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Abstract  —  The design of electrostatic electron lenses involves 
the choice of many geometrical parameters for the lens electrodes 
as well as the choice of voltages applied to the electrodes. The 
purpose of the design is to focus the electrons at a specific point 
and to minimize the aberrations of the lens. In a previous study, 
genetic algorithm optimization was introduced to aid the designer. 
For speeding up the electrostatic field calculations, new methods 
for analytical approximations of the field near the optical axis were 
introduced. In this paper, the influence of the main tuning 
parameters of the Genetic Algorithms is analyzed. The analysis is 
performed on a typical electrostatic lens systems including 6 
electrodes.  Different combinations of population sizes and 
number of generations are taken and the quality of the optimized 
lens system is compared. It is seen that within a constant 
computational effort (time or total number of system evaluations), 
a lower population size with a larger number of generations can 
achieve better results compared to having larger population size 
and fewer generations. The combination of Crossover Heuristic 
with Mutation Gaussian showed significantly better results 
compared to all other combinations of Mutations and Crossovers. 
Crossover Fraction is also evaluated to find the most suited values 
of this parameter. 

Index Terms — Genetic Algorithms, Tuning Parameters, 
Electrostatic Lens, Lens Design Optimization. 

I. INTRODUCTION 

Optimization routines such as Genetic Algorithms (GAs), 
though very effective for finding the optima in complex 
functions, have not been extensively used for the optimization 
of electrostatic electron lenses. In such lenses, the objective 
function is a combination of obtaining the correct focus position 
and the minimization of lens aberrations. For calculating these, 
one needs to find the electric field of the lens which is generally 
calculated by accurate methods such as the Finite Element 
Method (FEM). To perform the optimization while all 
geometries and voltages of the lens electrodes may vary, 
thousands of systems need to be evaluated. Using the accurate 
field calculation methods such as FEM (60 seconds per system 
evaluation on a modern PC), the optimization takes a very long 
time, up to several days [1- 2]. In 2018, we presented an 
optimization technique based on a fast but approximate model 
to calculate the fields around the optical axis [1, 3, 4] (0.4 
second per system evaluation on the same PC).  We combined 
this with an accurate method to calculate the field in a second 
optimization step. In a further search to reduce the computation 

time, we now analyze the influence of the tuning parameters of 
the Genetic Algorithm. We shall vary the population size, the 
number of generations, mutation method and cross-over type. 
In this study there is no need of fine tuning the electron lens by 
an accurate field calculation,  so only our approximate method 
(the second order electrode method, SOEM) is implemented to 
calculate the electric field. The study is performed on a lens 
system having 6 electrodes.    

II. OPTIMIZATION PROBLEM 

An example of an electrostatic lens with 6 lens electrodes is 
selected as the case-study to perform the optimization. A cross-
section of the round lens is shown in Fig 1. The free variables 
for the optimization are the thicknesses (𝑇𝑇𝑖𝑖), Radii (𝑅𝑅𝑖𝑖)  and 
voltages (𝑉𝑉𝑖𝑖)  of each electrode, and the gaps between the 
electrodes (𝐺𝐺𝑖𝑖). In total, there are 23 free variables.  

 
 
 
 
 
 
 

Fig. 1. A 2D illustration of a typical multi-electrode lens systems 
with 6 electrodes.   

Any imaging system such as the electrostatic lens system 
suffers from aberrations. The smaller the aberrations, the higher 
the resolution of the image and therefore the higher the quality 
of the lens system. The aberrations can be calculated by 
aberration integrals, using the electric field on axis and a first 
order (aberration-free) trajectory. These aberrations can be 
combined into a contribution to the spot size when the lens is 
used to image an electron source on a sample as is done in a 
scanning electron microscope. The objective function for the 
optimization problem is hence the spot size at the image side. 
In our case-study it is presumed that the lens only suffers from 
spherical and chromatic aberrations. The spot size (presented 
by 𝐷𝐷𝑠𝑠 in eq1.) can be calculated using the equation below [5]. 

 
𝐷𝐷𝑠𝑠2 = (0.18 𝐶𝐶𝑠𝑠 𝛼𝛼3)2 + (0.6 𝐶𝐶𝑐𝑐 𝛼𝛼 ∆𝑈𝑈/𝑈𝑈)2                    (1)

                

Z [mm]

𝑇𝑇1  𝐺𝐺3  𝑉𝑉2  
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Where 𝐶𝐶𝑐𝑐  and 𝐶𝐶𝑠𝑠  stand for chromatic and spherical 
aberration coefficients, respectively. 𝛼𝛼 (the half opening angle 
of the beam) is taken as 10  milliradian. 𝑈𝑈  and ∆𝑈𝑈  (the 
acceleration energy and the energy spread of the electron 
source) are chosen here to be 1 kV and 1 eV, respectively. The 
constraint of this optimization problem is to have the image at 
a fixed positon 𝑋𝑋𝐶𝐶  (at 15mm). 𝑋𝑋𝐶𝐶  is also a function of the 
electric field and can be calculated using ray-tracing. In our 
case-study MATLAB is used as the programing language. To 
calculate the objective function and image position (i.e. 𝐷𝐷𝑠𝑠 and 
𝑋𝑋𝐶𝐶), the field calculation is performed by SOEM and our ray-
tracing codes use the paraxial approximation. The 
computational work related to this study is performed on a PC 
with an Intel (R) Xeon (R) W-2123 CPU @3.60 GHz and 32 
GB of RAM. 

III. GA TUNING PARAMETERS  

A. Population size and number of Generation 

The population size (P) is determined by the number of 
members (here electrostatic lens systems) in each generation.  
The number of generations in an optimization execution is 
called G.  To perform the assessment, different combinations of 
population sizes and number of generations are taken with the 
values 20, 50,100, 200 and 500, so 25 combinations in total. 
Since in GA each run with identical parameters can yield a 
different optimization result, the optimization is run 10 times to 
give statistically reliable results. The results are represented in 
Fig. 2. The average, maximum and minimum of the Objective 
Function (OF) values are given in blue, gray and green bars, 
respectively. The black thin bars inside the blue bars illustrate 
the standard deviation in the averaged OF values in 10 runs. 
The corresponding times are given in Fig 2.b. Note that in our 
optimization problem the constraint function is added to the 
objective function.  By giving the lens systems which did not 
satisfy the constraint a very high contribution to the objective 
function, the lens systems which do not satisfy the constraints 
are automatically thrown out of the solution pools. To evaluate 
the GA performance, OF values and the execution time are the 
two factors which should be evaluated together. It can be seen 
in Fig. 2.a. that, as expected, increasing the population size and 
the number of generations, the average value of the objective 
function decreases (visualized by the dashed yellow lines). 
From Fig. 2.b it can be seen that at very high population sizes 
and number of generations, the execution time increases 
dramatically while the OF values shows no marked 
improvement. Hence, it can be concluded that if GA is run for 
a shorter time-frame, a larger improvement can be recognized 
in that short period rather than longer. This conclusion is in line 
with the investigations performed on GA in other optimization 
problems [6]. 
   Another  study on population and generation is to evaluate the 
GA performance within a fixed time, that is with a specified 

number of system evaluations NPG = 𝑃𝑃.𝐺𝐺 ; the important 
question is then “for a fixed value of NPG, which combination 
of P and G achieves the better result?”. To study this, the cases 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Fig. 2. a. GA performance for 25 different combinations of P and G 
(shown in the x-axis) b. The corresponding time for each of the 25 
cases. 

with the same NPG having different combinations of P and G are 
picked from Fig.2.a. and shown together in Fig.3. The options 
with smaller G and larger P are shown in dark blue bars, and 
the options with larger P and smaller G are shown by light blue 
bars. The black thin bars inside the blue bars illustrate the 
standard deviation in the averaged OF values in 10 runs.  

 
Fig. 3. Graphs of GA runs to illustrate comparison of similar values of 
NPG, having different combinations of P and G.  
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In all cases except the first one (i.e. NPG =1000), the light blue 
bars are lower than the dark blue bars. Note however that the 
first case shows an unstable result as can be concluded from the 
large standard deviation. Clearly NPG =1000 is too small for the 
optimization with so many free parameters. It is hence 
concluded that for the same amount of evaluations NPG , a GA 
optimization with  a higher number of generations and a smaller 
population size achieve a better result than a larger population 
size and a lower number of generations. This conclusion is in 
contrast with what has been reported in [7]. However, there 
were also other studies [8] in line with what we conclude here. 
In [8] it is shown that a large number of generations is better 
when the optimization problem has many basins of attractions, 
with multiple local minima in the objective function landscape. 
In such situations, having a large population size would not help 
GA to search the area more extensively, but it will degrade the 
GA performance since it will cause GA to be trapped in the 
wrong basin of attractions and stay in a local minimum. So 
probably our situation is like that. 

To continue the rest of analysis on other GA tuning parameters, 
a fixed value of P and G is taken at which the computation time 
was not very long, while the objective function was reasonably 
small. For this aim, option 8 (pointed out by ‘B’ in Fig.2.b.) 
with NPG=5000 (P=50, G=100) and run time ~100 Sec, is 
selected.  

B. Crossover and Mutation 

   This section is devoted to discovering the most suitable 
options of the two main tuning parameters of GA, Crossover 
and Mutation. The mutation type concerns the distribution of 
the random changes in the population within one generation. 
The crossover type determines how the offspring in a next 
generation is formed from parents in the earlier generation.  

  There are 3 different Mutation methods namely Gaussian, 
Adapt-Feasible and Uniform, and 5 different options for 
Crossover; Scattered, Heuristic, Single point, Two point and 
Arithmetic available in MATLAB (in total 15 different 
combinations). Fig. 4.a. gives the results of the comparison. The 
Y-axis shows the average value (blue bars), the maximum (gray 
bars) and minimum value (green bars) of the objective function 
value for 10 runs per combination. As can be seen from Fig.4.a., 
the best performance comes from the combination Crossover 
Heuristic and Mutation Gaussian.  However, to be able to better 
compare the options, a 2D graph for averaged values of the 
objective functions, in a categorized manner (grouped by their 
different Mutation methods) is given in Fig.4.b. Looking at this 
figure, by comparing bars with the same colors, it is seen that 
all cases with different crossover methods have the smallest OF 
values when combined with Mutation Gaussian.  
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Fig. 4. a. 3-D Bar graph illustrating the objective function values 
averaged over 10 runs for 15 different combinations of Crossover and 
Mutation GA options. b. The data of graph a when categorized 
according to Mutation and Crossover type.  

Among Crossover methods, it is seen that Crossover Heuristic 
achieves better results than other mutation types . Noticeable is 
that Mutation Uniform perform the worst. Crossover Single-
point also achieves the worst result compared to other 
Crossover options. 

C. Crossover Fraction 

Another tuning parameter of GA which can influence the 
results is the Crossover Fraction, that is the fraction of 
individuals that is incorporated in the next generation through 
the crossover process. The study is performed on 9 different 
values of the Crossover Fractions varying from 0 to 1 with a 
step sizes of 0.1. The GA is run 10 times with a Population of 
50 and Generation of 100. The Crossover and Mutation 
methods are taken as Crossover Heuristic and Mutation 
Gaussian. The results are given in Fig. 5. with the average 
values as bars in blue with the error bars as thin black bars. 
Crossover fractions of 0.5 or 0.6 give the smallest values of the 
objective function. The result can be understood by realizing 
that having an intermediate value of the Crossover Fraction 
allows enough diversity in the population occurs while the 
diversity is not too high to avoid the convergence of the GA. 
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Fig. 5. 3-D Bar graph illustrating the objective function values 
averaged over 10 runs for 9 different Crossover Fraction values.  

IV. CONCLUSION 

Having implemented a Genetic Algorithm optimization for 
electrostatic electron lens design allowed us to perform a study 
on the influence of GA tuning parameters. The study is 
performed on a typical lens with six electrodes which has 23 
free variables. The extension to more complex designs is 
straightforward. Our study illustrates that the GA has the 
robustness to be implemented as a global optimizer for 
electrostatic lens design. It also shows that there is not one 
optimized design because the value of the final objective 
function is different every time the GA is run. This implies that 
the fine tuning of the GA parameters is important for optimizing 
the performance of the GA. An analysis is performed of the 
impact of the values of population size and number of 
generations. As expected, the results improve by increasing 
both values. However, a population of 50 with 100 generations 
can provide reasonably good results. Increasing to higher 
values of population and generation will not significantly 
improve the results while the related computational time 
dramatically increases. It is also seen that within a constant 
computational effort (time or total number of system 
evaluations), having a lower population size than the number of 
generations can achieve better results than having a larger 
population size than the number generations. The Crossover 

and Mutation types as the main tuning parameters of GA are 
analyzed to find the most suitable options. It is found that 
irrespective of the type of Crossover, the Mutation Gaussian 
achieves the best result. Moreover, Crossover Heuristic shows 
the best performance among different crossover types. The 
combination of Crossover Heuristic with Mutation Gaussian 
shows significantly better results than all other combinations of 
Mutations and Crossovers. Crossover Fraction is also evaluated 
to find the most suitable values of this parameter. It is shown 
that a Crossover Fraction of 0.5 or 0.6 achieve the best results.  

The guidelines provided here for tuning the GA parameters 
may be helpful not only for the optimization of electrostatic lens 
designs, but also for other GA optimization of functions with 
similar complexity. 
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