from the encoding path are used, which allows using more information
in the upsampling path and therefore contributes to better learning of the connection
between the scan and its segmentation. A standard U-Net architecture is shown in
Figure 1.3.1.

The U-Net can be naturally generalized beyond the originally proposed U-Net architec-
ture, and there exists a large family of various architectures with similar encoder-decoder
structures. The original U-Net relies on a rather simple (compared, for instance, to state-
of-the-art deep learning models for classification) structure consisting of blocks similar to
the ones used in the Visual Geometry Group (commonly known as VGG) architecture [45].
Both the encoder and decoder can be modified in order to obtain better performance.
A common and efficient U-Net design strategy is to modify only the encoder by using
state-of-the-art architectures developed for image classification (usually, natural image
classification). The benefit of such an approach is that one can use an open-sourced
pre-trained encoder on large classification datasets such as Imagenet [46]. The usage of
such pre-trained encoders was shown to be, in most cases, beneficial for performance
on the medical image segmentation task, especially when the amount of medical data is
limited [47, 48]. The encoder architecture does not have to be limited to a convolutional
network only. For instance, the recently introduced transformer architecture can also be
used in an encoder, as shown in [49, 50].

- 1

Figure 1.3.1. Generalized scheme of a standard U-Net architecture for medical image segmentation.
Feature maps are depicted with blue squares. Green arrows denote downsampling operations
which decrease the spatial dimensionality of feature maps but increase the number of channels
(for instance, a convolutional layer with stride 1 followed by a pooling layer with stride 2). Orange
arrows denote upsampling operations which increase the spatial dimensionality of feature maps
but decrease the number of channels (for instance, a transposed convolutional layer with stride
2). Blue arrows denote the concatenation of feature maps. Gray arrows denote input and output
convolution operations.




20 1. INTRODUCTION

Medical image segmentation is known for the variety of datasets and tasks it can
be applied to. Datasets vary in size, modality (the most common ones are MRI, CT,
ultrasound, X-ray), image resolution, and scanning devices used for their creation. The
segmentation tasks themselves also vary a lot, from segmenting single or multiple organs,
to a pathology (such as tumor). Therefore, using NAS for creating a specialized network
architecture for a specific medical image segmentation task, might, potentially, have a
larger impact than, for instance, in the image classification domain.

1.3.4. DATA VARIATION

Heterogeneity of image segmentation data often occurs when the data is collected in a
real-world clinical environment. In general, data variation can be classified into image-
and observer- variation.

Image variation means that a dataset might contain scans that visually look different:
different brightness, contrast, or slightly different patient positioning when the scan was
taken. This type of variation originates from the variability of scanning devices, their
settings, and clinical scanning protocols.

The observer variation can be divided into two different subtypes of variation and
has a different origin. It was shown in, for instance, [51, 52] that given the same scan,
different clinicians might segment it in slightly different ways (inter-observer variation).
The second subtype of observer variation is intra-observer variation which means that
there might be inconsistencies between segmentations made by the same observer if they
are given the same scan multiple times. While both types of observer variation should be
taken into account, inter-observer variation is naturally larger [53] and therefore might
be more problematic. It turns out that the Dice similarity coefficient between Prostate
segmentation on MRI scans made by different observers is about 0.9 [54]. Interestingly, in
[54] there is no strong connection between years of experience in a group of clinicians
and their inter-observer variation value. This might indicate that the inter-observer
variation (or, at least, a substantial part of it) comes not from the fact that an observer
makes a mistake while segmenting a scan, but from the fundamental ambiguity of the
segmentation task. Given that the images do not perfectly and unambiguously visualize
the boundaries of regions of interest, there is a lack of a golden standard. In other words,
more than one segmentation is correct, at least according to different observers.

1.3.5. OBSERVER VARIATION-AWARE MEDICAL IMAGE SEGMENTATION

The most common approach to applying deep learning to medical image segmentation is
done under the assumption that there is only one correct way of segmenting a scan, and
therefore, a standard neural network architecture for segmentation (such as the U-Net)
produces one segmentation prediction for an input scan. However, for a better acceptance
of deep learning-based segmentation methods (in general, any automatic segmentation
methods) and their wider integration in clinical practice, it might be useful to have
an algorithm that imitates a group of humans segmenting a scan, namely, producing
multiple possible segmentations which represents variation in the segmentations made
by different clinicians. More generally, in this thesis, we call different plausible ways of
segmenting a scan different segmentation styles (the same concept is used in [55]), and
one segmentation style refers to not necessarily one clinician, but a group of clinicians
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Figure 1.3.2. An example of three different, hypothetically possible styles of prostate segmenta-
tion on an MRI scan slice. The image data and the average segmentation variant are taken from
the prostate segmentation task of the Medical Segmentation Decathlon [56], over- and under-
segmentation variants are simulated. In this example, the under-segmentation variant is fully
contained in the average one, which, in turn, is fully contained in the over-segmentation variant.

which perform the segmentation in the same way. The segmentation style concept used
in this thesis can be seen as a more informal way of referring to inter-observer variation.
A simple example of different styles of segmentation is to over- and under-segment an
organ. This is visually demonstrated for prostate segmentation in Figure 1.3.2. Some
clinicians might have a preference for one of these specific styles rather than having one
style of segmenting that would represent an average segmentation [53]. In this example,
if a deep learning model can produce three segmentation predictions corresponding
to these segmentation styles, potentially, there is a higher chance that a clinician finds
at least one of the automatically produced segmentations acceptable for clinical usage
because it resembles his or her way of segmenting the scan, reducing the need for manual
re-annotations.

In this thesis, we mainly consider the following data availability scenario. A dataset
likely contains scans segmented by different observers and thereby represents different
segmentation styles. However, the information about the observers, or the segmentation
styles, is not necessarily readily available. We see such situations appearing in clinical
practice, for instance, at the Amsterdam University Medical Centers (location AMC).
Visually, the considered scenario is shown in Figure 1.3.3a.

1.3.6. DATA VARIATION TAKEN INTO ACCOUNT IN DEEP LEARNING

Some works acknowledged the problem of data variation and attempted to take it into
account. In, e.g., [57, 58] datasets with multiple segmentations per scan are considered,
but the assumption is that some observers or particular segmentations are better than
others. The goal is then to find erroneous reference segmentations or fuse multiple seg-
mentations together, diminishing the negative effects of individual mistakes. While such
techniques might be useful for data quality improvement, this problem is fundamentally
different from our main focus.
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(a) The considered data availability scenario. The (b) An envisioned usage of an automatic seg-
dataset contains multiple scans (depicted by squares), mentation approach. Given a medical scan as
segmented by six different observers, but only by one input, the approach is supposed to produce
observer per scan. Presumably, among the observers multiple segmentation variants, each corre-
there are some specific styles of segmenting, however, sponding to a specific segmentation style.

the mapping between scans and styles is not necessarily
known. In this example, the dataset has three distinct
segmentation styles (shown by different colors). For sim-
plicity, it is not shown here that the observers might agree
on how to segment one part of the region of interest
while disagreeing on how to segment the remainder of it.

Figure 1.3.3. Considered data availability scenario (a) and automatic segmentation model employ-
ment (b).

A different direction of research related to this topic is usually called uncertainty
quantification [59, 60]. The goal is to perform segmentation in a probabilistic manner,
i.e., in addition to performing segmentation, producing information about its uncertainty.
Knowing the uncertainty of segmentation can be used in practical medical applications,
for instance, by defining an acceptable level of certainty and using only those segmenta-
tions/parts of the segmentation that the model is sure enough about. Proposed methods
of obtaining prediction uncertainty include dropout [60], the ensemble of multiple mod-
els [61], and using an auxiliary network to estimate predictive uncertainty of the main
segmentation model [62]. While a significant part of uncertainty is attributed to inter-
and intra-observer variation, the uncertainty estimation problem is different from the
task of explicitly capturing and exploiting observer variation.

One of the first works, which aims at capturing and taking into account observer
variation for making segmentation predictions, is the probabilistic U-Net [63]. Similar to
variational autoencoders [64], given an input scan, its component called a prior network
produces the parameters of a multidimensional Gaussian distribution, samples from
which are then used by a U-Net to produce a segmentation. Different samples from the
distribution lead to different produced segmentations. This way, the probabilistic U-Net
approach can produce a wide range of potentially feasible segmentations with respect to
the probability of each segmentation variant. A similar but more advanced and better-
performing approach was later proposed in [55]. However, such methods do not map a
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segmentation to a particular segmentation style. Moreover, in the original probabilistic
U-Net publication [63], the used dataset contained multiple (four) segmentations for each
input image. We believe that the creation of such a dataset might take a lot of additional
effort from clinical experts outside routine medical practice. Being able to directly work
with clinical data is much more practically relevant in most real-world cases.

1.3.7. EXPLICITLY CAPTURING AND EXPLOITING OBSERVER VARIATION FOR
SEGMENTATION

We hypothesized that for wider adoption of deep learning methods in clinical practice,
not only a spectrum of possible segmentations needs to be produced, but it should be
possible to connect the automatically created segmentations to the observers or group
of observers in the dataset (in other words, a segmentation style). We believe such an
approach has large potential value, yet it is missing in the current literature. Therefore, we
study whether it is possible to develop such a method (which might include not only deep
learning models for image segmentation but also additional optimization components if
necessary).

RESEARCH QUESTION 5

Can deep learning and optimization techniques be combined to establish a novel
medical image segmentation approach that is capable of explicitly capturing and
exploiting observer variation in the dataset?

Potentially, if a deep neural network is trained on a subset of data segmented in
one segmentation style, it can produce segmentations resembling that particular style.
Thereafter, a collection of such models, each trained on its specific subset, can produce
various segmentations, each corresponding to a particular style of segmenting. The
challenging part of implementing such an approach is that the observers are not always
listed in real clinical datasets. Moreover, there might be many observers, but only several
groups of them may have distinctive styles of segmenting. To overcome both of these
problems, we propose to consider automatically partitioning the dataset into subsets.
We formulate then an optimization problem of which the goal is to obtain a dataset
partitioning such that networks trained on the data subsets can produce diverse and
high-quality segmentations. During the inference stage (ultimately, using trained models
in practice), we can obtain multiple segmentations by utilizing each of the trained models.
The envisioned usage is shown in Figure 1.3.3b. To evaluate the quality of a produced set
of segmentations, we simulate the situation where a clinician sees multiple segmentations
and selects the preferred one. In other words, we select the best segmentation among the
produced segmentation variants for each scan according to the reference segmentation
mask and calculate one or multiple quality metrics as described in Section 1.3.2. To avoid
overfitting, this should be done on a different set of scans than the training set.

This dataset partitioning problem is naturally an expensive combinatorial optimiza-
tion problem. In our studies, we use our own developed surrogate-assisted EA (CS-
SAGOMEA) to solve this optimization problem, as it was shown to exhibit state-of-the-art
performance in Chapters 4 and 5.
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We note that the proposed method is, in general, capable of capturing and explicitly
exploiting variation of any source, e.g., scans acquired by different scanning systems.
In this thesis, we focus on the inter-observer variation. First, we use artificially created
variations in order to demonstrate that the proposed approach is in principle capable of
capturing different segmentation styles and producing multiple segmentation accord-
ingly. Simulated variations are similar to the various segmentation styles as presented
in Figure 1.3.2. For these experiments, we use the Prostate Segmentation Dataset from
Medical Segmentation Decathlon [56]. This is studied and discussed in Chapter 7. The
contents of this chapter are based on the following publication:

A. Dushatskiy, A. M. Mendrik, P. A. N. Bosman, and T. Alderliesten. “Observer
variation-aware medical image segmentation by combining deep learning and
surrogate-assisted genetic algorithms”. In: Medical Imaging 2020: Image Processing.
Vol. 11313. SPIE. 2020, pp. 296-306.

One important application of automatic segmentation methods is their integration
into automatic treatment planning systems for radiation oncology. One such system is
BRachytherapy via artificially Intelligent GOMEA-Heuristic based Treatment planning
(BRIGHT) [13]: a system for automatically finding treatment plans currently used for
prostate brachytherapy. Brachytherapy is a form of internal radiation treatment that
entails the insertion of catheters (implants) in the prostate for dose delivery purposes via
aradioactive source that is guided through these catheters. The problem of treatment
planning is formulated in BRIGHT as a bi-objective optimization problem. A state-of-the-
art multi-objective optimization algorithm is used to solve the problem: MO-RV-GOMEA
[65]. It was shown that this automatic approach is capable of finding better plans than
manual plan adjustment performed by experienced clinicians [66]. An important feature
of the used optimization algorithm is its speed-up using GPUs [12] which allows finding
treatment plans fast, a crucial requirement for clinical usage. This algorithm has been
used in clinical practice in the Amsterdam UMC, location AMC since 2020 [13]. To calcu-
late and optimize treatment planning objectives, BRIGHT needs organ segmentations.
Currently, these segmentations are made manually. However, potentially it might be
possible to automate this part of the treatment planning pipeline as well by segmenting
organs automatically. Moreover, multiple automatically produced segmentations might
be used to ensure the robustness of the resulting treatment plans to the known observer
variation in the organ contours, similar to already conducted studies of incorporating
robustness into BRIGHT [67]. Verifying and potentially further improving the robustness
of automatic treatment planning might be important for even wider clinical adoption.

While the study conducted in Chapter 7 is a necessary proof-of-principle of the
proposed segmentation method, ultimately we are interested in integrating automatic
segmentation in the treatment planning pipeline. This requires addressing the question
of how our proposed algorithm performs on the prostate segmentation task with a real
clinical dataset used for brachytherapy treatment.



1.3. MEDICAL IMAGE SEGMENTATION 25

RESEARCH QUESTION 6

Is the proposed observer variation-aware medical image segmentation method
capable of producing high-quality and diverse segmentation variants on a real
clinical dataset?

In Chapter 8, we use areal clinical dataset (CT scans with inserted catheters) in order to
demonstrate that the proposed approach is capable of capturing different segmentation
styles and producing segmentations accordingly in a real-world scenario. A dataset of
CT scans that were acquired and used for brachytherapy treatment in the Mount Vernon
Cancer Centre is used in this study. The contents of this chapter are based on the following
publication:

A. Dushatskiy, G. Lowe, P. A. N. Bosman, and T. Alderliesten. “Data variation-
aware medical image segmentation”. In: Medical Imaging 2022: Image Processing.
Vol. 12032. SPIE. 2022, pp. 759-765.
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PARAMETERLESS GENE-POOL
OPTIMAL MIXING EVOLUTIONARY
ALGORITHMS

When it comes to solving optimization problems with evolutionary algorithms (EAs) in a
reliable and scalable manner, detecting and exploiting linkage information, i.e., depen-
dencies between variables, can be key. In this chapter, we present the latest version of,
and propose substantial enhancements to, the Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA): an EA explicitly designed to estimate and exploit linkage information.
We begin by performing a large-scale search over GOMEA design choices, to understand
what matters most and obtain a generally best-performing version of the algorithm. Next,
we introduce a novel version of GOMEA, called CGOMEA, where linkage-based variation
is further improved by filtering solution mating based on conditional dependencies. We
compare our latest version of GOMEA, the newly introduced CGOMEA, and another con-
tending linkage-aware EA DSMGA-II in an extensive experimental evaluation, involving
a benchmark set of 9 black-box problems that can only be solved efficiently if their inher-
ent dependency structure is unveiled and exploited. Finally, in an attempt to make EAs
more usable and resilient to parameter choices, we investigate the performance of different
automatic population management schemes for GOMEA and CGOMEA, de facto making
the EAs parameterless. Our results show that a new version of GOMEA and CGOMEA
significantly outperform the original GOMEA and DSMGA-II on most problems, setting a
new state of the art for the field.

The contents of this chapter are based on the following publication: A. Dushatskiy, M. Virgolin, A. Bouter,
D. Thierens, and P. A. N. Bosman. “Parameterless Gene-pool Optimal Mixing Evolutionary Algorithms”. In:
Evolutionary Computation (June 2023), pp. 1-28.
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2.1. INTRODUCTION

Key to the success of any optimization algorithm in terms of search effectiveness and
efficiency, is the ability to exploit structural features of the problem being solved. To
this, Evolutionary Algorithms (EAs) are no exception. For EAs, it is predominantly the
variation operators that need to be favorably configured to exploit structural features.
One structural feature that is of particular importance is variable dependence. Not only
does variable dependence have a direct influence on the inherent difficulty of a problem,
not being able to exploit such dependency information may lead to very inefficient
optimization performance. If two variables are completely independent in a problem,
this problem can be solved by considering the variables separately. Conversely, if two
variables are strongly dependent, joint settings of these variables need to be considered
in order to find the optimal solution. In EAs, such dependencies (between the variables
that are directly manipulated by the EA, i.e., the genes), are also known as linkages. It
has been long known that groups of variables that exhibit such strong linkages need to
be treated, with high probability, in a joint fashion by the variation operator in order for
an EA to be an efficient solver [1, 2]. Especially in the domain of discrete variables that
constitute a Cartesian search space, which is also the domain that this chapter pertains
to, many EAs employ a mixing operator that exchanges parts of solutions. Ensuring this
mixing operator is linkage-friendly, i.e., has a high probability of exchanging groups of
genes that are highly dependent, can make the difference between obtaining efficient,
i.e., low-polynomial, and inefficient, i.e., exponential, scale-up of the required running
time to solve the problem [1, 2].

The relevance and importance of linkage processing are even more prominent when
taking a black-box perspective on optimization. In Black-Box Optimization (BBO), there
is very little to no information available on the problem being solved. Metaheuristics,
among which EAs, are commonly formulated and studied in this context, with the notion
of designing a powerful general problem solver in mind. Certainly, the no-free-lunch
theorem assures us, that considering all possible optimization problems, no such solver
exists [3]. However, a generally valid assumption can be made that the types of opti-
mization problems we are interested in, are not completely random, but have some sort
of exploitable structure. It is the exploitation of this structure that governs whether or
not optimization will proceed effectively and efficiently. This then brings us back to the
linkage problem, for it is assumed that the structure of the typical optimization problems
we are interested in is nontrivial, i.e., its variables are not all fully independent. For this
reason, we have no guarantee that a simple genetic algorithm with uniform crossover,
or any static crossover operator for that matter, will effectively exploit the structure of
the problem. Thus, their use comes with the risk of exponential scale-up of the required
runtime on problems that are polynomial-time solvable [1]. To avoid this, linkage infor-
mation needs to be exploited properly. In a BBO setting, however, such information is not
readily available, and thus must be determined otherwise, using previously performed
solution-quality, i.e., fitness, evaluations. This process is commonly known as linkage
learning, which is a key concept in this chapter.

An argument can be made at this point that the added complexity and effort of
performing linkage learning is superfluous because a true BBO scenario is not frequently
encountered when solving real-world problems. A need for BBO may still very well
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surface, however, even when efficient local search heuristics are available for a particular
problem. It is well-known that combining EAs and local search is highly effective for
many problems [4]. The reason for this is that by applying local search to every solution, a
second search problem can be seen to exist in the space of local optima of the optimization
problem. Running a local search heuristic multiple times, i.e., a random restart heuristic,
then can effectively be seen as random search in the space of local optima. This space
may be searched more efficiently using an EA, which can be obtained by applying local
search to every solution that the EA generates. Even when we understand very well the
problem is solved to the point where we can design efficient local search algorithms, the
nature of the search space composed of the local optima may still be extremely hard to
analyze. In that space, then, there is again a need for powerful BBO algorithms.

The linkage problem has already been identified a long time ago, and much work on
tackling this problem has previously been done, often presented simultaneously with
anew EA, see e.g., [5, 6]. Much of this work has been toward building more complex
models that are capable of capturing problem structure in more intricate detail, up to
the relatively complex task of estimating entire (factorized) probability distributions,
as is done in Estimation-of-Distribution Algorithms (EDAs) [7]. Although ultimately
capable of exploiting problem structure properly, the overhead involved with estimating
actual probabilities surpasses the need to determine the linkage information that needs
to be effectively exploited. Importantly, such overhead becomes more significant on
large-scale problems causing scalability issues. This chapter focuses specifically on the
linkage hurdle on the road to powerful BBO algorithms. In particular, we introduce the
new version of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) that
seamlessly integrates the traditionally separate operators of selection and variation in
EAs in order to get the most out of available linkage information. Moreover, a generalized
model of linkage information allows linkage information to be processed at more than
one level, e.g. processing a hierarchy of weak and strong dependencies.

The main contribution of this chapter can be summarized as a presentation of the
parameterless EA showing state-of-the-art performance in the field of discrete BBO. This
chapter joins all algorithmic information from our previous work that is needed to make
this chapter self-contained and represent the current state-of-the-art in the GOMEA
research line.

We extend our previously published work on GOMEA by a more extensive experimen-
tal analysis on more optimization problems and larger problem sizes, testing the impact
of various possible design choices such as local search operators on GOMEA, and, impor-
tantly, we propose a novel variation operator which exploits conditional dependencies
between sets of variables and is called Conditional GOM (CGOM). Finally, we demon-
strate the practical applicability of GOMEA by designing parameterless modifications of
it. The performance of the new and the old versions of GOMEA is shown in comparison
with other EAs, including, the recent version of DSMGA-II [8], and the Parameter-less
Population Pyramid (P3) [9]. The obtained GOMEA modification demonstrates better
performance than previously published versions of it. Moreover, CGOM further improves
GOMEA performance on most considered problems.

The remainder of this chapter is organized as follows. In Section 2.2 we discuss related
work. In Section 2.3 we outline the general working scheme of GOMEA and present design
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options for its most important components in more detail. Also, we present GOMEA
instances without the population size parameter and describe schemes to run GOMEA in
a population size-free fashion. Then, we present our benchmark problems and the design
of experiments in Section 2.4, followed by the results in Section 2.5. This chapter ends
with a discussion in Section 2.6 and conclusions in Section 2.7.

2.2. FROM GENETIC ALGORITHMS TO EDAS AND BACK AGAIN

It was already hypothesized by John Holland himself that the simple Genetic Algorithm
succeeds at optimization if it can proliferate important building blocks [10], i.e., partially
defined solutions for which it holds that, when averaging over all the solutions that it is
part of in a population, the fitness is better than the average fitness of the population.

The key is the proper mixing of these partial solutions, which means disrupting them
as little as possible (i.e., copying them entirely from one solution to the next) and not
copying other parts of the solution that they are (semi)independent of. If these important
partial solutions have a large probability of being destroyed during variation, for instance
by using uniform crossover, the population size that is required to find the optimum may
grow exponentially with the problem size. Conversely, polynomial population size growth
can be achieved if the partial solutions are properly mixed. A well-known example of this
is represented by the sum of additively decomposable, non-overlapping, deceptive trap
functions [11].

Since then, there has been a dedicated research line in the field of evolutionary com-
putation to design variation operators that are capable of automatically detecting the
presence of important building blocks, and of reconfiguring the way in which variation
proceeds to ensure that building blocks are mixed well and disrupted as little as possible.
The first family of EAs along this line was the messy genetic algorithm family [12]. Algo-
rithms in this family allowed genes to be re-ordered by explicitly encoding their location.
Although eventual algorithms were able to avoid exponential scale-up, the overhead of
re-ordering genes was still substantial and lacked explanatory statistical underpinning.

For this reason, researchers started looking into probabilistic approaches that were
capable of explicitly computing dependencies between problem variables by estimating
probability distributions over them. The population can be seen as a database that
represents the type of solutions that are desired, and, over time, through selection, gets
pushed toward the optimum. Selecting the better solutions makes dependencies stand
out, since on average, the solutions that contain important building blocks will have a
better fitness than those solutions that do not. By estimating a probability distribution
from the population, these dependencies can be explicitly modeled in a probabilistic
fashion. Moreover, by sampling new solutions from the estimated distribution, these
dependencies are respected. Because the process of sampling generates a new database
that has the same statistical properties as the original database (to the extent to which
these properties were modeled in the probability distribution), this approach can be
considered as mixing solutions at a population level rather than at the two-parent level as
was before typically reminiscent of genetic algorithms. This type of algorithm is known
as the Estimation-of-Distribution Algorithm (EDA) [7, 13]. Effectively and efficiently
estimating probability distributions that capture higher-order dependencies was still
key however to avoid exponential scale-up on problems with non-trivial dependency
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structure. Initial attempts that used either univariately factorized probability distributions
(e.g., PBIL [14], and cGA [15]) that modeled every variable to be independent of every other
variable, or bivariately factorized distributions that considered variable dependencies
of at most order two (e.g., MIMIC [16], COMIT [17], and BMDA [18]) still fail to obtain
polynomial scale-up on the additively decomposable deceptive trap functions. Low-order
polynomial scale-up is only obtained by EDAs that model higher-order dependencies
(e.g., ECGA [19], LFDA [20], and BOA [2]).

The most advanced EDA in this line is commonly accepted to be the hierarchical
Bayesian Optimization Algorithm (hBOA) [5]. Both its predecessor BOA and hBOA it-
self estimate a Bayesian network every generation using a greedy learning procedure.
hBOA, however, has the ability to store the parameters in this network more efficiently by
storing only those combinations of values for dependent variables that actually appear
in the population, thereby preventing the need to generate huge probability tables that
require the explicit enumeration of all possible value combinations of a set of dependent
variables. This, combined with a mechanism (restricted tournament selection) that pro-
motes population diversity, allowed hBOA to be the only EDA capable of solving problems
with hierarchical dependency structures while requiring only low-order polynomial-time
scale-up of the population size and number of function evaluations. Although to a large
extent now satisfactorily solving the linkage problem and providing a solid, statistically
sound basis for doing so, the overhead required by hBOA is still substantial, requiring
asymptotically @ (n¢3) time per generation where ¢ is the number of problem variables
and n the population size. Moreover, the number of generations required to solve a
problem is typically in the same order as a properly configured GA requires, which is
typically in the order of ©(v/¢) [21], the proofs for different EDAs, e.g., UMDA [22] are
provided in [23].

Although a solid approach to tackling the linkage problem, estimating entire probabil-
ity distributions comes with the necessity to estimate not only a dependency structure
but also to estimate parameters (e.g., actual probabilities). Moreover, in order to decide
what underlying dependency structure is a good one, i.e., not missing key dependencies
and not overly complex, quality-of-fit measures need to be computed that decide when to
stop the greedy learning approach that iteratively increases the complexity of the underly-
ing dependency structure. These aspects are not necessarily important for tackling the
linkage problem, because for that it would suffice to know which variables are (strongly)
dependent on which other variables. The joint probabilities of entire building blocks
do not need to be computed explicitly, as they are stored implicitly in the population.
Mixing the information stored in the population therefore automatically follows these
probabilities. These foundations form the basis of the GOMEA framework. GOMEA was
first introduced in 2011 [6], posed as a broadened scope of the idea behind the original
Linkage Tree Genetic Algorithm (LTGA) introduced in 2010 [24]. LTGA was one of the first
algorithms to depart from the EDA principle of estimating entire probability distributions,
and thus essentially going back to the notion of genetic algorithm, but still using similar
statistical concepts as used in EDAs to detect dependencies. Ultimately this lead to a
model-building complexity of an order of magnitude faster (@ (n¢?)) than hBOA, while
being able to capture and exploit both low-order dependencies as well as high-order
dependencies at the same time. Moreover, LTGA requires only a handful of generations to
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find the optimal solution due to much more extensive model exploitation during the vari-
ation, further reducing the overall required model-building complexity. As later versions
of LTGA, including the one presented in this chapter, are seen as instances of the GOMEA
framework, details will be described in subsequent sections. Besides LTGA, which we will
from now refer to as LT-GOMEA, other non-EDA algorithms that build models to model
and exploit linkage information have been proposed lately [25, 8, 9]. These algorithms
that can more generally be described as model-based EAs have also been successful at
outperforming hBOA.

2.3. THE GOMEA FAMILY OF EVOLUTIONARY ALGORITHMS

The family of Gene-pool Optimal Mixing Evolutionary Algorithms (GOMEAs) has been
proven to show impressive performance on benchmarks and, importantly, real-world
problems. For instance, Real-Valued Multi-Objective GOMEA (RV-MO-GOMEA) [26] is
now used for brachytherapy treatment planning optimization. This application received
a Silver Humies award [27] which highlights its practical value and outstanding, better-
than-human performance. Another example is the adaptation of GOMEA for Genetic
Programming (GP-GOMEA) [28]. Beside showing better performance than alternative
GP algorithms on classical machine learning benchmarks, GP-GOMEA has been also
successfully applied to a real-world medical problem, namely, a radiotherapy dose recon-
struction [29]. This application was noted with a Silver Humies award in 2021. These two
examples show the potential of the GOMEA family of algorithms.

The family of GOMEAs is actually a subset of the OMEA family [6]. Another subset is
the Recombinative OMEA (ROMEA) [24] family, whereby the mixing of solutions occurs
only between 2 parent solutions rather than between all solutions in the population as
is the case for GOMEA. When tested on various problems, however, GOMEA was found
to have the best performance as long as the models capturing linkage information were
adequate [6]. For this reason, we focus particularly on GOMEA here. The graphical
overview of the GOMEA family of algorithms is shown in Figure 2.3.1.

The main idea behind the OMEA framework is that linkages are identified using sets
of variable indices (see Section 2.3.1), which we shall call linkage sets. These individual
linkage sets are then explicitly exploited, in contrast to classical GAs and EDAs. In the
latter, entire solutions are generated and subsequently evaluated. The main idea of OMEA
however is to take values only for a linkage subset from a donor solution and try these
values out in another solution to see if it improves. It is this direct notion of acceptance
that makes the success of the mixing operation independent of the effect of all other
mixing events that may happen when constructing an entire new solution first. Because
this makes each mixing event an optimal decision, unhampered by potential collateral
noise, and because when all linkage sets are correctly identified, mixing essentially does
not make any mistakes this way (unless unhelpful donor solutions are selected), this
approach to variation was called Optimal Mixing (OM).

GOMEAs are a subclass of EAs and as such are a form of population-based search. The
most traditional approach to population management is to have a population of a fixed
size. We will discuss what GOMEA looks like with this approach, as well as with different
approaches to population management that no longer require the specification of a value
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Figure 2.3.1. The set diagram of the key algorithms in the OMEA family of algorithms. ROMEA
refers to Recombinative OMEA; (MO-) GOMEA refers to (Multi-Objective) discrete GOMEA; (MO-
JRV-GOMEA refers to (Multi-Objective) Real-Valued GOMEA; (MO-)GP-GOMEA refers to (Multi-
Objective) GOMEA for Genetic Programming.

for the population size parameter. The latter is especially of high practical value. In the
remainder of this section, we provide more details on the various components of GOMEA.

2.3.1. FAMILY OF SUBSETS (FOS) AS A LINKAGE MODEL

The GOMEA class of EAs focuses on modeling linkage by explicitly identifying sets of
variables to be treated jointly in the variation process. Moreover, such linkage sets are
allowed to overlap. Specifically, any subset of the set of all variables may be identified
within the linkage model. This may be defined as follows. Let £ ={0,1,...,¢ — 1} be the
set of £ unique identifiers of variables that the EA processes, then the linkage model in
GOMEA is a subset of the powerset of £. Such a set is commonly called a family-of-
subsets in mathematics. We therefore call the linkage model in GOMEA the family-of-
subsets, or FOS, model, and denote it by &, i.e.,:

F < p(D).

LINKAGE TREE (LT) MODEL

Though different ways to configure a FOS model by learning linkage from the the popula-
tion were introduced, we focus here on a so-called Linkage Tree (LT) model which demon-
strated efficiency in solving various combinatorial optimization problems [24]. An [T is a
binary tree with 2¢ — 1 vertices. LT leaves are singletons of problem variables, the root of
an LT is the set of all problem variables L, and all other vertices are variables subsets F!
which are unions of disjoint subsets of children k, j of vertex i: Fl=FIUF* FinFk=g.

SIMILARITY MEASURES

An IT can be built in a bottom-up fashion using hierarchical clustering [30]: starting from
singletons, the most similar subsets of variables are merged until a subset containing
all variables is obtained (a tree root). A similarity between two subsets of variables F i
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Fl is defined as the average similarity measure of all pairs of variables (X,Y) where
X € F', Y € FI. Different similarity measures can be used [31]. Here, we consider two
of them which are most commonly used (e.g., in [32, 33, 9]), namely, standard Mutual
Information (MI) and Normalized Mutual Information (NMI). For two variables, X, Y MI
and NMI are defined as:

MI(X,Y) =H(X) +H(Y)-H(X, Y).
NMI(X, Y) =MI(X, Y)/H(X,Y).

where H(X) is information entropy, defined as

HX)= ) -P(X=xlogP(X = x)),

x€Qx

where Qy is the set of X values.

LINKAGE TREE FILTERING

It was shown in [34] that a full LT model (with 2¢ — 1 vertices) may have redundant subsets
which can be filtered out to increase mixing efficiency. Here we consider one particular
case of filtering which was successfully applied in [9]. When two subsets F J and F¥ are
merged into a subset F', it may happen, that the similarity between them is maximal (one
in case of MI or NMI), which means that in a population, values of variables from one
subset can perfectly predict values of variables from another subset. We suppose that
there is no merit in using these subsets in mixing separately, as it may disrupt this pattern
and use additional unnecessary evaluations. Thus, keeping subsets F/ and F¥ in a FOS
is not reasonable, and it is sufficient to keep only the parent subset F’. In practice, to
deal with possible numerical errors in similarity measure calculation, the filtering rule
is invoked if the similarity measure value is above 1 — € threshold (we use £ = 107°). Let
S(X,Y) be the similarity measure. After the filtering rule is applied, the subsets of an LT
model satisfy the description:

vF FI Ffe # st F' = F/ U F¥,

S(F/,F¥y <1-e. @
2.3.2. GENE-POOL OPTIMAL MIXING (GOM)
Variation in GOMEA is guided by the contents of the FOS model, in order to prevent
disrupting the linkage information it represents. To do so, an operator called Gene-pool
Optimal Mixing (GOM) is used that integrates selection and variation and has many
similarities with greedy search algorithms. The GOM operator is described in pseudo-
code in Algorithm 2.3.1.

GOM is applied to a single solution and outputs a single solution that is never worse
than the input solution. To improve a solution, GOM loops over the contents of the FOS
model. We consider two ways of iterating over FOS elements: in random order [24] and
ascending order of subsets size (|F i]) [9]. For each linkage subset F i GOM attempts to
overwrite the values of the variables in F! of the solution in consideration, with values
from a donor solution that is chosen at random from the population. If this overwriting
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action does not cause the fitness of the solution to become worse, the copy action is
accepted. Otherwise, the donor material is rejected and the action is undone. To allow
traversing of fitness plateaus, changes that lead to the same fitness are also accepted if the
solution is not the elitist one (having the best fitness among all so far evaluated solutions).
Note that a FOS subset containing all variables, i.e., the root of the LT model, is not used
in GOM, as it implies replacing an entire solution rather than changing only a part of it.

EXHAUSTIVE DONOR SEARCH (EDS)

When population diversity becomes low, it is likely that a randomly selected donor has
the same genes F' as the current solution, therefore, no new genotype is obtained. To
deal with this situation, we can continue trying different donors until one is found in
which genes F’ are different from the current solution is found. This modification is
called Exhaustive Donor Search (EDS), following [9].

FORCED IMPROVEMENTS (FI)

If no subset F’ leads to changes in the solution undergoing GOM, the so-called forced
improvements (FI) phase can (optionally) start. Originally, the FI was proposed in [6] to
deal with convergence issues in MAXCUT. Namely, it can happen that the population
starts to drift in fitness plateaus, i.e., solutions keep changing without improving. This lack
of convergence makes it unlikely for further improvements to be discovered. Therefore,
FI is specifically designed to steer the search towards converging to the elitist solution.
Note that for simplicity only one elitist (i.e., best) solution is stored if there are multiple
solutions with equally good fitness values. The FI phase works like the normal GOM phase,
except for the fact that the donor solution is always set to be the elitist solution. Moreover,
to further ensure convergence, changes that lead to equal fitness are now rejected (one
can no longer drift in fitness plateaus). Only if the solution strictly improves in fitness, the
overwrite action is accepted. To prevent the FI phase to reduce diversity too fast, the FI
phase is stopped as soon as an improvement happens. Finally, if a solution could not be
improved in the FI phase, it is overwritten by the elitist solution. This action decreases
diversity in the population, but on the other hand might improve convergence.

2.3.3. CONDITIONAL GENE-POOL OPTIMAL MIXING (CGOM)
By design, the GOM operator copies genes from a donor solution independently for each
FOS element. Therefore, dependencies between FOS elements are not taken into account,
i.e., when GOM is applied to a FOS element, any (weak) dependencies of variables inside
the FOS element to variables outside the FOS element are not considered which might lead
to suboptimal linkage usage because it may well be that although interactions between
variables are of low order, they may still not be defined in terms of mutually exclusive
subsets. I.e., consider the NK-landscapes [35] with random subsets of variables for the
subfunctions To alleviate this limitation, we consider a new gene-pool optimal mixing
operator - the Conditional GOM (CGOM). CGOM is closely related and inspired by recently
introduced conditional linkage models for the real-valued GOMEA (RV-GOMEA) [36].
However, in RV-GOMEA conditional dependencies were not considered together with a
hierarchical model like the LT which we do have for the first time.

CGOM works similarly to GOM but takes into account what gene values are being
processed to choose suitable donor solutions. If the variables contained in a FOS subset
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Figure 2.3.2. A minimal CGOM working example. Fitness function f is a function of 5 variables
and can be decomposed into two subfunctions: f(x1,x2, X3, X4,Xx5) = f1(x1, X2, X3) + f2(x3, X4, X5).
This is shown by the different colors of the edges. Suppose that after filtering, the LT FOS contains
two elements: {x1, X2, X3} and {x4, x5}. Variables from the current FOS element are colored in green;
variables that are dependent on it are colored in blue; variables that are dependent on it and are
already used (i.e., are taken into account by CGOM) are colored in yellow. Green-colored genes are
pooled to offspring from only those donors which have yellow-colored genes equal to what is found
in the current offspring.

F' are weakly dependent on variables not in F, CGOM takes this into account during
mixing. Specifically, each FOS subset can be made conditionally dependent on a group of
other variables under the condition that they were already used in the current iteration of
GOM.

Suppose some genes have already been considered during mixing, i.e., for the current
application of GOM to a given solution, these variables have been subjected to GOM
before (they were in a FOS element considered earlier). We store these genes in a set
U. When a new FOS element F is considered, we compute (explained below) the set
of variables V s.t. 1) VN F’ = @, 2) all variables in V depend on the variables in F’ (we
refer to such set of variables as G;), and 3) V < U (i.e., they were considered before). Since
variables from V and F? (weakly) depend on each other, we enforce that selecting which
gene configuration for F’ is considered should be conditioned on V. This is achieved by
considering as donor solutions only those which have the same genes for variables in V'
as the current solution undergoing CGOM has.

A minimal CGOM working example is shown in Figure 2.3.2. The CGOM differences
as compared to GOM in terms of pseudocode are highlighted in Algorithm 2.3.1.

In the BBO paradigm, we have no a priori information on the dependence structure
between variables. However, similar to FOS learning, we can estimate a notion of variable
dependence based on the state of the population and the similarity measure (e.g., MI
or NMI). Broadly speaking, we say that a FOS element F’ is dependent on a variable X
(X ¢ F') if the average pairwise similarity measure S(x, y) between the variables in F i

and X (ﬁ Y jeri S(X, ) is relatively large compared to the average similarity measure
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between the variables only in F? on the one hand and all the variables that do not belong
1

to F' on the other hand, i.e. all measures T Y yeri S(x, y) for x ¢ Fil.

Particularly, we use a threshold to detect such dependencies: a FOS element F’ is con-
sidered to have a dependency with variable j if the average pairwise similarity measure
between j and variable in F' is greater than AM where M is the largest average pairwise
similarity score between variables from F’ and variables not belonging to F’. This depen-
dencies learning procedure is described in pseudocode in the function learnDependencies
of Algorithm 2.3.3. The Hyperparameter A is tunable, its range of possible values is [0, 1].
The smaller the value of A, the larger the number of estimated dependencies. In other
words, small A values will result in high recall (we are unlikely to miss dependencies but
might have many false positives), while large A values will improve precision (we might
miss many dependencies but will have few small positives).

2.3.4. GOMEA WITH A TRADITIONAL, SINGLE POPULATION

The initial population of n solutions is initialized randomly. After random solutions are
generated, a local search algorithm can be applied to efficiently move them to a local
optimum.

LOCAL SEARCH

We consider two local search algorithms here: simple Single-Iteration Hill Climber (SIHC)
and Exhaustive Hill Climber (EHC). STHC (also called first-improvement local search in
literature [37] works by flipping bits of a solution in random order and greedily accepting
improving changes. EHC (also called best-improvement local search [37]) is STHC repeated
multiple times until no improvements are found in a single bit flipping iteration over all
variables. Both hill climber variants were shown to be efficient components of advanced
EAs, for instance, STHC was used in [25], and EHC was used in [9]. The pseudocode for
considered Hill Climber algorithms is listed in Algorithm 2.3.2.

TOURNAMENT SELECTION
Each iteration of the main GOMEA loop starts with linkage model learning. GOMEA
does not have a traditional selection phase because GOM already induces selection, by
discarding changes that are detrimental to a solution’s fitness. However, we consider
the option of using tournament selection to select good solutions upon which to learn
the linkage model, as done in [25, 8]. We remark that with this option, the selection is
disregarded after the linkage model is learned, i.e., it is not used to override the population.
After the linkage model is learned, the GOM variation operator is applied to every
solution in the population to generate n offspring solutions. The population is then
completely replaced by the offspring solutions. This main loop runs until the termination
criterion is satisfied, which is naturally triggered when the population converges (i.e.,
all solutions have equal genotypes), but can also include other termination conditions

1 Minimal/Maximal pairwise similarity metrics between variables in F! and a variable x not belonging to it (e.g.,
max, . pi S(x, y)) are very unstable (e.g., prone to just one outlier value), and in many cases would be just 1 (in
case of taking maximum) or 0 in case of taking minimum). Also, then it becomes difficult to rank different
variables as many would have the same value of such metric. The average value is intuitive, easy to use and
less sensitive to outliers.
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Algorithm 2.3.1: GOM and the proposed CGOM operators. Lines in green font
color are used in CGOM only.

Function (C)GOM(s, 2, &, 9, useEDS, useFI):

input :current solution s, population £ (of size n), FOS %, dependency graph ¢,
hyperparameters useEDS, useFI

output:evolved offspring o

b—o<—s // b is a backup solution

changed — false

U9

& —orderFO0S(¥#)// e.g., random permutation of FOS elements F!

forie{0,1,...,|%|-1}do

donorsList = randomPermutation({%y,%,...,%,-1}) // P; is the i-th individual

for j€{0,1,...,n—1}do

U—UuF!

d — donorsList;

if "checkDonor(o,d,%,U) then

| continue

Opi < dpi

if Opi # dpi then

evaluateAndUpdateElitist(o) // get fitness of o, update elitist if
necessary

if (0 # elitist and o.fitness = b.fitness) or (o = elitist and o.fitness > b.fitness) then
bFi «— OFi
changed — true

else
L opi —bpi
| break

if “useEDS then
L break

if useFI and (~changed or 0.NIS>1+log;o(n)) then
L FI(s,Z,¥,useEDS)
// o.NIS is a counter of non-improving GOM iterations for this solution ("No
Improvement Stretches")
if o.fitness < s.fitness then
L o.NIS—o.NIS+1
else
L oNIS—o
return o
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Function FI (s, %, %, useEDS):
input :current solution s, FOS &, dependency graph ¢, hyperparameter useEDS
output:evolved offspring o
b—o<—s// b is a backup solution
changed — false
U—9g
& —orderF0S(¥) // e.g., random permutation of FOS elements Fi
forie{0,1,...,|%|-1}do
U—UuF!
if "checkDonor (o, elitist,%4, U) then
| continue
if Opi # elitistF,- then
Opi — elitistF,-
evaluateAndUpdateElitist (0) // get fitness of o, update elitist if
necessary
if o.fitness > b.fitness then
changed — true
L break

else
L opi = bpi

if “useEDS then
L break

if ~changed then
L o« elitist
return o

Function checkDonor (0,d,%4,U):
input :offspring o, donor d, dependency graph ¥, currently used varaibles set U
output:decision (false/true) if the donor can be used
// 9(v) are variables linked with F!
forpe9(v)nU do

ifop #dp // variable p in o0 and d

then

L return false

return true
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Algorithm 2.3.2: Single-Iteration and Exhaustive Hill Climber algorithms.

Function exhaustiveHillClimber (s):
input :solution s
output:solution s after applied multiple-iterations hill-climber
do
| s, improved — singleIterationHillClimber (s)
while improved
return s

Function singleIterationHillClimber (s):

input :solution s

output:solution s after applied hill-climber, indicator improved (false/true) showing whether the
solution was improved or not

improved — false

fs — evaluate(s)

for i € randomPermutation({0,...,¢—1}) do

s' — copy(s)

s;—s;®1// flipping the i-th gene

fg — evaluate(s’)

if f > fs then

Si<—S’.

fs '_fs’

improved — true

return s, improved

such as a maximum allowed runtime, a maximum number of function evaluations, or
a maximum number of generations. The pseudocode of single-population GOMEA is
provided in Algorithm 2.3.3.

2.3.5. GOING PARAMETERLESS: REMOVING THE NEED TO SET THE POPULA-

TION SIZE

The population size is a crucial parameter for the success of EAs. With model-based EAs
like GOMEA, this is arguably even more so because the linkage model needs sufficient
samples to be learned to achieve a sufficient level of accuracy for the linkage to be reliable.
However, choosing the right population size is problem-dependent, and highly non-trivial.
Methods to scale the population size automatically over time are therefore extremely
useful and convenient in practice. In this chapter, we consider two well-known population
size-free schemes.

First, we consider the Interleaved Multistart Scheme (IMS), which was heavily inspired
by the work by Harik and Lobo on parameterless GAs [38]. The IMS has been shown to
be easy-to-use and can be naturally applied to almost any EA in various optimization
domains ([32, 39, 28], Chapter 4).

The IMS consists of evolving multiple populations simultaneously, in an interleaved
fashion. Its pseudocode with recursive implementation is listed in Algorithm 2.3.4. In
the beginning, a single population is initialized, typically of a very small size (e.g., 2).
After .41)rs generations, a new population is initialized that is larger, and it is advanced
by one generation. This larger population will execute its next generation only after
the smaller population performs .#1ss generations more. When the larger population
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Algorithm 2.3.3: Single population GOMEA. Necessary modifications to use

CGOM instead of GOM are shown in green font color.

Function singlePopulationGOMEA (n, useHC, useEDS, useFI):
input :population size n, hyperparameters useHC, useEDS, useFI
output:evolved population 22
2 — createPopulation(n, useHC)
while —terminationCriterionSatisfied do

L % — doOneGeneration(2?)

return &

Function createPopulation(n, useHC):
input :population size n, hyperparameter useHC
output:population &
forie{0,1,...,n—1}do
2P; — createRandomSolution()
if useHC then
L 2; —hillClimber(2?;) // applying either SIHC or EHC

evaluateAndUpdateElitist(%?;)

return &

Function doOneGeneration(Z?):
input :current population &

output:evolved population &2

& — learnModel(2?)\{{0,1,...,¢ —1}} // creating linkage model (FOS), the set
containing all variables is omitted

¢4 — learnDependencies(%,%?)

forie{0,1,...,n—1} do
O; — GOM(2;, 22, %, useEDS, useFI) // GOM usage can be changed to CGOM

L O; — CGOM(2;, 2, F,4, useEDS, useFI)

P—0
return &

Function learnDependencies (%, 2?):
input :FOS .%, population &
output:dependency graph ¢
@ — (g7
# —calculateSimilarityMatrix(%?) // e.g., Mutual Information (pairwise)
forie{0,1,...,% -1} do
-1
R—1{0}25 .
for j€{0,1,...,¢ —1}\ F' do

1 gl
Rj = 7 Lk=0 Sj.F,Q

M — max(R)

for j€10,1,...,6—1}\F! do
iij>AM>0then

L | 9’ —9iui

return ¢4
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has performed .#)ss generations, an even larger population is initialized, and so on.
Our implementation of the IMS uses an initial population of size 2, exponential growth
whereby each new population is twice the size of the previous, and .#js = 4, as in [38].
Smaller populations are terminated if they have converged, or their average fitness has
become smaller than the average fitness of a larger population. This is because when a
larger population has caught up with the smaller population, the latter will likely converge
sooner, and can therefore be considered obsolete. Additionally, another convergence
criterion such as a maximum allowed number of generations per population can be
implemented.

Algorithm 2.3.4: Interleaved Multistart Scheme (IMS).

Function IMS (useHC, useEDS, useFI):
input :hyperparameters useHC, useEDS, useFI
output:multiple evolved populations Populations
Populations — ]
while ~terminationCriterionSatisfied do
P — createPopulation(Z‘Popul“tmmHl))
Populations.append(2?)
generationalStep(Populations)

return Populations

Function checkTermination (Populations,i):
input :populations Populations, indices first, last of populations subject to generational step
output:decision (false/true) of whether the i-th population (Populations') should be terminated
if converged(Populutionsi) then

| returntrue

for je{i+1,...,|Populations| — 1} do
if averageFitness(Populations’) > averageFitness(Populations') then
| returntrue;

| return false;
Function generationalStep (Populations, first, last) :
input :populations Populations, index i of population subject to termination check
output:decision (false/true) of whether the i-th population should be terminated
Mrys —4// number of generations to do, 4 is the default value though in
principle it is a hyperparameter
for iter — {0,1,..., 4 ps — 1} do
for i € {first,..., last} do
if ﬂPopulationsi. terminated then
L Populations.terminated — checkTermination(Populations, i)

if ﬂPopulationsi. terminated then

L doOneGeneration (Populations')

for i € {first,..., last— 1} do
L generationalStep (Populations, first, i)

The other schemes that we consider are the Parameter-less Population Pyramid (P3)
[9], and its further modification Multiple Insertion Pyramid (P3-MI) [33]. The difference
between the two is explained below and pseudocode is provided in Algorithm 2.3.5.
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P3-MI arranges the population into a pyramidal structure, whereby each level of the
pyramid is a set of solutions (duplicates are not stored). When a new population is created
and, optionally, a local search is applied, all solutions are added to the bottom level of the
pyramid. Then, by using solutions from the current pyramid level as donors, offspring
of the current population are generated. Solutions that are improved by variation are
promoted and entered into one level higher in the pyramid. If there is no next level
in the pyramid, a new one is created. This process continues until the pyramid’s top
level is reached or no solutions are improved during a generation. In every generation,
Linkage models are learned for each pyramid layer independently. Sizes of populations
are determined by a population growth function. The growth function takes the iteration
number as input and produces the population size (i.e., the number of solutions added
to the bottom level of the pyramid). In [9] different population growth functions were
studied. In this chapter, we use a quadratic function (¢?, where ¢ is the iteration, starting
from 1) as a trade-off between speed and number of function evaluations.

The P3 scheme is a special case of P3-MI with a constant growth function with a value
1, in other words, one new solution is created and evolved in each iteration.

Algorithm 2.3.5: P3-MI population management scheme. P3 is a special of
case P3-MI when population growth function is constant and has value 1 for all
iterations.
Function P3MI (useHC, useEDS, useFI):

input :hyperparameters useHC, useEDS, useFI
output:evolved solutions stored in Pyramid (multi-level structure containing sets of solutions)
iter — 0
Pyramid — (@)
while —terminationCriterionSatisfied do
n — growthFunction(iter) // how many solutions added at this iteration

(always one for P3)
2 — createPopulation(n, useHC)
Pyramid® — Pyramid’ U2 // add new solutions to level zero
solutionsAdded — true
currentTopLevel — | Pyramid| — 1
£ —0
while Z < currentTopLevel and solutionsAdded do
F — learnModel(Pyramid?) // learn FOS
F—F\{0,1,...,0-1}}
forie{0,1,...,n-1}do

0; — (C)GOM(Z;, Pyramid?)

if 0;.fitness > 27;.fitness then

if £ = currentTopLevel then
L Pymmidzﬁ.append(%) // initialize new level if necessary

Pyramid<*1 — Pyramid4*1U{0;} // add solution to the next level
solutionsAdded — true

L L—ZL+1

iter — iter+1

return Pyramid
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2.4. EXPERIMENTS

2.4.1. BENCHMARK PROBLEMS
We consider various combinatorial optimization problems that are commonly considered
to be particularly interesting for benchmarking GAs.

CONCATENATED DECEPTIVE TRAPS

The concatenated deceptive trap is a well-known benchmark problem that was introduced
to show that with disrupting building blocks, it takes exponentially growing resources to
solve this problem. The fitness function of this problem is defined as:

k-1
— b
fTrap‘Z (x) = Z f]iil‘;pK ( Z x(i+j)%l) ’

i€{0,5,2s,..},i<l j=0

fsub (u) _ k lf u= k;
TrapK k—1-u otherwise.
Particularly, we consider trap functions with subfunctions size k = 5 and two different
values of subfunctions overlap: separable traps with s =5 (further referred to as Tmpg)
and overlapping traps with s = 4 (Trap?).

BIMODAL SEPARABLE DECEPTIVE TRAP

The bimodal symmetric concatenated trap functions [40] are interesting because, in
contrast to the standard concatenated trap described above, each subfunction has two
modes. We consider bimodal symmetric traps of size 6, such that the non-overlapping
subfunctions are given by

ifu=0o0ru==6,
ifu=1loru=5,

flg?naodale K(u) = .
p ifu=2oru=4,

a npnD o O

otherwise.

NK-LANDSCAPES

The NK-landscapes with maximum overlap (also called NK-S1 landscapes) [35] with
subfunctions of size k = 5 are interesting because of overlapping subfunctions which are
different depending on the position in genotype:

-k
k) =Y M (i ivk),
i=0

where the values of f]f;;(b are tabular values, sampled from the uniform distribution in

[0;1] interval independently for different subfunctions positions.
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HIERARCHIAL-IF-AND-ONLY-IF (HIFF)
The Hierarchical If-And-Only-If (HIFF) function is interesting because it includes hierar-
chically ordered dependencies of exponentially growing sizes that overlap:

11k-1

leff(x) Z Z fH,ff(xzk (+1)k=1)»
kei1,2,4...4,13 1=0

sub 1 1qu]—korZu]—0
lejf Jj=0
0 otherwise

MAXCUT

We consider MAXCUT as a well-known combinatorial optimization problem. Given a
weighted undirected graph (V, E) the goal is to find a partition of the vertices in two sets
such that the sum of weights of edges running between vertices in different partitions is
maximized. The fitness function is therefore defined as:

fuaxcur® = Y, wij,
(i, ))EEX;i # X
where w;; is the weight of edge (i, j), x;, x; are solution values in the corresponding
positions, i.e., each x; is associated with one node in the graph and set to either 0 or 1
depending on which set it is assigned to.

We consider two types of MAXCUT instances. The first type is 3D square torus graphs.
Each vertex is connected to 4 neighbors, forming a torus. Edges weights are integer values
from [1,5] sampled uniformly. This type of instance is further referred to as MAXCUT
Sparse. The second type of instance is dense graphs with randomly selected v/# neighbors
for each vertex. This type of MAXCUT instances further referred to as MAXCUT Dense,
and they are known to be NP-hard problem. For MAXCUT Dense, we use edge weights
values in [0, 1000] sampled uniformly.

ISING SPIN-GLASS
2D Ising spin-glass problems have often been considered in the benchmarking of EDAs
and other model-based EAs. The spin-glass problem fitness function is defined as:

-1/-1

f:cpinglass(x) Z Z xixilij,

i=0j=0

where J; defines an interaction value between two variables, J; j €1{=1,1} In the used
spin-glass instances each variable interacts with up to 4 neighbors in a 2D grid.
MAXSAT

Finally, we consider MAXSAT problem. Particularly, we consider unweighted MAX-3SAT
uniform random instances [8]. MAX-3SAT is NP-hard:

Jmaxsar(x) = Z (Vp’ 1l"l]xfl.j),
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where m is the number of subfunctions (clauses), p; is subfunction size (in the used
instances Vi p; = 3), f; determines which variables are contained by the subfunction
with index i, and I can be either an unary negation operator (turning a binary x to an
opposite value) or an identity operator keeping the value of x intact. The number of
clauses m in the considered instances is = 4.3¢.

2.4.2. SIZES OF PROBLEMS

We frame our experiments in terms of scalability, i.e., we record what the effort is (in terms
of time and function evaluations) for an EA to find the optimum, for growing problem
dimensionality. For experiments where we traditionally adopt a single population, the
maximum dimensionality we consider is set to 640 for Trapg, Trap‘sl, and NK-S1, to 636 for
Bimodal Trap, to 1600 for MAXCUT Sparse, to 784 for Spin-glass, to 1024 for HIFE and to
100 for NP-hard MAXCUT Dense and MAXSAT. In experiments with automatic population
sizing schemes, the maximum problem sizes are doubled for all problems except for
MAXCUT Sparse and Spin-glass. For the experiments with a single population, we need to
use smaller maximal dimensionalities because we included bisection to discover what the
optimal population size is, but bisection quickly becomes computationally prohibitive to
run for large problems.

2.4.3. FINDING THE BEST SETTINGS FOR SINGLE-POPULATION GOMEA
We summarize different possible choices of single-population GOMEA components
in Table 2.4.1. Since we are interested in eliminating the need to choose parameters,
we attempt to define what the best GOMEA variant is across the different benchmark
problems.

Hyperparameter Options

Forced Improvements on / off

Exhaustive Donor Search on / off

Hill Climber SIHC / EHC / off

Linkage Tree and similarity measure | unfiltered, MI / filtered, NMI
FOS ordering random / ascending subsets size
Tournament Selection (size 2) on / off

Table 2.4.1. Considered hyperparameters of single-population GOMEA. In bold, the best settings
found by the experiment are described in Section 2.4.3.

In total, there are 96 (2° - 3) combinations of hyperparameters. We perform an exhaus-
tive hyperparameter search by running all 96 GOMEA variants on a set of benchmark
problems. Here, our goal is to fairly compare all GOMEA variants. In order to do so,
for the largest considered size of each problem, we carry out the comparisons among
configurations that all have a respective optimal population size. We estimate the optimal
population size using the bisection method. The success condition in bisection is solving
(i.e., achieving a global optimum) a problem instance in every of 50 consecutive runs. We
do not put any hard constraints on runtime. Instead, we bound it by limiting the total
number of function evaluations by 10® and, additionally, the total number of generations
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of each population by 200 (the same value as used in [8]) to prevent convergence problems.
As it might happen that the smallest population size which allows to solve a problem
instance does not require the fewest function evaluations, during the bisection procedure
we keep track of the population size which allows to solve a problem instance with the
fewest function evaluations. If the population size reaches 10° solutions and a problem
instance is still not solved, the optimal population search procedure is terminated.

We rank the variants of GOMEA based on the minimal number of evaluations taken to
find the optimal solution for each problem. The final ranking of a variant is the average of
the rankings across the problems. If a variant is not able to solve one or more problems, it
is dropped from the comparison. The best obtained GOMEA version is further referred to
as GOMEAY®st .

2.4.4. ADDING THE CGOM OPERATOR

Once GOMEAP® is found, we look into the effect of replacing GOM with the new CGOM
operator. Since CGOM requires a detection threshold A to be set, we run comparisons
with A € {0.5,0.6,0.7,0.8,0.9}. We determine the best-performing value of A using the
same approach as in Section 2.4.3. This best-performing CGOMEA version is further
referred to as CGOMEAP®S" ,

2.4.5. BENCHMARKING ALGORITHMS USING THE OPTIMAL POPULATION
SIZE

CGOMEAY*" and GOMEAY®" are compared against each other, against the best previously
published version of GOMEA [41], and against the most recent single-population DSMGA-
II version [8]. The optimal population sizes for all algorithms are determined using
bisection.

2.4.6. FINDING THE BEST SETTINGS FOR PARAMETERLESS ALGORITHMS
Next, we find the best-performing parameterless version of GOMEA. The considered
options of a parameterless scheme are IMS, P3-MI with quadratic population growth
function, and P3. The scheme is seen as another tunable hyperparameter. We combine
it with 96 hyperparameter combinations described in Section 2.4.3 and perform a large-
scale hyperparameter search, consisting of 96 - 3 = 288 possible algorithm configurations.
This best-performing parameterless GOMEA version is further referred to as GOMEA-
P3best .

Once GOMEA-P3%% is found, we replace GOM with the new CGOM operator (with
A value which was chosen for CGOMEAY®? | i.e., 0.8). This CGOMEA version is further
referred to as CGOMEA-P3%%! |

Additionally, we add to the experiments the original P3 algorithm (as implemented in
[9]) and DSMGA-II with IMS [39]. Note that we do not test other population management
schemes for DSMGA-II since, to the best of our knowledge, their integration with DSMGA-
IT have not been studied.

To study the practical applicability of the algorithms, we remove the limit on the num-
ber of function evaluations. Instead, in all experiments with parameterless algorithms,
we set a time limit of 24 hours. This is needed to make experiments computationally
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Hyperparameter Options

Forced Improvements on / off

Exhaustive Donor Search on / off

Hill Climber SIHC / EHC / off

Linkage Tree and similarity measure | unfiltered, MI / filtered, NMI
FOS ordering random / ascending subsets size
Tournament Selection (size 2) on / off

Population scheme P3/ P3-MI / IMS

Table 2.4.2. Considered hyperparameters of parameterless GOMEA. In bold, the best settings found
by the experiment are described in Section 2.4.6.

feasible, as some of the considered algorithms (especially some configurations which use
the P3 scheme and DSMGA-II with IMS) perform in a way that the number of function
evaluations is increasing very slowly.

2.4.7. STATISTICAL TESTING

To test the statistical significance of performance differences between algorithms we use
the two-step approach following [42]: first, we use Friedman test (testing that performance
of multiple algorithms is different), then a post-hoc multiple-hypothesis Holm procedure
(testing pairs of hypotheses that one algorithm performs better than another). The
significance level is set to 0.05.

2.4.8. IMPLEMENTATION DETAILS

All GOMEA variants and the P3 algorithm are implemented in C++°. P3® and DSMGA-II"
implementations are the ones used in their corresponding original articles, with modified
fitness functions to make them identical for all conducted experiments. Compiler settings
for all considered algorithms are also identical.

2.5. RESULTS

2.5.1. GOMEA DESIGN CHOICES SEARCH RESULTS
We found that the best performance of single-population GOMEA is achieved when using
Single-Iteration Hill Climber, Forced Improvements, Exhaustive Donor Search, Filtered
Linkage Tree which is built based on Normalized Mutual Information, FOS sorted in
ascending elements size order, and Tournament Selection with tournament size 2 applied
before linkage model learning, as highlighted in Table 2.4.1.

With the best hyperparameter settings, GOMEA"® has better performance than the
previously published GOMEA version on 7 out of 9 considered problems. These results are
shown in Table 2.5.2, and scalability plots are presented in Figure 2.5.2. On the MAXSAT
and HIFF problems, the improvement is approximately of an order of magnitude. Two

2Source code is available in the following repository: https://github.com/ArkadiyD/BinaryGOMEA
3https ://github.com/brianwgoldman/FastEfficientP3/
4https://github.com/tianliyu/DSMGA-II-TwoEdge
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problems on which performance became worse are Bimodal Concatenated Trap and
MAXCUT Dense. We notice that for the Bimodal Trap problem, all algorithms of the
GOMEA family perform worse than DSMGA-II. We believe that this is due to pairwise
mutual information-based dependency learning failing, not optimal mixing itself (i.e.,
with the right FOS, scalability is excellent). Improving performance for this type of
Deceptive Traps is an interesting question for future research.

Importantly, the GOMEA"®" algorithm was able to solve all considered problems
with the given constraints while DSMGA-II failed to solve the HIFE and MAXCUT Dense
problems. Therefore, we can say that GOMEAY® is an algorithm that can tackle a larger
class of non-trivial problems efficiently and it is less likely to fail to solve a problem.
However, we see that on 4 out of 9 problems, the performance of DSMGA-II is better.

Statistical testing of performance differences showed that there is a difference between
GOMEA, DSMGA-II, GOMEAY*" and CGOMEAY®" (p-value = 0.02). Post-hoc statistical
analysis showed that CGOMEAY® performs better than GOMEA (p-value = 0.03). P-values
for all comparisons are provided in Table 2.5.3.

Though the ultimate goal of the conducted hyperparameter search is to find the best-
performing combination of design choices for GOMEA, it is also interesting to analyze
how these choices affect the performance individually. To do so, for each design choice,
we study the aggregated performance of all algorithms which use this design choice
regardless of all other options they use. These results are shown in Figure 2.5.1. The most
impactful design choices are Hill Climber and Exhaustive Donor Search. Results show
that for most problems, Exhaustive Donor search is beneficial and substantially improves
performance.

Algorithms with Single-Iteration Hill Climber on most problems outperform the ones
without it, but Exhaustive Hill Climber is, apparently, too greedy and therefore is inferior
to both a more simple Hill Climber and no Hill Climber at all. This is in line with earlier
reported results [43]. Using the Filtered Linkage Tree built with the Normalized Mutual
Information measure slightly improves the performance on some problems from the
benchmark set, though it worsens the performance on the remaining ones. We see that
Forced Improvements, FOS ordering, and Tournament Selection do not have a strong
effect on the performance. It is noteworthy that the effects of different design choices
on the performance of GOMEA on the NK-landscapes are the opposite to their effect on
the majority of other problems (e.g., Exhaustive Donor Search, Hill Climber, and Filtered
LT have worse performance), which suggests that the NK-landscapes problem has some
unique properties compared to the other problems in the benchmark set.

2.5.2. CGOMEA PERFORMANCE

We take the found best-performing GOMEA version (GOMEAP®!) and replace GOM with
CGOM. First, we analyze how the performance of CGOM-based GOMEA depends on the
threshold parameter A. Results for single-population CGOMEA with different A values
are provided in Table 2.5.1. We see that A values between 0.6 and 0.9 provide similar
performance on most problems though there are some outliers in performance (as on
MAXCUT Dense problem with A = 0.7) which are caused by the stochastic nature of
the bisection procedure. Nevertheless, using the same approach as for selecting the
best GOMEA version, we select A = 0.8 as the value which provides the best average
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Figure 2.5.1. Effects of different design choices in GOMEA. The number of evaluations for each
design choice for each problem is aggregated values of all possible GOMEA modifications with this
design choice. Population sizes are found with bisection.

performance. CGOMEA with tuned A value is further referred to as CGOMEAY®! . We see
that with A = 0.5 performance deteriorates as detecting too many spurious dependencies
slows down the mixing procedure. Hence, trying smaller values for A is not necessary.

As shown in Table 2.5.2 and in Figure 2.5.2, CGOMEA"®" outperforms GOMEA"*" on 7
out of 9 considered problems. On Trapg CGOMEAP® performs on par with GOMEAY®s! |
Only on the HIFF problem CGOM performs slightly worse. Furthermore, CGOMEAP®*
performs better than DSMGA-II on 5 problems, and there are two problems (HIFF and
MAXCUT Dense) which CGOMEA managed to solve but DSMGA-II did not. Importantly,
CGOMEA is still able to reliably solve all considered problems. CGOMEA's slightly inferior
performance on the HIFF problem can be explained by the structure of HIFF: depen-
dencies exist between all pairs of variables, and CGOM tends to include many variables
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A
Problem 4 0.9
Trap? 640 1.16
Tmpg 640 3.50
Bimodal Trap | 636 106.39| 100.11
NK-S1 640
HIFF 1024

MAXCUT Sparse| 1600
MAXCUT Dense | 100
Spin-glass 784
MAXSAT 100

Table 2.5.1. Results of single-population CGOMEA with different threshold values A. Best popu-
lation sizes are found with bisection. Ranking per problem is shown through color gradient from
bright green (best, i.e., the fewest median number of function evaluations) to red (worst, i.e., the
largest median number of function evaluations or problem instance not solved in all 50 runs). All
results are divided by 10°.

as dependent ones, leading to less efficient variation as the pool of appropriate donors
becomes more limited.

The scalability of single-population algorithms in terms of wall-clock time required
to find an optimum is shown in Figure 2.5.4. CGOMEA and GOMEA scale similarly on
all problems which is better than DSMGA-II, especially on Trapg, Bimodal Trap, NK-S1,
HIFE and MAXCUT Sparse. Only on Bimodal Trap CGOMEA is substantially slower than
GOMEA, but it requires fewer function evaluations. This can be explained by the more
careful donor selection done in CGOMEA. On the NP-hard MAXSAT problem scalability
deviates from polynomial as expected, though on the NP-hard MAXCUT Dense problem,
itis not seen for the considered problem sizes.

Problem l 4
Trap? 640 1280
Trapg 640 1280

Bimodal Trap | 636 1278
NK-S1 640 1280
HIFF 1024 2048

1600
200
784
200

MAXCUT Sparse| 1600
MAXCUT Dense | 100
Spin-glass 784
MAXSAT 100

Table 2.5.2. Results of single-population (left table) and parameterless (right table) EAs. For single-
population EAs, the best population sizes are found with bisection. Ranking per problem is shown
through a color gradient from bright green (best, i.e., the fewest median number of function evalua-
tions) to red (worst, i.e., the largest median number of function evaluations or problem instance
not solved in all 50 runs). For MAXSAT, ¢ = 200 results are shown for 48 instances that were solved
by all algorithms. All results are divided by 10°.

Legend: G = GOMEA; D-II = DSMGA-I; GB =GOMEAYest; CGB =CcGOMEAYest; p3 = p3;
GP3B =GOMEA-P3b*; CGP3B =CGOMEA-P3Ps! |
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Figure 2.5.2. Scalability of single-population EAs in terms of function evaluations required to find
an optimum. Points show median values of 50 runs. Bars show 3rd and 48th order statistics (92%
confidence interval). If an algorithm fails to find the optimum of a problem instance in all 50 runs,
the corresponding point is not shown. GOMEA refers to the previously published version [6].

2.5.3. PARAMETERLESS EAS
Results of experiments with parameterless EAs are presented in Table 2.5.2 and in scal-
ability plots in Figure 2.5.3. We found that the best performance of a parameterless
GOMEA is achieved when GOMEA uses Single-Iteration Hill Climber, Exhaustive Donor
Search, Filtered Linkage Tree which is built based on Normalized Mutual Information,
randomly shuffled FOS, and P3 scheme, as highlighted in Table 2.4.2. The obtained pa-
rameterless GOMEA version is further referred to as GOMEA-P3 . Note, that when P3
and P3-MI schemes do not use tournament selection, it makes them much more time
efficient, as population statistics needed for Linkage Learning can be efficiently updated
instead of re-calculated from scratch [9]. Noteworthy, crucial design choices, such as Hill
Climber, Exhaustive Donor Search, and Linkage Tree type and information measure are
the same in GOMEA"®" and GOMEA-P3"¢" . Less important design choices (Forced Im-
provements, FOS ordering) differ, which is most likely due to the results’ stochastic nature.
The GOMEA-P3%! version, but with GOM replaced by CGOM (A = 0.8 corresponding to
the best value found in Section 2.4.3) is further referred to as CGOMEA-P3best

First, we see that DSMGA-II with IMS scheme was not capable to solve all problems in
the experimental setup due to its issues with time efficiency. CGOMEA-P3*** performs
better than GOMEA-P3%! on 5 problems out of 9. The most substantial differences are
on Bimodal Trap, NK-S1,and Trap‘;. Similar to results for single-population algorithms,
CGOMEA performs worse than GOMEA on the HIFF problem, and differences between
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CGOMEA and GOMEA on Trapg, Trap‘é, and MAXCUT Sparseare subtle. Compared
to the P3 algorithm, [9] CGOMEA-P3"¢ performs better on all problems except HIFF .
GOMEA-P3b¢t performs better than P3 on 6 problems.

Trapz Trap? Lo Bimodal Trap

40 80 160 320 640 1280 40 80 160 320 640 1280 36 78 156 318 636 1278

NK-S1 HIFF MAXCUT Sparse
" ' ’
IS
.9
®
3
©
>
[ ! I
* 40 80 160 320 640 1280 64 128 256 512 1024 2048 49 100 196 400 784 1600
MAXCUT Dense Spin-glass MAXSAT

107
100
10°
104
103
102

106
10°

-f- P3 -4- DSMGA-II-IMS GOMEA — P3best  —— CGOMEA — p3best

Figure 2.5.3. Scalability of parameterless EAs in terms of function evaluations required to find
an optimum. Points show median values of 50 runs (48 runs for MAXSAT problem with ¢ = 200).
Bars show 3rd and 48th (46th for MAXSAT problem) order statistics (92% confidence interval). If
an algorithm fails to find the optimum of a problem instance in all 50 runs (48 runs for MAXSAT
problem), the corresponding point is not shown.

We note that only DSMGA-II with IMS was capable of solving all 50 instances of the
MAXSAT problem of size 200 within the given time limit. CGOMEA-P3° and P3 solved 49
problem instances, while GOMEA-P3%¢ solved 48. As problem instances significantly vary
in complexity, we show the results for the 48 instances that were solved by all algorithms
in order to provide a fair comparison.

Statistical testing of performance differences showed that there is a difference between
GOMEA, DSMGA-II, GOMEA-P3"*" and CGOMEA-P3"*! (p-value = 0.0005). Post-hoc
statistical analysis showed that CGOMEA-P3%¢ performs better than DSMGA-II
(p-value = 0.002). All p-values are provided in Table 2.5.4.

As shown in Figure 2.5.5, P3 versions of GOMEA and CGOMEA scale similarly to P3,
though they are slower. Scalability in terms of the required time to find an optimum
is almost identical for CGOMEA-P3"*! and GOMEA-P3"*!. Both CGOMEA-P3"*! and
GOMEA-P3b¢ scale better than DSMGA-II IMS on most problems.
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time, seconds

MAXCUT Dense Spin-glass

12 25 50 100 36 100 196 400

64 128 256 512

Bimodal Trap

640 36 78 156 318 636
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Figure 2.5.4. Scalability of single-population EAs in terms of wall clock time required to find an
optimum. Points show median values of 50 runs. Bars show 3rd and 48th-order statistics (92%
confidence interval). If an algorithm fails to find the optimum of a problem instance in all 50 runs,

the corresponding point is not shown.

Algorithm 1 Algorithm 2

p-value

GOMEA CGOMEABEST
DSMGA-II CGOMEABEST
CGOMEABEST  GOMEABEST
GOMEA GOMEABEST
DSMGA-II GOMEA
DSMGA-II GOMEABEST

0.028
0.179
0.401
0.706
0.930
0.930

Table 2.5.3. Statistical significance testing of a performance difference in pairs of single-population
EAs. Reported p—values are obtained by post-hoc multiple-hypothesis Holm procedure after

performing the Friedman test.
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time, seconds

o2
40 80 160 320 640 1280 64 128 256 512 1024 2048 49 100 196 400 784 1600
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Figure 2.5.5. Scalability of parameterless EAs in terms of wall clock time required to find an
optimum. Points show median values of 50 runs (48 runs for MAXSAT problem). Bars show 3rd
and 48th (46th for MAXSAT problem) order statistics (92% confidence interval). If an algorithm
fails to find the optimum of a problem instance in all 50 runs (48 runs for MAXSAT problem), the
corresponding point is not shown.

Algorithm 1 Algorithm 2 p-value
DSMGA-II CGOMEA-P3BEST ¢ 02
DSMGA-II GOMEA-P3BEST 088
P3 CGOMEA-P3BEST 178
DSMGA-II P3 0.301

CGOMEA-P3BEST  GOMEA-P3BEST  (.402
P3 GOMEA-P3BEST (465

Table 2.5.4. Statistical significance testing of a performance difference, the best-performing param-
eterless EAs. Reported p—values are obtained by post-hoc multiple-hypothesis Holm procedure
after performing the Friedman test.
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2.6. DISCUSSION

We implemented the conditional GOM operator using traditional, entropy-based similar-
ity measures to predict dependencies between variables. Especially in early generations,
this approach to detecting dependencies can be inaccurate, determining dependencies
between variables that are actually independent, and missing some truly existing ones.
Potentially, a more accurate approach to learning dependencies can further improve
CGOM performance. Moreover, it can be interesting to apply CGOM operator in a Gray-
Box Optimization (GBO) scenario when the true dependencies are known. Then, as was
done for RV-GOMEA, a Bayesian network could be used rather than the conditional vari-
ant of the LT. The latter is advantageous when learning linkage in a BBO setting, but not
as accurate and potentially more complex compared to direct and concise modeling of
conditional dependencies. This analogy of the original concept of CGOM is to be studied
in future research. However, in that case, it should be compared to different forms of EAs
such as [44] which were designed specifically for GBO.

The considered model-based EAs relied on entropy-based information measures to
learn dependencies between variables. We notice that the performance on Bimodal
Trapcan be potentially improved if alternative linkage learning methods are used, such as
fitness-based ones as it is known that alternative methods that use comparisons can find
the right structure [45] (also discussed in Chapter 3). In general, the current state-of-the-
art results are achieved by entropy-based linkage learning techniques, though, replacing
them or combining with other methods is a promising question for future research.

In this chapter, to determine the best design choices (hyperparameters) for GOMEA
and CGOMEA, we assessed performance on a standard benchmark set, and ranked
algorithms based on average performance. Though this benchmark set includes well-
known combinatorial optimization problems, problems arising in practical tasks may
have properties (such as fitness landscape and dependencies structure) that are very
different from all common benchmark functions. Though practitioners are interested
in having the best-performing algorithm for their specific task, we do not have a priori
knowledge of those tasks properties. Defining a good and comprehensive benchmark set
is an open problem and active field of research [46]. We hypothesize however that the
state-of-the-art benchmark problems in the field of EAs for binary optimization that we
used is a decent compromise, in that we expect that obtaining good average performance
on these problems is a good predictor of performance on many a priori unknown tasks.
Moreover, in a BBO scenario matching a real-world problem with a problem from a
benchmark set is a hard, if even solvable, task itself. Therefore, we did not try to specify
the best possible GOMEA and CGOMEA versions for each benchmark problem but kept
the focus on the best average performance.

By nature, GOM is a sequential variation procedure. However, for increasing the
efficiency of (C)GOMEA it would be beneficial to use parallelization techniques to perform
variation. Parallelization capability which utilizes Graphical Processing Units (GPUs) has
been added to the real-valued GOMEA for the GBO case [47]. We believe that parallelizing
(C)GOMEA for discrete BBO optimization is an important future work direction and can
allow solving high-dimensional problems much faster.
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2.7. CONCLUSION

In this chapter, we have continued the research line on the GOMEA family of algorithms
with important innovations and comparisons of various ideas that have been proposed
separately in the last decade since the introduction of GOMEA. First, we did an extensive
hyperparameter search and obtained a version of GOMEA that showed significantly better
performance than ever published before for GOMEA. Next, we introduced a new variation
operator called Conditional Gene-pool Optimal Mixing (CGOM) which utilizes condi-
tional dependencies of linkage model subsets on other variables to generate offspring
solutions. GOMEA with CGOM (CGOMEA) outperformed GOMEA and DSMGA-II on most
of the 9 considered diverse and non-trivial benchmark problems in a single-population
EA experimental setup where we assess the scalability of required resources by the algo-
rithms to obtain the optimum. Finally, we searched for the best-performing version of
GOMEA integrated with various population size-free schemes. We found that CGOMEA
with P3 scheme is a robust scalable algorithm that outperforms the competitors in terms
of the number of function evaluations required to find the global optimum on almost all
problems setting a new state-of-the-art performance for most of the benchmark problems
and a new GOMEA variant that can serve as a new baseline in model-based evolutionary
algorithms for binary search spaces for the next decade.
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A NOVEL APPROACH TO DESIGNING
SURROGATE-ASSISTED GENETIC
ALGORITHMS BY COMBINING
EFFICIENT LEARNING OF WALSH
COEFFICIENTS AND DEPENDENCIES

Surrogate-assisted evolutionary algorithms are potentially valuable for real-world opti-
mization problems with expensive fitness evaluations. In this chapter, we focus on pseudo-
Boolean functions in a black-box setting. Instead of using a surrogate model as a fitness
function approximator, we propose to precisely learn the coefficients of the Walsh decompo-
sition of a fitness function and use it as a surrogate. If the coefficients are learned correctly,
the Walsh decomposition values perfectly match the fitness function, allowing us to find the
optimal solution by optimizing the surrogate without additional fitness evaluations. Effi-
cient Walsh coefficients learning is possible for pseudo-Boolean functions with k—bounded
epistasis and known problem structure. We propose to learn dependencies between vari-
ables first to substantially reduce the number of Walsh coefficients to be calculated. Once
an accurate Walsh decomposition is obtained, the surrogate model is optimized using
GOMEA. We compare the proposed approach with standard GOMEA and two other Walsh
decomposition-based algorithms. Our approach outperforms the alternatives and demon-
strates scalability with a complexity of G (¢1log¥) function evaluations when the number of
subfunctions is O (¢) and all subfunctions are k—bounded.

The contents of this chapter are based on the following publication: A. Dushatskiy, T. Alderliesten, and P A. N.
Bosman. “A novel approach to designing surrogate-assisted genetic algorithms by combining efficient learning
of Walsh coefficients and dependencies”. In: ACM Transactions on Evolutionary Learning and Optimization 1.2
(2021), pp. 1-23.
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3.1. INTRODUCTION

A principled way to improve the efficiency and effectiveness of Evolutionary Algorithms
(EAs) is to explicitly use (learnable) models. Such models can represent characteristics
of the problem being solved, which can then be leveraged during optimization. If the
model class allows capturing and efficiently learning the right characteristics for a certain
problem, search can be very efficient on that problem. Different types of models exist,
from those that help guide variation operators to those that model the fitness landscape.
The latter models are often called the surrogate models [1], which we predominantly
focus on here. We furthermore consider use of linkage models.

Linkage learning-based Genetic Algorithms (GAs) aim at solving problems with
blocks of dependent (linked) variables more efficiently by exploiting linkage information
in the variation operator. Improved efficiency in terms of the number of evaluations to
find the optimum is achieved by alleviating a fundamental problem of simple GAs [2]:
preventing the disruption of blocks of dependent variables. In BBO the linkage structure
is not known a priori, and, therefore, needs to be learned. Moreover, as shown by [3],
it is more efficient to learn the linkage structure from a population of solutions than
using a static predefined one. There are several generations of such GAs, with different
approaches to linkage learning. These include the Estimation of Distribution Algorithms
(EDAs) that estimate a probability distribution from selected solutions and then sample
new solutions, based on, e.g., marginal distribution calculation [4, 5] or Bayesian networks
[6]. More generally, such algorithms are said to build a model to guide variation. In the
case of EDAs, this is a probabilistic model. More recently, models have come into focus
that do not necessarily describe a probability distribution directly, but rather focus on
expressing linkages between variables [7]. A state-of-the-art model-based binary GA is the
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [8]. GOMEA uses linkage
learning from the population. This can be done in several ways, but the most generally
applied approach builds a so-called linkage tree, by performing hierarchical clustering
based on Mutual Information between variables. An overview of GOMEA is provided in
Section 3.2.2. A more detailed description can be found in [8].

In the context of optimization, a surrogate model is a function that approximates
an original fitness function. Combining a surrogate model with a GA results in a class
of algorithms called surrogate-assisted GAs. This is a common approach to reduce the
number of evaluations for solving expensive optimization problems. Replacing some real
function evaluations with evaluations of the surrogate model, which are considered to
consume much less time, is a natural approach to reduce the overall runtime. For real-
valued problems, common types of surrogate models integrated into GAs are polynomials,
Kriging, Radial Basis Function Network (RBFN), and Support Vector Regression (SVR)
(see, e.g., [1]). There is not much literature on surrogate-assisted GAs for binary problems.
One of the examples is the recently introduced convolutional neural network surrogate
combined with GOMEA (Chapter 4).

One of the key issues of using surrogate models in GAs is balancing between real
function evaluations and surrogate ones to find the optimum. A conventional surrogate
model is an approximation of a fitness function, and, therefore, it is not perfectly accurate.
As shown, for instance, in [9], finding an optimal solution using only surrogate evalu-
ations is in many cases impossible. However, as demonstrated in Chapter 4, carefully
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selected combinations of real and surrogate evaluations can allow to solve a problem
to optimality, but only if the surrogate model is sufficiently accurate. These issues of
using surrogate models in combination with GAs can be alleviated if the surrogate model
perfectly approximates the fitness function. The efficient and scalable way of learning
such a surrogate and using it in combination with GAs to solve optimization problems
(finding the optimum) is the main research question studied in this chapter.

We consider optimization of pseudo-Boolean functions with k-bounded epistasis
meaning that a function f maps binary vectors of length ¢ to a real value: {0,1} — R and
can be represented in a form:

f=) g,

where each g;(x) depends on at most k variables. Such a definition describes a broad class
of functions, including well-known benchmark functions, such as deceptive traps, NK
landscapes, MaxCut, and MAXKSAT problems. Walsh decomposition entails [10] that any
pseudo-Boolean function can be represented as a linear combination of Walsh functions:

f(x): Z wsys(x),

5€{0,1}¢

where

Ys(x) = (~1)PEND,
bc(i) is a bit counting function that indicates the number of ones in a vector i,

and A is the bitwise binary AND operator .

The terms w; are the Walsh coefficients of f. Each binary vector s € {0,1}¢ has a corre-
sponding Walsh coefficient, thus, there are 2/ Walsh coefficients in total. The order of a
Walsh coefficient is defined as the number of ones in the corresponding binary vector s.
Alternatively, the binary vector s can be written as a set of variables that correspond to
the positions that have value 1. Further, in this chapter, we refer to binary vectors that
determine Walsh coefficients as masks. The Walsh coefficient wy is the contribution to the
fitness function of the subfunction g; which depends on all the variables in s. Therefore,
a zero Walsh coefficient means that such a contribution is zero.

In this chapter, we take the extreme view on surrogate-assisted GAs, i.e., with a surro-
gate model f(x) being a precise Walsh decomposition of a problem. In case the Walsh
coefficients are known, the Walsh decomposition can be used as a surrogate model and
thus be directly optimized without any additional real evaluations. In general, to ef-
ficiently calculate Walsh coefficients, the problem structure needs to be known. This
is because if a function is k—bounded (all its subfunctions depend on no more than
k variables), all its Walsh coefficients of order greater than k are zeros. However, the
total number of Walsh coefficients of order < k is still large, namely, @ (£¥). With one
order j coefficient calculation requiring 2/ function evaluations, the calculation of all
coefficients of order < k is intractable. However, only Walsh coefficients corresponding
to subsets of variables, which are dependent, and therefore, belong to one subfunction,
need to be calculated. Under the assumption that the number of subfunctions is @ (¢) (for
example, well-known adjacent NK-landscapes [11] and Concatenated Deceptive Traps
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[12] fall under this category), all Walsh coefficients can be calculated with @ (£2¥) number
of evaluations [10]. In BBO it is therefore important to efficiently discover the problem
structure to avoid redundant calculations. Now, to find the subfunctions, we need a form
of linkage learning, i.e., learning which blocks of dependent variables exist. Therefore,
from the proposed perspective on surrogate-assisted optimization, the tasks of learning
Walsh coefficients and linkage learning are tightly connected.

Apart from linkage learning algorithms inside GAs, there are many works on stan-
dalone linkage learning algorithms. Such algorithms are different from the ones typically
used inside linkage learning-based GAs, as their main goal is finding all linkage sets (ob-
taining the full linkage structure). Such algorithms are usually probabilistic, i.e., their
complexity is analyzed with the assumption that a correct linkage structure is discovered
with a high probability 1 —e. Many linkage learning algorithms of this type are based
on perturbations of solutions. The basic idea of using perturbations to learn linkage for
problems with both overlapping and non-overlapping subfunctions was introduced in
[13] and [14] (LINC and LIMD algorithms). These algorithms do pairwise checks of linkage
between all pairs of variables, leading to the complexity @ (25¢?). As k is assumed to be
constant, the actual asymptotic complexity is @(¢2). In [10] a more practically efficient
(though having the same complexity of @ (£?)) algorithm was proposed. Moreover, in
this work an algorithm to efficiently calculate Walsh coefficients after learning linkage
structure was introduced. Instead of checking linkage between all pairs of variables,
inevitably leading to the lower bound of complexity G (¢?), [15] introduced the idea of
using binary search for finding a variable j linked with the variable i by iteratively di-
viding the set of variables possibly linked with i in two parts until a part contains only
one variable. This approach is different from [10] as it does not use the Walsh coefficient
concept to define linkage, but uses perturbations instead. This linkage learning method
is followed by a simple greedy search to optimize the fitness function. The work of [15] is
limited to separable functions (subfunctions that are non-overlapping). A similar idea of
using binary search was later used in an algorithm for arbitrary k-bounded problems in
[16]. A rigorous complexity analysis proved, that there exists an algorithm that learns the
problem linkage structure with the complexity G(Mlog¥¢), with M being the number of
non-zero Walsh coefficients. It should be noted that this complexity is asymptotic. For
practical usage, the constant term in the complexity is crucial and the constant term in
this algorithm is ((16e)* k%), making usage intractable for practical applications.

A completely different idea from perturbations-based linkage learning algorithms
was introduced in [17]. Instead of learning linkage structure directly and then computing
Walsh coefficients, it was proposed to estimate Walsh coefficients as weights of a linear
regression model. In machine learning terms, the regression problem can be formulated
with ¥(x) being features and fitness values f(x) being targets. All coefficients up to
a beforehand selected order k and corresponding features in a regression problem are
generated. To efficiently exploit the sparsity of Walsh coefficients, linear regression with
L1 regularization is used. L1 regularized regression is capable of naturally forcing part
of the coefficients to be zero. In the follow-up of this approach introduced in [18], the
Walsh coefficients approximation is followed by a local search optimization procedure.
Such an approach is shown to be efficient for problems with a moderate k (k < 3). For
problems with subfunctions of higher orders, such a method requires a large population
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of solutions (to train linear regression), as the number of Walsh coefficients rapidly grows
with k: for a k-bounded function the total number of coefficients of order < k is @(¢%).

We propose to combine the ideas from algorithms [10] and [15] in a way that leads to
a new linkage learning algorithm. The basic idea of our algorithm is to detect pairwise
dependencies between variables as the first step. Then, these pairwise dependencies
are used to form linkage sets of higher orders. A subset of variables is considered as
a candidate linkage set if all pairs of variables belonging to it are already known to be
dependent variables. The Walsh coefficients calculation algorithm from [10] is used to
calculate the Walsh coefficients after the linkage structure is learned. The algorithm
continues working until the Walsh decomposition quality is perfect on a holdout set of
solutions. After that, GOMEA with partial evaluations is used to effectively and efficiently
optimize the Walsh decomposition surrogate model, so no additional evaluations are
required. The algorithmic complexity of the Walsh coefficients calculation in the case of
randomly constructed subfunctions is 0 (¢1og¥¢). The two important conditions for such
algorithmic complexity are the linear number of subfunctions (€'(¢)) and k—boundedness
of all subfunctions. Besides efficiency, the proposed optimization approach has the merit
of being parameterless.

The remainder of this chapter is organized as follows. In Section 3.2 we describe
some needed background, particularly, notation, theory, and key features of the GOMEA
algorithm. In Section 3.3 the details of the proposed approach and the considered al-
ternative approaches are provided. Then, in Section 3.4 the experimental setup and
benchmark functions are specified. These are followed by an explanation of the obtained
experimental results and the discussion. The chapter ends with the conclusions.

3.2. BACKGROUND

3.2.1. NOTATION AND THEORY

Definition 1. We say that there is a linkage or a dependency between two variables if
there is a non-linear interaction between them. It means that the change in f that is
observed when variables i and j both change cannot be represented as a linear function
of the change in f that is observed if only variable i and only variable j changes.

Definition 2. Partial derivative of the i!" bit in a solution is defined as
Afi(x) = f(xli —1]) - f(x[i —0]),

where the notation x[i — v] means setting the value of the i’ h bit of a solution x to the
value v. We use the concept of the partial derivative to detect pairwise dependencies
between variables.

Definition 3. Variables i and j are linked if-and-only-if 3x : A f; (x[j < 0]) # A f; (x[j — 1]).
Intuitively, this means that two variables are linked if-and-only-if the contribution to the
fitness of one variable depends on the value of the second variable.

Example 1. Let f be a pseudo-Boolean function over 4 variables, f = xj + x2 + X1 X3 + X2 X4.
For x = (0110) : Afi (x[3 — 0]) = f(1100) — £(0100) =2 —1 = L;Af; (x[3 — 1]) = f(1110) —
f(0110) =3—-1=2;Af(x[3 < 0]) # Af1(x[3 — 1]), thus, there is a dependency between
variables x; and x3. Indeed, variables x; and x3 occur in the non-linear subfunction x; x3.
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Definition 4. A set of variables m is a linkage set if-and-only-if 3j : m < j with a non-zero
corresponding Walsh coefficient w;.
In other words, linkage sets represent sets of epistatically linked bits [10].

Definition 5. Following the notation from [10], we define a probe over a pseudo-Boolean
function f, a subset of variables m and a subset of variables c for which cnm = ¢ (called
a probe background) as follows:

1

P(f,m,C)ZW

jeB

i€eBy,

where m is a mask denoting the bits to be tested; B, is a subset of {0, 1}[ such that all
variables are in m; @ is the bitwise binary XOR operator, and bc(i) is a bit counting
function. A detailed explanation of probes properties can be found in [10].

Definition 6. Variables of set m are linked if-and-only-if Ic: mnc=@,P(f,m,c) #0.
This alternative definition of linkage between variables is used in the linkage learning
algorithm based on probes [10]. For the case of m having 2 variables, this definition
is equivalent to Definition 3 as P(f,{i, j},¢) = i(f(c[i — 0][j < O] — f(cli < 1][j <
0))— flcli —=O0l[j—1D+ f(cli < 1I[j —1]) = %(Af,'(c[j — 1)) = Afi(clj < 0])). Therefore,
variables i and j are linked if-and-only-if 3c:Afi(c[j — 1]1) — Afi(c[j < 0]) # 0 which is
identical to Definition 3.

Example 2. Let f be the same pseudo-Boolean function as in Example 1. For mask
x =(1010) and ¢ = (0100) : P(f, x,c) = %(f(OlOO)—f(llOO)—f(0110)+f(1110)) = %(1—2—
1+3) = i # 0, thus, there is a dependency between variables x; and x3.

Definition 7. We assume that variables i, j jointly occur in a subfunction g if and only
if there is a non-linear interaction between them. In terms of probes, it means that
c:{i,jinc=@,P(gli,j} c) #0. Informally, it means that the non-linear interactions
between variables exist only inside subfunctions g.

Note, that the occurrence of two variables in a subfunction means a non-linear
interaction between them exists only if all subfunctions g are non-linear. However,
such an assumption does not induce any loss of generality, as any term of a subfunc-
tion, that is linear in two variables, can be replaced by a sum of subfunctions depend-
ing on a single variable each. For instance, f from Example 1 can be represented, as
f=g1+8g +gs where g1 = x1 + X2, 8 = x1x3,and g3 = x2x4. In such a representation,
g1 is linear in x; and x,, but we can rewrite the representation as f = g1 + g2 + g3 + g4,
where g1 = x1, g2 = X2, 83 = X1 X3,and g4 = X2 x4. In this representation, there are no sub-
functions that are linear in a pair of variables. As a corollary of this definition, there
is a (non-linear) subfunction g depending on a subset of variables m if and only if
V{i, j} € m there is a linkage between variables i and j.

We provide an important theorem, which forms the basis of the Walsh coefficients
calculation algorithm after the linkage structure is discovered. This theorem is proven in
[10] and we therefore refer the interested reader to this chapter.
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Theorem 1. A probe value with the all-zeros background ¢ = 0 and the Walsh coefficients
of function f are naturally connected, namely, by the formula:

P(f,j,0)=w;+ )" wy, , where u are sets containing j.
jcu

3.2.2. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM

GOMEA is a model-based evolutionary algorithm that aims to efficiently assemble build-
ing blocks into highly-fit solutions by estimating and exploiting linkage information [8]
in a manner that is very different from the algorithm for exact linkage learning that we
propose in Section 3.3.2. The variation operator of GOMEA is called Gene-pool Opti-
mal Mixing (GOM), which can be optionally followed by the Forced Improvements (FI)
procedure. GOMEA is often used together with an Interleaved Multistart Scheme (IMS)
that automatically sets the population size by starting and running multiple runs with
increasing population size in an interleaved fashion, making its use parameterless [19].
Moreover, the GOM operator allows using partial fitness function evaluations to accel-
erate the optimization process whenever possible. We give a brief outline of the key
components of GOMEA here and refer the interested reader to the literature for more
details [8, 19, 20].

LINKAGE LEARNING

Multiple linkage learning algorithms and corresponding linkage structures have been
introduced for GOMEA. In this chapter, we stick to a relatively simple, yet efficient linkage
structure - the Linkage Tree (LT) [8, 20]. We call the obtained structure, containing subsets
of linked variables the Family of Subsets (FOS). AFOS & is a set of sets: & = {F ... Fj#|},
where F; < {l1...¢} for i =1...|%|. The LT is built using Mutual Information between
variables calculated from the solutions in a population. Particularly, the LT structure
is the result of a hierarchical merge procedure. In the first step, each problem variable
forms its own subset F. Then, the tree is constructed by iteratively merging two subsets.
The process is stopped when there are only two subsets, the union of which contains all
variables. The details of the LT building procedure are provided in [8].

GENE-POOL OPTIMAL MIXING

GOMEA uses the learned FOS to generate offspring solutions. First, a parent solution is
copied to create a new offspring solution. Then, for each subset in the FOS (iterated over
in random order), a donor solution is randomly selected from the population. For every
subset, genes from loci corresponding to the selected FOS subset are copied from the
donor to the offspring. The change is accepted only in case the fitness function value is at
least as good as before the change.

FORCED IMPROVEMENTS

The FI procedure improves the fitness value of a solution in case the GOM operator has
failed to make any changes to the offspring, or if this individual has not improved for
1+ log(populationSize) generations. The FI procedure consists of performing the mixing
of the offspring with the global (taken over all populations) elitist solution. The mixing
operator is the same as in the GOM operator. The change is now however accepted only
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in case of a strict improvement of the fitness value. The FI procedure is immediately
terminated when the first improvement occurs. In case the FI procedure failed to improve
the solution fitness, the global elitist solution is copied to the offspring.

INTERLEAVED MULTISTART SCHEME

The goal of the IMS is to replace the manual setting of the population size parameter.
Instead of evolving one population of a fixed size, several populations of increasing sizes
are run simultaneously. The smallest population in the scheme is of a predetermined size,
for simplicity, it can be of size 1. The next populations are double the size of the previous
population. The populations are running in an interleaved fashion, which means that
for each ¢/™S offspring’s generation iterations of a population of size populationSize, one
iteration of the population with population size 2populationSize is performed. We set
¢S to 4 [19]. A population is terminated if a larger population obtained a better average
fitness value.

PARTIAL EVALUATIONS

If it is known beforehand how the problem can be decomposed into subfunctions, it is
reasonable to use this knowledge to accelerate function evaluations. This is especially
useful in GOMEA. Namely, if a subset selected for mixing (during GOM or FI) contains
variables x;,,..., x;, the subfunctions depending on these variables are g;, (x),..., 8ip (%),
the solution before mixing is x and its fitness is F, then the fitness of a solution after
mixingis: F' = F—gj, (x) =+ — 8j,(X)+gj )+ + gi, (x'). In many cases, the number
of subfunctions p is much less than the total number of subfunctions, resulting in the
required amount of computations to be much fewer than when performing a full fitness
evaluation (computing all the subfunctions).

PARTIAL EVALUATIONS FOR A WALSH DECOMPOSITION

Suppose that we have a precise Walsh decomposition f(x) = ¥ (g 1;¢ Ws¥s(x), i.e., Walsh
coefficients w; are known. Suppose we also know the fitness F of a solution x. If we need
to calculate the fitness of x after changing variables x;,, ..., x;,, we find the subsets of vari-
ables s; ..., s, (of which the corresponding Walsh coefficients are wy, ..., wsp) that contain
any variables from {x;,,..., x;,} and calculate the new fitness as: F "= F-wg s (x)—--—
Ws, Vs, (X)) + ws, g, (x)+---+ Ws, Vs, (x).

3.3. SURROGATE-ASSISTED GENETIC ALGORITHMS

3.3.1. GENERAL OUTLINE OF THE PROPOSED APPROACH

We propose to combine the calculation of the Walsh coefficients and GOMEA. When
the Walsh decomposition demonstrates perfect accuracy on a holdout set of solutions,
we use the obtained Walsh decomposition as the surrogate model. Having as input a
solution x, the surrogate entails the formula }_ o 1,c wsys(x). Walsh decomposition

being perfect means that the coefficient of determination R? = 1. By definition, R? =

MeanS dError(Y,V . S
] e qlffgf(y)rmr( ),where Y are true fitness values of a set of solutions and Y are

estimations made by the surrogate. In practice, a e—deviation threshold for surrogate
quality (i.e. R?> = 1—¢) can be used to handle possible numerical errors. The value of
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should be small enough to ensure the surrogate model optimum is matched with the
optimum of the original function.

Once the Walsh coefficients are precisely known, we can optimize the surrogate
without performing any additional evaluations of the initial function. As Walsh calculation
algorithms we consider our newly proposed method (further referred to as Efficient
Linkage Learning, ELL), the probes-based linkage learning algorithm from [10] (further
referred to as Probes based Linkage Learning, PLL), and the Walsh approximation based
on Least Angle Regression (LARS) [17] (further referred to as LARS based Linkage Learning,
LARSLL). In the ELL and the PLL first dependencies between variables are detected and
then non-zero Walsh coefficients are calculated. In the LARSLL Walsh coefficients are
directly approximated.

In all cases, we optimize the obtained Walsh decomposition with GOMEA using partial
evaluations as described in Section 3.2.2. We identify the full optimization procedures
consisting of the calculation of Walsh coefficients followed by GOMEA by ELL-GOMEA,
PLL-GOMEA, and LARSLL-GOMEA, respectively.

3.3.2. GOMEA WITH THE EXTERNAL EFFICIENT LINKAGE LEARNING (ELL-
GOMEA)

We use binary search and partial derivatives to design an efficient algorithm for the learn-
ing of pairwise dependencies. Solutions to use for testing whether there is a dependency
between variables are randomly generated. After calling the binary search routine for
detecting pairwise dependencies for each variable, we construct candidate linkage sets of
increasing order (from 3 to ¢). For each set of candidates, Walsh coefficients are calcu-
lated (all other Walsh coefficients are assumed to be zero) and the quality of the Walsh
approximation is evaluated on a holdout set of solutions. The linkage tests are performed
until the decomposition quality is perfect.

In detail, the proposed optimization approach consists of the following parts:

1. Detecting all linkage sets of a problem.

1.1. The first part of the linkage learning procedure aims at detecting all pairwise
dependencies between variables. In [10] it is shown that detecting order 2
dependencies between variables is the most expensive part of the linkage
learning process in terms of the number of function evaluations. Therefore,
we focus on designing an efficient algorithm for this purpose. This part of
the algorithm is described in function detectLinkagePairsBinarySearch from
Algorithm 3.3.2. Given variable i, the algorithm uses binary search to detect a
variable j, which is linked to i.

The linkage detection algorithm (detectLinkagePairsBinarySearch) is
called for every variable. For each variable i, two solutions s, s, are generated
randomly. For all variables V = {vy,..., vy}, which are already known to be
linked with 7, genes in s, are set to the same values as genes in s;: sz[v] —
s1.01,..., s2[yy) < s1.vjv1] . The same applies to the i-th gene value: sy [i —
s1-i]. Now, if Af;(s1) # Afi(s2) (two function evaluations required to calculate
one Af(x) expression), it means that there is a variable j linked to i among
U ={i:s).i # sy.i}. The binary search can be used to efficiently discover this
variable j. Note: strictly speaking, i can be linked to multiple variables that
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are not discovered yet. The binary search detects one arbitrary variable j
among them. We can divide U in two parts: part; = {u,..., uyuj/2)}, part; =
{uyuy2)+1,-- . Wy} Anew solution sz is built by combining values from part;
loci of s; and part, loci of s,:

S1.0 if i € part,,
§3.1=1 S2.1 if i € part,,
$1.i = 2.0 otherwise.

Thus, s3 differs from s; in bits from part, only, and from s, in bits from
part;. Now, at least one of two cases holds: Af;(s1) # Afi(s3) or Afi(s2) #
Af;i(s3). In the first case, the variable j linked to i is localized in parf,. In the
second case, the linked variable is localized in part;. Thus, the size of the
subset of candidate variables is halved (if both cases hold, an arbitrary one
can be picked) and a binary search continues until the size of a considered
partis 1.

After the algorithm reveals a variable j that is linked with a variable i, a pair
{i, j} is stored in a set containing all pairs of linked variables and the search
for the next linked pairs continues.

1.2. Inthe second part of the linkage learning procedure, candidate linkage sets
of higher order are constructed. The main idea of this part of the algorithm
is the following: a set of variables S(|S| = N) is a linkage set if and only if
V{i, jt < S, {i, j} is alinkage pair. Thus, having a linkage set S of order N, we
can obtain all candidate linkage sets of order NV +1 by checking for all variables
ikys-++» Ik,_y DOt present in S whether there is a dependency between a variable
i; and all variables from S. Note, that such a constructed set is not necessarily
alinkage set, but as our experiments show, in practice, it is more efficient to
consider such sets as candidates and calculate Walsh coefficients for them
compared to attempting to prove, that a set is indeed a linkage set using
probes. This procedure is described in function linkageSetsOfHigherOrder of
Algorithm 3.3.2.

2. Calculating the Walsh decomposition coefficients. To calculate the Walsh decom-
position coefficients, we use an algorithm idea proposed in [21] and its specification
from [10]. It is based on Theorem 1. It uses the notion of the probe and is based
on the formula (the proof is provided in [10]) P(f,j,0) = w; + chu wy. Thus,
P(f,j,0) = w; for a Walsh coefficient of the highest order (i.e., Vu: jcu : w, =0).
Walsh coefficients of lower orders can be calculated using a top-down approach.
A detailed description of this Walsh coefficients calculation algorithm is provided
in Algorithm 3.3.1. To calculate the value of a Walsh coefficient of order k, © 2%
function evaluations are required.

3. Finding an optimum of the function. If the obtained Walsh decomposition is
perfectly accurate, then optimizing the problem is equal to optimizing the Walsh
decomposition. We use a holdout set of solutions to validate the quality of a cal-
culated Walsh decomposition. The question of choosing the holdout set size is
addressed in Section 3.3.4. The coefficient of determination R? defines the quality
of the decomposition. The approximate Walsh decomposition  estimates the fit-
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ness value y of a solution x by the formula y =} 4 1,¢ Wsys(x). The coefficient of

MeanSquaredError(Y,Y)
var(Y) ’
where Y are true fitness values. In Algorithm 3.3.2 R? is calculated by the function

calculateApproximationQuality(holdoutPopulation, WalshCoefficients). After the
perfect decomposition (i.e. R? = 1) is obtained, meaning that the precise values of
all Walsh coefficients w; are known, we optimize (maximize) the Walsh decomposi-
tion 3 (o 130 Ws¥s(x) using GOMEA with partial evaluations. Note, that in this part
of the algorithm, no evaluations of the initial function are performed.

determination R? on a set of solutions is defined as R =1 —

COMPLEXITY ANALYSIS

We theoretically infer the ©'(¢log¢) complexity upper bound of the ELL algorithm, later
the experimental results support the & (¢1og¥¢) complexity of the algorithm. Following
the complexity analysis in [10] our analysis is restricted to the class of additively decom-
posable, k—bounded functions with randomly chosen subfunctions.

First, we estimate the required number of tests to make (the number of detectLink-
agePairsBinarySearch calls for each variable) to detect all order 2 dependencies. Given
two random solutions s1, s2 and variables i, j we estimate the probability that there is
a success in detecting a dependency between these variables: the probability that de-
tectLinkagePairsBinarySearch reveals that i and j are linked having i as the input. Let J
be the number of linked variables to i. To guarantee that detectLinkagePairsBinarySearch
finds the linked variable j, all dependent variables with i should be equal in s; and s,
except the variable j. If i is involved in M subfunctions, J is < Mk. Thus, the probability
that all these variables are equal in s; and s, except gene j, is > 2~Mk_In case of random
subfunctions and number of subfunctions &' (¢), M is G (k), therefore, the probability of
detecting a dependency between variables i and j with i as input is at the worst case
@(Z_Mk) = p(k) (does not depend on ¢).

Suppose, for each variable, N calls of detectLinkagePairsBinarySearch are made. Now,
we calculate the probability of detecting all variables {ji, ..., j;} linked with i with these
calls assuming that no linked variables with i are already detected. We can divide N
executed calls into J groups of ? calls. We calculate the probability that during the
first group of calls, j; was found to be linked with i, during the second group of calls
linkage with j, was detected, etc. As the probability of success in linkage detecting of
a particular variable with i is p, the probability of not detecting it, using 1\71 attempts,

is(1-p) 7. Therefore, the probability of detecting it (at least in one of the attempts) is
N
1-(1- p) 7. Hence, the probability of detecting all J linked variables with 7, each within

its own group of detectLinkagePairsBinarySearch calls, is (1 — (1 — p) 5] )/. Note, that the
actual probability of detecting J linked variables within NV calls is larger, as a dependency
with a variable can be found during all N calls and not only during the selected % calls.
All linked variables for all ¢ variables should be detected. Under the assumption that
all variables have exactly J linked variables, the probability that all linked variables are

found for all variables is ((1 - (1 - p) %)] )¢. We want this probability to be larger than
a constant probability  (reasonably close to 1). Note, that the actual probability, that
all pairwise linkage sets are discovered by N calls of detectLinkagePairsBinarySearch for
each variable is larger, as, first, some variables can have less than J linked variables,
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and second, here we calculated each dependency {i, j} as discovered twice: finding
that variable j is linked with i and the other way around. Now, we need to solve the
inequality ((1-(1-p) 7 )/)¢ > §. The full derivation is provided in the Appendix (Derivation
A). By solving it, we get N > Cln(1 — /ﬁ) (C and A are constants). As proven in the
Appendix (Derivation B), G (In(1 — ALY = O(logl). Therefore, N = G (log¥) is the upper
bound of detectLinkagePairsBinarySearch calls needed for every variable to detect all its
dependencies with high probability &.

If the upper bound of detectLinkagePairsBinarySearch calls needed for each variable
is O(log?), the total number of calls is not larger than ©(¢1log¥¢). One binary search
procedure in findLinkage requires O (log¥) evaluations. However, the binary search is
invoked only if there is a dependency between variables (when the if clause in line 6 of
detectLinkagePairsBinarySearch is true). The number of binary search calls is therefore
O (¢). Thus, the total number of evaluations to detect all order 2 dependencies with high
probability  is @ (¢1log¥). As proven in [10], in the case of functions with randomly chosen
subfunctions, the number of order k variables subsets, such that it is not a linkage set,
but has a subset of order k — 1 which is a linkage set, is @ (1) for k = 3. Thus, calculating
Walsh coefficients for spurious linkage sets candidates of orders higher than 2 (generated
by linkageSetsOfHigherOrder) does not increase the complexity. The Walsh coefficients
calculation for all built candidate subsets (including order 2 subsets) requires @ (¢£2%)
evaluations. Therefore, the overall complexity of obtaining the Walsh decomposition with
the ELL algorithm is G(¢log¥).

Algorithm 3.3.1: The algorithm for Walsh coefficients calculation [10].

Function calculateWalshCoefficients (linkageSets):
allZerosProbes — ¢
WalshCoefficients — @
for subset € linkageSets do
if subset ¢ allZerosProbes then
L allZerosProbes[subset] — P(f, subset,0)

linkageSets — sorted linkageSets by subset size in descending order
for subset € linkageSets do
if WalshCoefficients(subset] # NULL then
L WalshCoefficients[subset] — WalshCoefficients[subset] + allZerosProbes[subset)

else
L WalshCoefficients[subset] — allZerosProbes|[subset]

for s < subset do
if WalshCoefficients[s] # NULL then
L WalshCoefficients[subset] — WalshCoefficients[s] — WalshCoefficients[subset]

else
L WalshCoefficients[s] — —WalshCoefficients[subset]

return WalshCoefficients
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Algorithm 3.3.2: The ELL algorithm (binary search-based linkage learning).

Function detectLinkagePairsBinarySearch (i, linkagePairs):
solutiony, solutions — random solutions
for {i, v} € linkagePairs do

| solutiony.v— solution;.v

solutiony.i — solutionj.i

if Af; (solutiong) — A f; (solutiony) # 0 then
Jj — findLinkage (solutionj, solutionp, i)
linkagePairs — linkagePairsu {i, j}

return linkagePairs

Function f indLinkage (solutionj, solutiony, i):
U=1iy,...,ijy| — {i: solution;.i # solutiony.i}
if |U| =1 then

L return iy

solutions — solutiony
solutiong — solutiongliy — solutionj.ijl,..., iy} 2) < solution;.i||y|/2)]
if Af; (solutiony) — A f; (solutions) # 0 then

L return findLinkage (solutionj, solutiong, i)

else
L return findLinkage (solutiony, solutiong, i)

Function linkageSets0fHigherOrder (linkageSets, linkagePairs, maxOrder):
linkageSetsOfMaxOrder — @
for set € linkageSets of order maxOrder —1 do
for superset of set of size maxOrder do
if all pairs in superset € linkagePairs then
L linkageSetsOfMaxOrder — linkageSetsOfMaxOrder U {superset}

return linkageSetsOfMaxOrder

Function efficientLinkageLearning(holdoutPopulation):
linkagePairs — @
while true do
for i =1,..., numberOfVariables do
L linkagePairs — detectLinkagePairsBinarySearch (i, linkagePairs)

linkageSets — {{},{1},...,{¢}}
for maxOrder =2, ..., numberOfVariables do
currentHigherOrderSets —
linkageSetsO0fHigherOrder(linkageSets, linkagePairs, maxOrder)
if currentHigherOrderSets = ¢ then
| break

linkageSets — linkageSets U currentHigherOrderSets
WalshCoefficients — calculateWalshCoefficients(linkageSets)
R% — calculateApproximationQuality (holdoutPopulation, WalshCoefficients)
if RZ = 1 then
L return WalshCoefficients
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3.3.3. THE CONSIDERED ALTERNATIVE APPROACHES

PROBES-BASED LINKAGE LEARNING (PLL)

As the first alternative approach, we choose the parameterless modification of the linkage
learning and Walsh coefficients calculation algorithm proposed in [10] followed by the
optimization of the obtained Walsh decomposition by GOMEA. This algorithm is based
on the probe notion. As a subset j is a linked group if P(f, j, c¢) # 0, the algorithm tries
to detect the linkage with a randomly selected background c. The quality of the decom-
position is measured in the same way as in Algorithm 3.3.2: a perfect decomposition
means R? = 1 on a holdout population. In each iteration, the algorithm starts by detecting
order 2 linkage sets. Then it moves on to order 3 groups: a set of 3 variables is selected
for testing by probes if all its subsets of 2 variables are already detected as linked sets.
In general, after performing linkage sets detection of order s, candidates for order s +1
linkage sets are constructed: a set of size s+ 1 is a candidate if all its subsets of size s
are already detected linkage sets. If no linkage sets of order p are detected, it means
that no linkage sets of order > p can be detected and the algorithm iteration is finished.
In the original algorithm, the number of backgrounds to test is set manually. In our
implementation, we do one test for each candidate set of linked variables until the perfect
decomposition is obtained. Thus, the algorithm usage becomes parameterless. The full
algorithm description is provided in Algorithm 3.3.3.

Algorithm 3.3.3: The PLL algorithm.

Function checkLinkageByProbes (setToCheck):
probeBackground — random solution
for i € setToCheck do

L probeBackground.i — 0

if P(f, setToCheck, probeBackground) # 0 then
L return true

return false

Function probesBasedLinkageLearning (holdoutPopulation):
linkageSets — {{} ,{1},...,{¢}}
while true do
for maxOrder —2...¢ do
candidateSets — @
setsOfMaxOrderDetected — false
for superset of order maxOrder in supersets of sets € linkageSets do
L if all subsets of the superset € linkageSets then
| candidateSets — candidateSets U {superset}

for set € candidateSets do
if checkLinkageByProbes (set) = true then
linkageSets — linkageSets U set
setsOfMaxOrderDetected — true

if setsOfMaxOrderDetected = false then
L break

WalshCoefficients — calculateWalshCoefficients (linkageSets)
R? — calculateApproximationQuality (holdoutPopulation, WalshCoefficients)
if R2 = 1 then

L return WalshCoefficients
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LARS-BASED LINKAGE LEARNING (LARSLL)

The original algorithm is introduced in [17]. We make a straightforward modification
to make its usage parameterless. After obtaining an accurate Walsh decomposition, we
use GOMEA in the same way as we use it after running the ELL and the PLL algorithms.
The basic idea of LARSLL is to consider the task of learning Walsh coefficients as a su-
pervised machine learning problem. If there are solutions xj, ..., x,, and corresponding
fitness values y1,..., ¥,, each solution x; with fitness value y can be represented using
Walsh coefficients wy,, ..., Wi as y; = Wi, Wi, (X) + - + WY, (X). In machine learning
terms, ¥ are the features, y are the target values, and w are the weights to be learned.
Weights w should be learned by the minimization of the Mean Squared Error loss function:
MSE=%" (- )2, where j are approximate values calculated using an estimation of
weights W : § = Wy, v, (x) + -+ + Wi Wi (x). If a function is k—bounded, then many of
the Walsh coefficients are zero. Therefore, it is reasonable to use linear regression with
L1 regularization to learn coefficients as such a regression model naturally forces part of
the weights to be zero. As shown in [17], the regularized Least Angle Regression (LARS)
is an efficient approach. Note, that in contrast to the above-mentioned algorithms, this
algorithm aims at approximating Walsh coefficients as accurately as possible, instead of
learning the precise values of them by discovering the full linkage structure of a problem
beforehand.

In our implementation, we automatically select both the value of k and the required
number of solutions in the training set for regression. The full algorithm description is
provided in Algorithm 3.3.4. Starting from a population of size 1, we iteratively double the
population size. For each population size, the algorithm starts with masks of order 1. The
order of masks is gradually increased until the total number of masks becomes larger than
the population size. We stop there because our preliminary experiments show that LARS
regression is not capable of accurately learning the coefficients if the number of masks
(i.e., the features) is larger than the population size (i.e., the number of samples). For each
considered maximal order k of masks, all possible masks of orders 1,..., k are generated
(by the function generateMasksUpToOrder), and Walsh coefficients are estimated by the
LARS regression solver. The algorithm stops working when the quality of approximation
R? measured on a holdout set of solutions is = R? —e¢. Such e—allowed deviation from 1 is
introduced for numerical reasons, with € = 107°.

Algorithm 3.3.4: The LARSLL algorithm.

Function LARSBasedLinkageLearning (holdoutPopulation):
population — generatePopulation0fSize (1)
while true do
maxOrder — 1
while masks.size < population.size do
masks — generateMasksUpToOrder (maxOrder)
weights — learnRegression (masks, population)
R? — calculateApproximationQuality (holdoutPopulation, weights)
if R2 = 1—¢ then
| return weights

maxOrder — maxOrder + 1

| population — population U generatePopulation0fSize (population.size)
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3.3.4. HOLDOUT POPULATION SIZE

In all considered algorithms, the holdout population size is important for a proper eval-
uation of the obtained Walsh coefficients-based surrogate model. Strictly speaking, to
guarantee, that the quality of the obtained Walsh decomposition is indeed perfect, i.e., all
dependencies between variables are captured and the Walsh decomposition values

2 sei0,13¢ WsWs(x) = f(x) Vx e {0, 1}¢, all possible combinations of bits values for all sub-
functions should be present in the holdout population. Namely, if there is a subfunction
depending on x;,,..., x;, variables, in a holdout population there should be a correspond-
ing solution for any of the 2¥ possible values of (%iy,...,%;;). The probability of all possible
bits assignments for all subfunctions occurring in the holdout population depends on
the number of subfunctions and their order. However, in a real application, we do not
know in advance these parameters of the optimized function. Thus, a proper manual
setting of the holdout population size seems unrealistic. To solve this issue, we propose
to use a high-level wrapper for all the considered algorithms with a scheme of a gradually
increasing holdout population size.

Algorithm 3.3.5: The high-level wrapper for surrogate-assisted optimization
algorithms based on Walsh decomposition.

Function runAlgorithm():
holdoutPopulationSize — ¢
T — initial time limit // arbitrary initial time limit
WalshCoefficients — NULL
elitist — NULL
while true do
holdoutPopulation — generatePopulationUpToSize (holdoutPopulationSize)
R? — calculateApproximationQuality (holdoutPopulation, WalshCoefficients)
if WalshCoefficients= NULL or R? < 1 —¢ then
WalshCoefficients — WalshCoefficientsCalculation (holdoutPopulation)
L // e.g., using ELL

s — runOptimization (T, WalshCoefficients) // Optimizing the Walsh decomposition
with time limit T
if fitness (s) > fitness (elitist) then
| elitist—s

holdoutPopulationSize — 2holdoutPopulationSize
T 2T

return elitist

First, a holdout population of fixed size is generated. The Walsh coefficients calcula-
tion WalshCoefficientsCalculation (e.g., by the ELL, the PLL, or the LARSLL algorithms)
is then performed obtaining the Walsh decomposition with perfect quality for the cur-
rent holdoutPopulation. Next, GOMEA, with time limit 7, is applied to optimize it (in
runOptimization(T, WalshCoefficients) function call). Then, the holdout population size
is doubled and the learning of Walsh coefficients followed by running the optimization
algorithm with a double time limit 2T is repeated. The best so far found solution (elitist)
is tracked. This scheme is described in Algorithm 3.3.5. Basically, the algorithm can
continue working forever, as better solutions can be found with large holdout population
sizes (as new dependencies between variables can be discovered). In practice, it can
be shut down by a time limit or when an a priori known optimal value is found. In the
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experiments, we set the size of the initial population holdoutPopulationSize equal to the
number of variables ¢.

3.4. EXPERIMENTS

3.4.1. BENCHMARK PROBLEMS

We consider a set of well-known pseudo-Boolean benchmark functions. Each needs to be
maximized. All functions on which we test the algorithms are additively decomposable,
have blocks of dependent variables up to size k (k is different for different problems), and
have the number of subfunctions @'(¢).

The first benchmark functions are the well-known concatenated deceptive traps [12]
of orders k = 4,6,8. We also consider the circularly overlapping deceptive traps function
with k =4, 6. The number of subfunctions in a separable Trap function is %, in the version
with overlapping subfunctions it is £.

J=1

0k k
b
Srrapx (%) = Z f;rlisz (Z xik"'j) ’
i=1

k
x(i+j)%(€+1)) )
j=1

4
sub
f TmpKOverlapping(x) = Z [ TrapK (
i= j=

1

k ifu=k
sub — ’
mepK(u) - {k —1—u otherwise.

Another function we consider is the NK landscapes with maximum overlap (also
called NK-S1 landscapes) [11] with blocks of k = 3,5. Corresponding problems are further
referred to as N3 — S1 and N5 — S1. Similarly to overlapping deceptive traps, this function
contains overlapping blocks of dependent variables, but with subfunctions depending on
the block position:

where the values of flf,’;(b are tabular values, samples from the uniform distribution in [0; 1]

interval.
Another benchmark function we consider is the MaxCut problem. Given a weighted
undirected graph (V, E) the goal is to find a partition of the vertices in two sets such that

the sum of weights of edges running between vertices in different partitions is maximized.

For a binary GA, this problem can be encoded as a binary vector of size |V| (¢ = |V]),
where a 0 or a 1 in position i means that the i-th vertex belongs to the first and the second
partition, respectively. The considered MaxCut instances are 2D square lattice graphs
consisting of ¢ rows, with £ vertices in each row. Each of the inner vertices is connected
to 4 neighbors. Edges weights are integer values from [1,5]. The number of edges in these
instances is 2VZ(V¢ — 1) = G (0).

Finally, we do experiments with a real-world NP-hard problem, MAXSAT. MAXSAT is an
optimization version of a well-known boolean satisfiability problem (SAT). Particularly, we
consider uniformly random MAX3SAT problem instances commonly used in Evolutionary
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Algorithms benchmarking. These instances are defined in conjunctive normal form (CNF)
with 3 variables in each clause. The fitness function in the case of the MAXSAT problem is
given by:

m-1
faaxsar(x) == ) "(Vfigleij Sfi,)

i=0
where p; is the subfunction size (for MAX3SAT p; = 3 Vi), f; determines which variables
are contained in the clause (subfunction) with index i, and S can be either a negation
operator (turning a binary x into its opposite value) or keeping the value of x intact. The
considered MAXSAT instances contain & (¢) subfunctions and are known to have the
global optimum with value 0 (i.e. a satisfying solution exists). For all considered MAXSAT
instances the coefficient 7! ~ 4 which means that these instances are likely of substantial
complexity.

3.4.2. IMPLEMENTATION DETAILS
We use C++ to implement all algorithms. In the LARSLL algorithm, we implement the
regression model using the MLPack library [22] with OpenMP parallelization support. In
all algorithms, all evaluated solutions are cached, thus the number of evaluations in our
experiments means the number of different evaluated solutions.

The source code of all considered algorithms and conducted experiments is released
online'.

3.4.3. EXPERIMENTS DESIGN

For each problem, we consider several dimensionalities. We run experiments for NK — S1
and overlapping traps with up to 1280 variables, for separable traps with up to 1920
variables, MaxCut with up to 1600 variables, and MAXSAT with up to 100 variables (con-
sidering larger MAXSAT instances are not computationally feasible as it is an NP-hard
problem and therefore the number of function evaluations needed to find the optimum
by GOMEA is growing exponentially).

In our experiments, we compare the performance of the proposed ELL-GOMEA, the
standard GOMEA, PLL-GOMEA, and LARSLL-GOMEA. For all problems and all considered
dimensionalities, we do 30 runs. We study the scalability of the considered algorithms in
terms of the number of function evaluations (of the original fitness function) and the total
wall clock time to achieve the optimum. An algorithm is considered to have successfully
solved a problem if it achieves an optimum in all 30 runs. For GOMEA a time limit is set
to 1 hour. For other algorithms the time limit of 1 hour was set for the linkage learning
parts only (not including the following optimization by GOMEA) as we suppose, that
function evaluations of the initial functions may be substantially more expensive than
the evaluation of the Walsh decomposition surrogate.

In the scheme described in Section 3.3.4, the initial time limit for GOMEA is set to
the maximal time GOMEA needs to solve this problem instance. Though the outer loop
in Algorithm 3.3.5 can be repeated forever, as a larger holdout population size can help
to reveal more linkage sets and, therefore, find a better solution during optimization, in

Lhttps://github.com/ArkadiyD/ELL-GOMEA
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the experiments we terminate the overall execution of the instance when an optimum is
found.

3.4.4. RESULTS

The scalability plots showing the comparison between GOMEA, ELL-GOMEA, PLL-
GOMEA, and LARSLL-GOMEA are presented in Figure 3.4.2. They demonstrate the
superior performance of ELL-GOMEA in all considered problems. The scalability graphs
of PLL-GOMEA show the expected O (%) complexity and, therefore, it is not competitive
with ELL-GOMEA. LARSLL-GOMEA, as expected, fails to scale well on problems with
k = 3. On MaxCut it scales similar to PLL-GOMEA (as it is supposed to have & (¢%)
complexity, which is @(¢?) in case of the MaxCut), but worse than ELL-GOMEA. The
gap in performance between GOMEA and ELL-GOMEA is the largest on NK-S1 and
Overlapping Trap6 problems. For the NK-S1 problem, it is easier to learn linkage with
ELL-GOMEA as subfunctions are non-linear everywhere and the findLinkage routine
from Algorithm 3.3.2 detects linkage for any pair of different solutions. Traps require more
checks to detect all dependencies, as deceptive traps subfunctions are linear except for
the jump to the all-ones solution. In general, such subfunctions are the most difficult for
linkage learning by the algorithm used in ELL-GOMEA. The overlapping trap is even more
difficult as it contains more subfunctions. Nevertheless, the scalability of ELL-GOMEA
is better than the scalability of GOMEA and, therefore, for large dimensionalities, ELL-
GOMEA requires fewer evaluations (of the original function) to achieve the optimum.
Similar behavior can be observed for the MAXSAT problem.

Scalability of the considered algorithms in terms of total wall clock time is shown in
Figure 3.4.5. As expected, the total wall clock time required by ELL-GOMEA algorithm to
find an optimum is larger than for GOMEA, as it includes the linkage detection part and at
least one GOMEA run for surrogate model optimization. Interestingly, for most problems
(Overlapping Traps, Trap4, MaxCut, NK-landscapes, and MAXSAT) the difference between
ELL-GOMEA and GOMEA becomes smaller as the number of variables grows. Also, we
see that the total wall clock time of ELL-GOMEA algorithm scales polynomially. Note,
that as ELL-GOMEA requires fewer evaluations of the original function, it can achieve the
global optimum faster than GOMEA if the evaluations are expensive.

We do statistical tests to verify that ELL-GOMEA requires fewer evaluations than
GOMEA to achieve the optimum. We use Mann-Whitney U test with a = 0.05 and Bonfer-
roni correction. The superior performance of ELL-GOMEA over GOMEA is statistically
significant for all considered dimensions for Overlapping Trap6, Trap4, Trap6, and N5-S1
Landscape; for Overlapping Trap4 for ¢ = 160; for Trap8 for ¢ = 240; for N3-S1 for ¢ = 40;
for MaxCut for ¢ = 49; for MAXSAT for ¢ = 100. ELL-GOMEA performance inferiority
compared to GOMEA is statistically significant only for Overlapping Trap4 with ¢ = 40,
Trap8 with ¢ = 40, and MAXSAT with ¢ = 20.

We also study how ELL-GOMEA performance depends on subfunctions size k. For
this purpose, we perform experiments on concatenated separable traps of sizes 4,6,8
and overlapping traps of sizes 4,6 and plot the scalability lines in one graph for each
problem type. The graphs are presented in Figure 3.4.1. These results demonstrate that
the scalability lines for one problem with different values of k are approximately parallel,
which means that in asymptotic complexity the k is involved only as a constant factor.
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Figure 3.4.1. Scalability of ELL-GOMEA on the problems of the same type but with different
subfunctions size k. The bars show the intervals of the number of evaluations, excluding the lowest
and highest values (which corresponds to = 93% interval). The markers indicate the median values.

We also study how the theoretically inferred complexity of ELL matches with the
experimental results. First, we check how the required number of detectLinkagePairsBina-
rySearch calls for each variable depends on /. It is reasonable to make this check for trap
functions, as they represent the worst-case functions for ELL. The results are presented in
Figure 3.4.3. It can be seen, that the required number of linkage checks corresponds to
the theoretical estimate of G (log(¢)) obtained in Section 3.3.2.

Then, we consider the overlapping Trap4 and Trap6 problems and analyze the algo-
rithm complexity obtained in the experiments. Particularly, we fit the function a¢log?¢ +b
(a, b are real values) to the experimental number of function evaluations for each consid-
ered problem size. The results are presented in Figure 3.4.4. The R? coefficients of the
fitted curves are > 0.999. Note, that these scalability plots represent the total number of
evaluations, including the calculation of Walsh coefficients and evaluations of solutions
in holdout populations.
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3.4.5. DISCUSSION

In this chapter, we focused on finding the global optimum of a problem instead of finding
good, near-optimal solutions. For real-world problems the global optimum is often not
known or hardly achievable, therefore finding just good solutions will suffice. However,
in this chapter, we want to focus on the algorithm design, analysis, and experiments
for the scenario when the global optimum needs to be found. Such experimental setup
is common for Evolutionary Algorithms research. In fact, this makes our contribution
in this chapter much like any other attempt at more efficient black-box optimization
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performance with a GA, except that we use a special type of surrogate model rather than
the more common focus of a better variation operator. Investigating algorithm behavior
and performance in a setup when finding near-optimal solutions is good enough would
be more in-line with typical surrogate-assisted model-based GA research. However, this
is considered beyond the scope of this chapter, yet a genuinely interesting question for
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future work. Another left-out research question that is closely related to the previous one
is applying the introduced algorithm in the case when the perfect Walsh decomposition
model cannot be obtained (e.g. function is not k-bounded or function evaluations are
noisy) or the function evaluations are so expensive that it is not feasible. For such a case,
a special study of stopping criteria based on surrogate model quality is needed.

In our experiments, we used GOMEA as the optimization algorithm for the obtained
surrogate model (the Walsh decomposition). As our experiments show, especially when
combined with ELL, we can solve various problems with a smaller number of function
evaluations. However, we realize that such an approach does not help to solve prob-
lems which GOMEA fails to solve in reasonable time. For instance, in our preliminary
experiments, we found out that random NK-landscapes with k=5 (also called embedded
landscapes [23]) and sums of traps with randomly selected variable positions for each
trap subfunction (embedded landscapes with deceptive subfunctions) are intractable
for GOMEA: it fails to find an optimum even for a moderate number of variables (= 50).
Overlapping Trap8 for ¢ = 320 and MAXSAT for ¢ = 200 also cannot be solved by GOMEA
within 1 hour. However, potentially the class of problems solvable by ELL-GOMEA can
be extended if a more powerful optimization algorithm is developed and used. Recently,
a novel gray-box algorithm was introduced in [24], but it focuses on more simple NK
landscapes instances, with subfunctions values selected from integer values from 0 to Q,
where Q is moderate (< 100). We tried to replace GOMEA as the surrogate model optimizer
with two gray-box algorithms, namely, Hierarchical Recombinative Local Search (HiReLS)
and Deterministic Recombination and Iterated Local Search (DRILS) [24] with different
values of mutation probability. As we assume that the real function evaluations are much
more expensive than the surrogate ones, we are interested in finding the optimum of the
surrogate model as fast as possible regardless of the number of surrogate evaluations
required. We test the ability of the HiRELS and DRILS algorithms to solve a problem
instance faster than GOMEA. The graphs with these results are shown in Figure 3.4.6.
They show that GOMEA is generally preferable to HIRELS and DRILS. DRILS cannot solve
considered problems faster than GOMEA. HiRELS is faster than GOMEA on separable
Traps and moderate-size instances of N3-S1 but GOMEA is faster and scales better on
other problems which are known to be more difficult to solve (MAXSAT, Overlapping
Traps, N5-S1). Therefore, we stick to GOMEA as a surrogate model optimizer. Neverthe-
less, designing an efficient gray-box algorithm for solving difficult, currently intractable
for GOMEA, problems is still highly desirable.

Another important question is real-world applications of the proposed algorithm. So
far not many works address the question of designing k-bounded fitness functions for
real-world problems. One of such examples is a new fitness function for clustering [25],
but it does not demonstrate superior results on clustering benchmarks. In this chapter,
we showed, that the function property of being k-bounded can be efficiently exploited in
a black-box setting, and, therefore, designing novel k-bounded fitness functions for real-
world optimization problems becomes an important question of the future work. Another
future work subject is extending the proposed approach to non-bounded functions,
including hierarchical ones, e.g., the well-known Hierarchical If-And-Only-If benchmark
function (HIFF), which currently the proposed approach cannot solve (but GOMEA itself
can).
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3.5. CONCLUSION

We introduced a novel approach to binary surrogate-assisted genetic algorithms in a
black-box setting. We consider a precise Walsh decomposition of the optimized function
as the surrogate. To efficiently calculate Walsh coefficients, we propose to use an efficient
algorithm for linkage learning first and then calculate non-zero coefficients, i.e., coeffi-
cients corresponding to sets of dependent variables. After obtaining an accurate Walsh
decomposition, we consider it as a surrogate and use GOMEA to optimize it without any
additional evaluations of the initial function.

In our experiments on the well-known benchmark functions, we compare the pro-
posed approach with standard GOMEA, and with two different algorithms for approxi-
mating Walsh coefficients followed by optimization using GOMEA. The set of benchmark
functions includes separable and overlapping traps, adjacent NK-landscapes, MaxCut,
and the NP-hard problem MAXSAT. The proposed algorithm shows better polynomial
scalability in terms of original fitness function evaluations than all considered alternatives.
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APPENDIX
DERIVATION A
Inequality to solve: ((1—(1— p)%])[ > §, variable: ¢, constants: N,J>0;0<p,6 <1
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CONVOLUTIONAL NEURAL NETWORK
SURROGATE-ASSISTED GOMEA

We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization
of problems with discrete categorical variables. Specifically, we leverage the strengths of
the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state-of-the-art GA,
and, for the first time, propose to use a convolutional neural network (CNN) as a surrogate
model. We propose to train the model on pairwise fitness differences to decrease the number
of evaluated solutions that is required to achieve adequate surrogate model training. In
providing a proof of principle, we consider relatively standard CNNs, and demonstrate
that their capacity is already sufficient to accurately learn fitness landscapes of various
well-known benchmark functions. The proposed CS-GOMEA is compared with GOMEA
and the widely-used Bayesian optimization-based expensive optimization frameworks
SMAC and Hyperopt, in terms of the number of evaluations that is required to achieve
the optimum. In our experiments on binary problems with dimensionalities up to 400
variables, CS-GOMEA always found the optimum, whereas SMAC and Hyperopt failed for
problem sizes over 16 variables. Moreover, the number of evaluated solutions required by
CS-GOMEA to find the optimum was found to scale much better than GOMEA.

The contents of this chapter are based on the following publication: A. Dushatskiy, A. M. Mendrik, T. Alderli-
esten, and P. A. N. Bosman. “Convolutional neural network surrogate-assisted GOMEA ”. In: Proceedings of the
Genetic and Evolutionary Computation Conference. ACM. 2019, pp. 753-761.
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4.1. INTRODUCTION

Optimization problems with time-consuming objective function evaluations (expensive
optimization) arise in different domains. With the recent progress in deep learning,
expensive optimization has become a topic of great interest as there are several connected
expensive optimization tasks, such as deep neural network hyperparameter optimization.
In this chapter, we consider single-objective binary problems in a Black Box Optimization
(BBO) setting with the assumption that function evaluations are expensive (i.e., training a
deep neural network).

Many of the currently used expensive optimization algorithms are based on Bayesian
Optimization (BO) and consider problems with real-valued variables [1]. The traditional
BO algorithms, which use Gaussian Process models, have two major problems: a limit
on the number of variables (in most works the functions in the experiments have only
several variables) and difficulties with applications to problems with discrete categorical
variables [2]. Two advanced algorithms commonly used for expensive optimization tasks,
including applications to deep learning, are: SMAC [3] and Hyperopt [4]. SMAC has the
option to use Random Forests (RF) instead of Gaussian Processes to better solve mixed
integer and integer problems. Hyperopt is an implementation of the Tree-structured
Parzen Estimator (TPE) [5], which is also a BO algorithm. SMAC and Hyperopt have been
reported to be able to handle problems with several tens of variables [3, 4, 6] and perform
better than Gaussian Process-based algorithms for discrete problems [7].

Model-based optimization (MBO) algorithms for discrete problems are increasingly
a topic of great interest [1]. These algorithms rely on an accurate objective function
approximation with a surrogate model. In a similar way to BO, most algorithms generate
one new solution per iteration. The surrogate models reported to perform the best are
Radial Basis Function Networks (RBFN) [8], Kriging [9] adapted to binary variables, and
amodel based on Walsh functions decomposition [10]. However, the reported working
examples for binary functions are still limited to a moderate number of variables (up to
20-30) [1].

Another class of algorithms that can potentially be used for solving expensive opti-
mization problems is surrogate-assisted Genetic Algorithms (GAs) [11]. GAs are powerful
search methods, but potentially require many function evaluations. Using surrogate
models is a natural way to reduce the number of real function evaluations by replacing a
part of them with surrogate ones, which are considered to consume much less time. A
surrogate-assisted GA, therefore, has the potential to be highly powerful for expensive
optimization, retaining the competent search characteristics of the GA, while reducing
overall run time through surrogate function evaluations. Note that a surrogate-assisted
GA approach differs from using a GA in BO or MBO algorithms for finding the next point
to evaluate. Common types of surrogate models integrated into GAs are polynomials,
Kriging, RBFN, and Support Vector Regression (SVR) [11]. To the best of our knowledge,
there is currently no literature on surrogate-assisted GAs for solving problems with dis-
crete categorical variables. However, many real-world problems have discrete (binary)
components, such as architectural choices, in the form of connections, of deep neural
networks.

In this chapter, we consider a novel type of surrogate model, namely a Convolutional
Neural Network (CNN) [12]. Though there are existing works in which artificial neural
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networks are used [13], to our knowledge, no works use a CNN as the surrogate model in
a GA. Here, we study the best way to realize the integration and the resulting scalability of
terms of required evaluations to solve well-known benchmark problems to optimality. We
consider as the baseline the Gene Pool Optimal Mixing Evolutionary Algorithm (GOMEA)
[14] so as to assess the true potential added value of a surrogate model by testing it in
conjunction with a state-of-the-art GA. A key feature of GOMEA is its ability to exploit
problem structure in the form of linkage (i.e., interdependent problem variables). This
makes GOMEA highly suited to solve complex optimization problems in a BBO setting,
with excellent scalability.

4.2. CNN SURROGATE MODEL

We have chosen to use a CNN as the approximator due to its known capacity and ex-
trapolation ability, as opposed to decision trees, for which output values are bounded by
the values in the training dataset [15]. Compared to Fully-Connected neural networks, a
CNN can learn the same information using much fewer parameters because filters are
applied to different input data locations, essentially giving the CNN the power to learn
higher-order combinations efficiently. Thus, the overfitting problem is less likely to occur.

4.2.1. PAIRWISE REGRESSION
We consider the task of fitness function approximation as a supervised machine learning
regression problem. In general, the approximation procedure entails:

rr}in Loss ([y1,...,yN), [f (x1),..., f(xn)]),

where f is an approximation function, f:{0,1}} — R; x € {0, 1} are solutions, yeR are
fitness function values; Lossis a loss function, e.g., Mean Squared Error (MSE): MSE(y, y) =

N
% Y (yi — )% N is the training dataset size. In machine learning terms, the solutions
i=1

represent input features of a machine learning model and the fitness function values
represent target values.

Despite the great potential of CNNs, a downside is that they need large numbers
of data points for training. To alleviate this issue and make the most out of previously
evaluated solutions, we propose to approximate the difference of fitness function values of
two solutions rather than directly approximate the fitness of a solution. As input the CNN
thus gets two solutions. As output, it produces the predicted difference of their fitness
values. The training dataset is formed by all possible ordered pairs of solutions. Thus,
the size of the training dataset becomes n?, with n the number of evaluated solutions,
increasing the number of training samples by an order of magnitude. This effect is
demonstrated in Figure 4.2.1 for the Onemax function described in Section 4.4.1 with
1 =100. The pairwise regression needs fewer data points (i.e., evaluations of solutions)
to produce accurate predictions on the validation set (solutions in both training and
validation datasets are randomly generated in this example). The training procedure is
described in Section 4.2.2.

After training it is possible to predict the fitness value of an arbitrary solution s by
using the solutions from the training dataset #,..., ty, where N is the training dataset
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size, as pivotal solutions. Specifically, we form the pairs (¢, s),..., (tn, $), (S, f1),..., (S, IN).
For each pair, the fitness difference is predicted and thereby the fitness value estimation is
calculated. The resultant fitness value estimation of s is averaged over all pairs. Moreover,
it is possible to use only part of the training solutions as pivotal ones to accelerate the
prediction process. The full prediction procedure is described in Algorithm 4.2.1.

—®— standard regression, R?

—&— pairwise regression, R?

—M- standard regression, p
pairwise regression, p

Metric value

20 40 80 160 320 640 1280
Number of solutions

Figure 4.2.1. R? coefficient and Spearman correlation coefficient p for increasing numbers of
evaluated solutions used as training samples for a CNN in case of direct regression and pairwise
regression using the same internal CNN architecture. The approximated function is Onemax. For
each number of solutions, data generation and training are done 30 times. The dots represent the
median values, the bars indicate the 2nd and 29th order statistics.

Algorithm 4.2.1: Fitness prediction after pairwise regression.

Function predictFitnessValue(s):

pivotalSolutions — subset of train data of size maxPivotalSize

predictions — @

for refS € pivotalSolutions do
// refFitness is the fitness of the reference solution refS
predictions — predictions U refFitness + modelPredict(s, refS)
predictions — predictions U refFitness — modelPredict(refS,s)

finalPrediction — mean (predictions)
return finalPrediction

4.2.2. TRAINING PROCEDURE

Since we consider binary problems, we apply a standard simple data transformation
before training: subtract 0.5 from input x to center it around 0 and divide target values y
by the maximum absolute value seen in the training dataset to clip them between —1 and
1, as the initial weights of the CNN are generated randomly also from the [-1;1] interval.

We train the CNN with a hold-out validation set. For the division into training and
validation sets, systematic sampling is used: the target values are sorted and every gth
sample is taken into the validation set. In the experiments, g is set to 5 (i.e., 80% of data
is used for training, 20% for validation). After obtaining the training and validation sets,
we form pairs of samples. Specifically, imitating the prediction procedure described in
Section 4.2.1, the CNN is validated on pairs containing one solution from the training
dataset, and one from the validation one.
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One training epoch consists of processing all pairs of samples from the training set.
The loss that is minimized during training is the MSE. As a training algorithm we use
standard backpropagation with the gradient-descent based optimizer Adam [16], with the
following parameters: a = 0.0005, 81 = 0.9, B2 = 0.999,¢ = 108 (the standard parameters
from [16], except the learning rate, which is slightly lowered to make the learning process
more robust). An early stopping criterion is used for training: the training is stopped if the
error on the validation pairs of solutions is not improving for several consecutive epochs.
In our implementation, this number of epochs is dependent on the training dataset size:
it varies from 2 for large datasets of size N = 10° to 6 for smaller datasets of size N < 10*
(for datasets of size 10* < N < 10° it is set to 4).

4.2.3. CNN ARCHITECTURE
We would like the surrogate model to capture information about the impact of blocks of
dependent, both closely and distantly located, variables on the fitness values. For this
purpose dilated convolutional filters [17] can be used, which are capable of capturing
dependencies between distant variables. They are also capable of capturing the depen-
dencies between tightly located variables if the dilation factor, which determines the
distance between variables to which the filter is applied, is set to 1. Each filter has the
following hyperparameters: the filter size k that determines the number of variables cap-
tured by the filter at once, the stride st that determines the distance between successive
moves of a filter along the input, the dilation factor d and weights w that are learned
during the training procedure. Given a string of length [;;,, it produces a string of length
lour = W + 1. Usually, several filters with the same hyperparameters, but with
independent weights are applied at once, each producing its own output. These filters
with separately learned weights can capture different dependencies or aspects thereof.
Another important feature of the proposed neural network architecture is the input
representation in the form of two stacked solutions. This allows the convolutional filters
to naturally capture the information about differences in corresponding genes of two
solutions and their connection with differences in fitness values. The working principle
of dilated filters in our context is demonstrated in Figure 4.2.2.

Up [Uf [Up [ U3 [Ug|Us5|Ug|uU7 XY W00 | Wo1
Vo[vi|va|vg|Vva|Vs|Ve]|Vr W10 | W11

U

f(woouo+wotus+ | f(Wooui+wotus+ | f(woouo+woiue+ | f(Woous+woqu7z+
W1QVQ+W1{1Va+b) | W1gVv1+W11V5+b) | W1gVo+W11Ve+b) | W1gVva+w1qV7+b)

Figure 4.2.2. Example of applying a dilated filter to two stacked solutions u and v with 8 variables.
Filter size k = 2, dilation factor d = 4, stride st = 1, w; j are filters weights, b is a bias term, f is an
activation function. Different colors represent the variables captured by the filter at each position
while moving along the input. As a result, the filter produces a new string of length 4.

In this chapter, we consider the convolutional neural network architecture with 2 con-
volutional layers, an optional fully-connected (dense) hidden layer, and an output layer,
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which is also fully connected. The architecture for the particular problem is optimized
with the grid-search procedure [18]; more details are provided in Section 4.2.3. In the
second convolutional layer, the filters are regular convolutional filters without dilation,
because the first convolutional layer is supposed to already capture the dependencies be-
tween distant variables. We use C; and C; filters in the convolutional layers, respectively.
Moreover, the size of a fully-connected layer is Cs. The structure of the neural network is
shown in Figure 4.2.3. The activation functions of all layers, except the output one, are
Rectified Linear Units (ReLUs): f(x) = max(0, x); the output layer has a linear activation
function: f(x) = x. After the second convolutional layer, dropout [19] is applied with a
common ratio of 0.2 to reduce model overfitting.

b

Input Convolutional Convolutional ~ Dense Dense (Output)
1xIx2 Cixlyx1 Coxlpx1 CalaxCg Cax1

Figure 4.2.3. The CNN architecture used, with 1 hidden dense layer. [ is the number of variables,
I3, I are the second dimensions of tensors after processing by two convolutional layers. The input
is two stacked solutions.

HYPERPARAMETER SEARCH

We perform an often-used grid search to find the best architecture and hyperparame-
ters for a particular problem. In preliminary experiments, it was found that C;, C,, Cs
can be set to 100,30, 30 respectively to provide a reasonable model complexity. These
hyperparameters are not optimized during the grid search procedure.

The hyperparameters and their corresponding domains (search is performed over
integer values) are presented in Table 4.2.1: kj, st;, d; are the filter size, stride size, and
dilation factor size of filters in the first convolutional layer respectively; k; is the filter size
in the second convolutional layer, Ny, is the number of fully-connected layers (the hidden
ones). The search is performed in two stages: in the first stage the hyperparameters of the
first convolutional layer are optimized, the second layer is fixed with ky = 1,st,=1,d> =1,
and Ny, is fixed at 1. In the second stage, the best found hyperparameters for the first
layer are fixed and the search is performed for k; and Ny, hyperparameters. The search is
divided into two stages to accelerate it. We consider this division to be acceptable as the
hyperparameters of the first layer have a greater impact than the other ones on capturing
the problem structure and hence on the CNN accuracy. The search is terminated in case
the model quality (Spearman correlation on the validation set as described in Section
4.2.4) on a set of hyperparameters is = 0.97.

Parameter k; sty dq ko N

Interval ;min(0, )1 4 L m2A o1

Table 4.2.1. Hyperparameters and intervals of search.
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4.2.4. SURROGATE MODEL QUALITY

Common metrics for assessing the performance of machine learning algorithms for solv-
ing regression problems (e.g. MSE, R?) can be applied to assess the quality of the surrogate
model. However, when using a surrogate model in a GA we are more interested in consis-
tency between solution ranks as ranked by the real fitness values and the surrogate values
than in small differences between real and predicted fitness values. Thus, we define the
surrogate model quality (in all further mentions) as the Spearman correlation coefficient:

_cov(rgx,rgy)
rs(x,y) = TrgTrgy

solutions in a validation set, r g, and rgy are their ranks among the considered set of
solutions.

, where x and y are respectively real and surrogate fitness values of

4.3. CONVOLUTIONAL SURROGATE-ASSISTED GOMEA

4.3.1. GOMEA

The key components of GOMEA are linkage learning, the Gene-pool Optimal Mixing
(GOM) operator, the Forced Improvements (FI) procedure, and the Interleaved Multistart
Scheme (IMS). We briefly outline each of these components here and refer the interested
reader to the literature for more details [14, 20, 21].

LINKAGE LEARNING

The goal of linkage learning algorithms is to reveal the nature of the linkage between
variables, which can often be defined in terms of subsets of dependent variables. Multiple
linkage learning algorithms and corresponding linkage structures have been introduced
for GOMEA. In this chapter we use the Linkage Tree (LT) [14] as the linkage structure
because this structure has the ability to capture the structure of hierarchical problems and
outperforms in most cases other linkage structures, as stated, e.g., in [21]. The structure
obtained after linkage learning contains subsets of linked variables and is called the
Family of Subsets (FOS).

GENE-POOL OPTIMAL MIXING

After learning the linkage structure, offspring solutions are generated. Offspring genera-
tion with the GOM starts with copying a parent solution. Then, the linkage structure is
iterated over in random order. For each subset, a donor solution is randomly selected
from the population and genes from loci in the current linkage subset are copied from
donor to offspring. The change is accepted only if the fitness function value does not
deteriorate.

FORCED IMPROVEMENTS

If the GOM operator has failed to improve the fitness of an offspring (after iterating over all
the subsets in the linkage structure), or if the local elitist (of this population) solution has
not improved for log, ,(populationSize) generations, then the FI procedure is applied. The
FI procedure performs mixing of the offspring with the global (taken over all populations)
elitist solution. All subsets of the linkage structure are considered in random order. For
each linkage subset, the genes from corresponding loci from the elitist solution are copied
to the offspring; the change is accepted only in case of a real improvement of the fitness
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value. Once an improvement occurs, the FI procedure is immediately terminated. If the
offspring has not improved even after this part of FI, it is set to the elitist solution.

INTERLEAVED MULTISTART SCHEME

The IMS aims to offer a reasonable alternative to needing to set the population size pa-
rameter by hand. Several populations of increasing sizes are run in an interleaved fashion.
The smallest population in the scheme is of fixed size. Here, we use a population of size
8. The next populations are double the size of the previous population. The popula-
tions are interleaved, such that for each ¢/ generation iterations of a population of
size populationSize, one iteration of the population with population size 2populationSize
is performed. In our implementation, ¢/ is set to 4. A population is terminated if a
population with a larger population size has a better average objective value.

4.3.2. ADDING THE SURROGATE MODEL TO GOMEA

The CNN described in Section 4.2 is used as a surrogate model in GOMEA. To do so,
function evaluations are replaced by fitness value estimations made by the surrogate
model under certain conditions. Moreover, each population in the IMS has its own
surrogate model.

PRELIMINARY ACTIONS BEFORE IMS LOOP

The general outline of CS-GOMEA is provided in Algorithm 4.3.1. Before starting to use the
surrogate model, initial training data is collected. We call this process a warm-up period.
After initial warmupSize random solutions’ generation, a CNN hyperparameter search is
performed. Then, more random solutions are generated until the model quality surpasses
the threshold T. Re-training of the model is performed every time after generationStep
solutions are generated. In our experiments, we set generationStep to 10, as a compromise
between the number of model trainings and the number of evaluated solutions at each
step, warmupSize is adjusted with respect to the problem size and difficulty as described
in Section 4.4.2.

If the surrogate model has failed to achieve a quality that is above the threshold T after
a maximal allowed number of solution evaluations, then, probably, the predictive ability
of this model will not be sufficient to find the optimum with GOMEA if surrogate fitness is
used. Thus, a special algorithm mode called a mixed populations mode is then activated:
a subset of the solutions in each population will evolve separately. In these subsets, only
real evaluations are used, and, moreover, in generating offspring only solutions from
these subsets are used as parents to avoid any bias in solutions induced by the surrogate
model. The size of this subset of the population is determined by the model quality.
The lower the quality is, the larger this subset of the population must be. Hence, we
used sizeMixed = [populationSize- (T — modelQuality)], but sizeMixed is not allowed to
be larger than half the population size. In preliminary experiments, we have observed
that it is reasonable to set 7' to 0.9.
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Algorithm 4.3.1: General outline of CS-GOMEA.

Function Main (warmupSize):

generateRandomSolutions (warmupSize)

performHyperparamatersSearch (warmupSize)

// evaluatedArchive maintains the archive of the solutions for which the real
fitness was calculated

while modelQuality < T and evaluatedArchive.size < 2warmupSize do
generateRandomSolutions (generationStep)
model — trainModel (evaluatedArchive)
modelQuality — checkModelQuality (model)

if modelQuality < T then
L mixedPopulationsMode — true

runIMS ()

REAL AND SURROGATE FITNESS VALUES

As stated in other studies [22], mixing real and surrogate fitness values in a population
might be an issue. This is because comparisons between real fitness values and surrogate
ones are compromised, as the surrogate model does not predict the fitness values with
perfect accuracy. Thus, we store only surrogate fitness values, except when in mixed
populations mode. In that case, the real fitness values are stored for the subset of the
population that uses only real fitness values. As each population has its own surrogate
model, the fitness values in a population are the estimates made by the model belonging
to this population. Also, we maintain surrogate fitness values for each local elitist solution
in each population. A global elitist solution for all populations is furthermore maintained,
for which only the real fitness is stored.

CS-GOMEA POPULATION LOOP
The main loop of the optimization process in CS-GOMEA is listed in Algorithm 4.3.2 ',

Algorithm 4.3.2: Main CS-GOMEA loop.

Function runPopulation (populationindex):
populationSize — basePopulationSize- 2P°Pulationindex
P — initializePopulation (populationSize)
while population not terminated do

learnF0S (P)

generate0ffspring (P)

trainModel (randomArchiveu U’]zil(’)ulmw"["dex
updateSurrogateValues (P)
for se Pdo

L doRealEvaluation (s)

optArchivey)

One iteration over the population includes creating the offspring solutions, retraining
the model, updating the surrogate values of the population, and performing real evalua-
tions for offspring solutions to check whether there is an improvement of the elitist. Using
the LT, one application of the GOM operation potentially requires 2/ — 2 evaluations, as

!n the IMS, no instance of GOMEA is run exactly as outlined in Algorithm 4.3 2. Rather, only ¢/ generations
are done every time an instance is called upon (without re-initialization).
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this is the number of internal nodes in an LT, see [21]. Hence, evaluating all solutions
fully at the end of a generational cycle requires a minor fraction of = 5y = 57 real
evaluations (in non-mixed populations mode), thus potentially increasing the efficiency
of the CNN integration with problem size. During the offspring generation described in
Algorithms 4.3.3, 4.3.4 and 4.3.5 there are several cases when a real evaluation can be

executed. Here, we describe them in detail, along with underlying ideas.

1. Ifthe surrogate value of the solution is the new elitist surrogate value.
The reason for doing a real evaluation, in this case, is the assumed correlation
between the model predictions and the real fitness values. Because of this, the new
surrogate elitist has a good chance to be a real elitist solution, too.

2. Ifthereal elitist solution has not been updated after populationSize offspring genera-
tions.
In this case, we execute real evaluations more aggressively to find out whether any
solution is the real new elitist. If the surrogate value of the solution is close to the
elitist surrogate value, then a real evaluation is performed. The fitness distance of
a solution with surrogate value v to the local elitist surrogate with value v, is
determined by 6 = %W, where lowerBound is the minimum value found
in the initial random set of solutions (after a warm-up period). The correction by
lowerBound is required to make 6 independent of the range of fitness values. The
real evaluation is performed if 6 < 0 resnoig- During the preliminary experiments,
we have found that a good value for 6 ,esn014 is 1.02.

3. If the solution has not been changed both after the first stage of generating the
offspring and the FI.
In this case, a real evaluation is performed, as it is expected that this solution, the
surrogate value of which has not been improved during GOM and FI, has a high
real fitness value as well.

Algorithm 4.3.3: Offspring generation.

Function generateOffspring(P):
if mixedPopulationsMode then
realPopulationSize — [populationSize- (0.9 — modelQuality)]

populationSize th

if realPopulationSize > en

L realPopulationSize — w

for se Pdo
if mixedPopulationsMode and sIndex < realPopulationSize then
offspring — generateOffspringWithoutSurrogate (s) else
L offspring — generateOffspringUsingSurrogate (s)
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Algorithm 4.3.4: Offspring generation without a surrogate model.

Function generate0ffspringWithoutSurrogate (parent):
offspring — parent
for subset € FOS do
donor — random solution from P|0... realPopulationSize—1]
candidate — generateSolution (offspring, subset, donor)
// generate new solution with GOM
doRealEvaluation (candidate)
if change is accepted then offspring — candidate

if offspring not changed then
L performForcedImprovements ()

return offspring

Function doRealEvaluation(s):
r — evaluate(s)
i1 > 1ojjrise then roiisy — 1
add (s,r) to evaluated solutions archive

Algorithm 4.3.5: Offspring generation using a surrogate model.

Function generateOffspringUsingSurrogate (parent):

offspring — parent

realEvaluationPerformed — false

for subset € FOS do

donor — random solution from the population

candidate — generateSolution (offspring, subset, donor)

// generate new solution with GOM

v — predictFitnessValue (candidate)

if realEvaluationPerformed = false then

if v > v,45 then

Velitist — v // updating local surrogate elitist

doRealEvaluation (candidate)
realEvaluationPerformed — true

else
if elitist not improved for populationSize offspring then
5= Volitist— lowerBound
v—{lowerBound
if 6 < 6 tprreshold then
doRealEvaluation (candidate)
realEvaluationPerformed — true

if change is accepted then
L offspring — candidate

if offspring not changed then
L performForcedImprovements (offspring)

if offspring not changed then
L doRealEvaluation (offspring)

return offspring
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EVALUATED SOLUTIONS ARCHIVE

As the real evaluations of solutions are presumed to be expensive, we maintain an archive
of already evaluated solutions to avoid repeated evaluations. Each population main-
tains its own archive of solutions acquired by the steps of the optimization algorithm
(optArchive;). The solutions acquired by the random generation are placed in the special
archive randomArchive, which is shared among all populations.

Both types of archive are re-used during the re-training of the surrogate model. Using
random solutions is important as they are distributed throughout the search space while
the solutions obtained during the optimization process tend to be located in a certain
part of the space. Specifically, in the k-th population in the IMS for model training and
validation, the solutions from randomArchive U optArchivey U - - - U optArchivey are used.

4.4, EXPERIMENTS

4.4.1. OPTIMIZATION PROBLEMS
We consider a set of well-known benchmark functions of binary variables. All functions
need to be maximized.

The first function is Onemax, in which the variables are independent:

-1
Sfonemax(x) = Z Xi
i=0

The other functions, on which we test the algorithms, have blocks of dependent
variables. Two of such functions are the well-known deceptive traps [23] of order k = 4,
with tight (dependent variables are located close to each other) and loose encoding
(dependent variables are distant):

11k-1 k-1
b
mepK—Tight(x) = Z fZ{rIZsz(Z xik"'j) ’
=0 =0

1/k-1 k-1
b
fTrapK—Loose(x) = Z fﬁffsz ( Z xi+(1/k)f) ’
i=0 =0

1 ifu=k
sub )
u)=
Ftrapic (1) { —k_llc‘” otherwise.
The other function with blocks of dependent variables is the Hierarchical If-And-Only-
If (HIFF) function. It is considered to be more difficult as blocks of different sizes are
presented (blocks hierarchy):

k=1
fap= X X fiig Gk e,

kef1,2,4..4,11 1=0

k k
1 if Y ui=kor ¥ u;=0,
o = =0’ j=o "
0 otherwise.
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The final function that we consider is the NK-landscapes with maximum overlap and
blocks of k =5 [24]. This function contains blocks of dependent variables, but with fitness
values of subfunctions depending on the block position:

-k

b
Ink=s1(x0) = Y fNe 51 (K@ i1, i+ k1)
i=0

where the values of f]f,Il‘(li s1(X(,i+1,...i+k-1)) are tabular values, generated randomly in
interval [0;1].

4.4.2. EXPERIMENTAL SETUP

The proposed CS-GOMEA is compared with GOMEA, SMAC and Hyperopt. In order to
make the comparison fair, in all algorithms we count evaluations of unique solutions only.
We consider the problems described in Section 4.4.1 with the following problem sizes:
for Trap4-Tight, Trap4-Loose, and HIFF problems [ € {8,16,32, 64, 128,256}, for Onemax
1 €{25,50, 100,200,400}, for NK-landscapes ! € {25,50}. We run SMAC and Hyperopt for
Trap4 and HIFF problems for [ € {8, 16}, for Onemax [ = 25, for NK-landscapes [ = 25. We
do not find it reasonable to run SMAC and Hyperopt for larger problem sizes as they fail to
find an optimum in some runs even for the considered problem sizes. For each problem
instance we perform 30 runs (for CS-GOMEA each run is a full optimization procedure
including the neural network hyperparameter search).

The stopping criterion for GOMEA and CS-GOMEA was either finding an optimal
solution or exceeding a time limit. The time limit for most problems was set to 4 hours.
For NK-S1 the time limit was set to 6 hours. For Trap4 and HIFF problem instances with
| = 256, the time limit was set to 8 hours. The time limit also determines the maximum
allowed time for the CNN hyperparameter search which is not allowed to consume more
than half of the overall computational budget. For SMAC and Hyperopt the stopping
criteria was executing 10000 function evaluations, except for NK-S1, for which it was
20000 evaluations.

We study the scalability of the algorithms, i.e., the relation between the number of
required evaluations to find the optimum and the problem size. The results are presented
in Figure 4.4.1. Only the runs with the optimum achieved are reported. Tables with
experimental results can be found in Table 4.4.2.

Besides scalability, we analyze convergence speed, i.e. whether the elitist solution is
being gradually improved or the algorithm rapidly finds a solution close to the optimum
(what is expected when an accurate surrogate model is used). Convergence behavior
analysis might be important for practical usage in real-world expensive optimization
tasks, as it might be sufficient to quickly find a good quality solution. Convergence plots
are presented in Figure 4.4.2.

WARM-UP SIZE HYPERPARAMETER

We adjust the value of the warmupSize hyperparameter with respect to the problem size
(Table 4.4.1), starting with warmupSize= 100 for moderate dimensionalities. For larger
dimensionalities doubling the problem dimensionality is accompanied by approximately
doubling the training dataset size. For practical usage, it means that we can start with a
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problem | 14
| 8 | 16 | 32 | 64 | 128 | 256
Trap4-Tight | 100 | 100 | 100 | 150 | 200 | 300

Trap4-Loose | 100 | 100 | 100 | 150 | 200 | 300
HIFF 100 | 100 | 100 | 150 | 200 | 300

| 25 | 50 | 100 | 200 | 400 |

Onemax 100 | 100 | 100 | 150 | 200
NK-S1 200 | 200

Table 4.4.1. Values of warmupSize hyperparameter.

moderate warmupSize (e.g., 100) and gradually increase it until the fitness of the found
elitist solution stops improving.

IMPLEMENTATION AND EXPERIMENTAL ENVIRONMENT DETAILS

The main algorithm code is written in C with Python function calls. Neural network
operations are implemented in Python using the Pytorch framework. The experiments
are run on an Intel Xeon E5-2630 CPU core and an Nvidia Titan X (Pascal architecture)
GPU. Code is available at https://github.com/ArkadiyD/CS-GOMEA.

4.4.3. RESULTS

For Onemax, Trap4-Tight, Trap-Loose, HIFF and NK-S1 problems CS-GOMEA was able to
find an optimal solution in all executed runs for all considered problem sizes. For the first
four problems, the number of evaluations required by CS-GOMEA scales substantially
better than for GOMEA. According to our calculations, the median minimal function
evaluation time, that makes CS-GOMEA usage reasonable (i.e., decreasing overall run
time compared to GOMEA) is = 5 seconds for all problems with / < 16 and = 1 second for
problems with [ > 16. Such evaluation time is well below the function evaluation time in
various real-world optimization problems, especially in the deep learning field.

Onemax Trapa-Tight Trapa-Loose HIFF NK-S1
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Figure 4.4.1. Scalability of considered algorithms in terms of the required number of evaluations to
reach the optimum, summarized over thirty runs. The algorithms are presented only for the problem
instances in which an optimum was achieved in all 30 runs. There are no such problem instances
for Hyperopt. The bars show the intervals of the required number of evaluations, excluding the
lowest and highest values (what corresponds to = 93% interval). The points indicate the median
values.
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The comparison with SMAC and Hyperopt shows that they are competitive with
CS-GOMEA only for low-dimensional problems. For dimensionality 8, SMAC found the
optimum in all runs for Trap4 and HIFF problems. For dimensionality 16, the optimum
was not found in all runs. Hyperopt failed to find the optimum in some cases, even for
dimensionality 8. For dimensionality 25 for Onemax and NK-S1, both of the algorithms
have failed to find the optimal solution in some runs. Moreover, as shown in Figure 4.4.2,
their convergence speed is lower than for CS-GOMEA.

problem | algorithm | ¢

| | 8 | 16 | 32 | 64 | 128 256

CS-GOMEA 83 122 180 308 446 795
GOMEA 126 716 4762 | 17219 | 54908 | 167720

Trap4-Tight

CS-GOMEA 86 121 181 318 556 784

Trap4-Loose | .\ pA 120 | 741 | 4673 | 17077 | 46760 | 167916

HIFE CS-GOMEA | 58 109 | 144 | 360 743 1283
GOMEA 40 245 | 2235 | 11587 | 39757 | 92195
| 25 | 50 | 100 | 200 400
Onemax | CS"GOMEA | 107 | 114 | 134 | 201 318
GOMEA | 256 | 649 | 3871 | 8505 | 16967
NISI CS-GOMEA | 5619 | 29202 | - - -

GOMEA 7966 | 36308 - - -

Table 4.4.2. Number of median required evaluations to achieve an optimum by CS-GOMEA and
GOMEA for all problem instances. 30 runs are executed for each problem instance.

The NK-landscapes function turned out to be the most difficult for the surrogate
model to approximate. The achieved model quality seems to be insufficient to solve the
problem using predominantly the surrogate model. To be able to achieve the optimum,
the mixed populations mode is required. In this mode, the number of evaluations grows
significantly, but still, CS-GOMEA finds the optimum with fewer evaluations than GOMEA.

4.4.4. STATISTICAL TESTS

To verify the significance of the results, we perform statistical tests. As the normality of
the distribution of the required number of evaluations to achieve an optimum cannot
be assumed, we perform the Mann-Whitney U test [25]. For each problem and each
dimensionality, we perform a statistical test, testing that the number of evaluations to
achieve the optimum by GOMEA is larger than by CS-GOMEA. The considered level of
statistical significance is @ = 0.05. Bonferroni correction is applied. According to the
conducted experiments, CS-GOMEA requires statistically significantly fewer evaluations
than GOMEA for Onemax, Trap4-Tight, Trap4-Loose for all considered values of [. For
HIFF with [ = 16.

4.5. DISCUSSION

The proposed type of surrogate model demonstrated high approximation accuracy for
several functions with blocks of dependent variables, including the HIFF problem. NK-
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Figure 4.4.2. Convergence of all considered algorithms for all considered problems in terms of ratio
to the optimal value. For each problem instance and for every number of evaluations, the fitness
value of the elitist solution is averaged over 30 runs. The ranges for the horizontal axis are chosen
dependent on problem size and CS-GOMEA performance.

landscapes are however difficult to be approximated by the proposed CNN due to the
CNN main principle of assuming the same subfunctions occurring in different solution
locations (the convolutional filters weights are re-used in the convolutions) while in
NK-landscapes such subfunctions are random and thus different everywhere. In the
current chapter, we do not in any way exploit the linkage information captured in the
LT in surrogate modeling. Rather, we focused on providing a baseline proof-of-principle
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that a CNN-based surrogate-assisted GOMEA has merit. However, we believe linkage
integration is an important research question for future work, i.e., taking into account the
subsets of dependent variables in neural network architecture design instead of moving
the filters along the input for all variables. This may well be highly beneficial for model
quality on such difficult non-regular problems as NK-S1.

4.6. CONCLUSIONS

We have introduced a novel surrogate-assisted GA for expensive discrete (boolean) opti-
mization problems. The key novel features of our algorithm are keeping the strengths of
the GOMEA algorithm while using a convolutional neural network (CNN) as a surrogate
model with a pairwise regression approach for model training to be able to train the CNN
with small numbers of samples.

Experiments on a well-known set of benchmark functions show that the proposed
integration requires much less function evaluations than GOMEA to reach the optimum
and scales much better than GOMEA. The small number of solutions required to find
the optimum is promising for the ultimate goal of using the algorithm for expensive
(real-world) optimization problems, which is part of our near-future research.

The comparison with the existing Bayesian optimization-based, expensive discrete
algorithms SMAC and Hyperopt showed that using the proposed surrogate-assisted GA
is more promising for the considered type of optimization problems because, firstly, CS-
GOMEA is more scalable and can solve problems with much larger problem sizes, and,
secondly, even for small problem sizes CS-GOMEA requires less numbers of evaluations
to achieve the optimum.
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A NOVEL SURROGATE-ASSISTED
EVOLUTIONARY ALGORITHM
APPLIED TO PARTITION-BASED
ENSEMBLE LEARNING

We propose a novel surrogate-assisted Evolutionary Algorithm for solving expensive combi-
natorial optimization problems. We integrate a surrogate model, which is used for fitness
value estimation, into a state-of-the-art P3-like variant of the Gene-Pool Optimal Mixing
Algorithm (GOMEA) and adapt the resulting algorithm for solving non-binary combi-
natorial problems. We test the proposed algorithm on an ensemble learning problem.
Ensembling several models is a common machine learning technique to achieve better
performance. We consider ensembles of several models trained on disjoint subsets of a
dataset. Finding the best dataset partitioning is naturally a combinatorial non-binary
optimization problem. Fitness function evaluations can be extremely expensive if complex
models, such as Deep Neural Networks, are used as learners in an ensemble. Therefore,
the number of fitness function evaluations is typically limited, necessitating expensive
optimization techniques. In our experiments, we use five classification datasets from the
OpenML-CC18 benchmark and Support-vector Machines as learners in an ensemble. The
proposed algorithm demonstrates better performance than alternative approaches, includ-
ing Bayesian optimization algorithms. It manages to find better solutions using just several
thousand fitness function evaluations for an ensemble learning problem with up to 500
variables.

The contents of this chapter are based on the following publication: A. Dushatskiy, T. Alderliesten, and P. A. N.
Bosman. “A novel surrogate-assisted evolutionary algorithm applied to partition-based ensemble learning”. In:
Proceedings of the Genetic and Evolutionary Computation Conference. ACM. 2021, pp. 583-591.
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5.1. INTRODUCTION

Expensive combinatorial optimization is a combinatorial optimization subfield, in which
fitness function evaluations are (computationally) expensive. In contrast to the case of
optimization problems with inexpensive function evaluations, in case of problems with
expensive function evaluations, search algorithms are usually evaluated by their ability
to find good solutions within a limited number of function evaluations rather than by
arequired number of evaluations to find the global optimum. Expensive optimization
problems arise in various domains. One traditional application is simulation-based op-
timization in engineering design [1, 2, 3]. Combinatorial expensive optimization has
recently achieved increased attention due to the popularity of the Neural Architecture
Search (NAS) field [4, 5]. The goal of NAS is to find the best Neural Network architecture
for a particular task. A function evaluation that corresponds to a partial [6] or end-to-end
[7] Deep Neural Network (DNN) training procedure can be extremely expensive, taking
up to several hours [8]. A related application is finding an ensemble of deep learning
models through data partitioning, for instance, to tackle the problem of data hetero-
geneity in medical image analysis ([9], Chapter 7). Here too, the efficiency of the search
algorithm is extremely important, as each function evaluation again requires training a
DNN. Therefore, novel efficient algorithms for combinatorial expensive optimization are
highly demanded.

Bayesian Optimization (BO) is a traditional approach to solving expensive optimiza-
tion problems. The most common BO algorithms are based on Gaussian processes,
aimed at real-valued variables. For their use in the combinatorial domain, they were
shown to have caveats [10]. Consequently, novel BO algorithms were developed, designed
to handle categorical variables. Replacing the Gaussian Process surrogate model with
Random Forests [11] was proposed in Sequential Model-based Algorithm Configuration
(SMAC) [12]. Another popular BO algorithm, which was shown to perform better than
traditional Gaussian process-based BO in categorical and mixed domains, is the Tree-
structured Parzen Estimator (TPE) [13] and its implementation in the Hyperopt package
[14]. Recently, two BO algorithms with better performance than SMAC and Hyperopt
were proposed: Bayesian Optimization of Combinatorial Structures (BOCS) [15] and Com-
binatorial Bayesian Optimization using the Graph Cartesian Product (COMBO) [16]. The
main idea of both these algorithms is to explicitly model interactions between variables.
While BOCS takes into account only second-order interactions, COMBO has no limit on
the order of interactions and builds a sparse Bayesian regression model over possible
high-order interactions between variables. BOCS is limited to binary variables only, while
COMBO can handle variables with higher cardinality. COMBO showed state-of-the-art
performance on both common binary optimization benchmark problems such as Ising
Spin-glass and MAXSAT and an example of NAS. However, this comes at a cost of ex-
tremely expensive computations that grows fast as the number of function evaluations
increases for maintaining the surrogate model. For instance, only experiments with up to
300 function evaluations were feasible in [16].

Surrogate-assisted Evolutionary Algorithms (EAs) are an interesting alternative ap-
proach to solving expensive optimization problems. Using surrogate models to replace
part of the function evaluations done by an EA is a natural way to reduce the number of
evaluations while keeping the powerful search characteristics of EAs. Common surrogate
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models are polynomials, Kriging, Radial Basis Function Network (RBFN), or Support
Vector Regression (SVR) [17]. However, surrogate-assisted EAs are not as widely used
for combinatorial optimization problems as for real-valued ones. A recent approach
for combinatorial optimization integrates a Convolutional Neural Network (CNN) with
an advanced model-based EA called Convolutional Neural Network Surrogate-assisted
GOMEA (CS-GOMEA), but it is limited to binary problems (Chapter 4).

Local Search (LS) is a well-known simple, yet often effective search algorithm. The
main principle is to perform greedy search (only improvements are accepted) in the vicin-
ity of a current solution, leading to quick convergence to a local optimum. It was recently
shown that LS can be very efficient for combinatorial formulations of NAS, achieving com-
petitive performance with state-of-the-art EAs and outperforming a commonly adopted
baseline in NAS - Random Search (RS) [5, 18].

Ensembling is a common machine learning technique to improve performance. Usu-
ally, individual models are simple learners such as decision trees. A classic approach is
bagging [19], where several models are trained on randomly selected subsets of samples.
An alternative approach is to train models on disjoint subsets of samples [20, 21]. In
contrast to bagging, with such an approach it is possible to train each model on homoge-
neous data, increasing chances of better performance. Finding the best partitioning then,
however, is a potentially expensive optimization problem.

In this chapter, we propose a novel surrogate-assisted EA based on a state-of-the-art
P3-like variant of GOMEA. Unlike CS-GOMEA (Chapter 4), it is not limited to binary prob-
lems, does not make assumptions about problem regularity (subfunctions of fixed size),
and uses a more efficient population management scheme - Parameter-less Population
Pyramid (P3). To the best of our knowledge, this is the first time a surrogate model is inte-
grated into a P3-like EA. We also propose a simple, yet shown to be an efficient adaptive
mechanism to control and balance the number of performed real and surrogate fitness
evaluations. The introduced algorithm is applied to an ensembling problem defined on
supervised classification datasets. Support-Vector Machines (SVMs) are used as learners
in the considered ensembles.

5.2. SEARCH PROBLEMS AND ALGORITHMS

5.2.1. PROBLEM FORMULATION

In general, we consider unconstrained combinatorial optimization problems with cat-
egorical variables. Potentially, the cardinality of problem variables differs. However,
for simplicity of notation in this chapter, we assume that all variables have cardinal-
ity a, meaning that all variables have a possible values. Mathematically, the consid-
ered problems can be formulated as a global optimization problem max,eg f(x), where
fX):92—-R2=10,...,a— l}g, ¢ is the number of variables, and « is the alphabet size.

5.2.2. LOCAL SEARCH

In contrast to RS, LS traverses the search space in an ordered, local manner, quickly
converging to a local optimum. In a random restart scenario, LS starts from a randomly
generated solution. We specifically consider first improvement neighborhood search as
our LS. A single iteration of LS consists of considering all variables in a random order and
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assigning to each variable the value in its domain that corresponds to the best fitness
function value. Iterations are repeated until a solution is not changed. After that, a new
random solution is generated and the search loop is repeated. The Random Restart Local
Search pseudocode is provided in Algorithm 5.2.1.

5.2.3. AN ADAPTATION OF P3 FOR NON-BINARY PROBLEMS

We adapt the state-of-the-art model-based Evolutionary Algorithm known as the
Parameter-less Population Pyramid (P3) [22] for solving non-binary combinatorial opti-
mization problems. P3 is a variant of the Gene-pool Optimal Mixing Algorithm (GOMEA)
[23] that uses local search, a complementary donor search, and a fitness-pyramid struc-
tured growing population. We call the P3 variant used in this chapter P3-GOMEA. Below,
we give a brief overview of its features. Pseudocode is provided in Algorithm 5.2.2 and
Algorithm 5.2.3.

LINKAGE MODEL

The idea of using a so-called Linkage Model for guiding the evolution process through
variation restricted to specific variables and immediately testing for improvements was
introduced with the concept of Optimal Mixing Evolutionary Algorithms (OMEAs) [24]. A
Linkage Model is commonly defined in the form of a set of (possibly overlapping) subsets
of variables. Such a structure is called a Family Of Subsets (FOS). The goal is to use
information about dependencies between variables to perform crossover more efficiently.
In the case of Black-Box optimization these dependencies are not known a priori, and,
therefore, they have to be learned during optimization. A much-used approach is to
first estimate pairwise dependencies from the population and build higher-order models
upon this. For pairwise dependencies learning, either Mutual Information (MI) [24] or
Normalized Mutual Information (NMI) [22] is often used. Both MI and NMI calculations
can be naturally extended to the case of non-binary variables [25]. P3-GOMEA uses the
NMI measure. After pairwise dependencies are learned, they can be used for Linkage
Model construction.

The FOS model known as the Linkage Tree (LT), which uses a hierarchical structure to
store sets of dependent variables, was shown to often be the most efficient one [24]. An
LT is a binary tree with 2/ — 1 nodes. LT leaves are singletons with variables. The root of
an LT is a set containing all variables. All other nodes are linkage subsets, F? which are
unions of disjoint subsets of children k, j of node i: Fi = F/ UFK, FinF¥ = @,

P3-GOMEA uses a filtered LT Model as proposed in [26], in which redundant subsets
are removed. When two subsets F/ and F¥ are merged into a subset F, it may happen
that the MI or NMI measure between them is maximal (one). It is supposed that there is
then no merit in using these subsets in variation separately, as it may disrupt a building
block F!. Thus, keeping subsets F/ and F¥ in a FOS is not reasonable, and only the parent
subset F! is kept.

GENE-POOL OPTIMAL MIXING

The Gene-pool Optimal Mixing operator (GOM) is the variation operator used in the
GOMEA family of algorithms. GOM is applied to a single solution and outputs a single
solution that is never worse than the input solution. To improve a solution, GOM loops
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over the contents of the FOS model. For each linkage subset F/, GOM attempts to over-
write the values of the variables in F of the solution in consideration, with values from a
donor solution, often chosen at random from the population. If this overwriting action
does not cause the fitness of the solution to become worse, the copy action is accepted.
Otherwise, the donor material is rejected and the action is undone. The pseudocode of
GOM is provided in Algorithm 5.2.3.

PARAMETERLESS POPULATION MANAGEMENT SCHEME

Choosing an optimal population size is not trivial, therefore, a population management
scheme without a population size parameter has much practical value. Several such
schemes were proposed for the GOMEA family of algorithms [27]. In this chapter, we
consider P3 [22], which was shown to be efficient [27], is fully parameterless, and can be
naturally adapted to a surrogate-assisted EA.

Solutions are stored in a pyramidal structure. Each layer of the pyramid is a set of
solutions (duplicates are not stored). Linkage Models are learned separately for each
pyramid level. In each iteration, only one solution is evolved. A new solution is generated
randomly and added to the bottom layer of the pyramid. Then, by using solutions from
the current pyramid level as donors, the current solution is evolved using GOM. If GOM
leads to fitness improvement, the resulting solution is added to the next pyramid level,
and GOM is performed at the next pyramid level. Otherwise, processing this solution is
finished, and a new iteration starts with a new, randomly generated solution.

Algorithm 5.2.1: Random Restart Local Search Algorithm.

Function LocalSearch():
do
improved = false
s — generateRandomSolution()
do
s.fitness — evaluate(s)
for i € randomPermutation ({0,...,¢—1}) do
s
for j€{0,...,a—1}\s; do
s J
s fitness — evaluate(s')
if §'.fitness > s.fitness then
§i— S}

improved — true

while improved
| while budget is not exhausted

HiLL CLIMBER

Before evolving a solution using GOM, an LS algorithm (also called a Hill Climber in [22])
can be applied to quickly bring the solution to a local optimum. Such an approach is
used in the original P3 algorithm [22]. However, our preliminary experiments showed
that in the case of a limited number of allowable function evaluations (several thousand
evaluations) such use of LS leads to similar performance as stand-alone LS (without P3)
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because the majority of function evaluations are spent on the LS phase. Therefore, we do
not include LS in our P3-GOMEA.

5.2.4. SURROGATE-ASSISTED EA

We integrate, in a novel way, a surrogate model into the above-described P3-GOMEA to
replace a part of the real function evaluations with surrogate function evaluations. Our
proposed approach to integrating surrogate models can be applied to various search
algorithms. In this chapter, we focus on a surrogate-assisted version of the P3-GOMEA
algorithm that we refer to as SA-P3-GOMEA. The changes required to P3-GOMEA to
obtain SA-P3-GOMEA are provided in Algorithm 5.2.2 and Algorithm 5.2.3.

SURROGATE MODEL INTEGRATION
The outline of the proposed surrogate model integration into a search algorithm is as
follows. First, some initial random solutions are evaluated. In general, the number of
initial solutions can be tuned, but we use a simple approach that is also used in COMBO,
namely, ¢ random solutions are generated and evaluated. Then, a surrogate model is
trained on these solutions. Next, the search is performed the same as without a surrogate
model, but whenever solutions need to be evaluated, mainly surrogate (estimated by the
surrogate model) evaluations are performed. Real function evaluations are performed
only in case of high predicted fitness value. The rationale is that solutions with high
surrogate fitness values should also have high real fitness values. However, for the sake
of biasing the search competently toward high-quality solutions, we must be sure of just
exactly how good this solution is.

The condition of performing a real function evaluation is defined as follows. Suppose,
R is an array of solutions with known real fitness values and F is an array of corresponding
surrogate fitness values. A real function evaluation is performed for a solution s, if
its surrogate fitness f is greater than a threshold 9. This threshold is calculated as A1
multiplied by the maximum value stored in the array F. The value of 1 is dynamically
adjusted. In the beginning, A = 1, meaning that a real function evaluation for a solution
is performed only if its surrogate fitness exceeds the current surrogate elitist value. If an
algorithm has not found new real elitists for a while, then we suppose that the current
surrogate model is not accurate enough and it is reasonable to perform real evaluations
more elaborately. Therefore, the value of A is then multiplied by a hyperparameter n (0 <
n < 1), effectively relaxing the condition for a real fitness evaluation. Once an algorithm
finds a new elitist, A is reset to 1. After evolving one solution in SA-P3-GOMEA, the
surrogate model is retrained, and values of F are re-calculated. The frequency of the model
retraining can be potentially adjusted, but we stick to this natural retraining schedule.
Note that the proposed surrogate-assisted EA has only one numeric hyperparameter 1.

As a surrogate model is unlikely to predict surrogate fitness values with perfect preci-
sion, comparing real fitness values and surrogate fitness values is undesirable and leads
to inferior performance [28]. Therefore, for the comparison of the fitness values of the
two solutions, the following strategy is used. If both solutions already have a real fitness
value, they are compared via these. Otherwise, surrogate fitness values are calculated for
both solutions and used for the comparison. The pseudocode of the comparison function
is provided in Algorithm 5.2.3.
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Algorithm 5.2.2: P3-GOMEA and Surrogate-assisted P3-GOMEA (SA-P3-
GOMEA). The lines which are added in the surrogate-assisted algorithm are
shown in green font color.

Parameters :A relaxation parameter
Function EA():
iter — 0
Pyramid — (@]
R—¢
fori=0,...,/—-1do
L R — RUgenerateRandomSolution()

trainSurrogateModel(R)
F — predictSurrogateFitness(R)
A—1
9 — setThreshold(F A1)
while ~terminationCriterionSatisfied do
elitist — NULL// elitist value is updated if necessary when real
evaluations are performed
p — generateRandomSolution()
Pyramid® — Pyramid® u {p}
solutionsAdded — true
currentTopLevel — | Pyramid| — 1
£ 0
elitistBefore — elitist
while £ < currentTopLevel and solutionsAdded do
F— 1earnLinkageMode1(Pymmidz )
0 — GOM(p, Pyramid? , )
if compareSolutions (o, p) then
if £ = currentTopLevel then
L Pyramid“*1 append()

Pyramid%*1 — Pyramid%*! u{o}
solutionsAdded — true

p—o
L—ZL+1
elitistAfter — elitist
if "compareSolutions (elitistAfter, elitistBefore) then
| A=2n
trainSurrogateModel (R)

F —predictSurrogateFitness(R)
I < setThreshold(F A1)
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Algorithm 5.2.3: Key functions used in the P3-GOMEA and SA-P3-GOMEA algo-
rithms. The lines of code which are not used in the surrogate-assisted algorithm

are shown in orange font color. The lines which are added in the surrogate-
assisted algorithm are shown in green font color.

Variables : Real elitist solution elitist, threshold 97, quantile A, set of solutions with known real fitness
values R

Function GOM(o, 2, %):

backup — o

changed — false

& — sortF0SInAscendingOrder (%)

forie{0,1,...,|%|-1}do

donorsList = randomPermutation({%y, %y,...,2%,-1})

for j€{0,1,...,n—1} do

d — donorsListlj]

OFi — dFi

ifoF,- # dFi then

evaluateSolution(o)

if acceptChange (0) then
backupFi —Opi
changed — true

else
L opi — backupp;
| break

return o

Function evaluateSolution(x):
x.fitness — calculateFitness(x)
x.realFitnessCalculated — true
x.surrogateFitness — predictSurrogateFitness(x)
if x.surrogateFitness > 9 then
x.fitness — calculateFitness(x)
x.realFitnessCalculated — true

R —RuU{x}

if x.realFitnessCalculated then

if x.fitness > elitist.fitness then
elitist — x
A1

Function compareSolutions(x,y):
if x.realFitnessCalculated and y.realFitnessCalculated then
if x.realFitness > y.realFitness then return I
if x.realFitness = y.realFitness then return 0
if x.realFitness < y.realFitness then return -1

else

if x.surrogateFitness > y.surrogateFitness then return 1
if x.surrogateFitness = y.surrogateFitness then return 0
if x.surrogateFitness < y.surrogateFitness then return -1
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SURROGATE MODEL

Choosing the best surrogate model is often the key to good performance in surrogate-
assisted optimization. However, the main goal of this chapter is not to propose the
best-performing surrogate model, but rather to introduce a new adaptive mechanism for
surrogate model integration, use it in P3-GOMEA, and test its performance on an ensem-
bling problem. To underline the generality of our proposed mechanism, we experiment
with four types of surrogate model.

1. Multi-Layer Perceptron (MLP). In contrast to a CNN used in Chapter 4, the con-
sidered Neural Networks are fully connected as we do not want to assume any
regularity in input data such as subfunctions of fixed size. We use a fixed model
structure with two hidden layers, each having a number of neurons equal to the
input size.

2. Decision Tree-based Gradient Boosting [29]. This type of model was shown to
perform well on a variety of tasks [30, 31, 32] and can naturally handle categorical
variables.

3. Support Vector Regression (SVR). This is a common choice for surrogate-assisted
EAs [17].

4. Random Forest (RF).

To allow the correct processing of categorical variables by MLP, RE and SVR, input solu-
tions are one-hot encoded. Thus, if an optimization domain has ¢ variables with alphabet
size a, surrogate models get samples of dimensionality £« as input.

Gradient Boosting, RE and SVR have several hyperparameters such as kernel type
for SVR, and learning rate for Gradient Boosting. Hyperparameters are tuned only once
(before the first model training) using 3-fold cross-validation and simple grid search. We
consider tuning the MLP architecture to be out of the scope of this chapter. The list of
tunable hyperparameters and considered values are provided in Table 5.5.3.

5.3. PARTITION-BASED ENSEMBLE LEARNING

We consider a well-known supervised classification machine learning problem. The task
is to find a partitioning of the dataset into K disjoint subsets Cy,... Cx_1 (ConCinN,...,

N Cg-1 = ) such that the aggregated performance of models My,..., Mx_; trained on
these subsets is maximized.

5.3.1. EVALUATION OF FITNESS
The aggregated performance is the fitness measure in our EAs. To compute it, each model
predicts class probabilities on the validation dataset (validation and train datasets do not
overlap). Then, for each sample, these probabilities are averaged and the class with the
maximum averaged probability is chosen as the final prediction. After obtaining predicted
classes for all samples, the final fitness value is calculated as the standard accuracy metric.
We use SVM as learners in constructed ensembles because of its good performance and
computational efficiency (see Section 5.4.2).

We assume that fitness function evaluations are deterministic, i.e., the training of
SVMs used in an ensemble is deterministic. Moreover, to count only truly different
evaluations (without calculating solutions that define identical groups of samples twice
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Dataset Samples | Features | Classes
segment 2310 16 7
spambase 4601 57 2
wall-robot-navigation 5456 24 4
kcl 2109 21 2
optdigits 5500 40 11

Table 5.4.1. Datasets specification. All datasets are downloaded from the OpenML datasets collec-
tion.

i.e., 001122 encodes the same partitioning as 112200), all solutions along with their fitness
values are stored in a normalized form. To do so, first, a solution is transformed into an
actual partition: each subset k has N samples: C = {p;,..., Pizvka}- Then, subsets C are
sorted by the minimal index p of a sample belonging to a subset. A normalized solution
form is then obtained by assigning values to variables according to the sorted order of
subsets. Such solution normalization guarantees that different solutions defining the
same dataset partition are evaluated and counted only once. When a new solution s is
considered to be evaluated, first, it is normalized to s’ and looked up in the collection of
evaluated solutions. If s’ has not been evaluated, then evaluation is performed, and the
obtained fitness value is stored for s'. Note, since we consider the optimization function
to be a black box, the normalized representation is only used to calculate fitness. The
solution itself is left unchanged.

5.4. EXPERIMENTAL SETUP

5.4.1. DATASETS

We consider five datasets from the OpenML-CC18 benchmark [33]. All datasets are
supervised classification tasks and have at least 2000 samples. The selected datasets each
have a different number of classes (between 2 and 11), and the number of features ranges
from 16 to 57. All features are numeric. Specifications are provided in Table 5.4.1. From
each dataset, 500 randomly selected samples are left out for the validation set, and the
same number of randomly selected samples is left out for the test set. The remaining
samples are shuffled and ¢ random samples are used for a considered optimization
problem with ¢ variables (i.e., used for training).

5.4.2. ENSEMBLE TRAINING

We use standard regularized non-linear SVM with Radial Basis Function (RBF) kernel
from the Scikit-Learn package. Before training, all features in the datasets are scaled to
the unit interval. The regularization parameter of the SVM models is not tuned, but the
default value of 1.0 is used. This choice is addressed in the Discussion.

5.4.3. CONSIDERED OPTIMIZATION ALGORITHMS
As simple baselines, we include in our experiments RS and LS. We also compare the
performance of the proposed SA-P3-GOMEA to P3-GOMEA. Additionally, we consider
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three modern BO algorithms. COMBO [16] has shown state-of-the-art performance on
several combinatorial optimization functions. Hyperopt [14] is an implementation of
Tree Parzen Estimator (TPE). SMAC [12] is a BO algorithm specifically designed to handle
categorical variables by using an RF surrogate model. Finally, we compare the achieved
ensemble performance to training one SVM model on all samples.

5.4.4. PROBLEM SIZES AND RUNTIME BUDGET

We consider various values of ¢ (i.e., the number of samples in the training dataset), and «
(i.e., the number of subsets in a partition), specifically: ¢ € {100,250,500} and « € {2,5,10}.
On each dataset in each problem configuration (a combination of ¢ and a), all considered
search algorithms perform 10 runs. Therefore, there are 50 runs by each algorithm for
each problem i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>