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Abstract—Explainable Artificial Intelligence (XAI) aims
to improve the transparency of machine learning (ML)
pipelines. We systematize the increasingly growing (but
fragmented) microcosm of studies that develop and utilize
XAI methods for defensive and offensive cybersecurity tasks.
We identify 3 cybersecurity stakeholders, i.e., model users,
designers, and adversaries, who utilize XAI for 4 distinct ob-
jectives within an ML pipeline, namely 1) XAI-enabled user
assistance, 2) XAI-enabled model verification, 3) explanation
verification & robustness, and 4) offensive use of explana-
tions. Our analysis of the literature indicates that many of
the XAI applications are designed with little understanding
of how they might be integrated into analyst workflows –
user studies for explanation evaluation are conducted in
only 14% of the cases. The security literature sometimes
also fails to disentangle the role of the various stakeholders,
e.g., by providing explanations to model users and designers
while also exposing them to adversaries. Additionally, the
role of model designers is particularly minimized in the
security literature. To this end, we present an illustrative
tutorial for model designers, demonstrating how XAI can
help with model verification. We also discuss scenarios
where interpretability by design may be a better alternative.
The systematization and the tutorial enable us to challenge
several assumptions, and present open problems that can
help shape the future of XAI research within cybersecurity.

Index Terms—XAI, Machine learning, Cyber security.

1. Introduction

Security practitioners are interested in high-
performing machine learning (ML) systems that can
also explain their decisions [111]. However, despite
the unprecedented performance achieved by prevailing
ML systems, they have been slow to materialize in
the security industry [13], [61], [121]. This is because
these systems are considered ‘black boxes’ due to their
lack of transparency — they are notoriously difficult
to understand for humans because of their complex
configurations and large model sizes. In addition to
the lack of understandability, their correctness and

robustness can also not be easily verified. For instance,
the model might learn incorrect associations (i.e., spurious
correlations) from the input data, giving it the illusion
of being performant without being able to generalize in
practice1. The model might also have fatal weaknesses
that can be exploited by an adversary to evade detection2.
For the safety-critical environment of cybersecurity, the
usage of such models is not ideal. In fact, black-box
models are not even allowed in regulated fields unless
they are supplemented with explanations [57], e.g., courts
do not consider model outputs as admissible evidence
unless a forensic analyst is able to justify how the
output links to the case [30]. Moreover, the “right to
explanation” in the GDPR AI act also makes it tricky to
deploy black-box models [58].

Explainable artificial intelligence (XAI)3 has been pro-
posed to open the proverbial ‘black box’ by making the
model internals more human understandable [95]. The first
mention of XAI can be traced back to van Lent et al. [124]
in 2004, while the field really started growing drastically
after DARPA announced its XAI program in 2014 [47].

In this paper, we systematize the increasingly growing
microcosm of studies that develop and utilize XAI meth-
ods for security-specific target domains. We argue that the
applications of XAI within cybersecurity are intrinsically
different from other domains because cybersecurity works
with practical use cases for safety-critical and high-stakes
decision-making under adversarial settings. The lack of
explainability is also an obstacle for deployment in cyber-
security [121]. In fact, explainability has arguably always
been a core tenet in the design of ML pipelines for security
[17], [111]. Even the seminal work by van Lent et al. uses
XAI to explain the behaviour of AI-controlled entities in
military simulation games [124].

In recent years, the security community has actively
adopted XAI as a means to increase practitioners’ trust
[117]. Numerous studies have applied existing XAI meth-
ods to security applications [7], [12]. However, recent
studies have recognized their shortcomings in addressing

1. This is often referred to as the Clever Hans phenomenon [116].

2. Adversarial machine learning studies these cases, see e.g., [22],
[106], [113].

3. The terms ‘explainable artificial intelligence’, ‘explainable ML’,
and ‘interpretable ML’ are used interchangeably in the literature.
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the unique pain points of the security domain [107].
To this end, several security-specific XAI methods [60],
[63], [138], and evaluation criteria [52], [129] have been
proposed.

These recent developments have made XAI research
within cybersecurity a fast-growing field: while there were
only 42 articles about ‘explainability’, ‘learning’, and
‘cybersecurity’ in 2015, that number has since skyrocketed
to 2600+ in 2021, according to Google Scholar. This lit-
erature is fragmented across several research communities
(including ML, security, graphics, and software engineer-
ing) with no unified overview. Additionally, existing works
often use different terminologies interchangeably, e.g.,
explicable, accountable, transparent, and understandable,
making it more difficult to find relevant literature.

To the best of our knowledge, this is the first SoK on
explainable ML for cybersecurity4. By taking a step back,
we synthesize insights from the vast body of fragmented
literature and identify open areas to stimulate further
research in this field.

Following the XAI definitions set forth by Roscher
et al. [112], we identify three cybersecurity stakeholders,
i.e., model users, model designers, and adversaries who
utilize XAI for four distinct objectives within the secu-
rity literature: (i) XAI-enabled user assistance, (ii) XAI-
enabled model verification, (iii) explanation verification
& robustness, and (iv) offensive use of explanations. The
interplay between the stakeholders, objectives, and the
stages of a typical ML pipeline are given in Figure 1. Par-
ticularly, the stakeholders remain central throughout our
discussions. We further categorize the literature w.r.t the
targeted security domain (e.g., intrusion detection), ML
model, and XAI method. This taxonomy serves as a guide
for finding related literature on XAI for cybersecurity.

After carefully reviewing 300+ papers, we found that
XAI has been most commonly used for providing decision
support to model users – 58% of the works are classified
under XAI-enabled user assistance. User evaluation is a
critical aspect of these studies to ensure that they are
usable, and are sufficiently aligned with existing analyst
workflows. However, user studies are conducted in only
14% of the cases, which is alarming since these methods
aim to work directly with model users. We propose ideas
for mitigating the lack of user studies in §9.

In addition, the stakeholders we identify have different
competencies, and thus require tailored explanations [24],
e.g., model designers are typically experts in ML while
model users are not. However, we identify several cases
that either do not distinguish between model users and
designers or do not specify any stakeholder. In contrast,
model users and adversaries interact with the explanations
in similar ways, but with opposing intent, requiring special
manoeuvres to limit adversary access.

Furthermore, the role of model designers is substantial
in cybersecurity for ensuring the security of the model
and its explanations. Yet, the reviewed literature only
provides decision support to model designers in 22.3% of
the cases. We tease out the role of model designers in §8:

4. Although Hariharan et al. [65] present a short survey on XAI for
cybersecurity, it covers only a small fraction of the literature. Moreover,
the Explainable Security (XSec) framework proposed by Vigano et al.
[125] is a non-conventional take on explainability, and does not embed
the traditional XAI concepts within the security context.

we present a walk-through tutorial of how model designers
can utilize XAI to detect and remove spurious features in
a network attack detection scenario. The tutorial serves as
a practical and easy starting point for security practitioners
by showing three concrete ways to debug a black-box
model via XAI. We show cases where the explanations
are helpful, and cases where model designers may draw
misleading conclusions instead. We discuss what can go
wrong when explaining black-box models, and advocate
for interpretability by design.
Organization: In §2 and §3, we describe the scope and
the proposed taxonomy. In §4-§7, we elaborate on the
main takeaways from the reviewed literature. In §8, we
demonstrate how model designers can use XAI to debug
their models. In §9, we present open problems and recom-
mendations for further XAI research within cybersecurity.

2. Background and Methodology

Explainable machine learning. ML pipelines either use
white-box models, which are inherently interpretable, or
use black-box models that are explained via post-hoc
explainability. For instance, linear regression and decision
trees are considered white-box, while neural networks and
random forests are considered black-box. The output of a
post-hoc explainability method is either an interpretable
surrogate model that approximates the black-box model,
or is an explanation of the black-box model in terms
of model components (e.g., feature importance) or input
examples (e.g., counterfactuals). Additionally, an explana-
tion can either elucidate how the model prediction is af-
fected by a single data point (local methods), or by all data
points (global methods). Note that interpretable models
provide both local and global explanations. Furthermore,
most post-hoc methods can be applied to any ML model,
making them model-agnostic, while interpretable models
are also referred to as model-based explanations. Figure
2 shows the various XAI terminologies, adapted from [2].
Method and Scoping. We synthesize available literature
that uses XAI for (offensive and defensive) cybersecurity
tasks. To this aim, we collect relevant literature, apply a
reflexive thematic analysis [25] to construct a taxonomy
based on common themes (i.e., application objectives),
and classify the literature into those themes. The litera-
ture was collected by seven researchers. Each paper was
investigated by at least two researchers independently and
discussed with all authors during weekly meetings. The
code books were updated as new categories emerged.

We collected peer-reviewed literature that has used ex-
plainable models to address cybersecurity problems since
2014, i.e., post-DARPA, by searching popular scientific
repositories (e.g., IEEE Xplore) and top security confer-
ence proceedings (e.g., Usenix). We used known search
terms, e.g., ‘explainable’, ‘interpretable’, ‘artificial intelli-
gence’, ‘cybersecurity’, ‘robust’, ‘offensive’, ‘attacks’, and
‘trustworthiness’. To handle the fragmented literature, we
expanded our search to include synonyms of the search
terms at smaller security and non-security venues (see
appendix A for the full list of venues). We also included
older popular works that try to explain their model without
explicitly using XAI, see e.g., [17], [35], [40]. After care-
fully reviewing 300+ papers, we select 75 cybersecurity
studies to build the taxonomy. Since it is impossible to

222

Authorized licensed use limited to: TU Delft Library. Downloaded on August 18,2023 at 13:15:37 UTC from IEEE Xplore.  Restrictions apply. 



Model designer

Model userAdversary

Model & Explanation 
verification via XAI

§5, §6

XAI-enabled 
user assistance

§4

Offensive use of 
explanations

§7

Data CollectionData 
Processing

Model 
Training

Model 
Validation

Model 
Deployment

XAI-enabled 
user assistance §4

Model user

XAI-enabled 
model verification §5

Explanation verificat-
ion & robustness §6

Model designer

Offensive use of 
explanations §7

Adversary

Figure 1. The interplay between application objectives and an ML pipeline (Left); and stakeholders and application objectives (Right).
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Figure 2. XAI ontology showing the key concepts within XAI.

cover all the available literature in the limited space, we
chose representative works from each problem area. As
such, there is some overlap with usable security, safety,
and robustness literature, but we mainly focus on the use
of XAI within cybersecurity.

3. Systematization

Given an ML pipeline from data collection to model
deployment, explainable ML is applied once a model
becomes available. In the literature, XAI has been used
to explain the model output to a human, either for sup-
porting them in decision-making or to understand whether
the model works as intended. In addition, the adversar-
ial threat landscape of cybersecurity suggests that XAI
can also be used by an adversary to gain actionable
information about the model in order to strengthen their
attacks. This implies the existence of three stakeholders
who interact with different phases of an ML pipeline and
accomplish distinct objectives using XAI. We classify the
literature based on the stakeholders, application objectives,
target domain, model and explainer class. Figure 1 shows
an overview of the stakeholder objectives that can be
accomplished by applying XAI on a typical ML pipeline.

Stakeholders. We identify three stakeholders (explainees)
who have different intents and expertise, and thus consume
explanations for distinct objectives, even when interacting
with the same ML model. The explanations are hence
tailored to the specific needs of the stakeholders.

a) Model user is defined as a broad class of person-
nel who utilize the ML pipeline to improve the defence
capacity of an organization, such as an analyst, developer,
operator, domain expert, practitioner, or end-user. To this
aim, a model user utilizes XAI techniques to better under-
stand the output of a deployed model and make informed

decisions, e.g., a malware analyst uses explanations to gain
insights into why a binary was classified as malicious [94].

b) Model designer is responsible for engineering the
ML pipeline used for a security application, and conse-
quently has a more intimate relationship with the model.
A model designer utilizes XAI techniques during model
training and validation to verify that the model works
as intended, e.g., a malware analyst uses explanations to
investigate the causes of misclassifications, and to ensure
that the model employs meaningful features [18]. More-
over, since the ML pipeline exists in an adversarial threat
landscape, the model designer also ensures the safety and
robustness of the model and its explanations [9].

c) Adversary is a human or an automated agent
(malware) that intends to harm an organization by com-
promising the ML pipeline. An adversary exploits XAI
techniques to formulate more efficient attacks, e.g., by
discovering weaknesses in the model [79]. In addition,
an adversary may attack the XAI component of the ML
pipeline itself to alter the generated explanations [56].
Depending on the attacker model, the adversary may
interact with the explanations either during model training
or after the model is deployed.

Application objectives. We classify the literature under
four application objectives based on the intended use of
the XAI technique — XAI is used to provide decision
support to model users in (1); model designers in (2) &
(3); and adversaries in (4).

(1) XAI-enabled user assistance covers techniques
that are developed and utilized to support model users in
making informed decisions, usually with the help of visual
analytics dashboards. The explanations are meant to give
control back to the user by helping them understand the
model [96], and providing additional insights regarding
the input data [28]. Since it is the model designers who
typically develop the explanations for model users, it is
essential to include model users during the evaluation
process to understand the explanation efficacy.

(2) XAI-enabled model verification studies techniques
that are developed and utilized to help model designers
debug and validate the correctness of the ML model.
These explanations are usually more technical in nature.
In the literature, XAI has primarily been used to discover
spurious/faulty features by investigating a given black-
box model using, e.g., feature importance [18], [32] or
surrogate models [43], [63].

(3) Explanation verification & robustness studies
techniques that are developed and utilized to help model
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designers debug and validate the correctness & robustness
of the XAI component in the ML pipeline. These methods
focus on testing the correctness of post-hoc explanations
under natural settings [86], and the robustness of explana-
tions produced by post-hoc methods [9] and interpretable
models [126] under adversarial settings [44].

(4) Offensive use of explanations studies how adver-
saries can exploit insights provided by XAI techniques for
enhancing their capabilities, e.g., i) by using explanations
to compromise the privacy of the model, and ii) by using
explanations to compromise the integrity and availability
of the model. These attacks can be deployed in the model
training phase (e.g., poisoning attacks [118]), and model
deployment phase (e.g., privacy attacks [140]).

Target domain. We further classify the literature ac-
cording to the cybersecurity target domain. In terms of
defensive security domains, we cover: malware detection,
anomaly detection, intrusion detection, alert management,
vulnerability discovery, asset prioritization, phishing de-
tection, reverse engineering, traffic classification, and pri-
vacy protection. In terms of offensive security domains,
we cover: privacy attacks (e.g., membership inference,
model inversion, and model extraction), poisoning attacks
(e.g., backdoor injection), and evasion attacks (e.g., test-
time adversarial perturbations). The papers that address
generic non-security concepts, such as anomaly detection
are further categorized according to the data sources they
use, e.g., image, binary, and network traffic. To the best
of our knowledge, this is the first SoK to cover such a
broad range of target domains.

Model & explainer class. Finally, we specify the ML
models and XAI techniques used in the literature. The
models are grouped according to the algorithm and the
input data type accepted by the model (e.g., tabular, im-
ages). The models are further classified coarsely as either
black-box or white-box models, following the consensus
of the ML community, see Table 1 for the model code
book. The XAI techniques (called explainers henceforth)
are categorized according to their underlying mechanism
(e.g., model components, examples, surrogate), see Table
2 for the explainer code book.

Table 3 provides a summary of the reviewed literature,
which also showcases the co-occurrence of certain models
and explainers. Note that the classification in Table 1
reflects the general level of understanding provided by
the model class, while Table 3 shows the actual usage of
the model: some studies explicitly treat white-box models
as black-box for a model-free approach, see e.g., [7],
[41]. Other studies utilize an incomprehensible feature set
(e.g., by replacing feature names with integers), turning
an interpretable model into a black box, see e.g., [72].

The overview also helps us identify the misleading
usage of certain terminologies. For instance, some works
report their methods as being ‘interpretable’ while utiliz-
ing post-hoc explainers for black-box models, see e.g.,
[63], [108], [139]. Strictly speaking, black-box models
cannot be interpretable [112]. Thus, we categorize such
works under post-hoc explainability. Note that it is possi-
ble to have an interpretable model that also uses a post-hoc
explainer, but when a black-box model is explained via an
interpretable model, it is called a surrogate model.

TABLE 1. CODE BOOK FOR ML MODEL CLASSES. ‘W’ REPRESENTS

WHITE-BOX, AND ‘B’ REPRESENTS BLACK-BOX MODELS.

Model class Machine learning algorithms w b

CNN
Convolutional neural networks for image data, e.g., ResNet,

VGGnet, RPN, and inception network
•

DNN
Deep neural networks for tabular data, e.g., MLP, and

auto-encoder
•

GNN Graph neural networks, e.g., GCN, and graph attention network •

SeqNN Sequential neural networks, e.g., RNN, LSTM, and transformers •

Kernel-SVM Support vector machine with non-linear kernel •

Ensemble
Ensemble of models, e.g., random forest, gradient boosting

trees, and neural network ensembles
•

LM
Linear models, e.g., logistic (rule) regression, linear rank

regression, and linear SVM
•

RBC
Rule-based classifiers, e.g., decision trees, regular expressions,

and BRCG
•

NB Naive Bayes and its gaussian variant •

Automata
Abstract computing machines, e.g., Markov chains, and prob-

abilistic deterministic finite automata
•

kNN K-nearest neighbors • •

Unsupervised
Clustering algorithms, e.g., HDBSCAN, kmeans, with(out) dim-

ensionality reduction, e.g., self-organizing maps, PCA, t-SNE
• •

TABLE 2. CODE BOOK FOR EXPLAINER CLASSES.

Explainer class Explanation methods

SHAP SHAP and its variants, e.g., kernelSHAP

LIME LIME and its variants, e.g., graphLIME

LEMNA Non-linear LIME variant for security applications

GNNExplainer Explanation method for graph neural networks

Grad-based
Gradient-based methods, e.g., GradCAM, saliency map,

integrated gradients, and layer-wise relevance propagation

Activation Neuron activations, activation maps and attention

Importance
Feature importance computed using tree-based splitting, feature

permutation, and SOM-based dimensionality reduction

Exemplar Example-based explanations, e.g., kNN, prototypes, protoDash

Contrastive Contrastive explanations, e.g., counterfactuals

Anomaly-score
Custom metric capturing deviation from normalcy, e.g., decoder

reconstruction loss

Visual-explanation
Explanation based on visualizing model components or model

output for human perception

Sur-RBC
Surrogate rule-based classifiers, e.g., decision trees, decision

lists, and rule sets

Sur-Mixture Surrogate mixture linear regression model

Sur-Automata Surrogate automaton model

4. XAI-enabled User Assistance

The fundamental objective for employing (explain-
able) ML methods in security workflows is to provide
decision support to model users. In fact, practitioners have
been trying to make their models understandable since
before the popularity of XAI, see e.g., [17], [128], [137].
Over the past decade, numerous XAI applications have
arisen to support model users in their decision-making
when interacting with a deployed model. The prominence
of this objective is evident from the distribution of the
available literature — 58% of the reviewed studies provide
decision support to model users.

Within the reviewed literature, the explanations are
generated for distinct purposes at different levels of ex-
pertise even when considering a single stakeholder. For
instance, to assist software developers in understanding
vulnerable code, some approaches simply highlight the
lines of code that the model thinks are vulnerable [46],
[84], [115], while others extract human-understandable
rules from the vulnerable code that can serve as actionable
intelligence for periodic scanning and control [137], [141].
As such, these methods fall under two broad application
scenarios: i) XAI is employed to provide assistance to
model users for understanding model decisions and reduc-
ing their workload (i.e., threat prioritization, false alarm
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TABLE 3. SUMMARY OF XAI LITERATURE WITHIN CYBERSECURITY. ROWS ARE ORDERED w.r.t OBJECTIVES, TARGET DOMAIN, AND YEAR.
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[120] 2018 Alert management • • � � � �
[98] 2021 Alert management • • � �
[123] 2022 Alert management • • � � �
[103] 2022 Alert management • • � � �
[85] 2018 Anomaly detection (sensor) • • � �
[26] 2018 Anomaly detection (syslogs) • • � � �
[72] 2020 Anomaly detection (syslogs) • • � � � � � � � �
[15] 2021 Anomaly detection (network) • • � � �
[14] 2021 Anomaly detection (sensor) • • � � � � � � �
[69] 2021 Anomaly detection (sensor) • • � � �
[63] 2021 Anomaly detection (network) • • • • � � � � �
[28] 2022 Anomaly detection (network) • • � �
[83] 2021 Asset prioritization • • � � � �
[57] 2021 Asset prioritization • • � �
[67] 2021 Asset prioritization • • � � � � �
[122] 2020 Intrusion detection • • � � �
[127] 2020 Intrusion detection • • • • � � �
[12] 2021 Intrusion detection • • � � �
[91] 2021 Intrusion detection • • � �
[89] 2021 Intrusion detection • • � � � � � �
[108] 2022 Intrusion detection • • � � �
[96] 2021 Malware analysis • • � � �
[17] 2014 Malware detection • • � �
[128] 2016 Malware detection • • � �
[10] 2017 Malware detection • • • • � � � �
[60] 2018 Malware detection • • • • � � � �
[94] 2019 Malware detection • • • • � � �
[92] 2020 Malware detection • • � � �
[80] 2020 Malware detection • • • • � � �
[70] 2021 Malware detection • • � � �
[133] 2021 Malware detection • • � � �
[19] 2021 Malware detection • • � � � � � � � � �
[74] 2021 Malware detection • • � � �
[76] 2022 Malware detection • • � � � � �
[39] 2017 Phishing detection • • � �
[31] 2021 Phishing detection • • � � � �
[87] 2021 Phishing detection • • � � �
[59] 2021 Privacy protection • • � � � � �
[35] 2010 Protocol analysis • • � �
[49] 2020 Protocol analysis • • � �
[102] 2017 Test-time perturbations • • � � � �
[137] 2015 Vulnerability discovery • • � �
[115] 2018 Vulnerability discovery • • � � �
[46] 2019 Vulnerability discovery • • � � �
[141] 2020 Vulnerability discovery • • � � �
[7] 2020 Vulnerability discovery • • � � � �
[84] 2021 Vulnerability discovery • • � � �
[132] 2021 Vulnerability discovery • • � � � �
[41] 2021 Uncertainty estimation • • � � �
[36] 2017 Binary analysis • • � � � �
[93] 2018 Intrusion detection • • � � � � �
[18] 2020 Malware detection • • � � � �
[138] 2021 Malware detection • • � � �
[43] 2022 Malware detection • • � � � � � � � �
[34] 2021 Privacy protection • • � � �
[4] 2020 Traffic classification • • � � �
[32] 2021 Vulnerability discovery • • � � � � �
[131] 2021 Anomaly detection (sensor) • • � � �
[86] 2020 Backdoor injection • • � � � �
[1] 2020 Intrusion detection • • � � � � �
[3] 2018 Reverse engineering • • � � � �
[9] 2018 Test-time perturbations • • � � � � � � � �
[56] 2019 Test-time perturbations • • � � � �
[44] 2019 Test-time perturbations • • � � �
[139] 2020 Test-time perturbations • • � � �
[78] 2020 Test-time perturbations • • � � �
[51] 2021 Test-time perturbations • • � � �
[55] 2021 Test-time perturbations • • � � � �
[136] 2021 Backdoor injection • • � � � �
[118] 2021 Backdoor injection • • � � � � �
[79] 2021 Membership inf. & model steal. • • � � �
[119] 2021 Membership inference • • � � � � �
[140] 2021 Model inversion • • � � �
[42] 2019 Test-time perturbations • • � � �
[134] 2021 Test-time perturbations • • � � �

reduction, user awareness), or ii) XAI is employed for
the synthesis of new information (i.e., expert knowledge
creation, reverse engineering). Below we provide exam-
ples from the literature showing the different uses of
explanations for different model users.

Triaging and threat prioritization. Security practi-
tioners receive an enormous influx of cyber data that needs
to be analyzed. XAI-enabled triaging techniques have
been proposed to reduce analyst workload by redirecting
their attention to critical events. This is crucial for Security
Operations Center (SOC) analysts who often suffer from
‘alert fatigue’ caused by investigating large volumes of
intrusion alerts on a daily basis [98]. Black-box methods
can often not be applied since the analysts are under con-

tractual obligation to review all alerts [99]. Instead, XAI
techniques can reduce their workload via intelligent alert
management while enabling them to justify the model’s
decisions. The intuition is that a security analyst can use
the explainable ML model as a ‘virtual assistant’ that dis-
covers meaningful patterns in large datasets and presents
them to the analyst who can then make informed decisions
about which data to triage and what actions to take next
[67]. For example, Nadeem et al. [98] propose alert-
driven attack graphs that show attacker strategies learned
from intrusion alerts. They utilize an interpretable suffix-
based automaton model to learn contextually meaningful
attack paths. Security analysts can triage critical alerts by
selecting one of the attack graphs. van Ede et al. [123]
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use an LSTM to learn the contextual meaning of alerts
by capturing the correlation between them in an attention
vector. Their system clusters attention vectors, capturing
attack campaigns. Security analysts only need to analyze
outlier and sampled events from emerging clusters, dras-
tically reducing their workload. Similar approaches have
been proposed to triage critical syslog entries for the
forensic analysis of cyber attacks in a federated learning
setup [108], and to efficiently allocate cyber resources for
advanced persistent threat (APT) detection [83].

False alarm reduction. XAI can help security prac-
titioners and other model users quickly disregard false
alarms by explaining why the model made a prediction.
For instance, Sopan et al. [120] propose a visual analytics
dashboard to understand why an alert was raised. The
dashboard provides an explanation of the alert in the form
of an approximated decision path followed by the model
and a list of important features. A similar approach is
proposed in [91], [122]. Other works only show feature
importance to help security analysts understand model
predictions, e.g., for malware detection [19], [74], [76],
and anomaly detection [12], [14], [26], [69], [72]. In
contrast, instead of explaining the predictions, de Bie et al.
[41] have proposed a metric to help security analysts
weed out false or untrustworthy predictions in regression
models. They follow the intuition that instances close to
each other typically have similar predictions. Thus, by
comparing the prediction of a given instance with those
of its k-nearest neighbours, a model user can identify
whether the prediction can be trusted.

A handful of works have used anomaly scores to
automatically discard anomalous events, thus reducing
the cognitive load on general model users. For instance,
Ardito et al. [15] use anomaly scores to support medical
staff in detecting when an attack has occurred on a pa-
tient’s e-health telemonitoring device. The auto-encoder-
based system avoids processing anomalies that can other-
wise have devastating effects on a patient’s health. Instead,
it sends out a validation request to the medical staff.
Similarly, Akerman et al. [6] use image reconstruction
loss as an indication of whether artefacts in ADS-B video
frames are false alarms. ADS-B is a protocol used by air
traffic controllers to communicate with pilots regarding
surrounding objects. By highlighting what might be false
alarms, pilots can efficiently focus on the mission at hand.

User awareness & education. XAI has been utilized
to increase the general awareness of different model users
for insecure behaviour deterrence. For example, to keep
Android users safe, multiple works display warning signs
with explanations for why an app was blocked or marked
as malicious. The explanations are constructed from in-
fluential features extracted from apps’ permission usage
[17], [133], and network traffic [128].

XAI has also been used for warning end-users when
they land on potential phishing websites to improve their
overall Internet browsing behaviour [31], [39], [87]. For
instance, Phishpedia [87] employs logo detection to gen-
erate visual explanations in the form of insightful anno-
tations on the websites. Chai et al. [31] take one step
further by developing a multi-modal learning setup for
more accurate phishing website detection. Their attention-
based explanations highlight the URL characters, website
text, and images that were relevant for the detection.

Finally, in order to raise awareness among security
analysts regarding the impact of adversarial examples on
a given ML model, Norton et al. [102] develop a visual-
ization suite that lets them investigate the effect of various
gradient-based adversarial attacks on image classifiers.

Expert knowledge creation. XAI can be used to
synthesize human-understandable knowledge from black-
box models. For instance, Mahdavifar et al. [92] extract
a surrogate rule set from a pre-trained neural network
that substitutes the knowledge base of their expert system.
Security analysts interact with the expert system, which
uses the rule sets to explain classification decisions. These
rules are then used to classify unseen security incidents
(e.g., malware attacks and phishing attempts).

In order to address the lack of interpretability in
vulnerability discovery methods [81], Zou et al. [141]
and Yamaguchi et al. [137] extract human-understandable
rules from code snippets that the model thinks are vul-
nerable. These rules are then used by software developers
to detect vulnerabilities in previously unseen code bases.
Next to this, counterfactual explanations have been used
to automatically generate patches for vulnerable code. Wi-
jekoon et al. [132] discover vulnerabilities in source code
and proactively correct them with the minimal changes
necessary. To this end, they use LIME to find the nearest
unlike neighbour as the most similar code snippet that is
not vulnerable, which is then used as a patch.

Reverse engineering. Reverse engineering is com-
monly used in software engineering to convert black-
box systems into white-box alternatives. However, there
is a key difference between surrogate model learning and
reverse engineering: the former extracts an interpretable
model from a black-box model, while the latter either
learns an interpretable model or uses a post-hoc explainer
to provide insights into the input data. In this sense,
reverse engineering methods can be considered as stan-
dalone tools that provide decision support to model users
regarding input data.

The most common application of reverse engineering
is to consider a live system as a black box, collect traces
from it, and learn an interpretable model from these
traces. This model can be relatively easily visualized for
model-based explanations about the black-box system. For
instance, Fiterau et al. [49] apply protocol state fuzzing
on servers that use the Datagram Transport Layer Security
(DTLS) protocol in order to discover functional and non-
conformance issues in several implementations. Discov-
erer [40] and Prospex [38] are two other popular systems
for reverse engineering application-level specifications of
network protocols. Similarly, Cho et al. [35] learn an
automaton from botnet traffic to understand its Command
and Control (C&C) channels; Lin et al. [85] learn an au-
tomaton from sensors of a water treatment plant to detect
potential sensor malfunction, and Cao et al. [28] learn an
automaton from the network traffic of a Kubernetes cluster
to identify misbehaving pods.

Alternatively, a black-box model can be learned from
the traces, and post-hoc explainers can be used to explain
the properties of the traces. For instance, Gulmezoglu
et al. [59] want to understand the type of web requests
that leak side-channel information, such as performance
counters and cache occupancy. This leakage enables web-
site fingerprinting attacks in which users can be tracked
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by monitoring the unique combination of websites visited
by their browsers. To this aim, they collect side-channel
information leaked from different browsers, use it to learn
several ML models, and use LIME and saliency maps to
identify the leakiest web requests. Similarly, Malware an-
alysts can use reverse engineering to understand the rela-
tionship between malware samples. For instance, Nadeem
et al. [96] build behavioural profiles of malware samples
by clustering their network activities. They visualize the
overlap in the malware profiles in order to discover inter-
esting malware capabilities. Similarly, Iadarola et al. [70]
use gradient-based saliency maps to construct cumulative
heatmaps for individual malware families that show visual
differences between their disassembled code.

4.1. The Role of Visualizations in XAI

Visual explanations are the most common way to
explain the inner workings of a black-box model. This is
because human cognition prefers visual information over
text for providing decision support [104]. The reviewed lit-
erature proposes several types of visual explanations, e.g.,
a graph-based interpretable automaton model proposed by
Lin et al. [85] that can directly be visualized for anomaly
detection, and a context-based visual analytics dashboard
proposed by Alperin et al. [7] that uses LIME and t-SNE
for triaging vulnerabilities.

Visualizing the structure of tree-based models is an-
other popular explanation method [10], [120], [122].
Sopan et al. [120] report that the security analysts found
their visualization of an approximated decision path gener-
ally helpful. However, this is not always the case. Angelini
et al. [10] propose a visual analytics system to explain the
reason for malware detection by showing geo-locations
of downloaded files and allowing a malware analyst to
drill deeper into the individual paths of a random forest.
However, simultaneously exploring the paths of ∼100
decision trees does not make it any easier to decipher what
the model is doing. Instead, it is preferable to provide
different explanations based on the user’s trust, e.g., by
providing less explanation when trust is high, and more
explanation when trust is low [11].

Usability is an important consideration when design-
ing decision-support tools for human analysts. Every
explanation method has an associated cost in terms of
its adaptation time. Even a simple XAI tool that plots
reconstruction errors and lists top-k anomalies can cost
analysts a full day to get used to [12]. Generally, sim-
pler explanations are preferred, otherwise they can make
the original task even more time-consuming [105]. In
other terms, complex visualizations contribute to cognitive
load, subverting effective explanations. This is why the
knowledge of existing analyst workflows is an important
predictor in the successful deployment of XAI tools [103].

In addition, visualizations are not always equivalent
to effective explanations. A model does not become inter-
pretable just by virtue of visualizing it. For instance, the
automaton model presented in [85] requires some level
of expert knowledge to correctly interpret it. Similarly,
the decision tree proposed in [91] is claimed to be inter-
pretable by default since it mimics human-level decision
making, while it does not appear to be size-limited to
actually be considered interpretable [88]. Furthermore, the

explanations provided by DeltaPhish [39] are incomplete
because they are limited to the linear coefficients of a
single SVM, while it uses an ensemble of SVMs for
different features.

Takeaway 1: Visualization is not equivalent to effec-
tive explanation. XAI should reduce complexity, not
add another layer of complex visualizations.

4.2. Explanation Evaluation via User Studies

XAI-enabled user assistance tools can be evaluated
along several dimensions, e.g., fidelity, understandability,
efficiency, and construction cost [64]. Most of these cri-
teria can be evaluated without human involvement. How-
ever, understandability involves multiple usability factors
that can only be suitably evaluated with model users. This
is tricky because analyst time is expensive [63]. Thus,
many existing works focus on evaluating other aspects
of explanations instead, e.g., their fidelity and efficiency
[12], [127], [131]. However, an explanation is unlikely
to be used in practice if it is not understandable, even
if it is robust and correct. Therefore, we advise bringing
humans back in the loop by evaluating XAI-enabled user
assistance tools with application-grounded (with experts)
or human-grounded (with lay persons) user studies [45].

In order to subvert costs, qualitative analyses are often
conducted in place of user studies [10], [84], [98], [137],
[138]. This is problematic because of the involvement
of multiple stakeholders — the XAI tools are typically
developed by model designers for model users. In practice,
these stakeholders have different expertise. We recom-
mend avoiding qualitative analyses that only investigate
the happy flows (successful explanations) in order to
circumvent the possibility of cherry-picking [82].

Takeaway 2: User studies are necessary to evaluate
the usability of decision support tools. Yet, only 14%
of the reviewed literature performs user studies with
a median of 8 participants.

4.3. The Importance of Stakeholder Specification

We identified six cases within the reviewed literature
where the roles of model users and designers were en-
tangled [10], [60], [63], [80], [94], [127]. These methods
assume that the same person is both, the designer and the
user: 1) Angelini et al. [10] propose a visual analytics
system for helping malware analysts handle ‘grey cases’
where a model produces a classification with low con-
fidence. The intuition is that the explanations can either
enhance the analyst’s confidence in the system if the ex-
planations make sense, or can trigger model improvement
if they do not. 2) Kyadige et al. [80] and 3) Mathews
[94] explain the output of a malware detector to help
analysts understand why a binary was classified as ma-
licious, and evaluate whether the model uses meaningful
features. 4) Wang et al. [127] use SHAP to help secu-
rity analysts recognize the relationship between specific
features and attack types, which can guide the design of
a more efficient intrusion detection system. 5) LEMNA
[60] and 6) DeepAID [63] are specialized XAI methods
that address the unique challenges of the cybersecurity
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domain, e.g., non-linear decision boundaries and concept
drift [97]. LEMNA is a non-linear variant of LIME, while
DeepAID learns a surrogate automaton model that allows
users to understand the black-box model and improve it,
if necessary.

We also identified 17 cases where the intended stake-
holder was left unspecified [1], [4], [14], [19], [26], [32],
[34]–[36], [39], [49], [59], [74], [76], [83], [115], [131].
These methods appear to heavily focus on the fidelity of
the explanations instead of their understandability, remov-
ing the human from the loop and potentially limiting their
deployability.

Disentangling stakeholders is necessary for assessing
how the proposed method translates to industry, since
model users and designers are often distinct parties, work-
ing in different departments or even different organiza-
tions. Moreover, since model users and designers interact
with distinct phases of the ML pipeline, they often have
different expertise and require disparate explanations. For
example, while both Russell et al. [115] and Chakraborty
et al. [32] use activation to highlight vulnerable code,
the former is intended for model users (explaining why
a code snippet was considered vulnerable), and the latter
is intended for model designers (making sure the model
highlights correct code snippets). Even within the same
domain and for the same stakeholder, the explanations
can have contrasting uses, e.g., within malware detection,
some works use explanations to warn smartphone users
of malicious apps on their phones [17], [128], [133],
while other works provide more technical explanations to
malware analysts regarding classifier decisions [19], [74],
[76]. Thus, explanations meant for one type of user might
be too vague or too technical for another user [24].

Takeaway 3: Effective explanations are tailored to
a specific user. Model users and designers usually
have different expertise, and thus require disparate
explanations. We encourage the community to specify
their intended explanation stakeholders.

5. XAI-enabled Model Verification

In fields other than cybersecurity, humans interact with
AI systems with the assumption that they are near-perfect
[100]. Thus, faith or fidelity is a major constituent of trust
in the beginning, which is eventually replaced by reliance
and predictability. The reverse is true for the adversarial
threat landscape of cybersecurity: reliance and predictabil-
ity are important constituents of trust since these systems
can be attacked. To this aim, model designers have a vital
role in validating the safety and correctness of the ML
pipeline in order to build trust with practitioners.

A defensive security model designer is generally con-
cerned with two aspects of model verification: (i) the
model is robust to adversarial perturbations, and (ii) the
model is generalizable and works as intended. The former
is covered by the adversarial learning literature that aims
to limit the possibility of evasion by making models robust
to adversarial perturbations [22], [113]. Recent works have
started to investigate the relationship between robustness
and interpretability — early evidence suggests that robust
models may be more interpretable than their non-robust
counterparts [114]. The intuition here is that robust models

are smoother and can thus be more easily interpreted by
humans. Nevertheless, further research is warranted to
explore how XAI can guide the search for tamper-proof
features used to train robust models.

The latter aspect of model verification fundamentally
scrutinizes the generalizability of the model. General-
ization is a highly desirable property in learning-based
security systems as they are meant to detect previously
unseen threats. To this aim, XAI has been used to detect
spurious correlations — artefacts unrelated to the security
task that allow the learning algorithm to create shortcuts
for separating the classes, instead of actually solving the
task. These artefacts make the model seem performant
without being able to generalize in practice [16], [42]. In
this systematization, we expand the traditional definition
of spurious features to also include faulty features whose
distributions are not representative of real-world cases
[97]. In the literature, spurious/faulty feature detection is
done via conformance checking, influential feature analy-
sis, and surrogate model analysis.

Conformance checking. Comparing classifier deci-
sions with some notion of ground truth can be used
for model debugging. For instance, Kyadige et al. [80]
and Chua et al. [36] compare model outputs with expert
knowledge as a sanity check to ensure that the model
works correctly. Specifically, given an RNN that recovers
function types and signatures from decompiled binaries,
Chua et al. [36] use post-hoc explainers to verify that the
model is able to learn concepts comparable to an expert’s
domain knowledge. To this aim, they use t-SNE to visu-
alize semantically similar word embeddings, and saliency
maps to understand which instructions are relevant for
the recovery of the input functions. Nevertheless, many
security applications struggle with obtaining ground truth,
making conformance checking difficult in practice [97].

Influential feature analysis. Feature importance can
be employed to investigate whether the model uses mean-
ingful features. For example, Chakraborty et al. [32] use
LEMNA to check whether the highlighted tokens mean-
ingfully communicate why a code snippet was classified
as vulnerable. Similarly, Reyes et al. [1] use SHAP and
Ahn et al. [4] use feature permutation to select mean-
ingful features for intrusion detection and network traffic
classification, respectively.

Feature importance can also be used to investigate
causes of misclassifications in order to improve the model.
For example, Becker et al. [18] propose a visual analytics
system that enables malware analysts to explore how
the model views malware samples at different layers by
clustering neuron activations. By visualizing the internal
components of black-box models, malware analysts can
identify sources of bias and misclassifications. Another
example is from the domain of voice assistants: Chen
et al. [34] design a more robust voice assistant by first
using SHAP to identify the type of fuzzy words that
cause a given tree ensemble-based wake-up word detector
to become falsely triggered, and then proposing counter-
measures to avoid it from happening. Within continual
learning settings, CADE [138] explains the cause of per-
formance degradation of a malware detector by reporting
the features that are most affected by concept drift. It uses
the contrastive explanation method: it perturbs features
to see which combination increases the distance to the
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training data the most and thus is responsible for causing
drift. Finally, Marino et al. [93] identify and correct
the cause of missed detections and false alarms in IDS.
They use adversarial examples that naturally serve as
counterfactual explanations, showing the minimal changes
required in feature values to correctly classify the (mis-
classified) security events. They expect that these insights
will further improve their IDS performance. However, it
is unclear how they avoid over-fitting since they utilize
the knowledge of the test set to improve their model
performance.

Surrogate model analysis. Interpretable surrogate
models can be inferred from black-box models that can
directly be inspected for defects, e.g., Han et al. [63] learn
a surrogate automaton model, while Dolejš et al. [43] learn
a rule-based surrogate model. In addition, Dolejš et al.
[43] measure the interpretability of the surrogate model in
terms of its behavioural similarity to the black-box model,
i.e., by checking whether they make similar mistakes.

5.1. The Risks of Post-hoc Explainability

As it stands, the security literature heavily relies on
performance metrics (e.g., F1 score) as a means to conduct
model verification. Goodhart’s law dictates that when a
measure becomes a target, it ceases to be a good mea-
sure [37]. This is evident from the abundant literature
on adversarial learning, suggesting that merely relying
on performance metrics is a dangerous strategy as the
model might have fatal weaknesses that an adversary
can exploit. Moreover, high performance on experimental
data does not imply that these methods would gener-
alize in practice. This is because the analysis is rarely
conducted in operational settings due to excessive costs.
Furthermore, security papers often skip details on the
operationalization of the ML pipeline, making it difficult
to know if any spurious/faulty features have been used.
As such, feature attribution can be used for identifying
spurious features [16]. In fact, spurious feature detection
and removal should become more commonplace before
deploying new models. We also recommend that publicly
available models be supplemented with a verification anal-
ysis to enhance trust among practitioners. To assist model
designers, we provide an illustrative walk-through of how
they can debug their models using commonplace XAI
tools in §8.

Having said that, model designers must also be aware
of the risks of using post-hoc XAI for model verification:
post-hoc explanations are approximations of black-box
models that either hide away details or learn different
concepts altogether. For example, explanations based on
feature importance often disagree on the same model pre-
diction [77], suggesting that there is a mismatch between
the explanations and what the model actually does. A
similar observation has been made for surrogate models
[5]. In fact, it is even possible to extract fair explanations
from known unfair models. In regulated environments
where companies are required to supplement their black-
box models with explanations, they can be abused to
perform ‘fairwashing’ — promoting the false perception
that a model is fair when it is actually not [5]. Therefore,
it is advisable to opt for interpretable models. Where that
is not possible, it is critical to establish an equivalence

relationship between a model and its explanation, e.g.,
by learning a certifiably equivalent surrogate model. For
instance, Weiss et al. [130] and Koul et al. [75] extract
equivalent deterministic finite automata from black-box
RNNs. These works fall under the safety verification
literature, see e.g., [8], [54], [68], [135].

Takeaway 4: Regardless of the XAI method used to
validate a model, it is vital for safety-critical appli-
cations to establish an equivalence relation between
the model and its explainer. However, this is not yet
common practice within cybersecurity.

6. Explanation Verification & Robustness

Whilst using XAI for model verification, the explana-
tions themselves need to be verified for correctness and
robustness. Model designers are thus also responsible for
conducting explanation verification to ensure the safety
of the ML pipeline. This is an important line of work
because XAI methods can sometimes trigger on input
data patterns rather than on meaningful model behaviour.
For instance, Adebayo et al. [3] reset the weights of a
neural network to their initial random values and show that
some gradient-based methods still use information from
the input. Therefore, evaluating the fidelity of explanations
becomes vital. Yet, it has sometimes been overlooked
within the security literature, see e.g., [18], [122]. In addi-
tion, qualitative analysis alone does not provide sufficient
test coverage, and may even lead to cherry-picking [82].
Knowing that XAI methods can generate arbitrary expla-
nations, objective evaluation criteria are required to ensure
that (a) the explanation methods work [3], [86], [131], and
(b) the explanations are robust to adversarial attacks [9],
[27], [33], [50], [66], [126]. Warnecke et al. [129] and
Ganz et al. [52] are excellent starting points for evalu-
ation criteria for a wide variety of post-hoc explainers
under security settings. Their criteria include descriptive
accuracy, sparsity, completeness, stability, efficiency, and
robustness.

Fidelity evaluation. The explanation fidelity can be
evaluated in several ways: Wickramasinghe et al. [131]
test the fidelity of their attribution method by perturbing
feature values and analyzing their impact on the expla-
nations. Lin et al. [86] test the correctness of different
saliency explanations by deliberately injecting artefacts
in the input data to see if the explanations detect them.
Specifically, they inject backdoor trigger patterns in input
images that would naturally result in misclassifications by
a CNN. These backdoor triggers serve as ground truth,
i.e., the backdoor features are primarily responsible for
causing misclassifications, so a faithful explainer must be
able to identify them.

Adversarial robustness. More importantly, XAI
forms an additional attack vector for adversaries within
the context of cybersecurity — both post-hoc explainers
[44], [51], [55], [56], [78], [139] and interpretable models
[21], [90] are sensitive to small adversarial perturbations.
For instance, Ghorbani et al. [56] investigate the effect
of adversarial perturbations on exemplars. Exemplars are
samples from the training set whose features most resem-
ble the instance to be explained. They find that while
keeping the prediction equal, they can cause the top-
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3 exemplars to be entirely different for perturbed sam-
ples, implying that the perturbed samples enter a part
of the model with drastically different latent features.
Moreover, Dombrowski et al. [44] exploit the fragility
of explanations to perform targeted attacks. They show
that by adding imperceptible perturbations to the input
image, the adversary can completely control the generated
explanation. These studies identify three problematic traits
of post-hoc explainers:

• Predictions and explanations can change tremen-
dously under small perturbations;

• While keeping the explanation fixed, input sam-
ples can be perturbed to cause misclassifications;

• While keeping the prediction fixed, input samples
can be perturbed to change the explanation.

The fact that models and explainers can be attacked
independently opens up a new range of attacks. For in-
stance, malware authors can evade detection while mask-
ing the features that they used for evasion. In this case,
the generated feature importance maps do not represent
the features that are actually important for classification.
Therefore, it is imperative that model designers robustify
explainers against adversarial perturbations.

Recent works have started to investigate the robustness
of post-hoc explainers: Alvarez-Melis et al. [9] investi-
gate the smoothness of explanations around data points
as a measure of robustness. Based on a local version
of the Lipschitz constant, they show that the smooth-
ness of model-agnostic explainers, e.g., LIME and SHAP,
can vary across datasets. They also show that gradient-
based explanations are approximately four times smoother
than LIME, suggesting that model-based explanations are
more robust than their model-agnostic counterparts. For
counterfactual explanations, Fokkema et al. [50] show
that robust explainers cannot also be recourse sensitive5.
This means that there will always be model inputs for
which the explanations suggest modifications that do not
end up changing the model’s prediction6. As a solution,
they suggest using multiple counterfactual explanations
pointing in different directions.

A handful of works have also proposed robust variants
of interpretable models, such as linear models and deci-
sion trees. For instance, Vos et al. [126] learn efficient
and robust decision trees, while Hayes et al. [66] learn
robust and differentially private logistic regression. Note
that decision trees and logistic regression are considered
interpretable as long as they are size-limited [88].

Takeaway 5: Along with ML models, explainers can
also be attacked. In addition to fidelity testing, we rec-
ommend either using a robust explainer or conducting
explanation verification under adversarial settings.

7. Offensive Use of Explanations

From the offensive security perspective, XAI can also
provide decision support to adversaries for better attack

5. Recourse refers to a description of feature modifications required
to change the model outcome.

6. Note that the inputs for which this happens might not occur in
practice and that this problem does not exist in linear unbounded models.

formulation. As outlined by Papernot et al. [106], ad-
versaries can target multiple phases of an ML pipeline,
e.g., the training phase for poisoning attacks, and the de-
ployment phase for evasion and privacy attacks. XAI can
further strengthen these capabilities by exposing sensitive
details about the model. Adjusting the definitions pro-
posed in [106] for XAI, we organize the nefarious uses of
explainers through the lens of the classical confidentiality,
integrity, and availability (CIA) triad [109]. Considering
the added utility of XAI, attacks on confidentiality utilize
explanations to expose the model structure or the data
on which the model was trained. Attacks on integrity
and availability utilize explanations to discover knowledge
that adversaries can use to induce specific model outcomes
of the adversary’s choosing and thwart legitimate users
from accessing meaningful model outputs.

Confidentiality attacks. Explanations provide addi-
tional information to adversaries about the inner workings
of a deployed model, making it easier to reconstruct the
model and the training data. This is why explanations
are seen as privacy vulnerabilities [62]. Yet, little work
is done to generate privacy-preserving explanations [23].
In the literature, XAI has been used to strengthen model
inversion [140], membership inference [119] and model
extraction attacks [79].

Model inversion attacks enable adversaries to recon-
struct training data from model predictions [106]. Adver-
saries can reproduce the model more accurately by utiliz-
ing explanations, e.g., Zhao et al. [140] use an XAI-aware
model inversion attack to successfully recover images
from the training data. They show that feature importance
maps generated from gradients and layer-wise relevance
propagation (LRP) helped improve image reconstruction
and led to an increase in model inversion performance
compared to only using predicted probabilities.

Membership inference attacks assume that an adver-
sary has some inputs and they want to predict whether they
were used during training [106]. Shokri et al. [119] utilize
gradient-based explanations to perform stronger member-
ship inference attacks. They use the variance of saliency
maps as a feature to infer membership and show that it
works better than mere random guessing. The performance
further improves when using the full explanation instead
of only the variance.

Finally, model extraction attacks enable adversaries
to recover the model’s structure and parameters from
predictions [106]. Kuppa et al. [79] utilize counterfactual
explanations to improve their model extraction and mem-
bership inference attacks. They perform the model extrac-
tion attack by learning a surrogate model from known
predictions and explanations. In addition, they perform
membership inference by comparing the predictions of the
target and counterfactual models to infer whether an input
belonged to the training data.

Integrity and Availability attacks. Explanations pro-
vide additional knowledge to adversaries about the fea-
tures to perturb in order to alter the correct functioning of
the model. This can be done while the model is already
deployed (i.e., evasion attacks) or when the model is
training (i.e., poisoning and backdoor attacks).

Demetrio et al. [42] use integrated gradients to explain
the importance assigned to the various fields of binary
executables. They use this information to identify a few
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bytes in the malware header that need to be perturbed in
order to successfully evade detection.

Poisoning attacks are specialized adversarial attacks
where an adversary injects a small percentage of perturbed
data to get some desired change in the learned model.
Kuppa et al. [79] use counterfactual explanations to find
the malware features that most heavily impact the classi-
fier decision. They use this knowledge to craft adversarial
training samples that efficiently poison the model.

Backdoor attacks are specialized poisoning attacks
where the adversary makes the model sensitive to a pre-
specified trigger. Severi et al. [118] use SHAP to craft
backdoor triggers in malware detectors. Utilizing the ex-
planation, they determine which features to poison, result-
ing in a success rate of up to three times higher than that
of a greedy algorithm that does not use XAI. Similarly, Xu
et al. [136] inject backdoors into GNNs by leveraging XAI
techniques. They employ GNNExplainer to identify the
parts of the graph to attack, and GraphLIME to identify
the node features and values to change.

In two-player competitive games, Wu et al. [134]
utilize XAI to exploit the weakness of an adversarial
reinforcement learning agent. In such games, the agents
take optimal actions according to their policy function,
which is often learned using self-play. Using saliency
maps, the proposed adversarial agent observes which of
their actions the opponent pays the most attention to, and
alters them in the next time stamp, thus confusing and
manipulating the opponent’s actions.

Takeaway 6: Uniquely attributed to the security do-
main, adversaries may abuse explanations to bolster
their capabilities. Meanwhile, research on privacy-
preserving explanations that are also robust to evasion
attacks is almost non-existent.

8. Tutorial: Debugging a Malicious Network
Traffic Detector via XAI

Sections §5 and §6 elucidate the critical role of model
designers in ensuring the correctness and robustness of
an ML pipeline. While XAI has been commonly directed
towards model users, we argue that model designers can
also greatly benefit from it. In this section, we present
an illustrative tutorial on how model designers might use
XAI for model verification. Specifically, we demonstrate
how the investigation of influential features and misclas-
sifications can identify problematic or spurious features.
The experiments necessitate a sufficient understanding of
post-hoc explainers for correct interpretation and highlight
the expressive power of interpretable models.

We consider a model designer who learns an ML
model to detect malicious botnet traffic on their company’s
network. They have some intuition of how a potential
botnet-infected device might behave, and thus use XAI
to validate whether the model follows that intuition, e.g.,
by checking whether it uses any spurious features or any
strange artefacts from the training data. Note that we
are only interested in finding spurious features: while the
selection of tamper-resistant features is also an important
problem, using XAI to discover such features remains an
open problem, to the best of our knowledge.

if Dport <= 52

if StartTime <= 1313270720

yes

if Sport <= 23048

no

100% Normal if Dir == ->

if State == FSPA_FSPA 100% Normal

100% Normal 99% Botnet

if Dport <= 587 99% Normal

if StartTime <= 1313427136 if Dport <= 65499

97% Normal if State == FSPA_FSPA

60% Normal 95% Botnet

94% Normal 99% Botnet

Figure 3. Decision tree for the CTU-13 dataset. It uses StartTime and
Sport to differentiate between benign and malicious Netflows.

Dataset selection. We use the open-source CTU-
13 [53] as our experimental dataset. It has 13 scenarios,
each containing both benign and malicious Netflow data.
The malicious Netflows in each scenario are collected by
monitoring virtual machines (VM) infected with real mal-
ware. Each Netflow has the following features: start time
(StartTime), duration (Dur), protocol (Proto), source port
(Sport), Netflow direction (Dir), destination port (Dport),
state (State), source type of service (sTos), destination type
of service (dTos), total packets (TotPkts), total bytes (Tot-
Bytes), and source bytes (SrcBytes). The dataset contains
64,855,215 benign and 1,535,374 malicious Netflows.

Experimental setup. We have developed a modular
XAI pipeline in Python with six models and four explain-
ers. Implementation details are given in appendix B. We
release the code for reproducibility7.

For the experiments, we train a gradient boosting ma-
chine (GBM) over all the features of the Netflow data, as
described in [53]. The GBM achieves a balanced accuracy
of 86.4%. While this model is arguably not state-of-the-
art for detection purposes, it is a black box that concretely
shows how improvements can be obtained via XAI. As
such, the analysis described in this section can be applied
to any black-box model8.

We use SHAP, LIME and LEMNA to explain the
predictions of the GBM. We also learn an interpretable
decision tree (see Figure 3) to verify whether similar
conclusions can be drawn from model-based and model-
agnostic explanations. The decision tree has nine nodes
and achieves a balanced accuracy of 83.6%, which is only
slightly worse than the GBM. The SHAP summary plot
and LEMNA explanations9 for the GBM are in appendix
D. We generate explanations for 140 Netflows from the
test set: 50 true positives (malicious), 50 true negatives
(benign), 20 false positives (not malicious), and 20 false
negatives (not benign).

1. XAI for discovering spurious correlations. It is
evident from the SHAP summary plot (Figure 6) that the
GBM exhibits a strong reliance on the destination port,

7. XAI pipeline: https://github.com/tudelft-cda-lab/xai-pipeline

8. We recognize that the tutorial discusses a simple case study and that
the features may have more complex relationships in reality. However,
even this simple case occurs frequently in practice, as shown in [48].

9. LEMNA is excluded from the analysis since it provides remarkably
fewer insights for class distinction compared to SHAP and LIME.
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Figure 4. (Left): SHAP explanation for a false positive Netflow. (Middle): LIME explanation for a false positive Netflow. (Right): SHAP explanation
for a false negative Netflow. Orange rows contribute positively, and blue rows contribute negatively towards the malicious label.

source port, and start time features. We also see this trend
in the interpretable decision tree in Figure 3.

The reliance on the start time and source port fea-
tures is problematic: start time is problematic because
it represents Unix time, so each new Netflow will have
a vastly different feature value compared to the ones
seen in the training data, negatively impacting the test
accuracy and the model’s generalizability. For instance,
a benign Netflow that the GBM considers as malicious
with a probability of 65% suddenly becomes benign with
a probability of 94% if we artificially perturb the start
time to four weeks earlier. This implies that the model
learns to predict when a Netflow is generated, rather than
the Netflow’s maliciousness.

Source port is problematic because it typically gets
arbitrarily assigned by the operating system, and as such
should not be indicative of malicious behaviour. However,
the CTU-13 dataset uses only a small subset of VM-
related port numbers [29], which inadvertently becomes
indicative of malicious behaviour. This is a common short-
coming of lab-collected datasets [16]. Thus, it can also be
considered an artefact of the experimental data.

It is noteworthy that start time and source port are
perfectly valid features if the test set comes from CTU-
13. Since we cannot expect real data to follow the same
patterns as CTU-13, we consider them spurious features.
This type of analysis is not common practice in the
security literature: several recent and relatively popular
works utilize the identified faulty features, see e.g., [73],
[101], [110]. Since these features are tightly coupled with
the prediction label, standard feature selection methods
are unlikely to get rid of them. This is where XAI can
help.

The next logical step is to retrain the model with-
out the spurious features. Doing so lowers the balanced
accuracy of the GBM and decision tree to 74.4% and
58.1%, respectively. We argue that this is an improvement
since the faulty features were making the classifier appear
performant without being able to generalize in practice.
Because cyber data is often noisy, sole reliance on perfor-
mance metrics is generally meaningless, especially when
spurious features are involved. Therefore, we recommend
that like ablation studies, the identification and removal
of spurious features should become a fundamental step in
the design of ML pipelines.

2. XAI for finding causes of misclassifications. We
find that post-hoc explanations must be supplemented
with input data statistics to make meaningful inferences
regarding the causes of misclassifications. For instance, we
analyze a randomly sampled false positive Netflow. The

local SHAP explanation (see Figure 4a) shows a heavy
reliance on the state value of 54 and source bytes of
186. This information in itself is likely insufficient for an
analyst to understand why the model made this mistake.
However, combining this information with an analysis of
the training data reveals that these feature values appear
almost exclusively in malicious samples, thus identifying
the cause of the false positive.

In another example, we analyze a randomly sampled
false negative Netflow. The local SHAP explanation (see
Figure 4c) shows a substantial reliance on the destination
port 3389, which is associated with the remote desktop
protocol (RDP). Internet-facing RDP servers commonly
fall victim to cyber attacks10, making it a likely indicator
of suspicious activity. Yet strangely, the port 3389 has
contributed heavily towards the opposite. Analyzing the
training data reveals that RDP is mostly used by benign
hosts in the CTU-13 dataset, due to which the model
incorrectly classifies a malicious Netflow as benign. These
examples reveal what appear to be sampling and con-
founding biases in the CTU-13 dataset.

Takeaway 7: Feature importance explanations do not
provide the full picture in isolation. Instead, action-
able insights can be obtained by combining the input
data together with post-hoc explanations.

3. Utility of different XAI types. All explanations
are not created equal. Since XAI is meant to explain
the behaviour of a model, testing the predictability of
the model on a new (previously unseen) data instance,
given a few explanations provides a simple estimate of the
explanation’s utility. In this sense, there is a clear divide
between interpretable models and post-hoc explanations.

For a given interpretable model, such as the decision
tree in Figure 3, it is almost trivial to predict how a
new instance will be classified by following the decision
path. However, since post-hoc explanations are mere ap-
proximations of the black-box model, it is difficult to
predict how the GBM would classify a new instance,
given its LIME and SHAP explanations. For instance,
the local SHAP explanations provide feature importance
with equality relationships (e.g., see Figure 4a), which
makes it impossible to predict how a new instance will
be classified, even if it resembles the instances for which
explanations are already available. This is because the
explanations do not reveal the impact of slight feature
perturbations on the classification. We encountered almost
the same problem for LIME even though it considers a
local neighbourhood to prevent this very issue.

10. http://darktrace.com/botnet-malware-remote-desktop-protocol-rdp
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Moreover, post-hoc explainers compute their local
neighbourhoods differently, causing explanations for the
same model prediction to differ. Going back to the false
positive example, SHAP (Figure 4a) heavily relies on the
state feature, while LIME (Figure 4b) assigns very low
importance to it. Also, while SHAP considers dTos to
be important, it does not even appear in LIME. This
disagreement problem between feature attribution meth-
ods has recently been discussed by Krishna et al. [77].
Based on their metric, there is a 25.5% disagreement rate
between the top-3 features of SHAP and LIME for our
140 Netflows. This exemplifies the mismatch between the
black-box model and its explanations and makes a strong
case for learning interpretable models from the get-go.

Furthermore, the correct interpretation of post-hoc ex-
planations often relies on how well the explainee under-
stands the underlying mechanisms of the method, reiter-
ating the importance of user studies in explanation eval-
uation. For instance, while both local-SHAP and LIME
show feature importance, their explanation interpretation
can be very different. We found that LIME assigns very
low weights to all features for almost all the Netflows.
This does not imply that similar Netflows should have the
same label, as one would intuitively expect, but rather that
LIME has low confidence about the prediction given its
local surroundings. Thus, an unsuspecting analyst might
draw misleading conclusions by overly relying on intuition
rather than the understanding of the method [82].

Takeaway 8: LIME and local-SHAP are both feature
attribution methods but their interpretations can be
different. Working knowledge of post-hoc explainers
is cardinal for correctly interpreting the explanations.

9. Discussion and Open Problems

Below, we identify open problems and provide recom-
mendations for further XAI research within cybersecurity:

User study crisis. The lack of qualitative validation
among decision support papers is alarming. While model
users are the most common consumers of explanations in
the security literature, they have regularly been excluded
from the evaluation process (Takeaways 1-3, 8). The
evaluation of robustness and fidelity does not guarantee
usability, which is arguably an equally important trait of
good explanations. However, usability is rarely taken into
account when designing evaluation criteria for effective
security explanations, see e.g., [52], [129]. Since analyst
time is expensive, it may be beneficial to develop proxy
tasks and metrics on which to evaluate new research
instead. A handful of studies have incorporated human
cognition in their metric definition. For example, Islam
et al. [71] quantify the complexity of post-hoc expla-
nations in terms of cognitive chunks, and Dolejš et al.
[43] quantify the added opaqueness of explanations w.r.t.
known interpretable models. Alternatively, in the absence
of security practitioners, newly developed tools could be
peer-reviewed regarding their usability, e.g., during con-
ference artefact evaluation sessions. Furthermore, disen-
tangling and specifying stakeholders should also provide
clarity regarding the intended subjects for user studies.

Robustness vs. interpretability. The role of model de-
signers is minimized in the security literature with merely

22.3% of the literature focused on model & explainer
verification (Takeaways 4-5, 7-8). Since trust manifests
inherently differently in the security domain, specialized
XAI methods are needed to bolster practitioner trust in ML
pipelines. While the tutorial in §8 helps model designers
get started with XAI-enabled model verification, the role
of XAI in tamper-resistant feature selection and robust
model learning remains unclear. Another related ques-
tion is regarding the relationship between robustness and
interpretability: initial research eludes to robust models
being more interpretable than non-robust models [114],
requiring further research in this direction.

Price of interpretability. If interpretable surrogate
models are to be used for model verification, they must
be certifiably equivalent to their black-box parent models
for the evaluation to be meaningful. In this sense, di-
rectly learning a robust interpretable model (as opposed to
learning a black-box model explained by a surrogate) may
prove more helpful in establishing trust. Yet, only 25.9%
of the studies we reviewed adopt interpretable models,
while the majority of them focus on applying post-hoc
explainability. The discussion regarding the ‘price of in-
terpretability’ (measuring the trade-off between explain-
ability and performance) [20] requires special consider-
ations in cybersecurity. We believe that the presence of
an adversary and the prevalence of spurious features will
likely make this trade-off less pronounced compared to
other fields. However, further research is warranted in this
area. Furthermore, it may be possible to exploit the power
of post-hoc explanations without losing interpretability:
black-box models may be used as a benchmark to guide
the search for better interpretable models. Post-hoc ex-
planations can provide actionable intelligence regarding
features and parameters for interpretable models. In this
way, we view post-hoc explainers and interpretable models
as complementary methods rather than as alternatives.

Privacy-preserving explanations. In addition to at-
tacking the XAI module, adversaries can also utilize ex-
planations, much like model users, but with a devious
intent (Takeaway 6). This makes it difficult to provide
explanations to model designers and model users without
the adversaries also taking advantage of them. There is
some preliminary work that studies the trade-off between
explainability and privacy in order to select privacy-
preserving explanations [23]. However, such explanations
could still be used to bolster attacks on model integrity
and availability. Therefore, this is also an urgent avenue
for future research.

10. Conclusions

We systematize available research that utilizes explain-
able models for solving security problems. We identify 3
cybersecurity stakeholders that employ XAI for 4 research
objectives within a typical ML pipeline. Distilled from
a diverse body of literature, this overview streamlines
existing research on explainability within cybersecurity
and provides a starting point for practitioners.

We found evidence that the security literature does not
always disentangle model users and designers. In addition,
only 22.3% of the security literature focuses on model
& explanation verification. This is problematic because
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model designers have a critical role in ensuring the cor-
rectness and security of an ML pipeline. With regards to
model correctness, we specifically provide a walk-through
tutorial of how model designers can successfully detect
and discard spurious features using SHAP & LIME. At
the same time, the example also exposed the disagree-
ment problem between local explanations and showed
that SHAP & LIME have different interpretations. Thus,
model designers must have a working knowledge of the
explanation method in order to draw correct conclusions.

Moreover, adversaries can not only attack the XAI
component but can also utilize explanations to compro-
mise the confidentiality, integrity and availability of a
model. Meanwhile, research on limiting these abuses is
almost non-existent. Finally, the lack of user validation
in XAI-enabled user assistance, and the lack of inter-
pretability by design shows the substantial margins of
improvement within the field of XAI for cybersecurity.
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A. Selected Literature

The literature related to explainability and cyberse-
curity has increased dramatically since 2014, see Figure
5. This literature is fragmented across various Computer
Science domains. Table 4 provides a list of venues from
where the reviewed literature was selected.

B. XAI Pipeline Design

We develop a modular XAI pipeline in Python (since it
has in-built support for many popular models and explain-
ers). The pipeline has three components: (1) The parser
parses the input data (train and test) in either CSV or
NumPy array format. The user can specify to the parser
which feature fields should be read by means of providing
a configuration file for the parser (2) The classifiers are im-
plemented as a wrapper over the ML algorithms provided
by scikit-learn. We currently support decision trees,
logistic regression, explainable boosting machines, ran-
dom forests, gradient boosting machines, and SVMs. The
wrapper specifies the ML algorithm and its hyperparam-
eters. (3) Similarly, the explainers are also implemented
as wrapper functions and currently provide support for

TABLE 4. VENUES INVESTIGATED FOR LITERATURE DISCOVERY

Domain Type Venue

Cybersecurity Conference ACM Conference on Computer and Communications Security (CCS)

Cybersecurity Conference Asia Conference on Computer and Communications Security (AsiaCCS)
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Cybersecurity Conference International Conference on Security and Privacy
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Cybersecurity Conference Network and Distributed System Security (NDSS)
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Machine learn. Conference AAAI Conference on Artificial Intelligence

Machine learn. Conference ACM Conference on Knowledge Discovery & Data Mining (SIGKDD)

Machine learn. Conference Conference on Neural Information Processing Systems (NeurIPS)

Machine learn. Conference International Conference on Computer Vision

Machine learn. Conference International Conference on Intelligence Virtual Agents

Machine learn. Conference International Conference on Machine Learning (ICML)

Machine learn. Conference International Conference on Pattern Recognition

Machine learn. Conference International Joint Conference on Artificial Intelligence (IJCAI)

Machine learn. Conference International Joint Conference on Neural Networks (IJCNN)

Machine learn. Journal Advances in Intelligent Systems and Computing (Springer)

Machine learn. Journal Human-Intelligent Systems Integration (Springer)

Machine learn. Journal Nature Machine Learning

Machine learn. Journal Neural Computing and Applications (Springer)

Computer Sci. Conference
ACM Symposium on High-Performance

Parallel and Distributed Computing (HPDC)

Computer Sci. Conference Conference on Human Factors in Computing Systems (CHI)

Computer Sci. Conference International Conference on Enabling Technologies (WETICE)

Computer Sci. Conference International Conference on Human System Interactions (HSI)

Computer Sci. Journal ACM Computing Surveys

Computer Sci. Journal Annual Conference on Industrial Electronics Society (IECON)

Computer Sci. Journal Electronics (MDPI)

Computer Sci. Journal Expert Systems with Applications (Science Direct)

Computer Sci. Journal IEEE Access

Computer Sci. Journal Lancet Digital Health (Elsevier)

Computer Sci. Journal Procedia Computer Science (Science Direct)

Computer Sci. Journal Quality and Reliability Engineering (Wiley)

Software Engg. Conference
ACM Joint European Software Engineering Conference and

Symposium on Foundations of Software Engineering (ESEC/FSE)

Software Engg. Conference
ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems (MODELS)

Software Engg. Journal ACM Transactions on Software Engineering

Software Engg. Journal ACM Transactions on Software Engineering and Methodology

Software Engg. Workshop
International workshop on Continuous Software

Evaluation and Certification (IWCSE) @ ARES

SHAP, LIME, LEMNA, and ELI5. The modules can be
extended for added support of custom parsers, models and
explainers. For the sake of reproducibility, the pipeline
saves the model, predictions and explanations in a file.

C. LEMNA Implementation

We based our implementation of LEMNA on the code
by Warnecke et al. [129]. For the explanation generation,
we use the following settings: N = 500,K = 6, S = 10.
The values of N and K are based on the original LEMNA
paper. We do not need fused Lasso since our features do
not have a temporal structure. Therefore we set S to a high
value, effectively turning off the fusing effect. We expect
LEMNA to perform better on tabular data when using
feature discretization. However, optimizing LEMNA is out
of the scope of this work as we are only using existing
methods for model debugging.

D. Explanations from the Tutorial

Figure 6 shows the global SHAP plot for the Gradient
Boosting Machine (GBM) learned from the experimental
dataset. Figures 7 and 8 show the post-hoc explanations
for the false positive Netflow with and without the iden-
tified spurious features, respectively. Figures 9 and 10
show the post-hoc explanations for the false negative
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Figure 6. Global SHAP summary plot for the GBM. The y-axis shows the features ordered by their importance. For each feature, the Netflows are
depicted as points, and their colour represents the contribution of the specific feature towards the model output.

Feature Coefficient

dTos 1.0
sTos 2.46E-10

StartTime 4.53E-11
Sport -4.33E-11
Dir -4.06E-11

State 3.77E-11
Dur 2.07E-11
Proto -1.93E-11
Dport -5.96E-12

Figure 7. Post-hoc explanations for the False Positive Netflow (including spurious features). Left: SHAP, Middle: LIME, Right: LEMNA.

Figure 8. Post-hoc explanations for the False Positive Netflow (after removing spurious features). Left: SHAP, Right: LIME.

Netflow with and without the identified spurious features,
respectively.
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Feature Coefficient

Dir 0.2574
Proto 0.2440
Dport 0.2404
Sport 0.2035
Dur 0.1680

State 0.1116
StartTime 0.0810

sTos 0.0241
dTos -0.0179

Figure 9. Post-hoc explanations for the False Negative Netflow (including spurious features). Left: SHAP, Middle: LIME, Right: LEMNA.

Figure 10. Post-hoc explanations for the False Negative Netflow (after removing spurious features). Left: SHAP, Right: LIME.
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