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Abstract

Equivariance w.r.t. geometric transformations in neu-
ral networks improves data efficiency, parameter efficiency
and robustness to out-of-domain perspective shifts. When
equivariance is not designed into a neural network, the net-
work can still learn equivariant functions from the data.
We quantify this learned equivariance, by proposing an im-
proved measure for equivariance. We find evidence for a
correlation between learned translation equivariance and
validation accuracy on ImageNet. We therefore investigate
what can increase the learned equivariance in neural net-
works, and find that data augmentation, reduced model ca-
pacity and inductive bias in the form of convolutions induce
higher learned equivariance in neural networks.

1. Introduction
Equivariance in neural network features allows invari-

ance to geometric transformations [6,23], making such net-
works more data efficient [25,38,40], parameter efficient [6]
and robust to out-of-distribution transformations [1,13,33].

Equivariance with respect to specific geometric transfor-
mations can be designed into the neural network architec-
ture [5, 6, 37]. However, even with careful design, it may
happen that the resulting architecture is not as equivariant
as intended [13, 17, 19, 45]. An example is the convolu-
tion operator in Convolutional Neural Networks (CNNs)
for translation equivariance, which can be broken by bor-
der effects [17, 19] or pooling [45]. On the other hand,
even if neural networks are not designed to be equivari-
ant, they can still learn equivariance naturally. Existing
works demonstrate qualitative examples of learned equiv-
ariant features [2,10,29]. However, how much equivariance
is learned, and which factors affect equivariance, are open
questions.

In this work, we quantify learned equivariance in im-
age recognition neural networks that have and have not
been explicitly designed for equivariance. Where existing
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Figure 1. Neural networks can learn features that are invariant or
equivariant w.r.t. a geometric transformation of the data, such as
rotation. We measure learned equivariance w.r.t. translation and
rotation in neural networks.

works [3,15,18,27,46] typically only measure equivariance
at the output of the network, we measure equivariance for
all intermediate layers. To do so, we deviate from exist-
ing measures of learned equivariance which are inconsistent
across network depths, and we design a consistent measure.

Using our measure for learned equivariance, we find ev-
idence that learned translation equivariance in intermediate
features of neural networks correlates with increased vali-
dation accuracy on ImageNet. We therefore investigate how
we can increase learned equivariance by changing how we
train neural networks. In particular, we find that 1) mak-
ing the task equivariant does not increased learned equivari-
ance; 2) data augmentations designed for invariance indeed
increase learned equivariance, even in early and middle lay-
ers; 3) reducing model capacity increases learned equivari-
ance, suggesting that equivariant features arise from a need
to compress representations; 4) CNNs learn more transla-
tion and rotation equivariance in intermediate features than
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the Vision Transformers (ViTs).
We make the following contributions:

• We propose a new measure for learned equivariance
that is allows comparing learned equivariance of fea-
tures at different depths of the network.

• We show evidence for a positive correlation between
learned translation equivariance in intermediate fea-
tures and validation accuracy on ImageNet.

• We test how several aspects of neural network train-
ing affect learned equivariance. In summary, we find
that data augmentation, reduced model capacity and
the inductive biases of CNNs positively affect learned
equivariance.

2. Related Works
Neural networks can learn equivariant features from data

[24, 28, 29]. Particularly inspiring is the work by Olah et
al. [29], that demonstrates by precise and meticulous man-
ual investigations that learned equivariant features exist in
networks that were not designed to be equivariant. Inspired
by this work, we here investigate how to move beyond
laborous manual qualitative investigations, and instead of-
fer a quantitative approach, by giving an automatic measure
for learned equivariance.

A number of existing works measure equivariance in
neural networks. [15] study models from the pre-Deep
Learning era which have since been superseded by the mod-
els we study. More recent works measure equivariance in
Convolutional Neural Networks, with KL divergence on
class probabilities [46], with Euclidean distance [18], or co-
sine similarity [3, 27] on feature maps. In our work, we
show that the cosine similarity is not appropriate for mea-
suring equivariance in intermediate feature maps, and offer
a correlation-based measure.

Several works study how neural network hyperparame-
ters and datasets affect learned translation equivariance in
the final output of the network. The kernel and padding
sizes of the architecture affect translation invariance [27],
although data augmentation might have a bigger effect on
translation invariance than the network architecture [18].
Similar conclusions about the importance of the data were
found by others [3,4]. Here, we follow these investigations,
and extend them by analyzing the impact on the intermedi-
ate layers.

There are some works that study equivariant properties
of intermediate features. Recently, [26] proposed a method
to detect invariance to any learned Lie group for intermedi-
ate features. However, they do not study equivariance, like
we do. Other works study only the transformation group
of translations (Z2). [45] measures the translation equivari-
ance by computing cosine similarity between feature maps

to show how max pooling violates the translation equivari-
ance property. [17, 19] show that some padding methods
disrupt the translation equivariance property in CNNs. [32]
measure the invariance of intermediate representations us-
ing normalized cosine similarity to study the effect of pool-
ing on deformation stability. Where these works diagnose
issues with designed equivariance and test for their effects,
we consider learned equivariance in a more general sense,
including transformation groups not designed into the net-
work, such as rotations.

3. Method
Neural networks can learn to be equivariant in two ways:

either by learning invariant features or by learning equivari-
ant groups of features, as shown in Fig 1. In this section we
detail how we can measure the quantity of invariant features
and equivariant groups of features. We discuss which sim-
ilarity measure is appropriate for measurements of learned
equivariance in features at different depths of a neural net-
work. Finally, we verify our measures using artificially en-
gineered equivariant CNNs.

In the following we will refer to invariant features and
equivariant groups of features under the single predicate
”learned equivariance”, as invariance is a special case of
equivariance.

3.1. Invariant features

We derive a measure of learned equivariance from in-
specting the definition of equivariance [6] applied to a sin-
gle neural network layer:

f(Tg(X)) = T ′
g(f(X)), (1)

where X ∈ RCin×H×W is an image or a feature map,
f(X) ∈ RC×H×W is the output of a neural network oper-
ation with C output features and Tg is the application of a
transformation g from a transformation group G. For ex-
ample, if G = Z2, then g is a translation with a particular
integer-valued (x, y) offset. If T ′

g is the identity function for
all g, the layer f is invariant w.r.t. transformation T :

f(T (X)) = f(X). (2)

Without designing invariance to T into neural network
layer f , each individual feature in f(X) can learn to behave
invariant or not invariant with respect to T . We therefore
define invariance for each feature c ∈ C independently:

f(T (X))c = f(X)c. (3)

In Fig. 1 we show an example where T is a 90◦ rotation.
To measure a feature’s invariance w.r.t. g, we compute

the similarity between f(T (X))c and f(X)c:
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Invariance(fc, g) = S(f(T (X))c, f(X)c), (4)

given a similarity function S : RH×W ×RH×W → [0, 1].
Given invariance measures for each feature, we can aver-
age these measures for all features in a layer to compute a
layer’s invariance.

3.2. Equivariant features

A group of features CG ⊆ C in a neural network layer is
equivariant with respect to a transformation group G if each
feature c′ ∈ CG activates for a different transformation g
from the group. In other words, for a sample Tg(X) trans-
formed with any transformation from the group, the group
of feature maps f(X)c′∈CG

will have one feature c′ whose
transformed feature map Tg(f(X))c′ matches f(Tg(X))c′ :

f(Tg(X))c′ = Tg(f(X))c′ , ∃c′ ∈ CT . (5)

In Fig. 1 we show an example where g is a 90◦ rotation.
To fit this with the definition of equivariance (Eq. 1) we

define T ′
g:

f(Tg(X))c′∈CG
= T ′

g(f(X))c′∈CG
(6)

where T ′
g transforms with Tg and selects feature c′ that

matches the transformation g. When this equation holds,
the feature group CG is equivariant w.r.t. T .

To measure the equivariance of a feature c we find the
maximum similarity between f(Tg(x))c and Tg(f(x))c′

over all features c′ ∈ C, for a given transformation g:

Equivariance(fc, g) = max
c′∈C

S(f(Tg(X))c, Tg(f(X))c′)

(7)

given a similarity function S : RH×W ×RH×W → [0, 1].
Given equivariance measures for each feature, we can aver-
age these measures for all features in a layer to compute a
layer’s equivariance. Note that if a feature is invariant w.r.t.
Tg , we will measure an equivariance score that is at least as
high as the invariance score. As invariance is a special case
of equivariance, this behavior of our measure is intended.

3.3. Measuring similarity

We need to choose a similarity measure S : RH×W ×
RH×W → [0, 1] with which to compare feature maps to
measure invariance and equivariance. In existing works,
cosine similarity is commonly used as a similarity measure
used to compute invariance or equivariance of the networks
representations [4, 27, 45]. However, cosine similarity is
sensitive to the mean values of its input vectors. This be-
haviour is depicted in Figure 2a. As different layers in a
neural network have different mean activation values (see
Fig. 2b), this biases the similarity measure.

We propose to use Pearson correlation [14] instead.
Pearson correlation, also called centered cosine similarity,
is a similarity measure that does not suffer from sensitivity
to the mean of the inputs, as it computes the covariance of
the inputs normalized by their standard deviations. It is the
basis of many methods for comparing network representa-
tions [20, 22, 31].

To motivate our choice, we visualize the difference be-
tween using cosine similarity and correlation for measuring
equivariance in the following example. We train ResNet-
44 [16] model on CIFAR-10 [21] dataset and compute in-
variance w.r.t. to 90◦ rotation after each residual block. In
Figure 2 we show the qualitative comparison between the
scores, computed using cosine similarity and correlation,
and the mean of the activations. Additionally, we compute
a correlation between the magnitude of the activations and
equivariance scores computed with cosine similarity (0.63)
and correlation (0.11). Scores computed using cosine simi-
larity correlate visibly with the mean of the activation while,
for the scores computed using correlation, this effect is less
prevalent. In our experiments, we therefore use correlation
as a measure to quantify equivariance.

4. Experiments
4.1. Controlled experiments

To verify that our method captures equivariance, we ap-
ply it to two controlled toy settings. We create two 3-layer
CNNs with hand-crafted filters such that we expect to mea-
sure perfect learned rotation invariance and equivariance re-
spectively. For the invariant model, we set all the filters to
be rotationally symmetric, using a 2D isotropic Gaussian
function, and measure the invariance after each layer (Fig.
3a). For the equivariant model, we cut out corners of the
filters from the invariant model such that all the filters are
rotations of one another (Fig. 3b). Our measure finds both
models capture exactly the intended learned equivariances,
demonstrating the validity of our measure.

4.2. Does learned equivariance improve accuracy?

We study the relationship between the validation accu-
racy and the amount of learned equivariance in large-scale
seminal models. For each part of each trained model we
compute Spearman’s rank correlation between the amount
of invariance or equivariance and the ImageNet validation
accuracy of the model.

We test four CNNs (EfficientNet-B6 & EfficientNet-B7
[35], ResNeXT-101 [41] and Inception-V3 [34]) and two
Vision Transformer variants (Vision Transformer [11] and
MLP-Mixer [36]). We measure invariance and equivari-
ance for both translation and rotation for 2000 images from
the ImageNet validation set. We do not train the mod-
els ourselves but instead use available checkpoints from
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(a) Comparison of different similarity measures on random feature maps.
Feature maps on the bottom are shifted by 0.5 with respect to the top ones.
Cosine similarity is sensitive to such shifts while correlation is invariant.

(b) Comparison between magnitude of the activations (red) and equivari-
ance computed using correlation (blue) and cosine similarity (orange). We
compute correlation between the magnitude of the activations and equivari-
ance scores computed with correlation (0.11) and cosine similarity (0.63).

Figure 2. Analysis of the influence of magnitude of weights on different similarity measures.

(a) Rotation invariance (b) Rotation equivariance

Figure 3. We create two controlled toy CNNs, each designed to be perfectly invariance and equivariant respectively, to test if our method
measures equivariance correctly, which it does.

torchvison [30] or timm [39]. Since the studied model
families do not have the same exact number of layers, we
divide each model into depth-wise parts and report the aver-
age equivariance measures over all layers in each part. Fea-
ture maps from the beginning of the network until the global
average pooling (GAP) layer are uniformly partitioned into
Early, Middle and Late parts. Pool captures the feature
maps directly after the GAP layer and Final is the feature
map directly before the softmax layer. We discriminate be-
tween the Pool part and the Final part to identify what role
in achieving equivariance the global pooling and final clas-
sifier have.

Figure 4 shows there is some correlation between trans-
lation equivariance in Early and Middle layers and accuracy
on ImageNet, while attaining almost perfect correlation in
the Final part. In contrast, for rotations there is little corre-
lation between the equivariance in the representation before
global pooling and the validation accuracy.

Even though the sample size (six models) for this corre-
lation test is small, we conclude that there is some evidence
for the benefit of learning translation equivariance in inter-
mediate features of neural networks trained on ImageNet.
In the following we therefore study what can increase the
learned equivariance in such networks.

4.3. Equivariance in the data

On tasks where invariant responses are beneficial to
solve the task, e.g. translation invariance in image recogni-
tion, one may wonder how this invariance is achieved. We
study how learned equivariance in intermediate features is
affected by adding transformations to the data and there-
fore into the task. We choose to study rotation transforma-
tions on CNNs, as rotation equivariance is not designed into
CNNs. We study whether there is a difference if the task is
invariant or equivariant with respect to introduced transfor-
mations.

We train a 7-layer CNN taken from [6], consisting of
7 layers of 3 × 3 convolutions, 20 channels in each layer,
ReLU activation functions, batch normalization, and max-
pooling after layer 2, on 3 different datasets. We test on
three different datasets. The first dataset is MNIST6, which
is the regular MNIST [9] without {0, 1, 6, 8} classes, to get
rid of rotational transformations that these classes have. For
example, digit 8 is very similar to its 180◦ rotation, so,
by default, this class would introduce some rotation invari-
ance, which is undesirable as we want to control for rotation
invariance in this setting. Second is the MNIST6-Rot-Inv
where every digit in MNIST6 is randomly rotated by r ∈
{0◦, 90◦, 180◦, 270◦} upfront. This dataset imposes invari-
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Figure 4. Spearman’s rank correlation between learned equivari-
ance and ImageNet validation accuracy. Translation equivariance
in intermediate features correlates with increased accuracy on Im-
ageNet, while rotation equivariance does not.

ance into the task as, for every transformation, the predicted
class should be the same. The last dataset, MNIST6-Rot-
Eq, is created in the same way as MNIST6-Rot-Inv, but now
the classes are made up of all combinations of digit number
and rotation (e.g. class 2 is (digit0◦, 180◦)). This dataset
imposes equivariance into the task. We compute in- and
equivariance of the trained model for 2000 images from the
validation set. We average the score over 90◦, 180◦, 270◦

rotations. Each experiment is repeated three times using
different random seed. We train for 100 epochs using Adam
with a batch size of 128 and a learning rate of 0.01, L2 reg-
ularization at 0.0005 and weight decay at epochs 25 and 50
with a factor of 10.0.

In Figure 5 we show the learned rotation equivariance.
Firstly, we observe that the equivariance decreases with
the depth, up to the final part after global average pooling
(GAP), regardless of the task. For the tasks where the equiv-
ariance or invariance is imposed in the task, we see an in-
crease in the final part, which suggests that GAP plays a sig-
nificant role in achieving equivariance. Secondly, we do not
see any significant differences between MNIST6, MNIST6-
Rot-Inv and MNIST6-Rot-Eq, up to a later stage, which may
indicate that early convolutional layers learn features with
some amount of rotation equivariance regardless of the ro-
tation invariance of the task. Finally, we observe that ro-
tation equivariance is much larger then rotation invariance
in the early and middle layers, which shows that CNNs do
learn more rotated versions of the same feature in different
channel rather then learning invariant, symmetrical features
in a single channel. We conclude that introducing equivari-
ance into the task does not significantly affect the learned
equivariance of intermediate features.

4.4. Data augmentations

By duplicating input samples under some transforma-
tion, data augmentation can induce invariance in the neu-
ral network. We study what the effect of data augmentation
is on learned equivariance in intermediate representations:
does data augmentation result in more invariant or equiv-

Figure 5. Learned rotation equivariance for rotation invari-
ance/equivariance in the data. Invariance or equivariance in the
task does not induce learning more equivariant features up until
the late part of the network. Also there is no visible difference,
up until the late part of the network, in the learned equivariance
between the invariant and equivariant tasks.

ariant intermediate features? For example, we know that
the random crops data augmentation method, which essen-
tially introduces random translations into the data, increases
the model performance and translation invariance at the last
layer [18]. The question is whether random crops increase
the learned equivariance of intermediate features as well.
In this experiment we study how translation equivariance is
affected by different data augmentations.

We train ResNet-44 [16], adapted for CIFAR-10 [21],
on the CIFAR-10 dataset using one of the following aug-
mentations: random crops, horizontal flips, CutMix [43],
RandAugment [7]. In each experiment we compute equiv-
ariance of the trained model over 2000 images from the val-
idation set and average the score over diagonal shifts from
one to 16 pixels. Each experiment is repeated three times
by training the network different random seeds. We train
for 200 epochs using SGD with a batch size of 128 and a
learning rate of 0.1 and a momentum of 0.9, L2 regulariza-
tion at 0.0001 and weight decay at epochs 100 and 150 with
a factor of 10.0.

In principle we expect the in- and equivariance to be the
same since translation equivariance should be provided by
the convolution. However, we include equivariance in our
experiments since there are works showing that the infor-
mation about location can be encoded in different chan-
nels [17, 19].

In Figure 6a we show learned translation equivariance
for the tested data augmentations. Random crops and Ran-
dAugment increase the equivariance of learned features in
the Middle, Late and Final parts, while the other data aug-
mentation methods do not have any significant effect, with
CutMix even having less equivariance than the baseline in
the Middle part. We complement the finding of [18] by
showing that random crops increase not only translation in-
variance but also translation equivariance in the intermedi-
ate layers. Also, we do not see any difference between in-
variance and equivariance for any data augmentation, which
means that any equivariance learned is just invariance.
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(a) Data augmentations (b) Model capacity: number of channels s

Figure 6. Measuring learned translation equivariance for (a) data augmentations and (b) model capacity. For data augmentations (a),
random crops and RandAugment increase channel equivariance the most, while other strategies have no discernible improvements. For
model capacity (b), smaller models learn more in- and equivariance, although the amount of in- and equivariance in the end is similar.

(a) Learned translation equivariance (b) Learned rotation equivariance

Figure 7. Measuring learned equivariance for inductive biases. For translation (a), the CNN variants exhibit more equivariance in the
intermediate representation then the Vision Transformer variants. Global pooling seems to play an important role in achieving invariance.
For rotation (b), the CNN variants exhibit more equivariance in the intermediate representation then the Vision Transformer variants. The
Early and Middle parts have more equivariance than invariance.

4.5. Model capacity

We hypothesize that a smaller model in principle ben-
efits from a more efficient representation and hence may
learn more equivariant features. We therefore study whether
model capacity influences learning translation equivari-
ant representations. We train WideResNet-40 (WRN-40)
[44] models, where we scale the number of channels (the
”width”) in each layer by a factor s ∈ {1, 2, 4, 8}. We train
on the CIFAR-10 dataset and measure learned translation
equivariance. The hyperparameters used for training are the
same as in the data augmentation experiment of Sec 4.4.

In Figure 6b we show learned translation equivariance
for different model capacities. We observe that the amount
of translation equivariance is lower for the wider models,
even though the amount of invariance in the final part is the
same, which matches our hypothesis: an efficient represen-
tation learns to be equivariant.

4.6. Architectures

The architecture of a neural network determines which
biases can be learned in training. Vision Transformers
(ViTs) [11] lack certain inductive biases present in CNNs,

which has been linked to their reduced data efficiency
[12, 42]. We are interested to what extent the difference
in inductive bias between CNNs and Vision Transformers
(ViTs) affects learned equivariance.

We test architectures as they were designed for the Im-
ageNet dataset [8], to faithfully represent their intended
inductive bias. We use the same architectures and pre-
trained model weights as tested in Sec. 4.2: four CNNs
(EfficientNet-B6 & EfficientNet-B7 [35], ResNeXT-101
[41] and Inception-V3 [34]) and two Vision Transformer
variants (Vision Transformer [11] and MLP-Mixer [36]).
We measure both translation and rotation equivariance on
trained models for 2000 images from the ImageNet valida-
tion set. We also use the same depth-wise partitioning of
feature maps into parts as used in Sec. 4.2. We measure
translation equivariance over diagonal shifts of size 1 to 32
and rotation equivariance for 90, 180, 270 rotations.

In Figure 7a we present the results for learned transla-
tion equivariance. We can see that ViT and MLP-Mixer
have less translation equivariance than CNNs in Early and
Middle layers. This is not unexpected, as convolutions
directly integrate translation equivariance, whereas Vision
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Transformers have to learn position embeddings that are
translation equivariant. This reduced translation equivari-
ance could be the reason for the poor data efficiency of ViT
and MLP-Mixer [11, 36] since translation equivariance im-
proves data efficiency [19]. Finally, we note that learned in-
variance and equivariance are identical for the tested mod-
els, meaning that these networks do not learn to represent
different translations in different channels.

In Figure 7b we present the results for learned rotation
equivariance. We observe that the ViT and MLP-Mixer
have lower rotation equivariance than the CNNs in interme-
diate features, while after the GAP layer the ViT exhibits the
most rotation equivariance out of all the models. Secondly,
we note that early parts of all networks learn equivariant
features that are not invariant, more so than in late parts of
the networks. In contrast to the results for translation equiv-
ariance, we see that models with low rotation equivariance
throughout Early, Middle and Late parts (ViT, Efficient-Net
B6/B7) have the highest rotation equivariance in the Final
part, while the models with highest equivariance in Early,
Middle and Late parts (ResNeXT-101, Inception-v3) have
the least equivariance in the Final part. This shows that high
learned equivariance in the final model representation does
not imply that intermediate representations are also highly
equivariant.

5. Conclusion
We conduct a quantitative study on learned equivariance

in intermediate features of CNNs and Vision Transformers
trained for image recognition, using an improved measure
of equivariance. We find evidence that translation equiv-
ariance in intermediate representations correlates with Im-
ageNet validation accuracy. We show that data augmen-
tations and reduced model capacity can increase learned
equivariance in intermediate features. Also, the CNNs we
test learn more translation and rotation equivariance in in-
termediate features than the ViTs we test.

Limitations. Our method allows to measure equivari-
ance w.r.t. affine transformations only. The reason for that
is the transformation g with respect to which we measure
the equivariance has to be a map from and to an identical
discrete domain, e.g. feature maps. This restriction disqual-
ifies continuous transformations such as rotations with any
other resolution than 90 degrees, or scaling with non-integer
scaling factors.

Future work. Learned equivariance benefits image
recognition models. However, applying equivariant priors
usually adds additional cost in terms of memory or com-
putation. Future work could study whether one can ap-
ply equivariant priors selectively within a neural network,
saving computing cost where networks already learn to be
equivariant. Additionally, we show that Vision Transform-
ers learn less translation equivariance than CNNs. Future

work could explore methods to increase translation invari-
ance in Vision Transformers, to aid in their data efficiency.
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