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Abstract—This paper presents a decentralized Multi-Agent
Reinforcement Learning (MARL) approach to an incentive-based
Demand Response (DR) program, which aims to maintain the
capacity limits of the electricity grid and prevent grid conges-
tion by financially incentivizing residential consumers to reduce
their energy consumption. The proposed approach addresses
the key challenge of coordinating heterogeneous preferences
and requirements from multiple participants while preserving
their privacy and minimizing financial costs for the aggregator.
The participant agents use a novel Disjunctively Constrained
Knapsack Problem optimization to curtail or shift the requested
household appliances based on the selected demand reduction.
Through case studies with electricity data from 25 households,
the proposed approach effectively reduced energy consumption’s
Peak-to-Average ratio (PAR) by 14.48% compared to the original
PAR while fully preserving participant privacy. This approach
has the potential to significantly improve the efficiency and
reliability of the electricity grid, making it an important con-
tribution to the management of renewable energy resources and
the growing electricity demand.

Index Terms—Reinforcement Learning, Incentive-based De-
mand Response, Multi-Agent systems

I. INTRODUCTION

Demand Response (DR) initiatives are promising to satisfy
the increasing need for flexibility to prevent grid congestion
due to growing demands and the intermittent nature of renew-
able energy resources [1]. DR programs can be either price-
based, where the variation in the price policy influences the
demand, or incentive-based, where companies offer electricity
consumers financial incentives to reduce or shift their energy
consumption. Incentive-based DR (IBDR) programs are con-
sidered reward-wise programs, whereas price-based programs
are considered punishment-wise programs. The voluntary na-
ture of reward-wise programs makes people more positive
and responsive in the long term. In contrast, the obligatory
nature of the punishment-wise program makes people nervous,
and responses are more transient [2]. IBDR programs already
contribute to flexible demands in the industrial sector. Still,
much less in the residential sector [3], which is a missed
opportunity as residential consumers represent a significant
share of electricity demand, e.g., almost half of the total
energy consumption in the U.S. [4]. Moreover, residential
loads can provide a more reliable and continuous response
than large industrial loads [5]. However, the participation of
residential consumers in IBDR programs is challenging to

realize since residential participants (1) typically do not meet
minimum levels of active load required to participate in the
programs, (2) may not be able to respond quickly to DR
events and (3) have higher privacy requirements than industrial
consumers. First, existing IBDR programs are more suitable
for residential participants when their loads are aggregated
as a single participant in the IBDR program. Aggregators
are key stakeholders in the electricity market, acting as an
intermediary between the DSO and the consumer and creating
the opportunity for residential consumers to participate in
IBDR programs [6]. Second, requests for load reductions
in IBDR program may come up unannounced and require
nearly real-time response, which residential participants may
not be able to manage. One approach to solve this issue is
to automate the response locally at the consumer via a Home
Energy Management System (HEMS). Third, to preserve the
privacy of residential participants, the aggregator does not have
access to detailed information about the residents’ preferences.
Model-based approaches to automate IBDR programs are cen-
tralized and require exhaustive information about individual
participants, which may not be available or may cause privacy
issues [7][8]. In addition, these centralized approaches rely on
conventional optimization methods like linear programming
[9][10] or dynamic programming [11], which make real-time
computation infeasible for a large number of participants in
the program.

Reinforcement Learning (RL) is a promising approach for
decision-making in IBDR programs since it does not require
any information about the organization of the program or
other participants (model-free)(see Appendix A). Second, it
can control multiple agents, which allows for scaling up the
number of participants. Third, once trained it can decide nearly
instantly, facilitating future real-time control applications.

This paper aims to answer the following research question:
How can RL induce flexibility in residential demands to pre-
vent grid congestion while preserving privacy and considering
the heterogeneous preferences of residential consumers? This
paper proposes a novel decentralized Multi-Agent Reinforce-
ment Learning approach for Incentive-based DR (MARL-iDR)
to answer the research question. The Markov Decision Process
(MDP) is the guiding assumption to model sequential decision-
making in IBDR programs. The proposed approach considers
simultaneously a single Aggregator Agent (AA) and multiple
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participant agents aiming to maximize their rewards. The
aggregator learns to deploy a suitable incentive based on one-
step-ahead predictions of participant electricity demands, the
target load reduction set by the DSO and participants’ response
to the incentive. The Participant Agent (PA) learns to respond
to incentives by limiting consumption, which is achieved
by shifting or curtailing household appliances, e.g. electric
vehicles, dishwashers, and air conditioning, while preserving
user satisfaction. The optimal power assignment is achieved
through the proposed internal execution of a Disjunctively
Constrained Knapsack Optimization (DCKP). This approach
supports moving from inflexible centralized grid operation
towards decentralized real-time automation while maintaining
capacity limits and preserving consumer privacy and comfort
with minimal information exchange.

The main contributions of this work are:
• An environment model that formulates an IBDR program,

including an aggregator and multiple residential partic-
ipants as an MDP. The environment model internally
solves the DCKP to minimize participant dissatisfaction,
taking the participant demand as input and schedules
household appliances as output.

• MARL-iDR, a model-free MARL method for IBDR
using deep Q-networks which makes real-time decisions
for the aggregator and its residential participants, while
preserving participants’ privacy and accounting for het-
erogeneous preferences.

The rest of the paper is organized as follows. Section II
discusses related work. The environment model is formulated
as an MDP in Sec. III. In Sec. IV, the MARL-iDR algorithm is
described. In Sec. V, the results of a case study are presented
to test the effectiveness of the approach. Finally, Section VI
concludes the paper.

II. RELATED WORK

Currently, much research is devoted to applying RL to
DR. Some of those works focus on the industrial sector.
[12] presents an approach to controlling a complex system
of industrial production resources, battery storage, electricity
self-supply, and short-term market trading using multi-agent
RL. [13] present a deep RL-based industrial DR scheme for
optimizing industrial energy management. To ensure practical
application, they designed an MDP framework for industrial
DR and used an actor-critic RL algorithm to determine the
most efficient manufacturing schedule.

RL for DR in the residential sector has been proposed
in numerous works. Many of these works focus on home
energy management in a single household. [14] presents an
RL-based approach to DR for a single residential or small
commercial building. They apply Q-learning with eligibility
traces to reduce average energy costs by shifting the time of
operation of energy consuming devices either by delaying their
operation or by anticipating their future use and operating them
at an optimal earlier time. The algorithm balances consumer
dissatisfaction with energy costs and learns consumer choices
and preferences without prior knowledge about the model. [15]

is a playful approach to residential DR using deep RL for
scheduling loads in a single household. The authors propose
an environment adapted from the Atari game Tetris where
flexible blocks represent device loads. A DQN consisting of a
convolutional network learns to schedule the load blocks.

Others focus on DR on the scale of the wholesale electricity
market. [16] propose a voluntary incentive-based DR program
targeting retail consumers with smart meters paying a flat elec-
tricity price. Load-serving entities provide consumers coupon
incentives in anticipation of intermittent generation ramping
and price spikes. Retail consumers’ inherent flexibility is uti-
lized while their base consumption is not exposed to wholesale
real-time price fluctuations. [8] propose an incentive-based DR
model considering a hierarchical electricity market including
grid operators, service providers or aggregators and small-load
consumers. The proposed trading framework enables system-
level dispatch of DR resources by leveraging incentives be-
tween interactors. A Stackelberg game is proposed to capture
the interactions between interactors.

However, the previous approaches rely on model-based
algorithms instead of model-free RL. The following works
propose decentralized MARL methods for load scheduling
of appliances in a collection of households. [17] propose a
model-free framework for scheduling the consumption profile
of appliances in multiple households modelled as a non-
cooperative stochastic game and apply RL to search for the
Nash equilibrium. The authors emphasize the proposed method
can preserve household privacy. [18] apply a cooperative
RL approach to schedule controllable appliances of multiple
households to minimise utility costs. The method performs
explicit collaboration to satisfy global grid constraints. Both
approaches emphasize the ability to scale with the number of
participating households and to operate in real time.

These approaches, however, are price-based. [19] proposes
a real-time RL algorithm for incentive-based DR programs
that supports service providers (aggregators) to purchase en-
ergy flexibility as a resource from its subscribed residential
participants to balance energy fluctuations and enhance grid
reliability. A single-agent RL is adopted to compute the close-
to-optimal incentive rates for heterogeneous participants. The
participant’s profit and dissatisfaction are balanced with the
service provider’s objective. [20] propose a similar method
that includes PV generation and [21] propose a similar method
including historical incentives.

Research on applying RL for incentive-based residential DR
is scarce, and the works that address this overlap either focus
on home energy management or profits from the aggregator
perspective. To address this research gap, this thesis proposes
a multi-agent RL algorithm for DR that is incentive-based,
residential and considers the interests of both the aggregator
and multiple end consumers. A comparative overview is given
in Table I.

III. PROPOSED ENVIRONMENT MODEL

The architecture for the proposed DR program is shown in
Fig. 1, and its components are described in detail throughout
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References Residential Incentive- RL for the RL for the
based aggregator consumer

[12], [13] x
[14], [15] x x
[16], [8] x x
[17], [18] x x
[19], [20], [21] x x x
MARL-IDR x x x x

TABLE I: Overview of related work and the aspects they consider.

Fig. 1: Architecture of the environment

this section. The overall model considers multiple agents:
one for the aggregator and one for each participant. The
AA distributes incentives to the different PAs where each
represents a residential household.

A. Assumptions for DR Program and Environment Model

An assumption is that the DSO and the aggregator arrange
a contractual agreement where the aggregator provides a
continuous aggregated reduction in power consumption below
a specified target in exchange for an agreed payment like in
[22]. An additional assumption is that the participants only
respond to the incentives offered in the IBDR program and
not to fluctuations in the electricity price, as would be the
case for price-based DR.

In IBDR programs, demand reductions are measured against
a reference demand called the Customer Baseline Load (CBL).
The exact demand of participants in future time steps is
unknown. Hence, aggregators have to estimate the demand of
their participants. Since residential participants show regular
patterns in energy consumption throughout the day, the most
prominent approach to demand estimation in the residential
sector is based on historical consumption data. In the pro-
posed approach, the current day is matched to ten previous
similar days, and the average consumption is taken consid-
ering changes in weather conditions as the CBL. Details for
calculating the CBL are found in [23].

The proposed environment model assumes an MDP, a
framework for sequential decision-making, where a decision in
a one-time step influences the next. The MDP is characterized
by the Markov property, i.e. the state transitions depend solely
on the current state of the environment and the current action
taken. MDPs are described as a tuple ⟨S,A, P,R⟩ representing
the state space, action space, transition probabilities and the
reward function, respectively. One episode of an MDP consists
of a finite sequence T of discrete time steps t. The environment
model assumes constant power consumption and incentive
rates for a single time step. Based on these assumptions,
RL agents observe the state of the environment in each time
step, decide upon an action, and in return, receive a reward
and transit to the next step and corresponding state. The
agent considers immediate and future rewards multiplied by
a discount factor γ. Therefore, the agent’s objective is to
maximize the cumulative discounted return [24]. However,
when the reward functions are equal for multiple agents,
cooperation emerges [25]. This feature is interesting to explore
for multiple agents in IBDR programs.

B. Participant Agent

The set of all households in the DR program is H. Each PA
i ∈ H can control a set of appliances Di. In practice, the PA
could be integrated into a HEMS connected to smart meters
and smart plugs to access the consumption measurements of
household appliances. The objective of the PA is to approach
the optimal balance between maximizing financial earnings
and minimizing user dissatisfaction caused by curtailing or de-
laying appliances. The environment model for each household
is defined by its state, the actions, rewards and the scheduler.

State: The appliances Di are divided into three subsets:
time-shiftable appliances TS , power-curtailable appliances
PC and non-shiftable appliances NS such that Di = TS i ∪
PC i ∪ NS i. The residents may submit an initial request to
turn on appliance j ∈ Di at time step tIi,j .

• Time-shiftable appliance TS are either on with constant
power consumption or off. Time-shiftable appliances can
be interruptible (e.g. EVs, where the charging can con-
tinue later) or non-interruptible, (e.g. washing machines
and dishwashers that need to complete their washing
programs without interruption). Their state is determined
by the difference between the current time step t and the
initial request time steps tIj , i.e. the current delay t− tIj .

• Power-curtailable appliances PC allow to lower power
consumption but do not allow a delay of usage (e.g.
changing the setpoint of an AC, dimming lighting sys-
tems). Their state is the variable power demand in kilo-
watts dPC

j .
• Non-shiftable appliances NS i must run at all times with-

out delay or curtailment. These appliances share a single
state defined as the total power demand in kilowatts dNS

j

The state st,i of a household i at the time step t combines
the information of all appliances j ∈ Di. In addition, the PA
observes the incentive rate pt passed from the AA and its own
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projected CBL bt,i. Hence, the observation of PA i in time step
t is oPA

t,i = {st,i, bt,i, pt}. 1

Action: This paper proposes an action space of discrete
power rates combined with an appliance scheduling optimiza-
tion to ensure scalability in the number of appliances. The
problem is that when appliances are controlled directly by
RL the action space for time-shiftable appliances increases
exponentially with the number of appliances, i.e. the binary
combination of time-shiftable appliances (either on or off) is
O(2|TSi|). This problem of scalability is even more pressing
for power-curtailable appliances where discretization in a set
of m levels of power consumption results in a combination
growing with O(m|PC i|).

To address this issue, a fixed action space is proposed that
consists of discrete power rates a ∈ APA, which is a fraction
of the total demand. Subsequently, the scheduler described in
Section III-B matches the appliances to the limit l = a · d
where d is the total appliances’ demand. The resulting total
power consumption may be lower than the limit e ≤ l.

Reward: The reward for the PA consists of two components
(1) the financial reward for receiving incentives (2) the dissat-
isfaction cost for preserving the satisfaction of the residents.
First, as the AA offers the PA incentive rate p to reduce
demand, the PA receives a financial reward when the total
consumption e is smaller than the CBL b. The financial reward
u paid from AA to PA is

u = p ·max (0, b− e), (1)

As the DR program is incentive-based (reward-wise) not price-
based (punishment-wise), participants are not punished for
consuming more than CBL b, i.e. they can only earn money,
not lose anything.

Second, curtailing or shifting requested appliances causes
dissatisfaction to the residents. In the case of time-shiftable
appliance j ∈ TS , dissatisfaction cost cTS

j is a convex
function of the delay

cTS
j = βj

(
t+ 1− tIj

)2

∀j ∈ TS , (2)

Shifting appliance j to time step t+1 instead of turning it on in
time step t means a delay of t+1− tIj . This function assumes
the residents get increasingly dissatisfied when waiting longer
for the appliance to run [26]. In the case of power-curtailable
appliance j ∈ PC , the dissatisfaction cost is a convex function
of the power curtailment.

cPC
j = βj

( 1

m
· qj · dj

)2

∀j ∈ PC , (3)

where qj ∈ {0, 1, . . . ,m} is a categorical variable corre-
sponding to the power curtailment level. This function as-
sumes residents get increasingly dissatisfied with increased
curtailment [27]. βj is an appliance-specific dissatisfaction
coefficient describing the tolerance of the residents for delay or
power curtailment. In practice, this coefficient is a parameter

1For the remainder of this subsection, the subscripts t and i are dropped
as all equations apply to time step t and household i.

that the residents can update in the HEMS according to their
preferences.

The total reward function combines financial reward u and
dissatisfaction cost c as follows

rPA = u−
∑
j∈D

cj (4)

Scheduler: As part of the PA for household i, the scheduler
determines the optimal assignment of power to the appliances
based on the overall demand limit l. The scheduler is a
combinatorial optimization formulated as DCKP [28]:

minimize
∑

j∈PC

cPC
j +

∑
j∈TS

(1− xj) · cTS
j (5)

subject to
∑

j∈PC

1

m
· qj · dj +

∑
j∈TS

xj · dj ≤ l (6)

x ∈ {0, 1}, q ∈ {0, 1, . . . ,m} (7)

where xj is a binary variable for each time-shiftable appli-
ance j ∈ TS corresponding to switching the appliance off
(xj = 0) or on (xj = 1). The optimization minimizes the
total dissatisfaction from all appliances. The dissatisfaction
costs from time-shiftable appliances cTS

j and power-curtailable
appliances cPC

j are parameters computed with Eq. (2) and Eq.
(3). After solving the DCKP, the overall power demand is

e =
∑

j∈PC

1

m
· qj · dj +

∑
j∈TS

xj · dj (8)

C. Aggregator Agent

State: The state space of the AA is oAA
t = {dt, k}, where

dt is the aggregated demand of all households i ∈ H and k is
the target reduction set by the DSO.

Action: In each time step the AA selects an incentive rate
pt to realize power reduction by the PAs. The AA selects pt
out of an action space of discrete incentives AAA in cents per
kilowatt of demand reduction.

Reward: The reward of the AA is

rAA
t = −

(
ρ · e+t + (1− ρ) ·

∑
i∈H

ut,i

)
, (9)

where the first term defines a penalty for exceeding target k as
e+t = max(0, et − k). The second term is the total incentive
paid to the PAs as defined in Eq. (1). The trade-off between
the two terms is determined by weighting factor ρ. Note that
the AA is not rewarded for aggregated consumption below
the target as it aims to reduce consumption to contribute to
the DSO’s capacity constraints, but not further reduce energy
consumption.

IV. PROPOSED MARL-IDR ALGORITHM

The proposed MARL-iDR is a multi-agent algorithm where
the AA and PA have indirectly opposing reward functions, i.e.
actions in favour of the AA may have a negative influence
on the reward of the PA and vice versa. All MARL-iDR
agents are trained simultaneously, hence, the agents deal with a
moving target where the optimal policy changes as opposing
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agents change their policies. Simultaneous learning leads to
non-stationary problems which invalidate most of the single-
agent RL theoretical guarantees, e.g. the guarantee of conver-
gence [25]. Despite these limitations, simultaneous learning
has found numerous applications because of its simplicity
[29][30].

MARL-iDR effectively trades off exploration with exploita-
tion (a fundamental concept in RL). MARL-iDR uses the
action-selection strategy of ϵ-greedy with decay, i.e. with prob-
ability ϵ the agent selects a random action where ϵ decreases
over time with decay rate δ [31]. With this strategy, MARL-
iDR benefits from extensive exploration early in training and
refinement of the policy in later stages.

MARL-iDR uses Deep Q-Networks (DQNs) to account for
huge and continuous state spaces that are infeasible to Q-
learning [24]. DQN is a state-of-the-art Deep RL approach
that estimates the Q-value of state-action pairs by means of a
neural network θ. For more stable training with DQNs, two
features are used: 1) A separate target network θT for setting
the target values to avoid non-stationary targets, while the
original network is used for predicting Q-values. 2) Experience
replay to avoid the agent from forgetting previous experiences.
All experiences are saved in a replay buffer B. Instead of
training the network only on the most recent experience, the
network is trained on randomly sampled batches of experience
from B.

The training procedure for MARL-iDR is Algorithm 1. At
the start of the procedure a policy network and target network
are initialized for each individual agent. Then, all agents train
the networks for a number of episodes where each episode
corresponds to a single day which has a sequence of T time
steps. In each time step t, first the AA selects an action. Next,
each individual PA i selects an action and immediately receive
their reward. Finally, after all PAs decided their response to
the AA the reward for the AA can be calculated. The training
procedure takes a significant amount of time to learn policies
for each agent, however, once trained, the RL agent can be
deployed in real-time using policy π:

π(s) = argmax
a

Q(s, a | θ) (10)

V. CASE STUDY

The case study tests the effectiveness of the environment
model and the MARL-iDR algorithm taking four aspects
into consideration: 1) The policies learned by the agents
2) Information exchange and if the privacy of the participants
is preserved 3) Computational efficiency and finally 4) Eco-
nomics for the aggregator considering a varying weighting
factor ρ.

A. Simulation data and test setup

This case study uses appliance requests and consumption
data from 25 real-world households from the PecanStreet
dataset [32]. The dissatisfaction coefficients βj for the ap-
pliances are sampled from a normal distribution to intro-
duce heterogeneity to the households. The type, demand and

Algorithm 1 MARL-iDR training procedure

Initialize θAA, θT,AA, BAA

Initialize θPA
i , θT,PA

i , BPA
i ∀i ∈ H

Initialize ϵ0 ← 1.0
Initialize δ, 0 < δ < 1
for all episodes do

Initialize target reduction k
Initialize rewards rAA

0 , rPA
0 ← 0

ϵt = ϵt−1 · δ
for all time steps t do

Predict demand dt and set CBLs bt
oAA
t ← ⟨dt, k⟩

Add ⟨oAA
t−1, pt−1, r

AA
t−1, o

AA
t ⟩ to B

Train θAA given B
Select pt using ϵ-greedy
for all PAs i ∈ H do

Observe state of appliances st,i and compute ct,i
Observe CBL bt,i, incentive rate pt
oPA
t,i ← ⟨st,i, bt,i, pt⟩

Add ⟨oPA
t−1,i, at−1,i, r

PA
t−1,i, o

PA
t ⟩ to B

Train θPA
i given B

Select at,i using ϵ-greedy
Obtain xt,i and qt,i by solving DCKP

with input: dt,i, ct,i, at,i
Update st+1,i according to xt,i and qt,i
Calculate PA reward rPA

t,i

end for
Calculate AA reward rAA

t

end for
end for

Appliance Type Demand Dissatisfaction coeff.
(kW) mean std

Dryer TS , NI 2.0 0.2 0.2
Washing machine (WM) TS , NI 1.0 0.1 0.1
Dishwasher (DW) TS , NI 2.0 0.06 0.05
EV TS , I 4.0 0.04 0.05
AC PC 0 - 4.0 3.0 1.0
Non-shiftable NS 0 - 5.0 - -

TABLE II: Household appliances and their parameters, e.g, non-
interruptible (NI ) and interruptible (I ).

dissatisfaction coefficients of the appliances selected for the
simulations are in Table II.

The MARL-iDR algorithm is trained for 5000 episodes,
discretized in T = 96 time steps of 15min and randomly
sampled from the training period April 1, 2018, to October
31, 2018. The action space for the PAs and the AAs are
defined as APA = {0.0, 0.1, ..., 1.0} and AAA = {0, 1, ..., 10}
respectively. The scheduler selected from m = 10 curtailment
levels. The AA and PAs have an individual DQN with a
learning rate η = 0.001. The discount rate γ = 0.9 and ϵ-
decay rate δ = 0.999. Weighting factor ρ is 0.5. Finally, the
target reduction k is defined at 80% of the peak demand. The
algorithm is available online in a GitHub repository [33]. The
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No DR MARL-IDR Myopic
baseline

Peak load (kW) 86.25 74.39 69.23
Mean load (kW) 47.80 45.37 46.23
PAR 1.80 1.64 1.50
Surplus consumption (kWh) 35.79 3.93 0.49
Total incentive (¢) 0.0 2122 1917
Average dissatisfaction cost 0.0 17.36 12.26
Average incentive income (¢) 0.0 84.88 76.68

TABLE III: Results averaged per day in July.

algorithm is validated on each day in July. The simulations
were conducted on a 2.20 GHz, Intel 6-core i7-8750 CPU
with 16 GB RAM, running Windows 10.

A baseline was used to compare the performance of the
proposed MARL-iDR. The baseline considered the optimal
myopic action per time step (i.e. not considering future re-
wards). In other words, PAs selected the best action such
that a∗i = argmax {rPA

i |p}, and the AA selected the optimal
incentive defined by p∗ = argmax {rAA|a∗i , ∀i ∈ H}. This
myopic baseline requires full model knowledge and can only
consider immediate rewards (short-sighted).

B. Load reductions and incentive rates

MARL-iDR reduces loads during peak hours. The results
are in Table III. The peak load and peak-to-average ratio
(PAR) are significantly lower for MARL-iDR compared to
the original load, i.e the case without DR. However, the
myopic baseline reduces, even more, the peak load and
PAR, slightly exceeding the target reduction with a total of
0.49 kWh, whereas this “surplus consumption” for MARL-
iDR is 3.93 kWh. MARL-iDR sometimes results in a second
peak that exceeds the target reduction k. This behaviour of
shifting the load to a second peak is known as the rebound
effect [34]. Fig. 2 illustrates this behaviour, showing the
impact of MARL-iDR on the load curve on July 1st. The
aggregated load (Fig. 2b) is unchanged before 14:30. During
hours where the original load exceeds the target reduction,
both MARL-iDR and the myopic baseline maintained the total
load mostly below the target, by offering varying incentive
rates. However, around 19:00, a second peak arises when
using MARL-iDR. This second peak of 90.7 kW is lower
than the first, original peak 102.7 kW but higher than the
target. MARL-iDR does not offer incentives after the original
peak. Hence the loads increase above the target (rebound
effect). The myopic baseline does not suffer from the rebound
effect and reduces below the target. A similar pattern can be
observed in individual households, see Fig. 2c for the load
curve of a selected household. Similar to the aggregated case,
consumption is reduced significantly during peak hours but
spikes right after 19:00.

C. Dissatisfaction costs and appliance scheduling

The appliance schedule of the household from Fig. 2c is
in Fig. 3. Fig. 3a shows each appliance’s originally requested
time step and the scheduled time step. The washing machine
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(c) Load curve of an individual household with CBL ( ).

Fig. 2: Load reductions and incentive rates for MARL-iDR ( )
compared to the myopic baseline ( ) and without DR ( ).

and the EV delay for as long as incentives are offered. As
soon as the incentive rate drops to 0, shortly after 19:00,
the agent schedules the washing machine and the EV. The
incentive also influences the AC. Between 16:30 and 19:00,
the AC consumption is nearly halved. Fig. 3b shows the trade-
off between incentives gained and dissatisfaction caused by
rescheduling appliances. The dissatisfaction from postponing
EV charging and the washing machine increases until 19.15.

D. Preserving privacy

The proposed MARL-iDR preserves privacy which is
legally required. MARL-iDR outperforms any centralized
scheduler at the AA (e.g., myopic baseline) as they require
knowing all resident details, such as exact information about
the reward function, to calculate the best responses. In practice,
the aggregator must know participants’ preferences and the
state of their appliances to predict their response. With MARL-
iDR the aggregator receives no information regarding the
participant; only a single value-information is exchanged,
the incentive rate. In addition, no information is exchanged
between participants, ensuring participant privacy.

E. Economic analysis

MARL-iDR trains local agents to balance the economics
between the aggregator and all participants. The key metric
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Fig. 3: Appliance scheduling of one household in (a) and in (b) is
the corresponding financial reward u ( ), total reward rPA ( )
and all components to the dissatisfaction cEV ( ), cWM ( ), cDW

( ), cDryer ( ), cAC ( ).

in this balance is the incentive rate and the AA-designed
parameters of the DR scheme.

The incentive rates selected by the AA are shown in Fig. 2a.
The shape of this rate curve matches the original aggregated
demand curve in Fig. 2b. MARL-iDR stops offering incentives
after 19.00, and the myopic baseline stops after 20.00. The
myopic baseline offers less or equal incentives optimizing the
target reduction between 14.45 and 18.15, which results in
lower financial rewards for the PAs.

The design of the program is important for its success
toward a fair balance in financial costs and gains for all parties.
The design (and the balance) is controlled at the AA by
selecting the weighting factor ρ in Eq. (9). The selection of ρ
ultimately determines households’ willingness to participate in
the DR program. A study on this parameter ρ is in Fig. 4. The
larger ρ, the larger the punishment on surplus consumption and
the smaller the incentive cost. For small values ρ, a significant
consumption exceeds the target while only a little incentive is
paid to participants. On the other hand, when ρ is large, the
aggregator tries to push the surplus consumption down to 0
by offering increasing incentives.

F. Computational efficiency

This study analyzes the computational times for MARL-
iDR training and real-time deployment. The computation time
during real-time deployment is an important criterion for the
future needs of residential DR programs. The computation
times of scheduling the appliances of a single household in
a one-time step are compared with the baseline. A myopic
baseline is a centralized approach to computing all possi-
bilities before the PA can decide the optimal scheduling.
The used implementation took, on average, 1.86 s, and for
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Fig. 4: The aggregator balances financial cost (a) and surplus con-
sumption (b) with the parameter ρ.

a large number of households, centralized optimization-based
approaches are highly unsuitable, as research shows. However,
as MARL-iDR is decentralized and the PAs can schedule
appliances independently, the actual schedule can be computed
in 2ms. As the scheduling of appliances should be done in
near real-time, MARL-iDR is very suitable as a real-time
decision-making algorithm for real-time DR programs. The
key advantage is that almost unlimited many PAs can be
considered simultaneously. The time of training MARL-iDR
with one AA and 25 PAs for 5000 episodes is ∼ 12 h, which
only has to be done once before deployment.

The proposed decentralized MARL-iDR approach is very
promising for future real-time DR programs as it scales to very
large numbers of residents, making DR decisions in millisec-
onds while preserving privacy and balancing financial gains
among participants in a fair way. However, MARL-iDR has
limitations. As the AA makes decisions based on the current
state of the environment and can not know if the current time
step is before or after the peak as of the nature of MDPs,
incentives were not placed to reduce the second peak. Hence,
the myopic baseline outperformed MARL-iDR in reducing
load. One way of solving this limitation could be to include the
accumulated load reduction in the observation which requires
further investigation. Another limitation is that the scheduler
only considers requests for appliances at time step t, hence
non-interruptible appliances may impede load reduction in
future time steps when incentives may be higher. Operation
times of time-shiftable appliances must be considered in the
future to improve the potency of appliance scheduling. Finally,
MARL-iDR is trained and validated in a period with relative
high outside temperatures and large AC consumption (April
to October). In the future, different characteristics should be
considered to analyze the generalizability of the proposed
method.

VI. CONCLUSION

In conclusion, this paper proposed a decentralized Multi-
Agent Reinforcement Learning (MARL) approach to an
incentive-based Demand Response (DR) program that ad-
dresses the key challenge of coordinating heterogeneous pref-
erences and requirements from multiple participants while
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preserving their privacy and minimizing financial costs for
the aggregator. The proposed approach was validated through
case studies with electricity data from 25 households. It was
shown to effectively reduce the Peak-to-Average ratio (PAR)
of energy consumption by 14.48% compared to the original
PAR while fully preserving participant privacy. However, the
MARL-IDR algorithm showed some rebound effects and did
not always achieve the target reduction and the myopic base-
line. The results of this case study demonstrate the proposed
approach’s potential to improve the electricity grid’s efficiency
and reliability. The novel Disjunctively Constrained Knapsack
Problem optimization used to curtail or shift the requested
household appliances based on the selected demand reduction
makes this approach valuable to managing renewable energy
resources and the growing electricity demand. Future work
should address the rebound effect and improve the algorithm’s
performance.

REFERENCES

[1] D. Li, W. Y. Chiu, and H. Sun, “Demand Side Management in Micro-
grid Control Systems,” in Microgrid: Advanced Control Methods and
Renewable Energy System Integration. Elsevier Inc., 1 2017, pp. 203–
230.

[2] P. T. Baboli, M. Eghbal, M. P. Moghaddam, and H. Aalami, “Customer
behavior based demand response model,” IEEE Power and Energy
Society General Meeting, 2012.

[3] Z. Wang, H. Li, N. Deng, K. Cheng, B. Lu, B. Zhang, and B. Wang,
“How to effectively implement an incentive-based residential electricity
demand response policy? Experience from large-scale trials and match-
ing questionnaires,” Energy Policy, vol. 141, p. 111450, 6 2020.

[4] “Annual Energy Outlook 2021.” [Online]. Available: https://www.eia.
gov/outlooks/aeo/

[5] A. Asadinejad, K. Tomsovic, and C. F. Chen, “Sensitivity of incentive
based demand response program to residential customer elasticity,” in
NAPS 2016 - 48th North American Power Symposium, Proceedings.
Institute of Electrical and Electronics Engineers Inc., 11 2016.

[6] K. Zhou and S. Yang, “Smart Energy Management,” in Comprehensive
Energy Systems. Elsevier, 1 2018, vol. 5-5, pp. 423–456.

[7] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Başsar, “Dependable
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