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Dynamic Optimization Fabrics for Motion Generation
Max Spahn , Martijn Wisse , and Javier Alonso-Mora

Abstract—Optimization fabrics are a geometric approach to
real-time local motion generation, where motions are designed
by the composition of several differential equations that exhibit a
desired motion behavior. We generalize this framework to dynamic
scenarios and nonholonomic robots and prove that fundamental
properties can be conserved. We show that convergence to desired
trajectories and avoidance of moving obstacles can be guaranteed
using simple construction rules of the components. In addition, we
present the first quantitative comparisons between optimization
fabrics and model predictive control and show that optimization
fabrics can generate similar trajectories with better scalability, and
thus, much higher replanning frequency (up to 500 Hz with a 7 de-
grees of freedom robotic arm). Finally, we present empirical results
on several robots, including a nonholonomic mobile manipulator
with 10 degrees of freedom and avoidance of a moving human,
supporting the theoretical findings.

Index Terms—Geometric control, mobile manipulation, motion
control of manipulators, nonholonomic motion planning.

I. INTRODUCTION

ROBOTS increasingly populate dynamic environments.
Imagine a robot operating alongside customers in a su-

permarket. It is requested to perform different tasks, such as
cleaning the floor or picking a wide range of products. These
different manipulation tasks may vary in their dimension and
accuracy requirements, e.g., rotation around a suction gripper
does not need to be specified while two-finger grippers require
full poses. Thus, it is important for motion planning algorithms
to support various goal definitions. Further, the robot is oper-
ating alongside humans, and it has to constantly react to the
changing environment and consequently update an initial plan.
As customers move fast, the adaptations must be computed in
real time. Therefore, motion planning is often divided into global
motion planning [1] and local motion planning, which we will
refer to as motion generation in this article. A global planner
generates a first feasible path that is used by a motion generator
as global guidance. This article proposes a novel approach to
motion generation that deals with a variety of different goal
definitions.

Motion generation is often solved by formulating an opti-
mization problem over a time horizon. The popularity of this
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Fig. 1. DF for path (green) following with a nonholonomic mobile manipula-
tor. DF control all actuators simultaneously to follow the end-effector path while
keeping a given orientation and avoiding collision with the environment.

approach is partly thanks to the guaranteed collision avoid-
ance and, thus, safety [2], [3]. The optimization problem is
then assembled from a scalar objective function, encoding the
motion planning problem (e.g., the desired final position, path
constraints, etc.), the transition function, defining the robot’s
dynamics, and several inequality constraints, such as integrating
physical limits and obstacle avoidance. Despite abundant appli-
cations of such optimization-based approaches to mobile robots,
the computational costs limit applicability when dealing with
high-dimensional configuration spaces [4], [5]. Data-driven ap-
proaches to speed up the optimization process usually come with
reduced generalization abilities, loss of formal guarantees [3],
and require prior, often costly, data acquisition. Moreover, due
to the scalar objective function, the user must carefully weigh
up different parts of the objective function. As a consequence,
optimization-based approaches are challenging to tune and in-
flexible to generic motion planning problems with variable goal
objectives [6], [7].

In the field of geometric control, namely Riemannian motion
policies (RMPs) and optimization fabrics, all individual parts
of the motion planning problem are formulated as differential
equations of second order. Applying operations from differential
geometry, the individual components are combined in the config-
uration space to define the resulting motion [8], [9]. This allows
to iteratively design the motion of the robot while maintaining
explainability over the resulting motion [6], [8], [9], [10].

These works on optimization fabrics [9], but also on prede-
cessors, such as RMP [8] and RMP-Flow [11], have shown
the power of designing reactive behavior as second-order dif-
ferential equations. However, integration of dynamic features,
such as moving obstacles and path following, have not been
proposed nor have the framework been applied to nonholonomic
systems. In this article, we exploit relative coordinate systems
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in the framework of optimization fabrics by introducing the
dynamic pullback operation (8). This generalization can then
integrate moving obstacles and path following. We show that
our generalization maintains guaranteed convergence for path-
following tasks and improves collision avoidance with mov-
ing obstacles. Moreover, we propose a method to incorporate
nonholonomic constraints. Finally, we compare a trajectory
optimization formulation, namely a model predictive control
(MPC) formulation, with optimization fabrics to provide the
reader with a better understanding of key differences between
the two approaches. We analyze computational costs and the
quality of resulting trajectories for different robots. Several
simulated results and real-world experiments show the practical
implications of dynamic fabrics (DF). The contributions of this
article can be summarized as follows.

1) We enable the usage of optimization fabrics for dynamic
scenarios. Specifically, we propose time parameterized
differential maps using up-to second-order predictor mod-
els. As a consequence, this enables the integration of
moving obstacles and path-following tasks, see Fig. 3.

2) We extend the framework of optimization fabrics to non-
holonomic robots.

3) We present a quantitative comparison between MPC and
optimization fabrics. The results reveal that fabrics are an
order of magnitude faster, more reliable, and easier to tune
for goal-reaching tasks with a robotic manipulator in static
environments.

All findings are supported by extensive experiments in both
simulation and real world with a manipulator, a differential drive
robot, and a mobile manipulator.

II. RELATED WORK

In dynamic environments, global planning methods are not
sufficient due to low planning frequencies. Thus, local motion
generation methods, such as the one presented in this work, are
employed. These methods typically require guidance to avoid
local minima and, thus, effectively solve planning problems.

A. Task Constrained Global Motion Planning

Motion planning problems are usually defined by goals in
arbitrary task spaces, such as the 3-D Euclidean space or
end-effector poses. In this context, tasks can be regarded as
constraints to the motion planning problem. Conventional ap-
proaches to motion planning rely on inverse kinematics to trans-
form task constraints into sets of configurations. The resulting
global motion planning problem is then often solved using
sampling-based methods [12].

Sampling-based motion planners generate random configu-
rations until a valid path between an initial configuration and a
set of goal configurations is found [1]. Several methods have
been proposed to directly integrate task constraints into the
sampling phase. Stilman [13] proposed a method to iteratively
push a random sample to the manifold adhering to the task
constraint. The notion of task constraints was later extended to
task space regions to define soft constraints for individual task
components [14]. Kingston et al. [15] proposed scalar-valued

functions to represent task constraints for sampling-based plan-
ning. As all of the abovementioned methods rely on implicitly
constrained sampling in the joint space, they exhibit high compu-
tational time, which is especially harmful to real-world applica-
tions [16] and require local motion generation methods for path
following and execution in dynamic environments [17]. In the
next section, recent developments in local motion planning are
summarized.

B. Receding-Horizon Trajectory Optimization

Methods formulating motion generation as an optimization
problem with a finite discrete time horizon are known under
the name of receding-horizon trajectory optimization. In line
with most literature in robotics, we will refer to such methods
as MPC. Generally, several objectives are encoded in the scalar
cost function, dynamics are formulated as equality constraints,
and inequality constraints ensure collision avoidance and joint
limit avoidance. The dynamics for this problem can include
the full dynamics model or simple integrating schemes [3]. By
explicitly solving the constrained optimization problem, this
approach yields formal guarantees on stability. Stability for
model predictive control (MPC) is proven by formulating an
appropriate Lyapunov function and showing that the finite time-
horizon formulation with an appropriate terminal cost results
in the same stability as the corresponding infinite time-horizon
formulation [18], [19], [20]. MPC has been applied to various
robotic systems in dynamic environments, such as drones [21],
mobile robots [17], and mobile manipulators [22], [23]. Despite
these results, formal stability guarantees in such environments
are challenging as appropriate terminal cost functions are often
not computable or too conservative. Besides, the computational
costs scale with the degrees of freedom restricting real-time
applicability to simple dynamics and environment models [24].

Some MPC formulations are nonlinear and can be analyzed
using methods from nonlinear control. When analyzing nonlin-
ear control system, Riemannian energies lead to more detailed
stability results than Lyapunov functions. By investigating the
variation around the generated trajectory and its contracting
toward the desired trajectory, some control designs show ex-
ponential stabilizing properties [25]. These findings have been
applied to tracking control problems [26].

C. RMPs and Fabrics

Based on the findings of contracting metrics for nonlinear
control design [25], [26], geometric control approaches design
the motion generation such that convergence is inherent to the
problem formulation rather than imposing them on the solu-
tion process. Practically, individual constraints to the motion
planning problem shape the optimization manifold so that the
solution is accessible through the solution of simple differential
equation. An example for shaping the optimization manifold is
seen in Fig. 2.

Realizing this concept, RMPs represent a natural way of
combining multiple policies into one joined policy. RMPs define
individual subtasks of the motion planning as differential equa-
tions (spectral semi sprays or specs for short) of second order
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Fig. 2. Combining different avoidance behaviors using optimization fabrics.
The components defining collision avoidance with single obstacles (a) and
(b) are combined in (c). Obstacles are shown in black. Trajectories of the point
robot are shown in blue.

and propose the pullback and summation operators to combine
multiple policies in the configuration space. As subtasks can be
defined in arbitrary manifolds of the configuration space, and
RMP generalizes operational space control [27]. The resulting
behavior of RMP was reported to be intuitive while keeping
computational costs low [28]. The concept of RMP was used
in [8] and [11] to form RMP-Flow, a motion planning algorithm
that is shown to be conditionally stable and invariant across
robots. In RMP-Flow, individual tasks are represented as a pair
of a motion policy and a corresponding metric defining the
importance of individual directions. An RMP adaptation was
proposed for nonholonomic robots in [29]. By incorporating
the kinematic constraint into the root equation of the RMP, the
computed policy is applicable to nonholonomic robots. Besides,
that work proposed a neural net to learn the collision avoidance
task components.

Although RMPs have proven to be a powerful tool for motion
generation, it was reported to require intuition and experience
during tuning [9]. Optimization fabrics with Finsler structures as
metric generators simplify the motion design as the conditions
for stability and convergence are inherent to the definition of
Finsler structures [9], [30]. Opposed to RMPs, where the metric
is typically user defined, fabrics derive Finsler metrics from arti-
ficial energies, similar to approaches from control design, [25],
[26], using the Euler–Lagrange equation from geometric me-
chanics. Although fabrics generalize the concept of RMPs and
make it accessible to a broader audience by decreasing the
intuition and expertise required, they have not yet been applied
to a wide range of robots.

The reason for this lack of application of fabrics is twofold.
First, all the abovementioned methods are reactive and highly
local methods, thus making them prone to local minima [31].
As RMPs and optimization fabrics do not incorporate path
following, integration of global planning to overcome local
minima is not possible to this date. Second, fabrics and RMP
do not make use of velocity estimates of obstacles but rely
purely on their high reactivity in dynamic environments. As for
other trajectory optimization techniques, motion estimates could
benefit fabrics (and RMP) to result in even smoother motion and
allow applications in such environments.

In this article, we address these issues by proposing time
parameterized differential maps to form dynamic fabrics. This
generalization integrates path following and velocity estimates
of moving obstacles. Together with the extension to nonholo-
nomic robots, our method allows to deploy the promising theory

Fig. 3. Two implications of DF. (a) It can be seen that the trajectory obtained
with DF (green) converges toward the reference trajectory (black) while the
trajectory with SF (red) does not converge. (b) Top part visualizes collision
avoidance, as suggested in [9]. Here, the trajectory and obstacle are expressed in a
relative systemxrel. Using the dynamic pull, (8), this can be transformed into the
static reference frame x, bottom part. Together with dynamic energization, the
framework of optimization fabrics is leveraged for dynamic environments. The
motion of the obstacle xrel(t) is visualized with an arrow, and future positions
of the obstacle are shown in lighter color. The resulting trajectory obtained with
DF is shown in green. (a) Dynamic convergence. (b) Dynamic avoidance.

of optimization fabrics to mobile manipulators, operating in
dynamic environments.

III. BACKGROUND

In the previous section, we have highlighted that optimization
fabrics represent a powerful tool for reactive motion generation.
Since we generalize this concept, this section aims at familiar-
izing the reader with key findings on optimization fabrics and
recalling some of the basic notations known from differential
geometry. We first give an overview on how optimization fabrics
are used for motion generation and how the components are
derived and composed. Then, the theoretical foundations are
summarized from [9] and [11].

A. Motion Generation Using Optimization Fabrics

When using optimization fabrics for motion generation, all
components, including constraints and goal attraction, are de-
signed as second-order differential equations. If specific design
rules for these equations are respected, all components can be
combined to form a converging motion generator. Specifically,
the following steps are performed.

1) Design path-consistent geometries in suited manifolds of
the configuration space (7).

2) Design corresponding Finsler energies defining the impor-
tance metric in this manifold (see Section III-F).

3) Energize all geometries with the associated Finsler ener-
gies (see Section III-F).

4) Pull back the energized systems into the configuration
space and sum them (see Section III-D).

5) Force the combined system with a differentiable potential.
As a composition of optimization fabrics, the resulting
trajectory converges toward the potential’s minimum (see
Section III-E).

In the following, we introduce the reader to the theory of
optimization fabrics and recall important findings from [9].
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B. Configurations and Task Variables

We denote q ∈ Q ⊂ R
n a configuration of the robot with

n its degrees of freedom; Q is the configuration space of the
generalized coordinates of the system. Generally, q(t) defines
the robot’s configuration at time t, so that q̇ and q̈ define the
instantaneous derivatives of the robot’s configuration. Similarly,
we assume that there is a set of task variables xj ∈ Xj ⊂ R

mj

with variable dimension mj ≤ n. The task manifold Xj defines
an arbitrary manifold of the configuration space Q in which a
robotic task can be represented. Further, we assume that there is
a differential map φj : Rn → R

mj that relates the configuration
space to the jth task space. For example, when a task variable
is defined as the end-effector position, then φj is the positional
part of the forward kinematics. On the other hand, if a task
variable is defined to be the joint position, then φj is the identity
function. In the following, we drop the subscript j in most cases
for readability when the context is clear.

In this work, we assume that φ is smooth and twice differen-
tiable so that the Jacobian is defined as

Jφ =
∂φ

∂q
∈ Rm×n (1)

or Jφ = ∂qφ for short. Thus, we can write the total time deriva-
tives of x as

ẋ = Jφq̇ (2)

ẍ = Jφq̈ + J̇φq̇. (3)

C. Spectral Semisprays

Inspired by simple mechanics (e.g., the simple pendulum), the
framework of optimization fabrics designs motion generation as
second-order dynamical systems ẍ = π(x, ẋ) [9], [11]. While
higher order systems seem feasible, their implementation on
robots is much more challenging, as higher order configuration
space derivatives would be required. The trajectory generator
is defined by the differential equation Mẍ+ f = 0, where
M(x, ẋ) and f(x, ẋ) are functions of position and velocity.
Besides, M is symmetric and invertible. Such systems S =
(M ,f)X are known as spectral semisprays, or specs for short.
When the space of the task variable is clear from the context,
we drop the subscript. Then, the trajectory is computed as the
solution to the system ẍ = −M−1f .

D. Operations on Specs

Next, the two fundamental operations for specs, transforma-
tion between spaces and summation, are introduced.

Given a differential map φ : Q → X and a spec (M ,f)X , the
pullback is defined as

pullφ(M ,f)X =
(
JT

φMJφ,J
T
φ (f +MJ̇φq̇)

)
Q
. (4)

The pullback allows converting between two distinct manifolds
(e.g., a spec could be defined in the robot’s workspace and being
pulled into the robot’s configuration space using the pullback
with φ being the forward kinematics).

For two specs, S1 = (M1,f1)X and S2 = (M2,f2)X , their
summation is defined by

S1 + S2 = (M1 +M2,f1 + f2)X . (5)

E. Optimization Fabrics

Optimization fabrics form a special class of specs, and thus
they inherit their properties, specifically the previously defined
operations of summation and pullback. First, let us introduce a
finite and differentiable potential functionψ(x) defined in a task
manifold X . Then, the modified spec Sψ = (M ,f + ∂xψ) is
called the forced variant ofS = (M ,f)X . Only if the trajectory
x(t) generated by the forced spec converges to the minimum of
ψ, the spec is said to form an optimization fabric. When the spec
only converges to the minimum when equipped with a damping
term, (M ,f + ∂xψ +Bẋ), it forms a frictionless fabric [9,
Def. 4.4]. Note that the mechanical system of a pendulum forms
a frictionless fabric, as it optimizes the potential function defined
by gravity when being damped (i.e., it eventually comes to
rest at the configuration with minimal potential energy). In the
following, methods to construct optimization fabrics, or fabrics
for short, are summarized: the definitions of conservative fabrics
and energization are introduced.

F. Conservative Fabrics and Energization

While the previous section defined what criteria are required
for a spec to form an optimization fabric, the theory on conserva-
tive fabrics and energization offers a simple way of generating
such special specs. As a full summary of the theory on opti-
mization fabrics and their construction is out of scope here, this
section only provides an outline of the theory and the reader is
referred to [10] and [30] for detailed derivations.

In the context of fabrics, the term energy describes a scalar
quantity that changes as the system evolves over time. Although
this quantity has a physical meaning in natural systems (e.g.,
kinetic energy), it can be arbitrarily defined for motion genera-
tion. Generally, specs and optimization fabrics do not conserve
an energy, but when they do, we call them conservative specs.
A stationary Lagrangian [9, Def. 4.11] is one definition for
an energy for which the corresponding spec, known as the
Lagrangian spec SLe

= (MLe
,fLe

), is obtained by applying
the Euler–Lagrange equations. Importantly, Lagrangian specs
conserve energy and do, thus, belong to the class of conserva-
tive specs. It was proven that an unbiased (see [9, Def. 4.11])
Lagrangian spec forms a frictionless fabric [9, Prop. 4.18]. Such
fabrics are analogously called conservative fabrics. There are
two classes of conservative fabrics: Lagrangian fabrics (i.e.,
the defining energy is a Lagrangian) and the more specific
subclass of Finsler fabrics (i.e., the defining energy is a Finsler
structure [9, Def. 5.4]).

The operation of energization transforms a given differential
equation into a conservative spec. Specifically, given an unbiased
energy Lagrangian Le with boundary conforming MLe

[9,
Def. 4.6] and lower bounded energy He, an unbiased spec of
form Sh = (I,h) is transformed into a frictionless fabric using
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energization as

SLe

h = energizeLe
{Sh}

= (MLe
,fLe

+ P Le
[MLe

h− fLe
]) (6)

where P Le
=MLe

(
M−1

Le
− ẋẋT

ẋTMLe ẋ

)
is an orthogonal pro-

jector. Energized specs maintain the energy of the Lagrangian
and generally change the trajectory of the underlying spec Sh.
However, if

1) Sh = (I,h) is homogeneous of degree 2

h(x, αẋ) = α2h(x, ẋ) (7)

and
2) the energizing Lagrangian is a Finsler structure,
the resulting energized spec forms a frictionless fabric for

which the trajectory matches the original trajectory of Sh.
We refer to energized fabrics with that property as geometric
fabrics. Geometric fabrics form the building blocks for motion
generation with optimization fabrics. Practically, energization
equips the individual components of the planning problem with
a metric when being combined with other components.

G. Experimental Results Fabrics

The theory explained previously was tested on several simple
kinematic chains in [9] and [30]. As fabrics design motion as a
summation of several differential equations, each representing
a specific constraint to the motion, it is possible to sequentially
design motion [9]. This procedure allows to carefully tune indi-
vidual components without harming the others. The application
to a planar arm in a goal-reaching setup was successfully tested
in [9]. Here, the authors illustrated how the resulting motion
can be modified arbitrarily by the user by adding additional
constraints or preferences.

Although important concepts and findings on optimization
fabrics were summarized in this section, we refer to [9] for a more
in-depth presentation of optimization fabrics. In the following,
we generalize the framework of optimization fabrics to dynamic
settings.

IV. DERIVATION OF DF

We extend the framework of optimization fabrics to DF.
including dynamic environments and path-following tasks. We
prove that DF converge to moving goals and can be combined
with previous approaches in geometric control. This section
first introduces the notion of reference trajectory, dynamic
Lagrangians, and the dynamic pullback. These notations allow
then to formulate DF. As DF generalize the concept of opti-
mization fabrics to dynamic scenarios, we refer to the non-DF
as static fabrics (SF) to explicitly distinguish between the work
presented in [9] and our work.

A. Motion Design Using DF

The method explained in this article generalizes the concept
of static fabrics (SF) from [9] and can then be extended from the
procedure outlined in Section III-A.

1) Design path-consistent geometries in a suited, time-
parameterized (see Definition 4.2) manifold of the con-
figuration.

2) Design corresponding Finsler energies defining the impor-
tance metric in this manifold.

3) Energize all geometries with the associated Finsler ener-
gies.

4) If necessary, pull back the energized system from the
time-parameterized manifold into the corresponding fixed
manifold (8).

5) Pull back the energized system into the configuration
space and combine it with all components using summa-
tion.

6) Force the system with a time-parameterized potential. As
a composition of DF, the resulting trajectory converges
toward the potential’s minimum (see Lemma 4.11).

In the following, we explain our proposed changes to the
framework of SF so that it remains valid in dynamic environ-
ments.

B. Reference Trajectories

To enable the definition of dynamic convergence and dynamic
energy, we introduce a reference trajectory that remains inside
a domain X as boundary conforming. This term is chosen in
accordance to [9, Def. 4.6].

Definition 4.1: A reference trajectory x̃(t), with its corre-
sponding time derivatives ˙̃x and ¨̃x, is boundary conforming on
the manifold X if x̃(t) ∈ X ∀ t.

In the following, the reference trajectory will be used to
define dynamic Lagrangians and DF. In this context, the word
“dynamic” can often be read as “relative to the reference trajec-
tory”. With the notion of reference trajectories, we formulate a
mapping to the relative coordinate system.

Definition 4.2: Given a reference trajectory x̃ on X , the
dynamic mapping φd : X × X → Xrel represents the relative
coordinate system xrel = x− x̃.

C. Dynamic Pullback

The theory of optimization fabrics also applies to relative
coordinates xrel, specifically, specs and potentials can be for-
mulated in moving coordinates. However, there is no theory
to combine specs defined in relative coordinates with specs in
fixed coordinates. In most cases, individual components of the
behavior design are not formulated in the same relative coordi-
nates. Specifically, the configuration space is always static, so
we introduce a transformation of a relative spec into the static
space X . We call this operation dynamic pullback

pullφd
(Md,fd)Xrel

= (Md,fd −Md
¨̃x)X . (8)

Two specs SXrel,1 and SXrel,2 defined in two different relative
coordinate systems are then combined by first applying the
dynamic pullback to both individually and then applying the
summation operation for specs. The dynamic pullback is the
natural extension to optimization fabrics for relative coordinate
systems. It cannot directly be integrated into the framework of
optimization fabrics as it breaks the algebra. In the following,
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we derive several generalizations so that the theory remains
valid even in the presence of reference trajectories for individual
components, such as moving obstacles or reference trajectories.

D. Dynamic Lagrangians

Next, we show that energy conservation commutes with
the dynamic pullback. This allows us to transfer findings
on conservative fabrics to DF. We call a Lagrangian that
is defined using relative coordinates a dynamic Lagrangian
and write Ld(xrel, ẋrel). In this relative coordinate system,
the dynamic Lagrangian has the same properties as the La-
grangian defined in [9], specifically it induces the Lagrangian
spec through the Euler–Lagrange equation, ∂2ẋrelẋrel

Ldẍrel +
∂2ẋrelxrel

Ldẋrel − ∂xrelLd, as (Mde,fde). The system’s Hamil-
tonian Hd = ∂ẋrelLT

d ẋrel − Ld is conserved by the equation of
motion, as proven in [9].

Applying the dynamic pullback to the dynamic Lagrangian,
we obtain the transformed Lagrangian Ld(x, ẋ, x̃, ẋ) in the
static coordinate system.

Theorem 4.3: LetLd(xrel, ẋrel) be a dynamic Lagrangian and
let φd be the dynamic mapping to xrel. Then, the application
of the Euler–Lagrange equation commutes with the dynamic
pullback.

Proof: We will show the equivalence by calculation. As
abovementioned, the induced spec is defined in the relative
system as (Mde,fde). It can be dynamically pulled to form

pullφd
(Mde,fde)Xrel

= (Mde,fde −Mde
¨̃x)X . (9)

We can dynamically pull the Lagrangian Ld(xrel, ẋrel) to form
Ld(x, ẋ, x̃, ˙̃x), where only the first two variables are system
variables. Using the generalized Euler–Lagrange equation, the
equations of motion of the pulled Lagrangian are obtained as

0 =
d

dt

∂Ld

∂ẋ
− ∂Ld

∂x

=
∂2Ld

∂ẋ∂ẋ
ẍ+

∂2Ld

∂ẋ∂x
ẋ+

∂2Ld

∂ẋ∂ ˙̃x
¨̃x+

∂2Ld

∂ẋ∂x̃
˙̃x− ∂Ld

∂x

=
∂2Ld

∂ẋrel∂ẋrel

∂ẋrel

∂ẋ

∂ẋrel

∂ẋ
ẍ+

∂2Ld

∂ẋrel∂xrel

∂ẋrel

∂ẋ

∂xrel

∂x
ẋ

+
∂2Ld

∂ẋrel∂ẋrel

∂ẋrel

∂ẋ

∂ẋrel

∂ ˙̃x
¨̃x+

∂2Ld

∂ẋrel∂xrel

∂ẋrel

∂ẋ

∂xrel

∂x̃
˙̃x

− ∂Ld

∂xrel

∂xrel

∂x

=
∂2Ld

∂ẋrel∂ẋrel
ẍ+

∂2Ld

∂ẋrel∂xrel
ẋ− ∂2Ld

∂ẋrel∂ẋrel

¨̃x

− ∂2Ld

∂ẋrel∂xrel

˙̃x− ∂Ld

∂xrel

=
∂2Ld

∂ẋrel∂ẋrel
(ẍ− ¨̃x) +

∂2Ld

∂ẋrel∂xrel
(ẋ− ˙̃x)− ∂Ld

∂xrel

=
∂2Ld

∂ẋrel∂ẋrel
(ẍ− ¨̃x) +

∂2Ld

∂ẋrel∂xrel
(ẋrel)− ∂xrelLd

=Mdeẍ+ fde −Mde
¨̃x.

The obtained equations of motion match the one obtained by
applying the dynamic pullback, see (9). �

Hence, independently of the coordinates, the system con-
serves the energy Hd computed with the Hamiltonion in relative
coordinates. Next, we adapt the operation of energization to
dynamic Lagrangians. Dynamic Lagrangians are a necessary
step to allow for collision avoidance with dynamic obstacles in
the framework of optimization fabrics. Specifically, the metric
for a moving obstacle is computed using the Euler–Lagrange
equation in the relative coordinate system. Importantly, in this
system, the same energies as with SF can be employed. Using
the dynamic pullback, the energy defining the metric for the
moving obstacle is then maintained according to Theorem IV.3.
Concretely, this means that collision avoidance can be achieved
in a similar manner as with SF with the added advantage of
integrated motion estimates of obstacles.

Proposition 4.4 (Dynamic energization): Let ẍ+
h(x, ẋ) = 0 be a differential equation, and suppose Ld is
a dynamic Lagrangian with the induced spec (Mde,fde)
and dynamic energy Hd. Then, the dynamically energized
system ẍ+ h(x, ẋ) + αHd

ẋrel = 0 with

αHd
= −(ẋT

relMdeẋrel)
−1
ẋT

rel(Mde(h+ ¨̃x)− fde)

conserves the dynamic energy Hd.
Proof: From the derivations in [9], we can compute the rate of

change of the dynamic energy as Ḣd = ẋT
rel(Mdeẍrel + fde).

The equations of motion can be plugged in through the definition
of the reference trajectory Definition 4.1, ẍrel = ẍ− ¨̃x to obtain

Ḣd = ẋT
rel(Mde(−h− αHd

ẋrel − ¨̃x) + fde)

= ẋT
rel(−Mdeh−MdeẋrelαHd

−Mde
¨̃x+ fde)

= ẋT
rel(−Mdeh

+Mdeẋrel(ẋ
T
relMdeẋrel)

−1
ẋT

rel(Mde(h+ ¨̃x)− fde)

−Mde
¨̃x+ fde)

= −ẋT
relMdeh+ ẋT

rel(Mde(h+ ¨̃x)− fde)

− ẋT
relMde

¨̃x+ ẋT
relfde

= 0.

The energized system conserves the dynamic energy. �
Proposition 4.4 allows to combine dynamic components of

the motion generator with static components. Effectively, the
dynamic component bends the underlying geometry according
to the motion of the dynamic components (e.g., a moving obsta-
cle).

While dynamic Lagrangians and the corresponding energiza-
tion operation are similar to the methods described in [9], the
operation of the standard pull to the dynamically energized
system must be slightly modified. Specifically, the reference
velocity must be pulled. We show that dynamic energization
also commutes with the standard pullback.

Theorem 4.5: Let Ld be a dynamic Lagrangian to the refer-
ence trajectory x̃, and let ẍ+ h(x, ẋ) = 0 be a second-order
differential equation with a metric Md such that JT

φMdJφ

has full rank that can be written as spec (Md,Mdh). Suppose
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x = φ(q) is a differential map with Jφ its Jacobian. Then,

energizepullφLd

(
pullφ(I,h)

)
= pullφ

(
energizeLd

(I,h)
)

(10)

when the reference velocity is being pulled as ˙̃q= J †
φ
˙̃x. J †

φ

denotes the pseudoinverse of Jφ. We say that the dynamic
energization operation commutes with the pullback transform.

Proof: The commutation can be proven by calculation. First,
we compute the right side of the equivalence. According to
Proposition 4.4, the energized system (that maintains the dy-
namic energy Hd) writes as

Mdẍ+Mdh+ αHd
(ẋ− ˙̃x) = 0

with αHd
as defined in Proposition 4.4. Applying the pull-

operation, we obtain

JT
φMdJφq̈+J

T
φMdh+J

T
φMdJ̇φq̇

+ JT
φMdαHd

(ẋ− ˙̃x)=0. (11)

As the equation expressed inX , this equation inQmaintains the
energy Hd. Next, we compute the left-hand side. The equation
of motion of the pulled dynamic Lagrangian Ld computes as

pullφ(Md,fd) = J
T
φ

(
MdJφq̈ + fd +MdJ̇φq̇ −Md

¨̃x
)

= M̃dq̈ + f̃d − JT
φMd

¨̃x.

The original spec is pulled accordingly

pullφ(Md,Mdh) = J
T
φMdJφq̈ + J

T
φMdh+ JT

φMdJ̇φq̇

= M̃dq̈ + M̃dh̃.

We energize the pulled system according to Proposition IV.4

JT
φMdJφq̈ + J

T
φMdh+ JT

φMdJ̇φq̇

+JT
φMdJφαpullφHd

(q̇ − J †
φẋ) = 0 (12)

with

αpullφHd
= −

(
(q̇ − J †

φ
˙̃x)

T
JT

φMdJφ(q̇ − J †
φ
˙̃x)
)−1

(q̇ − J †
φ
˙̃x)

T
(
JT

φMdJφ(h̃+ ¨̃x)

− JT
φfd − JT

φMdJ̇φq̇
)

= −
(
(Jφq̇ − JφJ

†
φ
˙̃x)

T
Md(Jφq̇ − JφJ

†
φ
˙̃x)
)−1

(q̇ − J †
φ
˙̃x)

T
(
JT

φMdJφh̃+ JT
φMd

¨̃x

−JT
φfd − JT

φMdJ̇φq̇
)

= −
(
(ẋ− ˙̃x)

T
Md(ẋ− ˙̃x)

)−1

(q̇ − J †
φ
˙̃x)

T
(
JT

φMdh+ JT
φMdJ̇φq̇ + J

T
φMd

¨̃x

−JT
φfd − JT

φMdJ̇φq̇
)

= −
(
(ẋ− ˙̃x)

T
Md(ẋ− ˙̃x)

)−1

(q̇ − J †
φ
˙̃x)

T (
JT

φMdh+ JT
φMd

¨̃x− JT
φfd

)

= −
(
(ẋ− ˙̃x)

T
Md(ẋ− ˙̃x)

)−1

(Jφq̇ − JφJ
†
φ
˙̃x)

T (
Mdh+Md

¨̃x− fd

)

= −
(
(ẋ− ˙̃x)

T
Md(ẋ− ˙̃x)

)−1

(ẋ− ˙̃x)
T

(
Mdh+Md

¨̃x− fd

)

= αHd
.

Thus, we have shown equivalence between αHd
and αpullφHd

.
As α is scalar, we can rewrite the energization term in (12) as

JT
φMdJφαpullφHd

(q̇ − J †
φẋ)

= JT
φMdαpullφHd

(Jφq̇ − JφJ
†
φẋ)

= JT
φMdαpullφHd

(ẋ− ẋ)
= JT

φMdαHd
(ẋ− ẋ).

With the equivalence of the energization terms, we conclude the
proof that dynamic energization commutes with the standard
pullback. �

E. Dynamic Fabrics

With the previous results, we formulate a new class of fabrics
that converge to a reference trajectory. We call this class of
fabrics DF. First, some notations are introduced to eventually
show that dynamically energized specs form DF. Analogously
to unbiased specs, we define dynamically unbiased specs (i.e.,
specs whose solutions do not diverge from the reference x̃when
starting on the reference).

Definition 4.6: A spec is said to be dynamically unbiased
with respect to x̃(t) if f(x, ẋ) = −M ¨̃x, for x(t) = x̃(t) and
ẋ(t) = ˙̃x(t).

Besides being dynamically unbiased, some specs will con-
verge to the reference trajectory independently from their initial
conditions.

Definition 4.7: A spec is dynamically rough with respect to
x̃(t) if all its integral curves x(t) converge dynamically with
respect to x̃(t).

As for SF, DF can be formed by specs when they are being
forced by a potential function ψ. Such a forcing potential is
generally a function of x and x̃ and has at least one minimum.
A spec that converges to a minimum of the forcing potential then
forms a DF.

Definition 4.8: A spec forms a dynamically rough fabric
if it is dynamically rough with respect to x̃(t) when forced
by a dynamic potential, and ∃t1 > 0 such that ∀t > t1,x(t)
satisfies the Karush–Kuhn–Tucker (KKT) conditions for the
optimization problem minx∈Xψ(x, x̃(t)). If a spec does not
form a dynamically rough fabric but all its damped variants do,
it forms a dynamically frictionless fabric.

Theorem 4.9 (DF): Suppose S = (M ,f)X is a spec. Then,
S forms a dynamically rough fabric with respect to x̃ if and only
if it is dynamically unbiased with respect to x̃ and it converges

Authorized licensed use limited to: TU Delft Library. Downloaded on August 18,2023 at 10:18:58 UTC from IEEE Xplore.  Restrictions apply. 



SPAHN et al.: DYNAMIC OPTIMIZATION FABRICS FOR MOTION GENERATION 2691

dynamically when being forced by a dynamic potentialψ(x, x̃)
with ‖∂xψ‖ <∞ on X .

Proof: We can write the corresponding differential equation

Mẍ+ f = −∂xψ. (13)

Assume that S is dynamically unbiased. Since the spec con-
verges with respect to x̃(t), we have ẋ→ ˙̃x,x→ x̃. Because
it is dynamically unbiased, we also have f → −M ¨̃x. Thus, the
left-hand side of (13) approaches 0. Consequently, the right-
hand side must also approach 0, and hence, ∂xψ → 0. The last
satisfies the KKT conditions of ψ.

To prove the converse, assume f dynamically biased. That
implies that

∃t > 0,f =M ¨̃x+ a(x̃, ˙̃x),a(x̃, ˙̃x) 
= 0.

Hence, there exist a t > 0 for which the left-hand side does
not vanish. As ψ satisfies the KKT conditions at x = x̃, its
derivative equals zero at x = x̃, which contradicts (13) with
Ma(x̃, ˙̃x) = 0. �

Hence, the spec is required to be unbiased and convergent
when forced. While the former can be verified using straight-
forward computation, convergence is difficult to verify in the
general case.

Lemma 4.10 (Dynamically energized fabrics): Suppose S
is a dynamically unbiased energized spec. Then, S forms a
dynamically frictionless fabric if ∂xψ = −∂x̃ψ.

Proof: The equation of motion for the energized, forced, and
damped system writes as

ẍ+ h+ αHd
ẋrel +Bẋrel + ∂xψ = 0. (14)

The systems energy (dynamic Hamiltonian) is used as a Lya-
punov function to show convergence. The rate of change is
computed as

˙Hψd = ẋT
rel(Mde(−h− αHd

ẋrel −Bẋrel − ∂xψ − ¨̃x)

+ fde) + ψ̇

= − ẋT
relBẋrel − ẋT

rel∂xψ + ẋT∂xψ + ˙̃xT∂x̃ψ

= − ẋT
relBẋrel.

As the system energy is lower bounded withHd +ψ ≥ 0 and
˙Hψd ≤ 0, whenB strictly positive definite, we must have ˙Hψd →

0. Thus, ẋrel goes to zero. We can conclude that the system
is dynamically converging. As it also said to be dynamically
unbiased, the damped energized system forms a dynamic fabric
by Theorem 4.9. �

Lemma 4.11 (Dynamic Lagrangian fabrics): An unbiased,
dynamic Lagrangian spec forms a dynamically frictionless fab-
ric if ∂xψ = −∂x̃ψ holds for the forcing term.

Proof: The equations of motion induced by the dynamic
Lagrangian including damping and forcing are defined by the
spec and can be written explicitly as

MLd
ẍrel + fLd

+Bẋrel + ∂xψ = 0

MLd
(ẍ− ¨̃x) + fLd

+B(ẋ− ˙̃x) + ∂xψ = 0

MLd
ẍ−MLd

¨̃x+ fLd
+Bẋ−B ˙̃x+ ∂xψ = 0. (15)

In the following, we use the Hamiltonian and the potential
function as Lyapunov function to show convergence of the
damped spec:

Hψd (x) = Hd +ψ

= ∂ẋrelLT
d ẋrel − Ld +ψ.

The time derivative is composed of the time derivative of the
Hamiltonian, Ḣe = ẋ

T
rel(MLd

ẍrel + fLd
), and the time deriva-

tive of the forcing potential, ψ̇ = ẋT∂xψ + ˙̃xT∂x̃ψ. Thus, the
system’s total energy varies over time

Ḣd
ψ
(x)=(ẋ− ˙̃x)

T
(MLd

(ẍ− ¨̃x)+fLd
)+ẋT∂xψ+ ˙̃xT∂x̃ψ.

Plugging in the equations of motion (15) gives

Ḣd
ψ
(x) = (ẋ− ˙̃x)

T
(−fLd

−B(ẋ− ˙̃x)− ∂xψ + fLd
)

+ ẋT∂xψ + ˙̃xT∂x̃ψ

= − (ẋ− ˙̃x)
T
B(ẋ− ˙̃x)− (ẋ− ˙̃x)

T
∂xψ

+ ẋT∂xψ + ˙̃xT∂x̃ψ

= − (ẋ− ˙̃x)
T
B(ẋ− ˙̃x) + ˙̃xT (∂xψ + ∂x̃ψ).

For ∂xψ = −∂x̃ψ andB strictly positive definite, Ḣd is strictly
negative for (ẋ− ˙̃x) 
= 0. Since Hψd is lower bounded as com-

position of lower bounded function and Ḣd
ψ ≤ 0, Ḣd

ψ → 0,
and thus, ẋ→ ˙̃x and x→ x̃. Hence, the spec converges dy-
namically with respect to x̃. As the spec is further said to be
dynamically unbiased, the damped spec forms a dynamic fabric
by Theorem 4.9. �

Concretely, Lemma 4.11 allows for trajectory following with
guaranteed convergence with DF. For example, a reference
trajectory for the robot’s end-effector is defined as x̃(t). Then,
the potential can be designed as ψ = x̃(t)− x (respecting the
construction rule required for Lemma 4.11). In contrast to SF,
where the static potential function is simply updated at every
time step, DF makes use of the dynamics of the reference
trajectory through the dynamic pullback.

F. Construction Procedure

From the high-level procedure explained in Section IV-A, we
can derive the algorithm using the formal findings in this section,
see Algorithm 1.

Methods to design the individual components, such as ge-
ometry and Finsler structures, are introduced in [9]. As these
design patterns do not vary for DF, they are not repeated here.
In the result section, we show some experimental examples
highlighting the comparative advantage of optimization fabrics
over model predictive schemes and the advantage of DF over SF
for dynamic environments.

V. EXTENSION TO NONHOLONOMIC CONSTRAINTS

Mobile manipulators are often equipped with a nonholonomic
base (e.g., a differential drive mobile robot). In contrast to
revolute joints for manipulators, nonholonomic bases imply
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Algorithm 1: Motion design with DF.

nonholonomic constraints. Based on ideas presented in [29], we
propose a method to integrate such constraints in optimization
fabrics, including DF.

We assume that the nonholonomic constraint at hand can be
expressed as an equality of form

ẋ = Jnhq̇ (16)

where Jnh is the Jacobian of the constraint, q̇ is the velocity of
the controlled joints of the system, and ẋ is the root velocity
of the fabric. For a differential drive, ẋ is the velocity of the
system in the Cartesian plane (ẋ, ẏ, θ̇) and q̇ is the velocity of
the actuated wheels (uleft, uright). Moreover, we assume that (16)
is smooth and differentiable so that we can write

ẍ = J̇nhq̇ + Jnhq̈. (17)

The theory of optimization fabrics allows to pull a tree of
fabrics back into one fabric expressed in its root coordinates of
formMẍ+ f = 0 with its solution as

ẍ = −M−1f . (18)

Plugging (17) into the root fabric, we obtain the nonholonomic
fabric of form

MJnhq̈ +MJ̇nhq̇ + f = 0

M nhq̈ + f nh = 0.

Note that M nh is not necessarily a square matrix and, thus, not
invertible as it was in the original fabric. To find the best actuation
for the wheels, we formulate motion generation with fabrics as
an unconstrained optimization problem

q̈∗ = min
q̈

‖M nhq̈ + f nh‖22 . (19)

In this approach, we minimize the error of the final equation.
We could equally derive (19) with the objective of minimizing
the error between ẍ = Jnhq̈ + J̇nhq̇ and the original fabric’s
solution ẍ = −Mf . The minimization of the difference leads
to similar result. This optimization problem replaces (18) and is
solved by

q̈∗ =M †
nhf nh. (20)

Fig. 4. Path (green) following with a holonomic and a nonholonomic robot
using DF with the extension to nonholonomic robots. (a) 7 s. (b) 11 s. (c) 18 s.
(d) 7 s. (e) 11 s. (f) 18 s.

The solutions to this problem makes optimization fabrics, and
thus DF, applicable to nonholonomic robots, such as differential
drive robots or cars. A qualitative comparison between a tra-
jectory generated for a holonomic and a nonholonomic robot is
shown in Fig. 4.

The theory of optimization fabrics is built upon energy con-
servation of artificial energies that design the motion. Equa-
tion (19) does not solve the resulting spec exactly, but min-
imizes the deviation according to the least square objective
function. For many kinematic systems, e.g., differential drive
model, bicycle model, the nonholonomic constraint additionally
reduces the number of degrees of freedom, dim q < dimx.
As a consequence, the least square solution has a nonzero
residuum. Then, some fundamental properties of optimization
fabrics, such as energy conservation and convergence, can no
longer be guaranteed. Despite this theoretical shortcoming, we
show that this approach leads to good performance in practical
applications.

VI. EXPERIMENTAL RESULTS

In this section, the performance of optimization fabrics is as-
sessed on various robotic platforms. Although [9] suggested per-
formance benefits over optimization-based methods to local mo-
tion planning, no quantitative comparisons have been presented
to this date. The scenarios that we have chosen here (especially
in the first two experiments) are intentionally simple to identify
the specific differences. In the real-world experiments, we show
the differences on more dynamic scenarios, where the limited
frequency of a global planning method, such as RRT, justifies
the need for a local planning method. To give a general idea of
the performance differences between SF and receding-horizon
trajectory optimization, we compare the performance of an MPC
formulation, adapted from [24], with SF, as proposed in [9]. The
second experiment compares performance between SF and DF
for trajectory-following tasks. In the third experiment, moving
obstacles are added to the scene to form a dynamic environment.
Our extension to nonholonomic systems is tested in the fourth
experiment. Then, everything is combined in an experiment with
a differential drive mobile manipulator. Finally, we present a
possible application of a robot sharing the environment with a
human. The experiments described here are supported by videos
accompanying this article.
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A. Settings and Performance Metrics

We present a detailed analysis of the experimental results for
two commonly used setups, namely the Franka Emika Panda, a
Clearpath Boxer, and a mobile manipulator composed of both
components see [24]. Note that these robots are representative
of commonly used robots in dynamic environments. The Franka
Emika Panda is a 7 degree-of-freedom robot with joint torque
sensors, comparable to the Kuka Iiwa. Mobile manipulators
equipped with differential drives are widely used by other
manufacturers, see Pal Robotics Tiago or the Fetch Robotics
Mobile Manipulator. Compared with [8], we propose a more
extensive list of metrics. With regards to safety, we measure
the Clearance, the minimum distance between the robot and
any obstacle along the path. For static goals, solver planner
performance is measured in terms of Path Length, Euclidean
length of the end-effector trajectory, and Time-to-Goal, time to
reach the goal. For trajectory-following tasks, this measure is
replaced by Summed Error, the normed sum of deviation from
the desired trajectory. Computational costs are measured by the
average Solver Time in each time step. Most important, binary
success is measured by the Success Rate, where failure indicates
that either the goal was not reached or a collision occurred
during execution. Performance metrics are only evaluated if the
concerned motion generator succeeded. More information on
the testbed can be found in [32].

In static, industrial environments, the time to reach the goal
can be considered the one single most important metric, but
we argue that dynamic environments require a more nuanced
performance evaluation and, thus, a set of metrics. Intentionally,
we do not give general weights to the individual metrics, as their
corresponding importance highly depends on the application. As
a consequence, we tuned the compared planners in such a way
that they reach the goal in a similar time. Note that the general
speed for all planners compared in this article can be adjusted
by choosing a different parameter setup.

As this work does not focus on obstacle detection, we sim-
plify obstacles to spheres. Thus, we assume that an operational
perception pipeline detects obstacles and constructs englobing
spheres. The experiments are randomized in either the location
of the obstacles, the location of the goal, the initial configuration,
or in a combination of all three aspects. For every experiment,
the type and level of randomization are stated.

B. Experiment 1: SF Versus MPC

In the first experiment, we compare the performance of an
MPC formulation with SF [9], [10]. Compared with the for-
mulation used in [24], we use a workspace goal rather than a
configuration space goal, and apply a second-order integration
scheme so that the control outputs are accelerations instead
of velocities. We clarify that the formulation deployed for the
following tests is geometric as the model used is a second-order
integrator and does not include the dynamics of the robots. The
main reason lies in the reduced computational costs and the
inaccessibility of a highly accurate model [33].

1) Parameters: The low-level controller of the robot runs at
1 kHz. The fabrics are running at 100 Hz and the MPC at 10 Hz.
The time horizon for the MPC planner was set to T = 3 s spread

equally over H = 30 stages. Based on the findings in [24], we
are confident that the MPC planner is close to its optimal settings.
Moreover, we used the implementations by [34] and [35], which
are reported to have improved performance over open-source
libraries, such as acado.

2) Simulation: A series of N = 50 runs was evaluated with
the panda robot in simulation. Randomized end-effector posi-
tions were set for every run, whereas the initial configuration
remained unchanged. One to five spherical obstacles of radius
r = 0.15 m were placed in the workspace at random. An ex-
ample setup is shown in Fig. 6(a). The results are summarized
in Fig. 7. Solver times with fabrics averaged at 1 ms while the
MPC solver took around 50 ms in every time step. Although the
path length is similar with both solvers, the minimum clearance
from obstacles is increased with SF (0.183 m) compared with
MPC (0.138 m). This means that the trajectories are safer and,
thus, more suitable for dynamic environments. Both motion
generation methods fail in six cases. However, the SF produce
only one collision while MPC creates five collisions. The re-
maining failures are deadlocks. For both methods, deadlocks
result from local minima, highlighting the need for supportive
global plans. Collisions are caused by numerical inaccuracies,
which are generally higher with MPC due to the lower frequency.

3) Real World: For the experiments with the real robot, we
limited the number of test runs to N = 20. In contrast to the
simulated results, MPC has significantly more collisions than
SF, Fig. 8(b). This is likely to be caused by the lower frequency
at which the MPC is running. While in simulation, the model
matches the actual behavior perfectly and the time interval
between two computations can be accurately predicted, and
more uncertainty in the model is present in the real world. This
leads to prediction errors that cause collisions. For the collision
free cases, the real-world experiments confirm that optimization
fabrics tend to be more conservative with respect to obstacles,
see Clearance in Fig. 8(a). Similar to the simulated results, the
solving time is reduced by a factor of around 50 with fabrics.
This allows to run the planner at a higher frequency and, thus,
generating smoother motions.

4) Discussion: The difference in performance (except for
solver time) is likely caused by the different objective met-
rics. The objective function in the MPC formulation is mainly
governed by the Euclidean distance to the goal while control
inputs and velocity magnitude are given a relative small weight.
Avoidance behaviors, such as joint limit avoidance and obsta-
cle avoidance, are respected through inequality constraints. In
contrast, SF design the objective in a purely geometric manner
including all avoidance behaviors. Thus, the manifold for the
motion is directly altered by the avoidance behaviors, i.e., the
manifold is bent [9] so that the notion of shortest path changes
with the addition of obstacles. This shaping of the manifold leads
to improved convergence compared with the combination of
Euclidean distance objective function and inequality constraints
used with MPC.

C. Experiment 2: SF Versus DF

In motion planning for dynamic environments, global and
local planning methods work together to achieve efficient and
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Fig. 5. DF in the presence of a human. The human hand’s state is estimated with a motion capture system. The robot smoothly and in advance avoids the human
operator and allows for safe coexistence. (a) t = 0 s. (b) t = 2 s. (c) t = 3 s.

Fig. 6. Examples for simulation setups with panda robot. Initial configurations
are shown in white and final configurations are shown in light green. Obstacles
are visualized in red. (a) Only static obstacles are considered. (b) Trajectories
of two moving obstacles are visualized in light red.

Fig. 7. Results for randomized motion planning problems with the panda robot
in simulation. Lower values represent an improved performance of SF over MPC.
(a) Metrics evaluation for successful experiments. (b) Success results.

safe motion of the robot. However, SF are not designed to
follow global paths. Path following can only be achieved us-
ing a pseudodynamic approach where the forcing potential is
shifted in every time step without considering the dynamics

Fig. 8. Results for randomized motion planning problems with the real panda
robot. SF are more conservative around obstacles, improving on safety, while
reducing the computational cost by a factor of ≈ 50. As a result of the increased
clearance, collisions are more reliably avoided with SF. (a) Metrics evaluation
for successful experiments. (b) Success results.

of the trajectory. Therefore, we propose DF to allow smoother
path-following tasks, where the speed of the goal is also consid-
ered during execution. In this second experiment, we investigate
how DF compare to SF for path-following tasks. Specifically, we
show that DF outperform SF when following a path generated
by a global planner.

1) Simulation: We evaluated DF on the panda robot in sim-
ulation with an analytic, time-parameterized curve and a path
generated by a global planner, namely RRT (see Fig. 9). In
the case of the analytic trajectory, the three obstacles were
randomized across all runs. For the experiment with the global
planner, the goal position and the obstacles were randomized
across all runs. A total of N = 50 experiments were executed
for this experiment. The reduced summed error for DF verifies
the theoretical finding that DF can follow paths more closely.
The average error over all runs with the analytic trajectory
is 0.0792 m (DF) and 0.136 m (SF), see Fig. 10(a) for the
comparison. For the spline path generated with RRT, the average
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Fig. 9. Path generated with RRT from OMPL.

Fig. 10. Comparison between SF and DF for trajectory-following tasks in
simulation. Lower values in a metric indicate that DF performed better than SF.
(a) Analytic, user-specified global path. (b) Global path generated by RRT using
OMPL.

Fig. 11. Trajectory-following tasks with DF. (a) Trajectory is a time-
parameterized analytic curve. (b) Trajectory is described by a spline.

error over all runs is 0.145 (DF) and 0.240 m (SF), see Fig. 10(b)
for the comparison.

2) Real World: Path following was also assessed with the
real panda robot in similar settings. Quantitative results are only
presented for N = 20 different paths with splines where up to
three obstacles were added to the workspace, see Fig. 11. The
results in real-world confirm the findings from the simulation.
By exploiting the velocity information of the trajectory, the in-
tegration error can be effectively reduced, Fig. 12. In contrast to
the simulation we see a higher fluctuation in solver times, which

Fig. 12. Comparison between SF and DF when following a path defined by a
basic spline in the real world. The splines and the obstacles are different for the
N = 20 case. DF achieve lower deviation errors that SF.

Fig. 13. Comparison between SF and DF for scenarios with dynamic obsta-
cles. While path length and solver time is not increased, clearance is increased
and the time to reach the goal is reduced with DF compared with SF. (a) Metrics
evaluation for successful experiments. (b) Success results.

can be caused by a generally lower capacity of the computing
unit on the robot.

D. Experiment 3: Moving Obstacles

Next, we compare the different methods in the presence of
dynamic obstacles. All experiments in this section consist of
at least one moving obstacle that follows either an analytic
trajectory or a spline. Here, we use stationary goals to isolate the
results from the behavior investigated in the previous section.

1) Simulation: For this series with the simulated panda robot,
only the goal position was randomized. The initial configuration

q0 = [1.0, 0.0, 0.0,−1.5, 0.0, 1.8675]T

and the two moving obstacles with the trajectories

x̃obst1 = [−1.0 + 0.1t,−0.4, 0.7]T

x̃obst2 = [−1.0 + 0.2t, 1.0− 0.1t, 0.3]T

were kept constant throughout all experiments. The environment
is visualized in Fig. 6(b). The comparison between SF and
DF shows that DF are more conservative in terms of collision
avoidance with dynamic obstacles. Specifically, the distance
between the robot and the obstacles is increased [see Fig. 13(a)].
The success rate with DF compared with SF is significantly
improved, see Fig. 13(b). Thus, showing the need for using DF
in dynamic environments.
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Fig. 14. Comparison between SF and DF for real-world scenarios with dy-
namic obstacles. (a) Metrics evaluation for successful experiments. (b) Success
results.

Fig. 15. Trajectories for real panda robot in the presence of a dynamic obstacle.
DF show a smoother and in-advance reaction to the approaching obstacle while
SF can only react in sudden motion. (a) SF. (b) DF.

Fig. 16. Results for randomized cased with the Clearpath Boxer robot. Similar
performance in terms of safety and goal reaching can be combined with very
fast computation using optimization fabrics. (a) Metrics evaluation for successful
experiments. (b) Success results.

2) Real World: In a series of N = 20 experiments, perfor-
mance on the real panda arm was assessed. The same trend for
more conservative behavior with DF compared with SF can be
observed, see Fig. 14. However, DF take longer on average to
reach the goal as they keep larger clearance from obstacles. Note
that collisions are effectively eliminated with DF compared with
SF.

By investigating one example out of the series, see trajectories
in Fig. 15, the reason for the large number of collisions with SF
can be explained. Both methods initially drive the end-effector
to the goal position. As the moving obstacle is approaching the

Fig. 17. Quantitative results with SF for a nonholonomic mobile manipulator
in simulation. Fabrics solve planning problems in randomized environments in
low planning time. This allows whole-body control and highly reactive behavior.

robot, the DF are starting to react while SF are not changing its
behavior resulting in a very sudden motion at around t = 30 s.
SF treat moving obstacles as pseudostatic (i.e., the position of
the obstacle is updated at every time step, but the information
on its velocity is discarded). As a result, the relative velocity
between obstacle and robot is only a function of the velocity of
the robot. Geometries and energies for collision avoidance with
fabrics are, by design, a function of this velocity and, therefore,
fail to avoid moving obstacles when the robot moves slowly
or not at all. This behavior is most visible when the goal has
already been reached but an obstacle is approaching. DF on the
other hand take the velocity of the moving obstacles into account
and can, therefore, avoid them.

E. Experiment 4: Nonholonomic Robots

1) Simulation: This experiment assesses the performance of
the proposed method to compute trajectories for nonholonomic
robots with fabrics. Specifically, we run experiments for a
Clearpath Boxer for position. As for the first experiment, we
compare the performance with MPC. In this experiment, the
initial position, the goal location, and the position of five obsta-
cles were randomized. The results reveal that our extension of
optimization fabrics to nonholonomic robots maintains similar
results as with a robotic arm. Specifically, computational time
can be reduced to optimization-based methods while maintain-
ing good performance in terms of safety and goal-reaching,
see Fig. 16. We can also observe that success rate with SF is
lower compare with MPC due to a high number of unreached
goals.

F. Experiment 5: Mobile Manipulators

In the final experiment, we assess the applicability of SF and
DF to a nonholonomic mobile manipulator. In an environment
that is densely occluded by obstacles, the motion planning
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Fig. 18. Sequence of trajectory computed with DF for a mobile manipulator in simulation with moving obstacles (red sphere with line indicating the past
trajectory) and one end-effector goal (green). The trajectory of the end-effector are visualized in (e) as x and the desired end-effector position as x̃. (a) t = 0 s.
(b) t = 7 s. (c) t = 14 s. (d) t = 20 s.

Fig. 19. Real-world experiment for path following with a mobile manipulator.
The global path can be tracked accurately by DF, including the extension to
nonholonomic robots. The scene is visualized in Fig. 1.

problem is defined by a desired end-effector position and ad-
ditional path constraints (e.g., desired orientation of the end-
effector).

1) Simulation: In simulation, we evaluate the performance
of our extension to nonholonomic mobile manipulators with SF.
In this series, the positions of eight obstacles are randomized for
N = 50 cases. The workspace was limited to a 7 m× 7 m square,
so that random obstacles are ensured to be actually hindering the
motion planner. The results reveal that properties shown in the
previous experiments transfer to more complex systems without
loss of the computational benefit, see Fig. 17. In this series, there
were one unreached goals and four collisions that are, similar to
the previous experiments, caused by local minima. Local minima
are more likely for mobile manipulators as their workspace is
larger. Combining our contributions, DF and the extension to
nonholonomic robots, we achieve reactive and safe behavior
in dynamic environments. Moving obstacles are avoided in a
natural way using our method, see Fig. 18.

2) Real World: We present qualitative results for a nonholo-
nomic mobile manipulator using DF. In Fig. 1, the robot follows
a trajectory defined by a basic spline, while additionally respect-
ing an orientation constraints on its end-effector and avoiding
the shelves and an obstacle on the ground. The end-effector
trajectory is plotted in Fig. 19.

G. Experiment 6: DF in Supermarkets

In this experiment, we show qualitatively how DF could be
used in collaborative environments where humans and robots
coexist. For this experiment, we give the robot a static goal pose
similar to a pickup setup. The same environment is shared with
a coworker who restocks a shelf. The right-hand side of the
human is tracked with a motion capture system. The hand is then
avoided by the robot using DF, see Fig. 5. In this experiment, the
minimum distance between the robot and the hand was 0.062 m.
This real-world experiment showcases potential applications of
the proposed method.

VII. CONCLUSION

In this article, we have generalized optimization fabrics to
dynamic environments. We have proven that our proposed DF
are convergent to reference paths and can, thus, compute motion
for path-following tasks (see Lemma IV.10). Besides, we have
proposed an extension to optimization fabrics (and, thus, also
DF) for nonholonomic robots. This allows the application of
this framework to a wider range of robotic applications and
ultimately allows the deployment to many mobile manipulators
in dynamic environments.

These theoretical findings were confirmed in various ex-
periments. First, the quantitative comparisons showed that SF
outperforms MPC in terms of solver time while maintaining
similar performance in terms of goal reaching and success rate.
The improved performance with optimization fabrics might be
caused by the different metric for goal reaching compared with
MPC. An integration of non-Riemannian metrics into an MPC
formulation should be further investigated in the future.

Verifying our theoretical derivations for DF, the experiments
showed that the deviation error for path-following tasks is de-
creased compared with SF. Similarly, environments with mov-
ing obstacles and humans showed increased clearance while
maintaining low computational costs and execution times. Thus,
DF overcome an important drawback of SF [9], [10], where
collision avoidance with moving obstacle is solved purely by the
high frequency at which optimization fabrics can be computed.
Moreover, the generalization did not increase the solving time
compared with SF. Unlike the original work on optimization
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fabrics, this generalization allows the deployment to dynamic
environments where velocity estimates of moving obstacles are
available.

Direct sensor integration in optimization fabrics might be fea-
sible in future works to overcome the shortcomings of perception
pipelines for collision avoidance. For the trajectory path tasks in
this article, we used a simple global path generated in workspace.
As DF integrate global path in arbitrary manifolds, improving
the global planning phase could be further investigated. We
expect this to be beneficial when robotics tasks are constantly
changing and task planning is required.
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