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We are the local embodiment of a Cosmos grown to self-awareness.
We have begun to contemplate our origins: starstuff pondering the stars;

organized assemblages of ten billion billion billion atoms considering
the evolution of atoms; tracing the long journey by which, here at least,

consciousness arose. Our loyalties are to the species and the planet.
We speak for Earth. Our obligation to survive is owed not just to ourselves

but also to that Cosmos, ancient and vast, from which we spring.

Carl Sagan, Cosmos
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SUMMARY

Space debris presents a growing societal and technical problem. Space debris can be
generative through fragmentation events, in which an object (e.g., a satellite), breaks up
into many smaller pieces, for instance, as a result of a collision. Both the likelihood and
severity of the risk related to fragmentations are increasing. The likelihood increases
with an increase in the number of active and passive objects in space. Trends, such as
the miniaturisation of satellites, the reduction of launch costs, and the fielding of mega
constellations, all contribute to space becoming increasingly congested and contested.
At the same time, the severity also increases as the societal, economic, and strategic reli-
ance on satellite technology and space services grows.

The monitoring of the space environment, through space situational awareness (SSA),
is key to the continued usage of space. Vital to this awareness is understanding which
objects are present, through space surveillance and tracking (SST), and where these ob-
jects will be in the future, through orbit prediction and analysis. Specifically, conjunction
analysis aims to predict which satellites have a high risk of collisions, and supports the
planning of collision-avoidance manoeuvres, while re-entry predictions indicate pos-
sible ranges of impact locations and epochs for satellites returning back to Earth.

The goal of this research is to improve these types of predictions for space debris ob-
jects, to reduce the number of predicted satellite collisions and to improve the re-entry
forecasting, and make space operations more sustainable and remain possible in the fu-
ture. The focus is specifically on space debris objects, as opposed to active satellites, as
the majority of objects in space are debris: currently, debris makes up 77 % of all observ-
able objects, and practically 100 % of all objects, including also unobservable smaller
objects.

Space-debris orbit predictions are very complex and rely on many different compon-
ents, that are critical to the quality and ultimately the usability of these predictions. As a
result, a number of the driving components is investigated, to understand and improve
these individually, and as a result improve the prediction quality in general.

First, the current process of SSA of debris is investigated, including the way in which
the states (e.g., position and velocity) of these objects are determined and how this in-
formation is shared. Space debris states serve as input for space-debris prediction meth-
ods and are thus very influential to the overall quality. In particular, the frequency by
which these states are updated, the different parameters that are shared, and the accur-
acy of these parameters are instrumental in making good space-debris orbit predictions
and are all researched in more detail.

Considering the types of sensors that are tasked with SST and their locations, the
main consideration for the network is its capacity to provide regular updates on the state
of the large number of objects. On the other hand, the parameters available and their ac-
curacy are found to be most impacted by the particular format in which these states are
shared. The two-line element (TLE) format presents the most widely available source

xi
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of state estimates on space debris publicly available. The two most important issues of
TLEs are identified as the limited accuracy and the lack of covariance information. The
accuracy is inherently limited by the Simplified General Perturbations (SGP) model, that
was introduced in the 1970s, and has to be used to propagate TLEs. However, major ad-
vances in astrodynamics and information technology allow for more accurate models
to be used. Yet due to its prevalence, the TLE format continues to persist. The lack of
covariance information is most troubling. The covariance is used to give a measure of
the accuracy of the state estimate. It is necessary to know this covariance specifically for
the state estimate, as it is variant across different orbits, among different objects, and
over time. The covariance is essential to space-debris orbit predictions, to make mean-
ingful predictions of possible future states. To solve this issue, a method is developed
to estimate the initial covariance, based on publicly available historic TLE data. The
method is validated for a single satellite using GPS data and the results are shown to be
in good agreement with the expected covariance. It remains necessary to replace TLEs
with a more modern format and model, and include covariance information as obtained
from the estimation process. Such a change requires the cooperation of the United States
government, currently responsible for providing TLEs, or another organisation with sim-
ilar space debris surveillance capabilities and a desire to publish these states timely and
publicly.

Second, short-term re-entry predictions are examined. Particularly, what uncertain-
ties in the state, but also in the modelling of the dynamic environment are driving the
quality of these predictions. As a case study, the re-entry of the GOCE satellite is stud-
ied, on which a number of studies have been published, and for which various relevant
datasets are available. Re-entry predictions using publicly available TLEs are compared
to predictions based on much more accurate GPS solutions. In practice, GPS orbit solu-
tions are, of course, not available for space debris. It is found that while the accuracy
of TLE position and velocity is sufficient for re-entry predictions, its estimate of a bal-
listic coefficient is not. This even holds when the reported ballistic coefficient is disreg-
arded and re-estimated to a higher fidelity. The best guess of the ballistic coefficient for
TLEs suffers from aforementioned limited accuracy of the state itself, combined with a
very limited time resolution. The precision, however, is primarily caused by large uncer-
tainties in thermospheric density modelling. Currently, the predicted and actual density
in these upper layers of the atmosphere can differ significantly. At present, the opera-
tional usefulness of re-entry predictions is limited, as it is only possible to make mean-
ingful predictions on the impact time and impact location windows shortly before actual
re-entry, in the order of hours. To improve these predictions more research into atmo-
spheric density modelling is required.

Third, the models for predicting satellite states into the future have been invest-
igated. A novel mathematical formulation of the equations of motion for propagat-
ing space object states is studied. This formulation is known as Dromo and employs
regularisation to increase the numerical efficiency and accuracy significantly. Dromo
was already shown to perform favourably against other regularised methods. In this re-
search, the method is quantitatively compared to more traditional propagation meth-
ods. Dromo is found to be orders of magnitude more accurate and take significantly
fewer function evaluations than traditional methods across a range of different space
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debris orbit problems, making it very suitable for applications that require very high ac-
curacy and/or a very low number of function evaluations. One practical limitation of
Dromo is that time is a dependent variable, hence it is not possible to directly propag-
ate to a pre-determined future epoch. To this end, a method is proposed to solve this
issue, which has only minor impact on the total accuracy and has little computational
overhead.

Lastly, Dromo is used for the problem of projecting the state uncertainty into the fu-
ture. This uncertainty represents the volume of possible space debris states at a particu-
lar moment, and should account for all the errors due to imperfect knowledge of the ini-
tial state, as well as the errors in the dynamic models. An ideal uncertainty volume con-
tains (nearly) all possible solutions, without being overly large. For applications where
no solutions outside the uncertainty volume are acceptable, special interval methods
exist that provide a verified solution containing all errors. The ability to provide verified
solutions makes interval methods very powerful. However, the application of interval
methods to space debris propagation is known to suffer from several issues. The primary
issue is the interval explosion problem, where the uncertainty volume inflates so rapidly
that it quickly yields impractically large, physically nonsensical, and, finally, mathem-
atically unstable solutions. In this research, two improvements to verified space debris
propagation have been proposed: a regularised formulation into an interval form and
an improved interval state transformation method. This new propagator is shown to be
much more stable than any previously published efforts. This allows the forecasting win-
dow to be prolonged from several hours to several weeks, improving the practical applic-
ation of interval methods for space debris predictions. A continuation of this research
into conjunction analysis of verified solutions of various space objects is promising and
recommended.

This research looks at several aspects of space surveillance and tracking, and predic-
tions. Various challenges are identified, for which solutions are developed and analysed.
In all, this work contributes towards the aim of improving the predictions of space debris
states and potential collisions.

These predictions fall within the larger context of SSA, which is one of many areas
of research on the space debris problem. Space debris is a serious problem with many
different aspects. At the end of the day, the problem should be addressed from all sides
and simultaneously. The usage of space has a significant scientific, economic and soci-
ological impact on our world. To continue to benefit and even increase this impact, it is
necessary to treat space as limited resource and use it sustainably.





SAMENVATTING

Ruimteschroot vormt een groeiend maatschappelijk en technisch probleem. Doormid-
del van fragmentatiegebeurtenissen kan ruimteschroot generatief zijn, waarbij een ob-
ject (zoals een satelliet) opbreekt in vele kleinere stukken, bijvoorbeeld als gevolg van een
botsing. Zowel de waarschijnlijkheid als de ernst van het fragmentatierisico nemen toe.
De waarschijnlijkheid is gekoppeld met een toename van het aantal actieve en passieve
objecten in de ruimte. Trends, zoals de miniaturisatie van satellieten, de goedkopere lan-
ceerkosten, en de plaatsing van megaconstellaties, dragen er allen toe bij dat de ruimte
steeds voller en betwister raakt. Tegelijkertijd neemt ook de ernst toe naarmate de maat-
schappelijke, economische en strategische afhankelijkheid van satelliettechnologie en
ruimtediensten toeneemt.

Het monitoren van de ruimte, door middel van omgevingsbewustzijn in de ruimte
(SSA of space situational awareness), is de sleutel tot voortdurend gebruik van de ruimte.
Essentieel voor dit omgevingsbewustzijn is het vergaren van de aanwezige objecten,
door middel van ruimtebewaking en volgen (SST of space surveillance and tracking), en
waar deze objecten in de toekomst zullen zijn, door baanvoorspelling en analyse. Speci-
fieke, conjunctie-analyse tracht te voorspellen welke satellieten een hoog botsingsrisico
hebben, ter ondersteuning van onder andere manoevreplanning ter botsingsvermijding,
terwijl voorspellingen van de terugkeer van satellieten naar aarde mogelijke inslagloca-
ties en tijdblokken aanduiden.

Het doel van dit onderzoek is om dergelijke voorspellingen voor ruimteschroot te
verbeteren, het aantal voorspelde satellietbotsingen te verminderen en de terugkeer-
voorspelling te verbeteren, en ruimtevaartoperaties in de toekomst duurzamer te ma-
ken en mogelijk te houden. De focus ligt specifiek op ruimteschroot, in tegenstelling tot
actieve satellieten, aangezien schroot de meeste objecten in de ruimte zijn: momenteel
vormt schroot 77 % van alle waarneembare objecten en praktisch 100 % van alle objec-
ten, inclusief ook niet-waarneembare kleinere objecten.

Baanvoorspellingen van ruimteschroot zijn zeer complex en berusten op veel ver-
schillende componenten, welke cruciaal zijn voor de kwaliteit en uiteindelijk de bruik-
baarheid van deze voorspellingen. Hiertoe wordt een aantal doorslaggevende compo-
nenten onderzocht om deze afzonderlijk te beschouwen en te verbeteren, met als doel
de algehele voorspellingskwaliteit te verbeteren.

Ten eerste wordt het huidige SSA-proces van ruimteschroot onderzocht, inclusief de
manier waarop de toestanden (zoals bijvoorbeeld positie en snelheid) van deze objec-
ten worden bepaald en hoe deze informatie wordt gedeeld. De toestanden van ruimte-
schroot dienen als het begin voor voorspellingsmethoden en zijn dus van grote invloed
op de algehele kwaliteit. Met name de bijwerkfrequentie van deze toestanden, de ver-
schillende parameters waaruit ze bestaan en diens nauwkeurigheden, zijn cruciaal voor
het maken van goede baanvoorspellingen en worden allen uitgebreid onderzocht.

xv
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Gegeven de sensortypes en -locaties binnen het ruimtebewakingnetwerk, is de be-
langrijkste overweging voor het netwerk het vermogen om regelmatig updates te geven
over de toestanden van het grote aantal objecten. Aan de andere kant blijken de be-
schikbare parameters en hun nauwkeurigheid het meest bepaald te worden door het
specifieke formaat waarin de informatie gedeeld wordt. Het two-line element (TLE) for-
maat is de meest gebruikte openbaar beschikbare vorm voor toestandschattingen van
ruimteschroot. De twee belangrijkste beperkingen van TLE’s zijn de beperkte nauwkeu-
righeid en het gebrek aan covariantie-informatie. De nauwkeurigheid wordt inherent
gelimiteerd door het Simplified General Perturbations (SGP)-model, welke sinds de ja-
ren 70 beschikbaar is, en gebruikt dient te worden voor voorspelling van TLE’s. Echter,
inmiddels kunnen er veel nauwkeurigere modellen gebruikt worden, vanwege vooruit-
gang in gebieden als astrodynamica en informatietechnologie. Desondanks, blijft door
overweldigend gebruik het TLE-formaat bestaan. Het gebrek aan covariantie-informatie
is het meest verontrustend. De covariantie is een maat voor de nauwkeurigheid van de
toestandsschatting. Het is noodzakelijk om deze covariantie specifiek te kennen voor
de toestandsschatting, aangezien deze veranderend is over verschillende banen, voor
verschillende objecten en over de tijd heen. Voor zinvolle baanvoorspellingen van ruim-
teschroot is covariantie essentieel. Om dit probleem op te lossen, is een methode ont-
wikkeld om de initiële covariantie te schatten, gebaseerd op enkel openbaar beschikbare
historische TLE-gegevens. De methode is gevalideerd voor een enkele satelliet met be-
hulp van GPS- gegevens en de resultaten komen goed overeen met de verwachte cova-
riantie. Het blijft nodig om TLE’s te vervangen door een moderner formaat en model en
covariantie op te nemen zoals verkregen uit het schattingsproces. Een dergelijke veran-
dering vereist de medewerking van de regering van de Verenigde Staten, die momenteel
verantwoordelijk is voor het produceren van TLE’s, of een andere organisatie met verge-
lijkbare mogelijkheden voor ruimtebewaking en volgen van ruimteschroot, en tevens de
begeerte heeft om deze toestanden periodiek en openbaar te publiceren.

Ten tweede worden korte-termijn terugkeervoorspellingen onderzocht. Vooral welke
onzekerheden in de toestand, maar ook in de modellering van de dynamische omge-
ving, de voorspellingskwaliteit bepalen. Als casestudy wordt de terugkeer van de GOCE-
satelliet bestudeerd, waarover reeds een aantal studies zijn gepubliceerd en verschei-
dene relevante datasets beschikbaar zijn. Terugkeervoorspellingen met behulp van open-
baar beschikbare TLE’s worden vergeleken met voorspellingen op basis van veel nauw-
keurigere GPS oplossingen. Voor ruimteschroot zijn in de praktijk GPS-baanbepalingen
natuurlijk niet beschikbaar. De nauwkeurigheid van de TLE-positie en -snelheid blijken
voldoende voor terugkeervoorspellingen te zijn, echter de schatting van de ballistische
coëfficiënt is dat niet. Dit geldt ook wanneer de gerapporteerde ballistische coëffici-
ënt niet beschouwd wordt en nauwkeurig opnieuw wordt geschat. De best mogelijke
schatting van de ballistische coëfficiënt van TLE’s is gelimiteerd door de combinatie van
een beperkte toestandsnauwkeurigheid en een zeer beperkte tijdsresolutie. De precisie
wordt echter voornamelijk beïnvloed door grote onzekerheden in de modellering van de
thermosferische dichtheid. Momenteel kunnen de voorspelde en werkelijke dichtheid
in deze bovenste lagen van de atmosfeer aanzienlijk verschillen. Op dit moment is het
operationele nut van terugkeervoorspellingen beperkt, aangezien het enkel kort vooraf-
gaand (enkele uren) aan de daardwerkelijk terugkeer mogelijk is zinvolle voorspellingen



SAMENVATTING xvii

te doen van betrouwbaarheidsintervallen van de impacttijd en impactlocatie. Om deze
voorspellingen te verbeteren is meer onderzoek naar atmosferische dichtheidsmodelle-
ring nodig.

Ten derde zijn de modellen voor het richting de toekomst voorspellen van satelliet-
toestanden onderzocht. Een nieuwe wiskundige formulering wordt bestudeerd van de
bewegingsvergelijkingen ter propagatie van toestanden van objecten in de ruimte. Deze
formulering, bekend als Dromo, maakt gebruik van regularisatie om de numerieke effi-
ciëntie en nauwkeurigheid aanzienlijk te verhogen. Dromo presteerde reeds zeer gun-
stig in vergelijking met andere geregulariseerde methoden. In dit onderzoek wordt de
methode kwantitatief vergeleken met traditionelere propagatiemethoden. Dromo blijkt
vele malen nauwkeuriger te zijn en aanzienlijk minder functie- evaluaties uit te voeren
dan de traditionele methoden over een reeks van verschillende ruimteschroot baanpro-
blemen, hierdoor is Dromo zeer geschikt voor toepassingen die een zeer hoge nauwkeu-
righeid en/of een zeer laag aantal functie-evaluaties vereisen. Een praktische beperking
van Dromo is dat tijd een afhankelijke variabele is, waardoor het niet mogelijk is om
direct naar een vooraf bepaald moment in de tijd te propageren. Hiervoor wordt een
methode voorgesteld om dit probleem op te lossen, welke slechts gering effect heeft op
de totale nauwkeurigheid en rekentijd.

Ten slotte wordt Dromo gebruikt voor het probleem van het voorspellen van de toe-
standsonzekerheid in de toekomst. Deze onzekerheid representeert het volume van
mogelijke toestanden van ruimteschroot op een bepaald moment, en ontstaat uit alle
fouten ten gevolge van onvolmaakte kennis van de begintoestand, evenals fouten in de
dynamische modellen. Een ideaal onzekerheidsvolume bevat (bijna) alle mogelijke op-
lossingen, zonder al te groot te zijn. Voor toepassingen waarbij geen oplossingen buiten
het onzekerheidsvolume acceptabel zijn, bestaan er speciale intervalmethoden die een
geverifieerde oplossing bieden die alle fouten omvat. De mogelijkheid om geverifieerde
te berekenen, maakt intervalmethodiek zeer krachtig. De toepassing van intervalme-
thoden op ruimteschrootbanen is bekend problematisch. De primaire complicatie is
het interval-explosieprobleem, waarbij het onzekerheidsvolume zo snel groeit dat het
al snel onpraktisch grote, fysiek onzinnige en, uiteindelijk, wiskundig onstabiele oplos-
singen oplevert. In dit onderzoek zijn twee verbeteringen aan geverifieerde propagatie
van ruimteschroot voorgesteld: een geregulariseerde intervalformulering en een verbe-
terde methode voor interval-toestandstransformatie. Deze nieuwe propagator blijkt veel
stabieler dan eerder gepubliceerd werk. Hierdoor kan verder in de toekomst voorspeld
worden: van eerder enkele uren tot nu enkele weken. Hierdoor wordt praktische toepas-
sing van intervalmethoden voor baanvoorspellingen van ruimteschroot vergroot. Een
voortzetting van dit onderzoek naar geverifieerde conjunctie-analyse tussen meerdere
ruimte objecten is veelbelovend en aanbevolen.

Deze voorspellingen vallen binnen de grotere context van SSA, één van de vele on-
derzoeksgebieden naar het probleem van ruimteschroot. Ruimteschroot is een serieus
probleem met veel verschillende aspecten. Uiteindelijk moet het probleem van alle kan-
ten tegelijk worden aangepakt. Het gebruik van de ruimte heeft een grote wetenschap-
pelijke, economische en sociologische impact op onze wereld. Om te blijven profiteren
en deze impact zelfs te vergroten, is het noodzakelijk om de ruimte als een beperkte na-
tuurlijke hulpbron te behandelen en duurzaam te gebruiken.
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INTRODUCTION

Launched in 1957 by the former Soviet Union, Sputnik 1 was the first artificial satellite in
orbit around Earth. Since then, satellites have become increasingly important to society.
Currently, there are nearly 6000 active satellites, fulfilling a range of scientific, commer-
cial and military purposes. The total number of objects in Earth orbit is, however, much
larger, at over 25000 trackable objects 1. Figure 1.1 shows the historic growth of the num-
ber of objects in Earth orbit, broken down into several object classes. This figure tells
a history of spaceflight and will be referred to in this introduction. Note, for instance,
the steep increases in fragmentation debris between 2005 and 2010 due to anti-satellite
(ASAT) weapon tests. Furthermore, note the “hockey stick” exponential curve upwards
in active payloads due to the arrival of mega constellations from 2015 to now.

Space exploration and exploitation has brought many benefits and opportunities,
but also gives rise to challenges. Among these, space debris is a most severe threat. A
sustainable approach to spaceflight and operations is necessary to ensure long-term ac-
cess to and services in and from space.

The space-debris problem is becoming a familiar term outside the space sector. Sec-
tion 1.1 defines what the problem is and why it matters. Following, Section 1.2 explains
the underlying causes and different solutions. Zooming in, Section 1.3 introduces sur-
veillance and tracking of space debris. Section 1.4 poses the research questions of the
thesis. An outline of the research including the topics covered and how the research
questions are addressed is given in Section 1.5.

1.1. SPACE-DEBRIS PROBLEM
To better understand the space-debris problem, it is decomposed using the method of
risk analysis. Risk analysis can bring a deeper understanding of risks and how to deal
with them more effectively. According to the NASA Risk Management Handbook risks
need to be described using their three components [1]:

1Statistic and figures based on “Raw SATCAT Data” from https://celestrak.com/satcat/boxscore.php,
accessed: May 28, 2022

1

https://celestrak.com/satcat/boxscore.php
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Figure 1.1: Historic growth of the population of catalogued objects in orbit for various object classes 1.

1. the scenario(s) leading to undesirable outcomes;

2. the consequence(s) (or impact) from the scenario(s) occurring, and

3. the likelihood(s) of the scenario(s) occurring.

In risk management, it is determined what, if any, action should be taken to reduce a
risk. Mitigation is the taking of a positive action to address a risk, either through preven-
tion or reduction of the likelihood, or reduction of the severity of the consequence [1].
As a result, the severity of the risk is lowered. The key concepts of scenario, outcome,
consequences, likelihood, and mitigation are treated and applied to the space-debris
problem.

The Kessler syndrome is the most threatening space-debris scenario and was pop-
ularised in the 2013 movie Gravity. Already in 1978, Donald Kessler envisioned a tipping-
point where a positive-feedback loop occurs, which results in an uncontrolled growth of
debris causing more collisions, causing more debris et cetera [2]. The scenario leads to
an outcome where access to space is severely limited or even denied. As shown in Fig-
ure 1.1, space debris makes up the majority of objects in orbit at around 77 %. So far,
only 17 confirmed collision events between space objects have been recorded 2. Despite
this relatively low number, collisions are very worrisome, as they are a major contributor
to space debris and difficult or often practically impossible to prevent. Also, a collision
involving an active spacecraft can lead to loss of the space mission. As orbits become
more congested the risk of collisions is likely to increase.

2https://fragmentation.esoc.esa.int/home, accessed: December 14, 2021.

https://fragmentation.esoc.esa.int/home
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Consequences describe foreseeable and credible negative impacts in a quantitative
and/or qualitative way [1]. Loss of space capabilities and access to space would have
severe and far-reaching impacts. The consequences can be expected to continue to grow
in severity as the usage of space steadily increases. In 2020, a report on the economic
impact of the issue of space debris was published by the Organisation for Economic Co-
operation and Development (OECD) [3]. The space sector is intricately interwoven in
modern society, having many direct and derived impacts on science, technology, and
economy [4]. In 2020, the commercial space industry made up 74 % of the space eco-
nomy, which is around $ 371 billion of revenue in total per year [5]. Communications,
finance, navigation, and other industries with a combined revenue of $ 10 trillion employ
satellite technology [6]. As the application of space technologies continues to multiply,
so will the impacts (direct and derived), but also the potential consequences. Moreover,
space activities and exploration are a driver for innovation, culture and inspiration, and
means to address global challenges. Ultimately, spaceflight is necessary for the long-
term development and survival of humankind as a species [6–8].

Even at the current level of spaceflight activities, space debris is already generating
significant additional costs for satellite operators, in the form of protection, mitigation
and replacement costs. For instance, space debris poses the need for (additional) man-
oeuvring capabilities and propellant. Also, more redundancy is required in both the
spacecraft and constellation design, for example, through additional spare satellite sys-
tems. Moreover, insurance and operations costs are increased. Space debris is also very
demanding on space surveillance and tracking, due to the high number of inactive ob-
jects (roughly 77 % of the total population) and the relatively small size of most of the
debris. Operators of geostationary orbit (GEO) satellites have estimated protective and
mitigation costs at 5 % to 10 % of the total mission costs. This aspect has not been in-
vestigated for satellites in low-Earth orbit (LEO), but the percentage is expected to be
higher [3].

Likelihood is the probability of occurrence of a scenario associated to a risk [1]. At
first order, the likelihood of an arbitrary collision occurring is related to object density.
The density can be broken down into the number of objects and the distribution (or
concentration) of objects in space. As demonstrated by Figure 1.1, the number of objects
is increasing over time at an increasing rate. So, next to the consequences, the likelihood
too is growing over time and will continue to grow into the future.

To better understand the number of objects and the current and future situation, one
can consider a few of the underlying trends. First of all, space usage and satellite tech-
nology are rapidly changing. Over the last decades a number of innovative trends, such
as miniaturisation, mega constellations, small and reusable launchers, and broadband
communications has become reality. Due to advances in technology, smaller and more
affordable satellites have made space much more accessible. As a result, the number
and type of owners and operators are expanding, and include governments (civil and
military), large businesses, start-ups, universities, and even private individuals. Over 80
countries own at least one satellite, and between 2015 and 2019 over 500 small space
companies were established [4]. The space economy and the number of satellites is
only expected to continue to grow. Figure 1.1 clearly shows an exponential growth in
the number of active payloads between 2013 and now. This increase is primarily due to
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new (mega) constellations. Such constellations are announced regularly; presently a list
of the most notable owners, constellation name, and number of satellites currently in or-
bit includes: SpaceX (Starlink constellation; 3524 satellites in orbit), Planet (Flock, Dove
and SuperDove; together 519 satellites), OneWeb (428), Spire (Lemur; 160), and Swarm
Technologies (SpaceBEE; 177) 3. Still, this is only a fraction of the total number of satel-
lites planned for such constellations. Not all initiatives announced will materialise, but
a total of 12686 satellites are planned when considering constellations that have already
one or more (demonstrator) satellite(s) in orbit 1. Note that there is always a possible
mismatch between the number of planned and realised satellites. For instance, Starlink
has been granted approval for 12000 satellites and has requested approval for another
30000 satellites. Yet, currently, Starlink Generation 1 is expected to consist of 7518 satel-
lites; Starlink Generation 2 is also not included in the total due a lack of active satellites 4.
The recent exponential growth in Figure 1.1 is mostly in the class of active payloads for
now. It is too early to understand the sustainability of mega constellations and how this
will impact the other object classes.

The likelihood is further affected by the concentration of space objects. Depending
on the application, certain orbits are particularly attractive. As a result, satellites are
not uniformly distributed in space, but are clustered in a handful of favourable orbits.
Figure 1.2 shows the distribution of space objects over orbital period and inclination.
A direct relation exists between the orbital period and the altitude of a satellite. High
concentrations are apparent from the figure. The highest score, at 14 revolutions per
day and around 100° inclination, represents nearly 20 % of the total number of objects.
The particular bin covers orbital altitudes from 725 to 1072 km, assuming a circular orbit.
This bin coincides with the so-called Sun-synchronous orbits (SSO), which are attractive
for Earth-observation purposes. Various other concentrations are visible elsewhere in
LEO and in MEO (e.g., at twice-a-day orbital period) and GEO (once-a-day period).

Due to the large number of objects involved and the continuously evolving popula-
tion, there exist large uncertainties in the scenarios leading to potential collisions. Long-
term prediction models aim to forecast the evolution of the space-object population over
decades to investigate phenomena, such as the Kessler syndrome. To account for uncer-
tainties, the models are generally run in various scenarios that consider different precon-
ditions and mitigation policies. An Inter-Agency Space Debris Coordination Committee
(IADC) modelling study compared various models to assess the debris population sta-
bility [9]. All six models consistently predicted a growth in the LEO debris population in
a business-as-usual scenario. In the current state, catastrophic collisions are expected to
occur every 5 to 9 years. This suggests that strategies are necessary to halt or reverse the
debris-population growth, before the tipping point in the Kessler syndrome scenario is
reached.

3Analysis based on NewSpace Constellations list from https://www.newspace.im/, accessed: November
11, 2022 .

4https://en.wikipedia.org/wiki/Starlink#Constellation_design_and_status, accessed: May
28, 2022.

 https://www.newspace.im/
https://en.wikipedia.org/wiki/Starlink#Constellation_design_and_status


1.2. CAUSES AND MITIGATION

1

5

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 >0
Orbital period [rev/day]

120

110

100

90

80

70

60

50

40

30

20

10

0

In
cl

in
at

io
n 

[d
eg

]
Distribution of space objects over orbital period and inclination

0

0

74

5

223

14

5

482

11

2

1

2

1

18

4

3012

320

835

767

112

2116

122

59

17

19

6

12

11

405

1209

1683

109

83

16

64

7

0

0

7

17

664

595

419

400

184

81

7

39

1

0

0

5

2

375

3

160

487

39

122

1

13

3

0

0

5

1

16

3

0

23

22

95

3

8

1

1

0

2

0

4

0

1

0

16

78

5

10

3

1

1

3

0

12

92

1

1

35

28

3

6

2

1

2

0

0

0

9

0

1

17

7

0

3

2

1

0

0

0

4

0

0

5

9

10

3

23

4

2

0

3

2

4

0

0

4

27

53

4

14

8

4

1

0

0

0

1

0

27

50

104

3

22

2

4

29

0

0

0

6

0

91

89

22

2

33

35

22

17

2

0

0

0

0

2

15

120

1

125

44

112

29

0

0

1

6

0

289

388

74

1

144

366

470

98

0

0

0

0

1

2

9

6

9

15

62

949

657

4

0

0

0

1

5

3

4

4

21

10

4

0

4314

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 1.2: Heat map of current trackable space objects as a function of their orbital period and inclination 1.

1.2. CAUSES AND MITIGATION
Debris objects are the major class of objects and can be generated in a number of dif-
ferent ways. It is useful to distinguish debris types by their source. Each source can
require different mitigation approaches to reduce its number. Debris objects include
dysfunctional satellites, natural objects, break-up debris, rocket parts (such as boost-
ers and farings), et cetera. Man-made objects almost entirely make up the space debris.
They cover a wide range of mass and sizes. Nearly 20000 debris objects presently in orbit
are catalogued. The true population is much greater, though. Roughly, there are 36500
objects larger than 10 cm, one million objects larger than a cm, and 130 million objects
larger than one mm 5.

Larger objects (larger than 10 cm) are generally observed and tracked using ground-
based sensors [10]. The smaller objects are estimated through statistical models based
on empirical data from specific satellite missions; actual locations are unknown.

Fragmentations of space objects are an important mechanism in the Kessler syn-
drome. As one object fragments into multiple and sometimes up to thousands of new
objects, the likelihood of collisions increases at nearly equal rate. Fragmentation debris
already makes up over 50 % of all trackable objects and nearly all untracked objects. Fig-
ure 1.3 shows the fragmentation debris broken further into several underlying causes.
At a high level it is possible to distinguish between deliberate and accidental fragment-
ations, and fragmentations involving a single or multiple satellites 6. Deliberate frag-
mentation, due to (self-)destruction or a controlled collision, accounts for 32 % of the
fragmentation debris currently in orbit. Historically, this number has been 32 %. It is
surprising that these numbers are equal given the controversial nature of deliberate frag-
mentations. The 1967 Outer Space Treaty bans the stationing of weapons of mass de-

5https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers, accessed:
February 27, 2022.

6All data from retrieved from https://fragmentation.esoc.esa.int/home, accessed: December 14,
2021.

https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers
https://fragmentation.esoc.esa.int/home
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Fragmentation debris pieces per cause as of May 2022
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Figure 1.3: Break-up of the number of current and total historic debris objects in the fragmentation debris class
into subclasses.

struction and prohibits testing of “any type of weapons” in space [11]. There have been
58 intended fragmentation events to date, of which 47 events happened cold war (44 by
the USSR). In the light of current space debris awareness, these events are very contro-
versial. Nevertheless, there have been four intentional fragmentations by four nations as
part of anti-satellite (ASAT) tests over the last 15 years. All events were followed by strong
international condemnation. In 2007, the Chinese Fengyun 1C polar-orbiting satellite
was destroyed. The event created 3519 catalogued fragments and over half a million ob-
jects larger than one cm. Due to the high altitude of 865 km, it is expected that 80 % will
remain in orbit for at least another century 7. In 2009, the USA destroyed USA-193 in
its orbit at 252 km altitude. The event created 174 pieces of space debris, of which 99 %
re-entered within six months. In 2019, India tested an intercept on Microsat-R at 282 km
altitude. Similarly, at this low altitude nearly all of the 400 identified objects have since
re-entered. As recent as November 2021, during a Russian interceptor test Cosmos-1408
was destroyed in its orbit at 485 km altitude. The destruction resulted in over 1500 track-
able fragments and hundreds of thousand suspected smaller pieces [11]. It would seem
that the category of deliberate fragmentations is entirely preventable. The solution here
lies in international politics and diplomacy [12].

Accidental fragmentation, especially caused by collisions, are difficult to prevent. Re-
sidual propellants in rocket bodies and batteries in spacecraft can become unstable and
explode over time. Moreover, tanks, reactor cores and batteries can start leaking. These
risks can be mitigated through passivation and spacecraft design. Passivation entails the
depletion of any system that contains residual energy that might become unstable over a
long period, such as batteries and propellant tanks. Mitigation policies that target design
and operations are effective in reducing these types of fragmentations.

Orbital collisions can be catastrophic due to the high relative velocity. These events
can shatter a satellite into thousands or more pieces. Seventeen collisions, for which

7https://celestrak.com/events/asat.php, accessed: December 14, 2021

https://celestrak.com/events/asat.php


1.2. CAUSES AND MITIGATION

1

7

either one or both objects are known, have been recorded so far. The collision between
the Iridium-33 and the inactive Cosmos-2251 satellites in 2009 is by far the most promin-
ent to date [13]. Three years after the collision, 2201 fragments were catalogued, of which
only 315 had decayed 8. Over the last decade another 168 objects have been tracked and
confirmed; in total 1419 objects remain in orbit today.

Preventing collisions is an important aspect to limit the growth of space debris. Col-
lision avoidance (COLA) is operationally practiced. However, successful avoidance can
only occur if 1) the to-be-colliding objects are detected and tracked, 2) the conjunction
is predicted well enough in advance, 3) at least one of the satellites is active, 4) the active
satellite is able to manoeuvre 5) the operators act on the warning.

Space Traffic Coordination (STC) entails the coordination of data sharing and ac-
tions, such as responses to conjunction warnings, but is still in its infancy. STC is part of
the larger effort of Space Traffic Management (STM), which aims for safe and sustainable
space operations [14]. Inherently, this requires a high percentage of actively controlled
satellites to be effective. At the moment only 23 % of all catalogued objects are active
payloads, of which only a fraction has manoeuvring capabilities.

STM alone can not provide a solution to the space-debris problem. Additionally, a
balance between the generation and removal of objects needs to be established. Ul-
timately, a reduction of the number of space-debris objects is required. A reduction of
space debris will reduce the likelihood of conjunctions and increase the fraction of active
payloads, making STM more effective. Reduction can be achieved by removing existing
pieces, especially from densely populated orbits.

Preventing the generation of unnecessary new debris, and removal of the inevitable
debris must be part of a long-term solution. End-of-life policies dictate the proper re-
moval of objects from important regions. The IADC has defined two protected regions,
namely LEO up to 2000 km and GEO 36000±200km, and there is an ongoing discussion
to include medium-Earth orbit (MEO) as a protected region [15]. Policies and guidelines
dictate how removal from these protected regions can occur. In the case of the Space
Debris Mitigation Policy for ESA contractors and the European space industry [16] LEO
satellites should clear LEO within 25 years after end-of-life. Recently, the FCC has even
adopted a 5-year rule 9.

In LEO, removal of space objects is achieved through various means. Natural decay is
the most simple solution. In principle, all Earth-orbiting objects experience atmospheric
drag and energy loss as a result. The time it takes for an object to decay and re-enter
the Earth’s atmosphere depends on the original orbital altitude and satellite design. If
natural decay does not occur within the desired period, active removal or accelerating
the natural decay is necessary. De-orbiting is done by the satellite using propulsion,
drag augmentation or tether systems. For high-LEO (above 1200 km), MEO and GEO
satellites de-orbiting requires too much propellant and is not feasible. These satellites
typically clear the protected regions by transferring to a so-called graveyard orbit. This
graveyard orbit is stable on very long time-scales. Active or passive disposal ensures that
spacecraft clear protected orbital regimes at end of life and are often regulated.

8https://celestrak.com/events/collision/, accessed: December 14, 2021
9https://www.fcc.gov/document/fcc-adopts-new-5-year-rule-deorbiting-satellites-0,

accessed November 11, 2022.

https://celestrak.com/events/collision/
https://www.fcc.gov/document/fcc-adopts-new-5-year-rule-deorbiting-satellites-0


1

8 1. INTRODUCTION

Except for natural decay, all methods require the satellite or a subsystem to be active
to facilitate its disposal. Satellites that fail or any of the current debris cannot actively
comply with the guidelines. This necessitates the concept of active debris removal. Here,
another spacecraft or system is used to dispose of debris objects. However, active debris
removal is very challenging and expensive to execute. It is therefore only feasible for a
small number of objects, such as high-priority targets.

Even small undetectable objects can cause satellite malfunction and fragmentation
events. These types of collisions happen much more often, but are also hard to detect
and nearly impossible to avoid. Several incidents of collisions between satellites and
untracked objects are suspected. The evidence is a sudden unexpected loss of func-
tion or a slight change in the satellite’s orbit [17]. Collisions with unseen space debris
can only be statistically predicted using flux models, such as MASTER (Meteoroid and
Space Debris Terrestrial Environment Reference) and ORDEM (Orbital Debris Engineer-
ing Model) [18]. The risks are assessed and can only be mitigated during the mission
design, for instance by making the satellite more resilient or selecting a safe(r) nominal
orbit. The empirical input and validation data for these models is limited. In a few spe-
cial cases observations have been made during inspection of micro-meteorite impacts
on space stations, Space Shuttles, and from satellites. Many experiments were enabled
by the Space Shuttle program, such as the Long Duration Exposure Facility (LDEF) in
1990, the servicing of the Hubble Space Telescope in 1993, and the retrieval of European
Retrievable Carrier (EuReCa) also in 1993. Several missions have been designed to spe-
cifically collect data using in-situ detectors, such as GORID, and DEBIE on board PROBA-
1 and DEBIE II on board the ISS [18].

Several aspects of the growing space-debris population and ideas for approach have
been presented here. A single strategy is not enough to manage the entire problem, how-
ever. For instance, a perfect adherence to end-of-life policies does not prevent accidents
within the current population and is susceptible to satellites prematurely failing. Also,
traffic coordination and collision avoidance alone cannot prevent the high fraction of
non-active satellites from colliding. Instead, all solutions need to contribute and have to
be worked on and implemented in parallel.

1.3. SPACE DEBRIS SURVEILLANCE AND TRACKING
Space Surveillance and Tracking (SST) concerns detecting, identification, tracking, and
prediction of the orbits of objects. Through detection new objects can be discovered and
existing objects can be revisited. Subsequent detections result in tracking with the aim of
accurately determining orbital and related parameters. Through correlations with pre-
vious and external data, an object can be repeatedly identified and catalogued. Orbit
predictions allow for future scheduling of detection opportunities and derived applica-
tions, such as conjunction analyses and re-entry predictions.

Space debris presents one of the principle threats to the space infrastructure. The
focus of the thesis is space surveillance and tracking of debris objects, and in particular
on making predictions. By nature, space-debris objects are non-cooperative and thus
require general approaches and methods. SST is a part of the broader domain of Space
Situational Awareness (SSA), which also includes space weather and near-Earth objects
(NEO) [19].
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Monitoring space has been a critical aspect for national security for many countries
since the 1960s. Space monitoring arose with the desire to provide early warning of in-
coming ballistic missiles. The tracking and cataloguing of satellites proved important
in preventing false alarms and maintaining an overview of domestic and foreign space
assets. With the growth of spaceflight the maintenance and publication of object data-
bases were also realised. These databases are the basis for many space (debris) predic-
tion activities and analyses [20].

The largest database is the Satellite Catalog (SATCAT) and is maintained by the Uni-
ted States Space Command (USSPACECOM). SATCAT contains over 25000 space ob-
jects currently in orbit, as shown in Figure 1.1. Objects in the database are detected
and updated by the Space Surveillance Network (SSN). The SATCAT is published online
through Space-Track.org and contains both current and historic data 10. Different web-
sites republish SATCAT data in different formats, most notably CelesTrak 11 and Privat-
eer Wayfinder 12. Space-Track publishes estimation data in the form of Two-Line Ele-
ments (TLEs). TLEs are a compact format of orbital tracking data, containing the estim-
ated ephemeris and related data [21]. Only objects that are large enough to be regularly
tracked by the SSN are included in SATCAT. SATCAT continues to be the largest up-to-
date public database that covers the largest number of orbiting objects. Only data on un-
classified objects are publicly available. Services using TLE data, such as the Satellite Or-
bital Conjunction Reports Assessing Threatening Encounters in Space (SOCRATES) [22],
might, therefore, not have all relevant data available. Satellites vital to US national in-
terest are classified and omitted from the public database. In 2005, the number of clas-
sified payloads was about 184. Together with their associated rocket bodies and upper
stages and other unreported objects, this resulted in almost 8 % of the total number of
tracked objects having their orbital data unavailable [22]. More recent numbers are not
available.

The need for accurate and timely SST data continues to grow. There is always a de-
mand for more frequent updates, more accurate ephemeris, and smaller objects to be
tracked [19]. In the last few years, several major advances in SST have been realised. Spe-
cifically, new electronically-advanced radar systems capable of searching and tracking
have become operational. LeoLabs is a new company that has a network of four radars
for tracking satellites and debris. Especially the Kiwi space radar (KSR) (operational since
2019) and the Costa Rica space radar (since 2021) are powerful S-band radars that have
a large capacity and detect previously unseen space debris. LeoLabs tracks over 20000
unique objects each month 13. In March 2020, the new Space Fence System (SFS) radar
became operational. The SFS is currently the most advanced space radar for LEO, with
a higher capacity and able to detect smaller objects (“marble sized”) than previous SSN
systems 14. Meanwhile, more nations are developing their own national SST capabilit-
ies. The new bi-static radar system named GESTRA was completed in October 2020 at
the German Space Situational Awareness Centre (GSSAC) 15. Currently, the Royal Neth-

10https://www.space-track.org
11https://celestrak.org/NORAD/elements/
12https://www.privateer.com/
13https://platform.leolabs.space/system_metrics, accessed: May 28, 2022
14https://www.lockheedmartin.com/en-us/products/space-fence.html, accessed: May 28, 2022.
15https://www.dlr.de/content/en/articles/news/2020/04/20201013_space-radar-gestra-beg

https://www.space-track.org
https://celestrak.org/NORAD/elements/
https://www.privateer.com/
https://platform.leolabs.space/system_metrics
https://www.lockheedmartin.com/en-us/products/space-fence.html
https://www.dlr.de/content/en/articles/news/2020/04/20201013_space-radar-gestra-begin-operation.html
https://www.dlr.de/content/en/articles/news/2020/04/20201013_space-radar-gestra-begin-operation.html
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erlands Air Force is replacing its two air surveillance radars with new SMART-L ELR MM
system, capable of space surveillance 16. Many of these national sensor systems can
contribute to the SSN, next to their primary and auxiliary tasks.

Tracking of space objects results in orbital ephemeris that describe a satellite state at
a certain moment of time. The satellite state can be its explicit position and velocity, or
some form of orbital elements. An ephemeris can be used as a point of departure for pre-
dicting future and past positions. For instance, when a satellite might pass over a certain
location on Earth, or when it is at closest distance to another satellite, et cetera. Orbital
ephemeris are invariably linked to the dynamics model that is used for generating them,
and must also be used for further processing.

Due to the long-term popularity of SATCAT, TLEs have become synonymous with or-
bital ephemeris to many users. Many tools read and produce the TLE ephemeris format.
Consequently, also other data providers publish TLE data [21]. Despite its popularity the
TLE format is limited and has become outdated in several respects. To understand the
limitations, it is necessary to first understand the history of the format. The development
of TLEs and the corresponding dynamics model (the Simplified General Perturbations
(SGP)) started in the 1960s, became operational in the early 1970s, and was officially re-
leased in 1980 [23, 24].

Since ephemeris are always linked to a dynamics model, the TLEs and the SGP4
model need to be regarded as a pair. Even though a TLE can be converted to many other
state representations, it remains at its core a TLE. Even using the same exact version of
the model (code compatibility) is important [25]. However, due to the many unofficial
versions of the model, lack of new official releases, and no inclusion of the model version
in the TLE data, knowing what dynamics model was used, and properly matching of data
and model can be difficult. Even the operational code for generating TLEs has changed
several times in its history [25, 26].

The accuracy of TLEs is related to the accuracy of the SGP4 model. SGP is a mean
motion model. The model allows for propagation for long durations, despite its simple
force models, but with limited accuracy at any particular point in the trajectory. A higher
accuracy at particular points in the orbit is desired for specific types of analysis such as
for computing potential conjunctions and collision probabilities. Another downside of
TLEs is the lack of state covariance information. A state covariance is an expression of the
uncertainty of a predicted state. This means that although an orbital state is published,
there is no indication on how accurate or inaccurate that particular state is. The TLE state
uncertainty is significant and can be in the order of a few kilometres [27]. Some form
of uncertainty information is necessary for any type of statistical analysis. In conjunc-
tion analysis, covariance information is used to compute collision probabilities. Sim-
ilarly, position covariance can be translated to confidence intervals of re-entry epochs
or sensor search areas. Unfortunately, the state covariance is not published along with
TLEs in the SATCAT. Methods for retro-actively estimating the state covariance exist. Em-
pirical covariances based on historic data of one or many objects are useful guidelines,
but the true covariance of a specific TLE can vary day-to-day and is dependent on many

in-operation.html, accessed: December 16, 2021
16https://www.defensie.nl/actueel/nieuws/2020/01/17/nieuwe-ogen-voor-luchtgevechtsle

iders, accessed: December 14, 2021.
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factors, including the sensor system used, quality of the measurements, type of orbit,
space weather conditions et cetera [21]. Lastly, a TLE also lacks proper satellite para-
meter estimates. These parameters are specific to each satellite and determine the effect
of different perturbations. For instance, solar radiation pressure coefficient and atti-
tude parameters are not modelled in SGP and therefore not provided. Moreover, the TLE
contains a drag term (called BSTAR) that provides a measure of the combination of the
satellites mass, drag coefficient, and drag area, but is known to be a sensitive and often
unreliable parameter in TLEs.

1.4. RESEARCH QUESTIONS
Space debris presents one of the largest threats to spaceflight and poses an enormous
risk to modern society. Knowledge of the space-debris population and in particular to-
wards the space surveillance and tracking, and orbit prediction of space-debris objects
is at present limited in several key areas. Therefore the aim of this research is:

To improve space-debris orbit prediction and analysis, to facilitate reducing
the number of potential satellite collisions and improving re-entry and im-
pact location forecasting.

The research focuses on the major space-debris population that is located in low-Earth
orbit. Moreover, the research considers public data and frequently updated data sources.

The primary research question is:

What aspects of space-debris trajectory modelling and propagation impact
the quality of space-debris orbit predictions?

Several additional research sub-questions are derived, which focus on particular aspects
of the primary research question and aim.

Space surveillance and tracking are instrumental to space situational awareness and
understanding. Space surveillance, especially of space debris, requires a very broad
scope: frequent observation of many objects of a wide range of sizes and make-up, dis-
tributed over a wide range of orbits. This constitutes a very large surveillance effort,
reserved for (cooperation between) nations and large (government-funded) commercial
entities. To better understand the input into space-debris predictions, it is necessary to
understand how orbit ephemeris data of debris objects is constructed. To this end, the
following research sub-questions need to be addressed:

What space surveillance data sources on space-debris orbits are available,
how do they come about, and how are they disseminated?

What are the primary gaps and limitations of these data for performing space-
debris analysis and predictions?

Large orbital ephemeris data sources are necessary, but not always optimised for space-
debris investigations. To make available data more suitable for space-debris predictions,
it should be investigated whether it is possible to deal with or mitigate these limitations
in the modelling and simulation. This leads to the following sub-question:
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How can modelling and simulation address the current gaps and limitations
in space surveillance and tracking data for the purpose of debris analysis and
orbit predictions?

To understand space-debris orbit predictions, it is necessary to look at the entire pre-
diction chain; from the various input data, to environment and spacecraft modelling,
uncertainty propagation, and finally predictive analysis. Moreover, it is necessary to not
only look at this problem academically, but also to take operational aspects into account.

For this research high-accuracy and high-resolution data on the re-entry campaign
of the GOCE satellite was provided by the European Space Agency (ESA). The dataset is
valuable for studying short-term re-entry predictions, such as the sensitivity analysis of
models, model parameters, and modelling fidelity. Moreover, the re-entry data allows for
steps in verification and validation of currently operational trajectory-prediction meth-
ods. The following research sub-questions are aimed to address this:

What are the primary drivers of short-term re-entry prediction accuracy? How
well do currently operational re-entry predictions perform and how can they
be further improved?

The propagation of orbital ephemeris is central to space-debris orbit predictions. Orbital
state and uncertainty propagation refers to the process of extrapolating a historically
known satellite position, velocity and covariance into the future. For space-debris tra-
jectory propagation in general, the forecasting periods are typically in the order of hours
to several days. For a given initial state and covariance, it is important to introduce as
little error as possible in the propagation process to obtain the most accurate predic-
tions and/or extend the forecasting window. Moreover, the number of predictions can
be significant, depending on the number of space-debris objects under consideration
and analysis methods used. For instance, Monte Carlo uncertainty propagation might
require thousands of trajectories per single object. Thus, next to the accuracy, also the
(numerical) efficiency and robustness of a propagation method should be considered.
The following research sub-question addresses these aspects:

How can the propagation of space-debris trajectories be made more efficient
and robust?

The problem of propagation of satellite uncertainty over longer forecasting periods is
very difficult. Especially when the environment itself is also uncertain. For LEO the mo-
tion is highly non-linear and there exist large uncertainties in the dynamics models, es-
pecially in the instantaneous atmospheric density. Different error propagation methods
exist to transform an initial uncertainty to a desired epoch for further analysis. Veri-
fied numerical analysis covers a class of methods that provide a guaranteed uncertainty
solution and are common in, for instance, analysis of NEOs. While promising, the ap-
plication to LEO space debris is still very new. To further investigate its applicability to
the problem of space debris, the following sub-question is posed:

How can verified numerical analysis techniques be applied to space-debris
propagation? What are the main challenges and how can they be overcome?
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Figure 1.4: Graphic overview of the space-debris surveillance and tracking chain and breakdown into topics
covered in this thesis, where the numbers correspond to the respective chapters.

The background of the space-debris problem has been presented. In the area of SST
of space debris, one overarching research question and six specific sub-questions have
been posed. These questions will be addressed in the remaining chapters of this thesis.

1.5. RESEARCH OUTLINE
Figure 1.4 shows a high-level diagram of the space-debris surveillance, tracking, and
prediction chain. The chain consists of many components and those covered in this
research have been broken down further. Each component affects the entire chain and,
therefore, has the potential to improve the overall quality and contribute towards the re-
search aim. A discontinuity is illustrated between tracking and prediction, to highlight
an important split in the activities. At this split, the interface is orbital ephemeris data.
The primary focus of this thesis is on space-debris trajectory prediction and specifically
on (error) propagation, but with regard to the overall chain. Relevant chapter numbers
have been indicated for each component.

Chapter 2 deals with the physical network that is responsible for maintaining SAT-
CAT and the estimation of its individual TLEs. The purpose of this chapter is to provide
a sense of the scale of this network, the individual sensors that make it up, and how the
network geometry and the addition of sensors influence the entire tracking perform-
ance. Chapter 3 provides an analysis of the accuracy of TLEs. The modelling and estim-
ation of TLE errors is investigated. A new method for TLE covariance estimation is pre-
sented. This covariance is a crucial aspect of the initial state in space-debris trajectory
predictions. A high-fidelity simulation model of the entire short-term re-entry predic-
tion chain is investigated in Chapter 4. Re-entry predictions are performed using uncer-
tain initial conditions and in a stochastic environment. The sensitivity of the prediction
to the model parameters is highlighted. The high-fidelity model is used for predicting
the re-entry of the GOCE satellite and compared against historic operational predictions.
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Orbital-state propagation accuracy and efficiency are examined in Chapter 5. Specific-
ally, regularised orbital elements are compared against (classical) orbital elements and
Cartesian coordinates on various orbits. Chapter 6 deals with propagation of uncertain
initial conditions through an uncertain environment using verified numerical analysis.
The effect of orbital formulation and initial error computation on numerical stability of
verified solutions is investigated. Finally, Chapter 7 presents the major conclusions and
answers to the research questions, and recommendations from this dissertation.
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MODELLING AND ASSESSMENT OF

THE CURRENT AND FUTURE SPACE

SURVEILLANCE NETWORK

Geul, J., Mooij, E. and Noomen, R.

Published 1 in Proceeding of the 7th European Conference on Space
Debris, 2017

Two-Line Elements (TLEs) and Tracking and Impact Predictions (TIPs) resulting from the
Space Surveillance Network (SSN) are important for many Space Situational Awareness
(SSA) activities. The network consists of many different radar and optical stations, con-
tributing in either a dedicated, collateral or contributing fashion. For the majority of ob-
jects in low-Earth orbit (LEO) phased-array radar (PAR) stations are essential for main-
taining the satellite catalog (SATCAT). A survey of the current state of the SSN and a meth-
odology for simulating the network is presented. The current state is compared to a fu-
ture scenario with the new Space Fence System (SFS) included. The SSN is simulated as
a collection of current and hypothetical dedicated and collateral PARs. The location and
coverage of each sensor is investigated and modelled. Observations are generated for a
test rocket body in LEO. TLEs are estimated from the simulated measurements using the
Simplified General Perturbations (SGP4) model. The sensitivity of the fit residuals and
propagated accuracy with respect to eccentricity, inclination, and number of observations
and sensors is analysed. The orbit-determination solution is found to be most sensitive to
the eccentricity, and number of observations and sensors involved. The new SFS improves
the solution, especially for lower inclinations.

1Minor modifications have been made for this thesis.

15



2

16 2. SPACE SURVEILLANCE NETWORK

2.1. INTRODUCTION
The Space Surveillance Network (SSN) is responsible for tracking over 18000 objects in
the satellite catalog (SATCAT) 2. Its measurements are used for generating Two-Line Ele-
ments (TLEs) and Tracking and Impact Predictions (TIPs). These products are often the
only available source for many Space Situational Awareness (SSA) activities, such as con-
junction analyses and re-entry predictions. The SSN is the largest network of its kind and
consists of optical and radar sensors. The sensors contribute in various degrees, and are
classified as either dedicated, collateral or contributing. Most sensors are located on the
north-western hemisphere. The new Space Fence System (SFS), with two sites in the
Pacific Ocean and Australia, promises improved network geometry and detection cap-
abilities.

To properly assess the current and future configurations of the SSN, the technical
capabilities, coverage, roles, and location of individual sensors must be taken into ac-
count. Previous surveys of the SSN are a good starting point, but either lack complete-
ness in these aspects or are outdated [10, 28–31].

This chapter presents a survey of the most important sensors, focusing on sensor
type, role, coverage, and capabilities. The current network geometry is simulated. A
methodology for generating and editing observations will be presented.

For this study the tracking of rocket bodies in low-Earth orbit (LEO) is considered.
The focus is on phased-array radars (PARs), as they are primarily used for this purpose.
TLEs are estimated from these simulated observations for a test rocket body. The sens-
itivity of the solutions to several orbital and orbit determination (OD) parameters is in-
vestigated. Finally, through the addition of two new sensors, the future network geo-
metry is assessed.

The chapter is outlined as follows. First, the SSN is described in Sec. 2.2. Section 2.3
presents an overview of the simulation set-up. The results are presented and discussed
in Sec. 2.4. Finally, conclusions and recommendations are given in Sec. 2.5.

2.2. SPACE SURVEILLANCE NETWORK
The United States Air Force Space Command Space Surveillance Network (US AFSPC
SSN) is the largest governmental network. The network was initially developed as a
missile-warning network [10]. The network consists of plain radar, optical, and PAR
sensors, and can be grouped into dedicated, collateral, and contributing sensors. Ded-
icated sensors have space surveillance as a primary mission. Collateral sensors are con-
nected directly to the Space Surveillance Center (SSC). These sensors still have primary
(or even secondary) missions other than space surveillance. In the case of PARs, usually
a dedicated sub-array of elements (also fence) is operated for the detection and tracking
of objects. This fence covers only a portion of the total coverage and duty cycle, in paral-
lel to the primary mission. Finally, contributing sensors provide space surveillance only
upon request from the Joint Space Operations Center (JSpOC). The following examples
give a rough idea of how much these sensors contribute [30]: the Millstone rader con-
tributes 80 hours per week and the Haystack radar about one week every six. All four
mechanical radars at Kwajalein contributed a total of 138 hours in 2014. Some sensors

2https://www.celestrak.com/satcat/boxscore.asp, retrieved: April 3, 2017

https://www.celestrak.com/satcat/boxscore.asp
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Table 2.1: Overview of PARs sensors in the SSN. The sensor role (R) is either dedicated (D) or collateral (C). The
azimuth and elevation of the boresight of the radar face is indicated in degrees. Radar model is AN/FPS-132,
unless noted otherwise. Location is USA unless noted otherwise.

Name / location R Lat [°] Lon [°] Alt [m] Boresight [°]

Eglinc D 30.572 −86.215 36 180x45

Cleara C 64.300 −149.191 175 6,244x20

Fylingdales, GBR C 54.362 −0.670 258 5,125,245x20

Thule, GRL C 76.569 −68.299 424 117,357x20

Beale C 39.136 −121.351 117 186,246x20

Cape Coda C 41.752 −70.538 67 47,167x20

Cobra Danee , Shemya C 52.737 174.092 68 319x20

PARCS f , Cavalier C 48.725 −97.900 344 8x25

SFS1b , Kwajalein Atol D 8.723 167.719 7 0x90

SFS2b , Exmouth, AUS D −21.816 114.165 11 0x90

a The upgrades of the Clear and Cape Cod started in 2012 and 2013 and are to
be fully certified in 2017 and 2018, respectively [32].
b Both are model AN/FSY-3. SFS1 will become operation in 2018, while SFS2 is
expected to become operational in 2021 [33].
c AN/FPS-85, d AN/FPS-108, e AN/FPQ-16



2

18 2. SPACE SURVEILLANCE NETWORK

are only used exclusively for certain purposes, such as to track launches.
The two radar types currently used in the SSN are mechanical and PARs. Previously,

the SSN also included a multi-static radar system (more details below). PARs consist of
flat faces containing several thousands of antenna elements. Compared to mechanical
radars, PARs use electronic steering by shifting the phase of incoming signals. Due to
this, PARs can track numerous targets simultaneously and are suitable for detection [30].
PARs have a limited coverage (if less then three faces are used), narrowing beamwidth
away from the face normal, lower operating frequencies, and higher cost.

In the past Several authors have consolidated space-surveillance sensors [10, 28, 30,
31]. Although they provide valuable information, none prove to be a complete and suf-
ficient source for simulating the SSN. The SSN is rapidly changing, so even information
a few years old can already be outdated. For example, the Air Force Space Surveillance
System (AFSSS) and the Moron Optical Space Surveillance (MOSS) telescope were both
closed in 2013, the Antigua radar was relocated to Australia in 2015, and the Ascension
radar has become a dedicated sensor. Moreover, a categorisation into dedicated, col-
lateral, and contributing sensors is important. Sensor limitations, such as coverage and
range, have a large impact on the simulated observations. Lastly, instrument accuracy,
observation rate, tasking, and scheduling should ideally all be taken into account.

The AFSSS formed a major asset for the radar surveillance for LEO satellites. Also
known as the space fence, the AFSSS consisted of three continuous transmitter and six
receiver stations at 33° latitude, spanning approximately 70° in longitude across the US.
The fence was closed in August 2013. Construction of the AN/FSY-3 Space Fence Sys-
tem (SFS) began in 2014. SFS will consist of two sites and use S-band radar (2 GHz
to 4 GHz). Traditional PARs operate at around 400 MHz, with the exception of Cobra
Dane which has a nominal frequency of 1275 MHz [34]. The first and largest site is loc-
ated on Kwajalein Atoll in the Pacific Ocean and is expected to be operational in 2018.
The second and smaller site is located in Western Australia and is expected to be opera-
tional in 2021 [33] 3.The new fence will have a higher accuracy and detection capabilities
than current sensors, potentially increasing the number of tracked objects to more than
100000 [35].

An updated inventory of all SSN sensors is made, including all mechanical radars and
optical stations. The closing, relocation, and upgrades of sensors are taken into account.
The current role of each sensor is investigated, as well as a preliminary investigation into
sensor accuracy. Tab. 2.1 shows a selection of this survey for PARs.

The table reports the azimuth and elevation of the normal of the radar faces (i.e.,
boresight). The horizontal field of view (FOV) is generally reported to be 120° (thus a full
360° for three faces). For faces with a tilt of 20°, the resulting maximum elevation differs
amongst sources, most report either 80° or 85° of maximum elevation. The latter value
suggests a vertical FOV of 130°. However, it is assumed that the FOV of all PAR systems is
120° in horizontal and vertical direction per face, as they are roughly square. An excep-
tion is SFS, which receiving antenna array is more rectangular and spread in longitudinal
direction, for this sensor a FOV of 40° is assumed for the latitudinal direction. The loc-

3The main location on Kwajalein Atoll was declared operation in 2020. Near-term funding for the second site
in Australia is still uncertain. Current status retrieved from: https://breakingdefense.com/2021/08/ne
ar-term-funds-for-second-space-fence-radar-uncertain/, accessed: December 17, 2022.

https://breakingdefense.com/2021/08/near-term-funds-for-second-space-fence-radar-uncertain/
https://breakingdefense.com/2021/08/near-term-funds-for-second-space-fence-radar-uncertain/
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Figure 2.1: Space Surveillance network coverage for an object in a circular 600 km orbit.

ation of SFS1 was estimated from satellite images of the construction site. The location
of SFS2 is unknown, but is assumed to be at the Naval Communication Station Harold E.
Holt in Exmouth, Western Australia, although this is not confirmed.

The contract for the construction of a new AN/FPS-132 early-warning radar in Qatar
was awarded to Raytheon and is expected to be completed in 2021 [36]. Its exact location,
number of faces, and possible role in the SSN is not known.

2.3. SIMULATION SET-UP
The SSN is simulated for LEO. First, the configuration of the network is explained. Se-
cond, the test object is introduced, including a sampling strategy to randomise the or-
bits. Third, the set up of the orbit propagator is given. Fourth, the process of simulating
observations is detailed. Finally, the orbit determination is explained.

2.3.1. NETWORK CONFIGURATION
The coverage is dependent on the orbit of an object. Due to the FOV, the coverage grows
with the range, resulting in longer observation arcs. A coverage map is generated for a
test object in a 600 km orbit. The azimuth, elevation, and range is calculated of the test
object with respect to each station using the WGS84 reference ellipsoid 4 and coordinates
from Tab. 2.1. The observation vectors are then transformed to the local observation
plane, as determined by the boresight of each face. Only observations within the FOV
are kept.

Fig. 2.1 shows the location and coverage of the dedicated and collateral PARs for a
test object in a circular orbit of 600 km. The elevation and azimuth limitations of each
sensor have been taken into account. Single-, double-, and triple-face PARs are easily
distinguished. The primary mission of many of these sensors is providing ballistic mis-
sile warnings, which is obvious from the outward facing coverage of the stations along
the US border. The footprint of the two SFS sensors seems small in comparison to the

4http://earth-info.nga.mil/GandG/wgs84/index.html, accessed: April 7, 2017

http://earth-info.nga.mil/GandG/wgs84/index.html
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Figure 2.2: True and modelled Delta-K rocket body [37].

other sensors. This is due to projecting the (mostly) vertical coverage on the horizontal
plane, reduced latitudinal coverage, and choice of map projection (i.e., a tendency to
exaggerate sizes at higher latitudes).

The figure also shows how most PARs are located in North America and northern
Europe. In this configuration, the southern and eastern hemisphere are underrepresen-
ted. The two SFS sensors will improve geographic coverage.

2.3.2. TEST OBJECT

The Delta-K rocket body is selected as the test object. The object has frequently re-
entered and fragments have been previously recovered due to its high-temperature res-
istant components. The Delta-K was also subject for the 6 degree-of-freedom (6DOF) re-
entry simulator in [37]. As the aerodynamic model and databases for the Delta-K were
already derived, a 6DOF propagation of the test object is performed. Fig. 2.2 shows the
true and modelled Delta-K rocket body.

A nominal state has been derived from 33 re-entered Delta-Ks in the period of 2004 to
2017. For each object the orbital state 30 days prior to re-entry is taken. The variations in
semi-major axis, eccentricity, and inclination are shown in Fig. 2.3. A strong correlation
between semi-major axis and eccentricity can be observed, related to the circularisation
of the orbit due to the aerodynamic drag. Moreover, the objects have either a low or high
inclination, depending on the target orbits in which these rockets were launched (i.e.,
GTO or LEO, respectively). The groups are indicated by the different markers, where
the legend indicates the mean and standard deviation of the inclinations found in each
group.

Random initial states are sampled from each group equally. The eccentricity is sam-
pled uniformly within the observed bounds. The semi-major axis is obtained through a
linear correlation with the eccentricity. Finally, the inclination is sampled from a normal
distribution. The right-ascension of the ascending node and argument of perigee are
assumed to be uniformly distributed between 0 and 360°, and the initial true anomaly is
zero. The initial aerodynamic angles are assumed to be zero, while the rotational rate is
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Figure 2.3: Semi-major axis versus eccentricity grouped by inclination of 33 Delta-K rocket bodies.

taken as one revolution per minute about the pitch axis. Finally, variations in the atmo-
spheric density are modelled using a log-normal distribution with parameters µ? = 1.0
and σ? = 0.12 [37].

2.3.3. ORBIT PROPAGATION

Observations are generated from numerically propagated orbits for the varying initial
conditions. As mentioned previously, both the translational state and rotational state of
the object is propagated. The equations of motion are integrated using a Runge-Kutta-
Fehlberg 4(5) variable step-size integrator. The tolerance is set to εr el = εabs = 1×10−8.
The step-size is allowed to vary between a minimum and maximum value of 1×10−4

and 1×103 s, respectively. The EGM2008 gravity field model is used up to order and de-
gree 5 5.The atmospheric density is modelled using the NRLMSISE-00 model [38]. These
settings provided a good trade-off between accuracy and computational efficiency.

2.3.4. OBSERVATIONS

Realistically, observations are limited by a number of technical and physical constraints,
and are subject to numerous error sources. Not properly taking these into account would
lead to too many and too idealistic observations. Accurate modelling of individual sen-
sor capabilities, and scheduling is difficult based on the available information, and there-
fore considered beyond the scope of the current work. The main focus is on modelling
the network geometry and coverage.

The observation conditions are taken into account for each sensor, as previously ex-
plained in Sec. 2.3.1. An elevation cut-off of 5° is used for all sensors. A measurement rate
of 0.1 Hz has been chosen. The measurements are further edited to account for sensor
availability, viewing conditions, and other limitations. To introduce a stochastic com-
ponent in the amount of measurements, probabilities are introduced to discard meas-

5http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html, retrieved:
April 7, 2017.

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
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urements and passes. These probabilities are chosen by judgement of the author.An
individual observation has a 20 % chance of being rejected, while the probability for dis-
carding an entire pass is 25 % for collateral sensors only.

Measurement noise is simulated to account for sensor capabilities and atmospheric
disturbances. The noise is assumed to be unbiased Gaussian noise, with a standard de-
viation of 1 km in radial direction and 0.1° (1 km at r = 600km) in azimuth and elevation.

2.3.5. ORBIT DETERMINATION

The observations are used to fit TLEs using the Simplified General Perturbations (SGP4)
model [39]. Range, azimuth and elevation measurements are generated for each Monte-
Carlo (MC) sample for three consecutive days. The fit span consists of the first two days
of observations. These are in the form of range, azimuth, and elevation, which are edited
and used for orbit fitting. The test span consists of the third and final day and provides
unedited observations in inertial Cartesian coordinates, which are used for studying the
propagation accuracy of the solution.

2.4. RESULTS

The orbit determination is performed for 1000 randomly initialised orbits. The mean,
median, and standard deviation of the fit and test span are collected for each sample.

On average, the object is observed by 4.8 stations over two days, resulting in 1560
observations. The mean fit residual is 1.7 km, while the residuals for test period are on
average 5.8 km. The large error growth in the test period is due to the low orbit and
resulting atmospheric drag, and in line with actual results for one-day predictions of
TLEs [27].

2.4.1. SENSITIVITY

The rank correlation between the median residual and a number of parameters is com-
puted to obtain the sensitivity of the solution. Fig. 2.4 shows the result for the fit and
test span for 5 parameters: eccentricity, inclination, density, number of stations, and
number of observations, respectively. The results between the fit and test span are very
similar. The correlations are slightly larger for the test span, which are enhanced through
propagation and the resulting error growth.

The residuals are negatively correlated with the eccentricity and number of observa-
tions. Near-circular orbits are more difficult to estimate due to sensitivity of the argu-
ment of perigee near its singularity. The reduction of the residuals with the number of
observations is obvious. However, there is a strong positive correlation with the number
of stations. It is found that the spread of solutions increases significantly with multiple
stations. Some solutions are improved, while other are worsened. Improved perform-
ance can be achieved by only including observations from sensors, if the fit is improved.

Inside each inclination group the variation has little effect on the solution quality.
However, there is a small difference between the two groups, which will be discussed
next.
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Figure 2.5: Boxplot of the propagated residuals for one day for the current and future network configuration (C
and F, respectively) and the low- and high-inclined orbits (L and H, respectively).

2.4.2. SPACE FENCE

Fig. 2.5 shows the residuals of the test span for the two inclination groups (L and H,
indicating the lower and higher inclinations, respectively) and two observation scenarios
(C and F indicating the current and future scenarios, respectively).

It can be seen that the lower-inclined group has a slightly higher accuracy, but larger
spread. The difference is attributed to the larger spread in eccentricity for the lower-
inclined group. The additional sensors have a positive effect on the orbit solutions.
The mean of the lower-inclined objects is reduced with 650 m, while the higher-inclined
mean is reduced by 257 m. The larger difference for the low-inclined group is due to the
location of the new sensors closer to the equator.

More detailed modelling of these sensors will likely improve these results further, as
the SFS is expected to be more accurate than other PARs [33]. The spread of the solutions
is higher, especially for the higher-inclined objects, which is due to the small number
of observations resulting from short passes registered by the SFS sensors. The passes
are shorter than for traditional PARs due to the vertical boresight and narrow latitudinal
width of the fence. For a near-polar orbit the pass duration is only several minutes.
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2.5. CONCLUSIONS
The SSN is continuously changing. New sensors are added, as existing ones are relo-
cated, upgraded, or closed. Moreover, the participation of sensors can change over time.
An overview of the current configuration was presented for PARs, including the planned
SFS. The coverage of each sensor was investigated. Observations for a Delta-K rocket-
body reference object were generated for a randomly initialised orbit with varying ec-
centricity, inclination, and atmospheric density. From the observations the TLEs were
estimated.

The residuals of both the fit and test span are highly sensitive to the eccentricity,
number of observations, and number of sensors, while the inclination has minor influ-
ence.

The two additional SFS sensors provide a reduction of the median error in the solu-
tions, especially for low-inclined orbits. However, due to the shorter observation arcs,
the spread in solution quality is increased.

The study only took the network geometry into account. Further improvements can
be made by simulating the accuracy of individual sensors to a higher degree. The capab-
ilities are found to differ greatly across sensors. Specifically, the SFS promise a significant
improvement in performance over traditional PARs. So the observed benefits are likely
very conservative and much higher in reality. However, more details on the sensors are
required, and these are often not available.
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Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfor-
tunately, for two-line elements (TLEs) this is not available. This thesis presents a weighted
differencing method using robust least-squares regression for estimating many important
error characteristics. The method is applied to both classic and enhanced TLEs, compared
to previous implementations, and validated using Global Positioning System (GPS) solu-
tions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method
is found to be more accurate than previous TLE differencing efforts in estimating initial
uncertainty, as well as error growth. The method also proves more reliable and requires
no data filtering (such as outlier removal). Sensitivity analysis shows a strong relation-
ship between argument of latitude and covariance (standard deviations and correlations),
which the method is able to approximate. Overall, the method proves accurate, computa-
tionally fast, and robust, and is applicable to any object in the satellite catalog (SATCAT).

3.1. INTRODUCTION
The covariance describing the accuracy of a satellite state is an important input for ex-
ercises, such as conjunction analysis and re-entry predictions, which are increasingly
important for operating in today’s space environment. Through error propagation the
probability of potential collisions can be calculated and a spread of impact locations

1Minor modifications have been made for this thesis.
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and times anticipated. These efforts help significantly in managing and mitigating the
problem of space debris. As the population of objects in space increases, so does the
need to improve the knowledge of their states and associated uncertainty.

Two-line elements (TLEs) present the most comprehensive and up-to-date source of
Earth-orbiting objects and are key in many monitoring and analysis activities. Despite
their importance, they suffer from major drawbacks: they have limited accuracy, are mis-
tagged, miss manoeuvres, and perhaps most importantly, lack covariance information.
Although the TLEs are publicly available, their input observations and/or fit residuals
are not.

TLE differencing, amongst other methods, aims to estimate the missing covariance
information by propagating TLEs (using the Simplified General Perturbations 4 (SGP4)
model) to a common time and comparing them. This method presents a simple, robust
and fast way of obtaining an uncertainty estimate. Although this method has been de-
scribed in literature [40–43], its implementation differs greatly, and, moreover, there is a
lack of validation for important orbital regimes and little investigation into the sensitivity
to the parameters involved.

This thesis aims to present an extension of the general differencing method, offering
improvements to increase its accuracy and robustness. Moreover, the method is demon-
strated to work for both classic and enhanced TLEs and is validated for the GOCE satellite
using Global Positioning System (GPS) data during its final phase (no orbit control) be-
fore re-entry. The demanding environment presented by the very low-Earth orbit (LEO),
combined knowledge about GOCE and an increased availability of TLEs make GOCE
very interesting for this study.

The chapter is structured as follows. First, the current state of differencing tech-
niques is presented in Section 3.2, followed by the proposed methodology in Section
3.3. Next, Section 3.4 details the analysis. In Section 3.5, the results and validation of the
method are presented and discussed. Lastly, the conclusions are given in Section 3.6.

3.2. BACKGROUND
The lack of uncertainty information of TLEs has initiated numerous studies into the ac-
curacy of TLEs, methods for estimating their covariance, and improvements to their ac-
curacy [21]. There is a wide range of methods that allow the uncertainty information
to be estimated. These approaches differ greatly in difficulty, accuracy and applicabil-
ity. However, two classes can be distinguished: methods using only TLEs and methods
relying on additional data. Methods relying on external data, such as observations or
precise ephemeris (e.g., derived from satellite laser ranging (SLR) or GPS), are not fur-
ther considered. Unfortunately, such data are not available for the far majority of ob-
jects. Moreover, uncertainties derived for a few objects are hard to extrapolate across
the population or time, due to their dependency on, amongst others, satellite properties
(shape, size, etc.), orbit type (semi-major axis, eccentricity, inclination, etc.), variability
of the environment (solar, magnetic flux, etc.), configuration of the Space Surveillance
Network (SSN), and the models and determination routines of TLEs.

Changes to SGP4 and how TLEs are estimated have not been made public since the
official release of the “Spacetrack Report #3” in 1980, leaving users guessing to the cur-
rent implementation of SGP4. Since 2013 the way TLEs are generated has changed sig-
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nificantly for many objects. TLEs are now fit to pseudo-observations generated from ex-
trapolated higher-order orbital-theory solutions [26], as opposed to observations from
the SSN directly. These new TLEs (referred to as enhanced TLEs) are found to differ sig-
nificantly in terms of errors and behaviour compared to old TLEs (from hereon classic
TLEs), as will be demonstrated in Section 3.5. A more obvious distinction between these
two types is the argument of latitude (AOL) associated with their state at the TLE epoch.
The AOL of classic TLEs is around zero degrees (i.e. at the ascending node) and around
90 degrees for enhanced TLEs.

TLE differencing and TLE fitting only use the TLE data and are thus applicable to
any object for any epoch. The former technique propagates TLEs to a common epoch
and compares them, while the latter technique treats TLEs as pseudo-observations from
which an orbit is estimated, usually using a higher-fidelity special-perturbation (SP)
model [44–47]. The benefits of TLE fitting are that an (improved) initial estimate as well
as uncertainty information is obtained, which is convenient when further propagation
is done using other models than SGP4. Furthermore, it has been demonstrated that both
the initial error and error growth of TLE-derived states is significantly reduced compared
to original TLE states [44].

TLE differencing methods, on the other hand, are much simpler and faster: they
only rely on SGP4 and require no external models and orbit-determination routines.
Moreover, with the improved accuracy and propagation stability of enhanced TLEs the
need for different propagation methods is reduced. In Ref [40] a covariance generation
(COVGEN) approach by differencing multiple preceding TLEs with the most forward one
is recommended. In Ref [41] backward propagation is included and mentions several
significant features of the errors: a temporal and error bias is noted, as well as an asym-
metry of the error in time.

The temporal bias is the shift of the epoch of minimum error, while temporal asym-
metry refers to a difference in error growth between forward and backward propagation.

This bias was also demonstrated in Ref [48] (for the CHAMP and GRACE satellites us-
ing GPS solutions), showing a clear dependency on the solar cycle and orbital altitude.
In Ref [42] a detailed analysis of pairwise differencing and autocorrelation is presented,
while in Ref [49] the results against GPS solutions for the Stella satellite (near-circular
800km orbit) is compared. In Ref [50] the COVGEN approach is assessed using TLEs for
GPS satellites, which are compared against their known ephemerides. COVGEN provides
a good match in overall characteristics, but is insensitive to differences between forward
and backward error growth, which is noted in the work. In Refs. [43, 51] the work in
Ref [41] is extended, approximating the distribution as a Gaussian mixture. The critical
nature of outlier removal is mentioned for data generation and sensitivity of the uncer-
tainty to the AOL. In Ref [27] an analysis for many orbit regimes is presented and it is
identified that especially near-circular very low orbits (hp = 200−300km,e = 0.00−0.02)
pose a major challenge, due to the importance of drag. Table 3.1 presents a small subset
of the results found during that study, which demonstrates the difficulty of the afore-
mentioned regime. Unfortunately, this regime is critical for (human) spaceflight and
re-entering objects.

Despite almost two decades of investigation into TLE-differencing methods, several
issues remain. A major problem is that the exact implementation of the differencing al-
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hp [km] e [-]
0−0.02 0.02−0.2 0.2−0.7

200−300 30.0 5.4 6.0
300−400 3.5 2.8 4.8
400−500 2.4 1.2 4.3
500−600 1.0 0.6 3.6

Table 3.1: Position errors in kilometres for one-day predictions as function of perigee height (hp ) and eccent-
ricity (e) identified in Ref [27].

TLEs Differencing epoch

t0 t2t1 t3 t5t4 t6 t8t7 t9 tN

∆t5,2 = t5 − t2

∆t5,4

Evaluation epochs Propagation window

Analysis window

∆t5,7

Figure 3.1: Schematic overview of TLE differencing method.

gorithms differs greatly, often without proper justification and comparison against pre-
vious implementations. The choice of analysis epoch(s) and the analysis/propagation
window are often not properly justified. Moreover, the implementations have been doc-
umented using varying detail, making it hard to reproduce results in many cases. An-
other major shortcoming is the scarcity of validation studies. Especially, the absence
of validation for LEO is worrisome, considering its previously mentioned importance
and difficulty. Moreover, most implementations only consider forward propagation to a
single TLE epoch and do not consider the temporal bias. Furthermore, most studies con-
sider a single TLE (at zero epoch) as reference, but especially the presence of a temporal
bias sheds doubt on this practice. Lastly, it has not been investigated how this method is
impacted by enhanced TLEs.

3.3. METHODOLOGY
Differencing methods generally propagate states to a common epoch and compare them
to derive error samples. These methods are unique, as they only use TLE data and the
SGP4 model. By solely relying on publicly available data this method is applicable to any
(non-classified) object in the satellite catalog (SATCAT).

Figure 3.1 shows a schematic overview of the differencing process. Commonly a cer-
tain number of TLEs within a certain time period are considered at one time (TLEs at
t2, t4 and t7 in the example), which is determined by the propagation window (dashed
line). The choice of propagation window is discussed in Section 3.3.3. Within this win-
dow the TLEs are propagated to a common differencing epoch (usually another TLE). In
pairwise differencing, error samples are then obtained by creating pairs of TLEs at the
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differencing epoch. The following illustrates this:

ε= xn −xm (3.1)

where ε is the error sample created by differencing TLEs n and m, and x is an arbit-
rary state variable or vector of variables (discussed in Section 3.3.1). Note that n could
be any TLE, but often represents the TLE at epoch (not propagated). If n is the TLE at
epoch and paired with many m, n is considered the reference state. This assumption
will be discussed in more detail in Section 3.3.2. Similarly, m usually represents any of
the propagated TLEs.

TLEs can be propagated both forward and backward in time (see Section 3.3.4). In
the example the propagation window is symmetric about the differencing epoch (e.g.,
equal maximum forward and backward propagation time).

To create many error samples, multiple differencing epochs are considered, for in-
stance epochs t0, t1, . . . , tN as depicted in Figure 3.1. As mentioned before, a common
choice is to have the differencing epochs coincide with the TLE epochs. However, all
possibilities will be explored in Section 3.3.6.

Next to the value of the ε itself, the propagation time is another important property
of the error to consider. Throughout the thesis this is referred to as the propagation time
or age of the example.

The process is illustrated in Figure 3.1 and will be explained in further detail in the
coming sections.

3.3.1. REFERENCE FRAME
The reference frame for comparison is the RSW frame, composed of the radial, along-
track and cross-track directions. The RSW frame is a local frame and intuitive for astro-
dynamics applications. In this frame, the difference in position and velocity are com-
puted.

It is important to consider that RSW is a local frame, as the transformation between
the Earth-centered inertial and RSW-frame depends on the inertial state itself. Equation
(3.1) can be rewritten to

εRSW =T(xt )xn −T(xt )xm (3.2)

where T(xt ) is the transformation matrix between the inertial and RSW frame, which is
a function of the inertial state xt . xt can be any state (either n, m, or some other state),
but it needs to be the same for both matrices in Equation (3.2). It is intuitive to choose
the TLE with highest (expected) accuracy, but, considering the temporal bias, it might
not be as straightforward as choosing the nearest TLE.

3.3.2. MINIMUM ERROR AND REFERENCE
The consideration of the reference state in differencing is difficult, but important. The
choice of the reference state influences the results of the method: directly (the state xn)
and indirectly (through the transformation matrix xt ). Previous studies consider the
TLE at epoch to be the reference. This can be generalised to: the TLE that is closest
to the epoch of interest is considered as reference. Although this is perhaps an intuitive
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strategy, it is not always the best. In Ref [41] it is already demonstrated that the epoch of
minimum error does not coincide with the TLE epoch (i.e., there is a temporal bias∆t?).

Typical values for∆t? are in the order of 4-5 hours for orbital altitudes of 200−300km
(as will be demonstrated) and 1.5-2.5 days for 400−500km [48]. Considering the similar
or higher update frequency of TLEs, this can have a significant affect on any type of ana-
lysis.

A proper consideration of a reference epoch must thus account for this effect. It is
proposed that the reference state is derived as the weighted mean of multiple states sim-
ultaneously. This method is named weighted differencing (WD) as opposed to pairwise
differencing (PD). Further, an inversly-quadratic relation of the weights with the time
since the epoch of minimum error is proposed.

wi = 1
(t?i −t0i −t )2 (3.3)

w̄i = wi∑
i∈P

wi
(3.4)

where w̄i is the normalised weight of TLEi, t?i is the epoch of minimum error (which is
unknown), t0i the epoch of the i th TLE, and t the propagation time since t0i . The weights
are normalised, such that the sum of all weights equals one for evaluation at each single
epoch. The set P contains all TLEs under consideration, represented by the propagation
window in Figure 3.1.

As the epoch of minimum error of each individual TLE is unknown, it is assumed that
all TLEs share the same offset (or shift), such that:

∆t?i = t?i − t0i ≈∆t?∀i (3.5)

Due to this simplification Equation 3.3 becomes:

wi = 1

(∆?t − t )2
(3.6)

The value of ∆t? is dependent mostly on the orbit determination process (fit length,
etc.), which differs across orbital regimes and space-weather conditions [48]. It is expec-
ted that the assumption is valid within the analysis window.

The reference state and ∆t? are mutually dependent: ∆t? determines the weights
and in turn the reference state, from which error samples are computed, which determ-
ine ∆t?. This problem has to be solved iteratively. The initial guess ∆t? = 0 is proposed
as a starting point. The level of convergence for ∆t? determines the accuracy of the
method. A converging solution was obtained in all cases. Moreover, solutions were
found to converge within three iterations to below a relative tolerance of ε< 0.01, which
is the criterion used throughout this study.

The weighted reference state can be found using:

xr e f =
∑
i∈P

w̄i xi (3.7)
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where P includes all states within the current propagation window. The weighted ref-
erence state is then used as reference in the generation of both the samples and trans-
formation matrices (xt = xn = xr e f ), such that Equation (3.2) becomes:

εRSW =T(xr e f )xr e f −T(xr e f )xm (3.8)

3.3.3. ANALYSIS AND PROPAGATION WINDOW

The analysis window, as depicted in Figure 3.1, is the period from which the statistical
properties are determined. The size of the window presents a trade-off. On one hand,
the window should be large enough to allow for enough data for statistical significance,
while on the other hand, it should be small enough to minimise the influence of longer-
term effects, such as changes due to space weather (solar cycle) and orbit degradation.

The propagation window is a moving window within the analysis window. The dif-
ferencing epoch resides within it. All TLEs that lie within the propagation window are
propagated to the differencing epoch and compared. The size of the propagation win-
dow again presents a trade-off, depending on the application and object under consid-
eration. For instance, for LEO objects a much shorter propagation window should be
considered than for spacecraft at higher altitudes. Also the size of the propagation win-
dow can be influenced by manoeuvres. In previous studies windows up to 40 days have
been considered. For very low-Earth orbits that are heavily influenced by atmospheric
drag, the window could be as short as 4 days.

3.3.4. FORWARD/BACKWARD PROPAGATION

If the differencing epoch coincides with the upper bound of the propagation window, all
considered TLEs precede the epoch, resulting in only forward propagation.

In general, both forward and backward propagation should be used. Forward pro-
pagation paints only half of the uncertainty picture. In Ref [50] this is rightfully noted in
the assessment of the COVGEN method. Nonetheless, many previous studies have not
looked at backward propagation. Not including both directions wrongly assumes a tem-
poral symmetry (lack of bias and equal growth) of the error. This is false, as the epoch of
minimum error does not coincide with the TLE epoch and the rate of error growth can
differ significantly between backward and forward direction. It is therefore recommen-
ded to choose the differencing epoch at the centre of the propagation window.

3.3.5. MODELLING ERROR GROWTH

Regression, rather than data binning, is proposed for the estimation of the error growth
from the samples. In previous studies binning was used. In binning, samples are collec-
ted based on their propagation time. The mean of the bin is then computed. The size
of the bins is dependent on the number of samples and propagation-window size. Bin-
ning assumes no a-priori shape of the error-growth pattern. Data binning, however, is
not recommended for continuous problems, as it removes information from the prob-
lem. Moreover, the method is sensitive to the bin size and outliers. As will be shown, the
shape of the error growth can be easily modelled, so non-parametric methods are not
necessary at this point.
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The most common fitting technique is least-squares regression, of which many vari-
ants exist. Essentially, a model is fit through the data and the sum of squared residuals is
minimised. Unfortunately, least squares also suffer from outliers. Outlier removal can be
employed to edit the data for fitting or binning. A common test uses the (dimensionless)
studentized residual:

ri = |εi −µε|
σε

(3.9)

where µε and σε are the mean and standard deviation of the error samples, respectively.
A sample εi is discarded if the studentized residual is larger than a certain value rmax

(discussed below). The mean µε is included to account for any bias present. Note that
µε and σε were determined using all data including the outliers. After eliminating the
outliers, these properties need to re-evaluated and the data retested, until no further
outliers are detected.

A typical value of rmax is between 3 and 6 for normal-distributed data. Moreover, the
recommended value of rmax depends on how far away outliers are expected to lie from
the valid data. Ideally, the value of rmax should become smaller for each subsequent
outlier-removal iteration, as the furthest outliers are removed first. Overal, the determ-
ination of outliers is troublesome and is sensitive to the choice of rmax .

Instead a robust least squares (RLSQ) method is proposed that is able to handle data
with outliers directly. RLSQ is a form of weighted least-squares (specifically: iteratively
reweighted least squares), where the weights of the data depend on their residuals. The
residuals are obtained from the fit and are not affected by a bias. Also this method is
iterative, as the residuals determine the weight, the weight determines the fit, and the
residuals result from the fit. The weighting scheme used is the bi-square weight func-
tion [52]:

vi =
{ [

1− ( εi
k

)2
]2

for |εi | ≤ k

0 otherwise
(3.10)

where vi and εi are the weight and residual of sample i , respectively. The parameter k
is commonly a function of the standard deviation of the data σ. For normal distributed
errors k = 4.685σ is recommended [52].

3.3.6. DIFFERENCING EPOCH
The choice of differencing epoch has a big influence on the resulting estimation of the
uncertainty. Previously, mostly TLE epochs have been considered. This is an obvious
choice, especially when considering the TLE state at epoch as reference. However, this
strategy results in only a limited number of differencing epochs (as the TLEs within the
analysis window are usually few). Especially, if the propagation window is also short,
the number of TLEs for comparison will be small. Moreover, TLEs are usually periodic,
meaning that there will be gaps in the error samples. Lastly, the choice of the TLE epoch
as differencing epoch seems very arbitrary when considering the temporal bias.

Therefore, intermediate differencing epochs are generated, in the case of Figure 3.1
epochs t1, t3, t5, t6, t7, t9. The inclusion of intermediate differencing epochs will result
in more samples and a more evenly spaced distribution of errors.
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The choice and spacing of differencing epochs, however, should be made with care.
In Ref [51] a dependence of the error on the AOL u is noted. As TLE states commonly
share a similar AOL uc , additional differencing epochs are conservatively chosen at this
same AOL too, such that:

uk = uc +2πk (3.11)

where k is such that t0 < tk < t f and uc is the common AOL of the TLEs within the ana-
lysis window [t0, t f ].

The effect of the choice of AOL will be demonstrated in Section 3.5.6. However, for
now it is assumed that matching of the AOL to the (majority) of TLEs is the proper choice.

The differencing epoch tk can be derived from the AOL uk . However, here another
issue arises with respect to the consideration of reference epoch and state. As the AOL
is dependent on the state itself, many states propagated to the same epoch will slightly
disagree on the exact AOL. Similarly, all TLEs within the propagation window propagated
to have the exact same AOL, will slightly disagree about the current epoch ti . Therefore,
the true differencing epoch tk is obtained as a weighted mean of all epochs ti at the AOL
uk :

tk = ∑
i∈P

w̄i ti (3.12)

Practically, this results in the AOL becoming the independent variable for this ex-
ercise and time dependent. However, as the SGP4 propagator takes time steps as an
argument, a simple bisection rootfinding scheme is employed to find tk = f (uk ).

The result of this is a series of differencing epochs, for a given analysis period and
desired AOL. For a typical LEO satellite, this results in about 16 differencing epochs each
day, as opposed to only 1-2 epochs per day without TLE propagation.

3.4. EXPERIMENTAL SET-UP
In this section the details of the analysis are discussed. First, the proposed object of in-
terest is introduced, followed by the periods considered and windows chosen. Next, stat-
istical techniques and metrics are discussed. Finally, the analysis cases are introduced.

3.4.1. OBJECT
For the analysis ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE)
is considered. GOCE was a geodynamics and geodetic mission launched on 17 March
2009 and re-entered on 11 November 2013 2. This object is interesting for many reasons.

GOCE’s orbit is unique: it was in a very low near-circular orbit of only hp = 227km
and e = 9×10−4. Therefore, the orbit was heavily influenced by atmospheric and gravit-
ational disturbances. The satellite achieves a "drag-free" orbit by counterbalancing the
drag using electric propulsion. Even within the LEO regime, this orbit can be considered
an extreme case, as illustrated by Table 3.1.

2http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Facts_and_figures, accessed:
August, 17, 2016

http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Facts_and_figures
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Second, precise orbits derived from GPS observations are widely available through-
out the mission, against which the method can be validated.

Third, because of GOCE’s high interest, it was tracked frequently during its mission.
During the re-entry phase, the release frequency of TLEs even doubled from ∼2 to ∼4
per day.

3.4.2. ANALYSIS WINDOW
GOCE low altitude orbit was maintained using a continuous-thrust ion-propulsion sys-
tem, enabling a “drag-free” operational mode. The decay of the satellite started when
the Xenon fuel was depleted early in the morning of October, 21, 20133. The TLEs of the
decay phase to re-entry are analysed: from October, 21, 2013 to November, 11, 2013. The
analysis window is thus 21 days. A moving propagation window of four days (±2d) is
assumed.

TLEs are propagated to the argument of latitude (AOL) corresponding to the TLE set,
such that samples are created every orbit.

3.4.3. STATISTICAL TECHNIQUES
Different estimation techniques for the error growth are compared. The traditional bin-
ning technique is compared to regression techniques. Several regression models and
techniques are used. Unfiltered and filtered data (with outliers removed) are used to
highlight differences between regular and robust methods.

The binning method is used to group together TLEs of a similar propagation time.
The propagation window is subdivided into 15 bins of 6.4 hours (or roughly 4 orbits).
Polynomials are used as models of the errors and uncertainty:

p(ε) =
k∑

n=0
cnε

n (3.13)

where k is the degree of the polynomial.
The errors in the RSW frame are modelled as a multi-variate (correlated) normal dis-

tribution (MVN). Moreover, even through propagation the errors are assumed to remain
MVN within the propagation window considered. Such a distribution is fully defined
by the covariance matrix. For very high levels of uncertainty (e.g., resulting from long
propagation times), the errors tend to exhibit a banana shape distribution instead of a
spheroid. It is therefore important to properly evaluate the validity of the MVN assump-
tion.

Correlation matrices are reported instead of covariance matrices. Although covari-
ances are often reported in literature and are a common format for analyses, it can be
difficult to infer the strength of a dependency when the magnitudes and units of vari-
ances of the respective variables differ.

The joint distributions are also graphed, to fully assess the assumption of linearly-
correlated multi-variate normal distributions. Margins will be plotted using Kernel dens-
ity estimation, providing a continuous, but non-parametric model for distributions.

3https://directory.eoportal.org/web/eoportal/satellite-missions/g/goce, accessed: August
17, 2016

https://directory.eoportal.org/web/eoportal/satellite-missions/g/goce
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3.4.4. CASES
The analyses is divided into a number of test cases, to demonstrate/benchmark (various)
aspects of the methods, provide validation, and analyse the sensitivity of the method.
Each test case is represented by a separate subsection in Section 3.5. A brief overview of
the different cases with a short description and rationale is given below.

1. Overview of data: general overview of the TLE data. Analysing frequency, count,
and epochs of TLEs for the analysis window and dates prior. Providing insight into
relationship between TLEs and AOLs.

2. Error growth and minimum error: demonstrating temporal bias/asymmetry of
TLE error growth using the absolute position error. The error data are construc-
ted from comparison with GPS states. These data are estimated, to benchmark
different statistical techniques. Robust regression is compared to binning and tra-
ditional regression methods.

3. Error growth in RSW components: robust regression is applied to each of posi-
tion and velocity components, to demonstrate a good fit for all components and
different model orders necessary.

4. Weighted differencing: weighted differencing is compared against pairwise differ-
encing in terms of accuracy using GPS data for both enhanced and classic TLEs.
Several (sub)tests are performed. First, the initial uncertainty is estimated. Sec-
ond, the error and uncertainty growth are estimated. Third, the temporal bias is
estimated.

5. Correlations: next to the uncertainty of various components, the correlations be-
tween them are important. The correlations are estimated using the robust weigh-
ted differencing technique and compared with GPS. Together with Case 3, the co-
variance matrix is now fully defined.

6. Covariance sensitivity: the sensitivity of the covariance (standard deviations and
correlations) to the AOL is investigated to gain insight into TLE uncertainty and
the importance of the choice of differencing epoch.

3.5. RESULTS AND DISCUSSION
The results of the analysis for each of the different cases are presented in the following
sections.

3.5.1. OVERVIEW OF DATA
The map in Figure 3.2 gives an overview of the TLEs as a function of latitude and longit-
ude at the TLE epoch for a period of 42 days: 21 days for analysis and 21 days prior. The
color of each marker corresponds to the date.

The bar plot shows the number of TLEs for each day, the bars simultaneously func-
tion as a colorbar, relating the color of the markers to the date. The begin of the analysis
window is marked by the vertical blue line. Bars that are (partly) outlined in black indic-
ate the portion of TLEs associated with the ascending node (latitude ∼ 0◦).
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Figure 3.2: (top) Overview of TLEs as a function of longitude and latitude (top) and frequency of TLEs per day
(bottom), where the portion of TLEs associated to an argument of latitude close to the equator are indicated
by an outline of (part of the) bars.

The first thing to note is that the analysis window contains almost twice the number
of TLEs (101 versus 52). Second, it can be seen that almost all TLEs prior to October, 21,
2013 have a high latitude (∼ 90◦), after which there is an equal mix of TLEs associated
with u ≈ 0◦ and u ≈ 90◦ (50 versus 51, respectively).

As the number of TLEs is nearly doubled during the analyses window, compared to
the reference window, and mixed in latitude, three assumptions are made. First, the ad-
ditional TLEs are a result of additional tracking by Joint Space Operation Center (JSpOC)
of GOCE during the re-entry phase. Second, this additional tracking results in TLEs with
a distinct AOL. Third, the additional TLEs are of the classic type.

The latter suggests a mix of 50 classic TLEs and 51 enhanced TLEs for this period.
This presents a unique opportunity to analyse these two types simultaneously for the
same period.

3.5.2. ERROR GROWTH AND MINIMUM ERROR
The analysis of error growth provides a number of interesting insights: it can be used to
demonstrate the presence of temporal bias and asymmetry, but also practically indicate
when the TLE is on average the most accurate and, lastly, provide insight into the orbit
determination process.

Figure 3.3 shows the position errors of propagated TLEs with respect to GPS solutions
as a function of the propagation time as scattered data (blue markers). For this result
only the enhanced TLEs (eTLE) are shown. It is remarkable that the minimum error is
shifted ahead of the TLE epoch. The same analysis for classic TLEs (cTLEs) shows an op-
posite backward shift (as will be shown in Section 3.5.4), which is consistent with results
from previous studies. This further confirms the difference between the two types.

The forward shift of the minimum (temporal bias) can be explained by the orbit-
determination process of eTLEs, where future pseudo-observations are generated from
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Figure 3.3: Benchmark of different methods for estimating the error and (3σ) uncertainty of the TLE propaga-
tion errors during the reference period. Methods shown include least squars (LS, robust LS (RLS) and binning
(BIN). Two datasets were used, data with outliers removed (D) and all data, including the outliers (DO).

using SP orbit determination and propagation.
It can further be seen that the forward error grows much more gradual than back-

wards growth. This peculiar shape can also be explained by the fitting process. Like for
cTLES, a quadratic error growth is expected. However, (part of) the pseudo-observations
are derived from propagated states, which themselves are subject to error growth (due
to limited predictive abilities). As a result the point of minimum error is actually shifted
backwards (while remaining positive) from where one would expect it. This, perhaps
counter-intuitively, results in a more gradual forward slope, as the error growth is a su-
perposition of the uncertainty resulting from two separate sources.

The different estimation models are plotted as solid lines. A data/method naming
scheme is used to differentiate the combinations. The data is split into data with out-
liers removed (D) (criterion rmax = 3) and data with outliers (DO). Therefore, methods
starting with DO use unedited data. The methods used are (robust) least-squares regres-
sion (R)LS and data binning (BIN). The uncertainty bounds are also estimated using the
different techniques and shown as the solid filled areas enclosed by dashed lines of the
same color.

The DO/LS serves as a benchmark for other methods and clearly performs worst.
Only the error fit is shown, the resulting uncertainty was not plotted as it would fill the
entire window. Data binning without outliers (not shown), similarly performs badly. This
confirms the importance of data filtering for this type of analysis, as noted in Ref [43].

Next, the two methods using filtered data D/LS and D/BIN provide comparable res-
ults. D/LS produces a more smooth result and shows better behavior at the boundaries.
Not only does it produce a continuous solution, but the solution is also more smooth,
whereas D/BIN commonly suffers from jumps between adjacent bins.

The effectiveness of the robust variant is demonstrated when comparing D/LS and
DO/RLS. It is expected that with careful tuning the D/LS (D/BIN) results can be im-
proved. However, this is undesirable as it is very sensitive and dependent on the data.

Note that the orbit under consideration is very demanding, especially during the or-
bit decay phase. Moreover, data outside the main band clearly forms streaks, which is
due to a few bad TLE solutions. Another approach would therefore be to first identify



3

38 3. TLE UNCERTAINTY ESTIMATION

0

50

100

150

r 
[k

m
]

-2

-1

0

1

r R
[k

m
]

-2880 -1440 0 1440 2880
Propagation time [hr]

0

50

100

150

r S
[k

m
]

-2880 -1440 0 1440 2880
Propagation time [hr]

-0.5

0

0.5

r W
[k

m
]

Figure 3.4: Robust regression of the position errors, as the mean and (3σ) uncertainty bounds on the total
Euclidean error and as decomposed in the RSW frame.

and remove outlying TLEs. Doing so however, requires more statistical tests and tuning
of parameters.

Overall, a number of observations stand out:

• a temporal bias shifts the epoch of maximum accuracy either forward or backward
from the TLE epoch;

• the temporal asymmetry is much more pronounced for the enhanced TLEs, redu-
cing the backward propagation stability significantly;

• the above effects are present in both classic and enhanced TLEs, but opposite/dif-
ferent in nature;

• robust least-squares regression using the polynomial models is able to capture the
growth well, requiring no outlier removal of error samples and/or TLEs.

3.5.3. ERROR GROWTH OF RSW COMPONENTS
In the previous section the modelling of the absolute position error was investigated.
Commonly, both the position and velocity error are analyzed in their radial, along-track
and cross-track components. The absolute position and velocity errors are dominated
by the along-track position and radial velocity error, respectively. Due to the strong lin-
ear relationship between these two components, the errors in these components and
the absolute errors will be very comparable. Therefore, a good fit is expected for these
components. However, the goodness of fit of the remaining components remains to be
demonstrated.

Figures 3.4 and 3.5 show the results of the regression fit using the TLE errors with
respect to the GPS reference states in all components.

It can be seen that the behavior is significantly different per component. The top-left
plots show the absolute position and velocity, respectively.

The contributions by the along-track position (bottom left) and radial velocity (top
right) are evident. Moreover, the similarity between these two and the absolute errors
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Figure 3.5: Robust regression of the velocity errors, as the mean and (3σ) uncertainty bounds on the total
Euclidean velocity error and as decomposed in the RSW frame.

are evident. These components also show the strongest growth in error. Therefore,
these component should receive the highest priority in assessing the performance of
the method. There is great similarity between these two (their correlation is discussed
later) and the total position error, so previous conclusions apply here too.

The radial position and along-track velocity errors are also comparable and show a
complex curvature and a minimum uncertainty beyond the minimum total error. Al-
though error growth is visible, it is not nearly as strong as for the previously discussed
components.

The cross-track error of both position and velocity demonstrates a near-constant un-
certainty and follow a simple mean trend (linear and quadratic, respectively). There is
hardly any growth on this time scale.

It was assumed that the uncertainty bounds of the error are symmetric about the
mean (e.g., equal distance of the lower and upper bound to the mean). It can be seen that
this assumption is reasonable, except for the cross-track velocity error. The errors are
clearly more concentrated above the mean. The exception is ignored due to the resulting
overestimation of the upperbound and minor influence of this component on the overall
error.

From these results it is obvious that the degree of the regression model of each com-
ponent has to be carefully selected. As a general rule-of-thumb, the error uncertainty is
modelled as an order less than the error trend. Table 3.2 gives an overview of the degree
of the regression models used.

Note that a third-degree fit is enough to model all errors. It was found that for classic
TLEs for some components the degree could be reduced further. However, this min-
imum degree was not further looked into.

Overall, the method is also able to accurately estimate the error and uncertainty
growth of the individual RSW components. The following additional conclusions can
be drawn:

• the error trend and growth are completely dominated by the along-track position
and radial velocity components;
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Degree Degree

Error Residual Error Residual

r 3 2 v 3 2
rR 3 2 vR 3 2
rS 3 2 vS 3 2
rW 1 1 vW 2 1

Table 3.2: Overview of error regression modelling degree.

σrR σrS σrW σvR σvS σvW

[km] [km] [km] [ms−1] [ms−1] [ms−1]

Enhanced

G 0.19 2.1 0.18 2.4 0.21 0.15
P 0.068 1.6 0.028 1.9 0.08 0.036
W 0.089 2.4 0.033 2.9 0.11 0.018

Classic

G 0.39 4.4 0.19 5.3 0.44 0.25
P 0.44 6.6 0.22 8.0 0.39 0.20
W 0.46 6.2 0.14 7.6 0.46 0.13

Table 3.3: Initial standard deviation of errors at TLE epoch, derived from GPS (G), pairwise (P), and weighted
(W) differencing.

• varying orders of polynomial regression models are able to estimate error trends
and growth for all components.

Next, the ability of the method to estimate this from differenced TLE data is investig-
ated.

3.5.4. WEIGHTED DIFFERENCING
Table 3.3 shows the standard deviation of the error at the TLE epoch. It can be seen that
both methods are fairly close to the truth. The largest differences are in the uncertainty in
the cross-track state. This confirms findings in Ref [50] in estimating the error (growth)
in this component. Fortunately, the error is smallest and most stable in this direction.
Differences in rW and vW will therefore not be discussed further.

For the remaining components, the next largest difference is in the radial position
and along-track velocity for eTLEs. These two components are underestimated by about
50 %. In both cases WD performs about 25 % better. Still the difference with the GPS
results is not small. Nonetheless, the error in these components are still quite small
compared to the absolute error (about 8 %). For cTLEs the results are closer and more fa-
vorable. The radial position uncertainty is 12−15% overestimated, while the along-track
velocity is underestimated by 10 % only by PD.
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Figure 3.6: Comparison of fit of the along-track position error and uncertainty for enhanced TLEs.

The two major components (along-track position and radial velocity) show better
results. Especially for WD, which conservatively overestimates each component for each
type of TLE. PD on the other hand underestimates the errors for eTLEs by 25 %, while
overestimating (more than WD) for cTLEs. Overall, the results can be considered accept-
able, but not exact, depending on the analysis. It has to be restated that the data is very
noisy. Better results are expected for different orbital regimes, where the SGP4 model
provides a better match with the perturbations present.

Figures 3.6 and 3.7 show the error growth of the along-track position, estimated us-
ing the previously selected robust regression method for GPS and the standard (PD) and
improved (WD) estimation methods for enhanced and classic TLEs, respectively. The
error is plotted as the solid line, while the uncertainty (lower and upper) is shown using
dashed lines of the same color. PD, here, should not be confused with previous imple-
mentations (which used binning), as regression was applied to all data sets in this com-
parison. The difference between binning and regression was previously demonstrated.
Moreover, recall that the absolute position, absolute velocity, along-track position, and
radial velocity produce nearly identical results.

The figure highlights the similarity between PD and WD, and the good match with
GPS data. This further demonstrates the capabilities of the RLS regression method. For
enhanced TLEs, the error and bounds of GPS and WD match almost exactly. For classic
TLEs the bounds of WD lie outside the GPS bounds, which is of course favorable.

Moreover, it can be seen that both methods are able to estimate the temporal bias
well. Table 3.4 gives an overview of the exact figures of the temporal bias as obtained
from the minimum absolute position error. As RLS provides a continuous parametric
solution, the minimum point is easily found through differentiation. The magnitudes of
the bias are more than 6 and 4 hours for eTLEs and cTLEs, respectively. Considering the
update frequency of several times per day this is quite significant. Especially in the case
of eTLEs it is thus common for older TLEs to be more accurate now when propagated
than more recently released TLEs. It has to be noted that for the majority of objects and
also the period preceding re-entry, the update frequency is lower (e.g., twice per day).

Both WD and PD are able to estimate the sign and magnitude satisfactory. Especially
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Figure 3.7: Comparison of fit of the along-track position error and uncertainty for classic TLEs.

GPS PD WD
[min] [min] [min]

Enhanced 375.3 314.2 372.1
Classic −258.8 −292.2 −251.3

Table 3.4: Temporal bias estimates using different methods.

WD is almost spot on for eTLes and off by about 3 % for cTLEs.
Comparing enhanced and classical TLEs, it can be seen (Table 3.3) that overal the

enhanced TLEs are much more accurate, having an uncertainty of roughly half across
all components. Moreover, the uncertainty growth in forward propagation is reduced
significantly. This clearly demonstrates the improved process of generation of enhanced
TLEs. Their reduced accuracy and sharp growth in backwards propagation should be
minded for applications that rely on this, such as splicing, where a (near) continuous
state solution is created by combining the results from a series of TLEs.

This shows that:

• both methods are able to estimate the error uncertainty at TLE epoch reasonably
well;

• WD perform better and tends to overestimate the uncertainty for the most import-
ant components;

• the error growth is much better approximated than the instantaneous uncertainty;

• the temporal bias is of the same order as the mean update interval;

• WD is able to very accurately estimate the temporal bias.

Next, the correlations between the components are analyzed.
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Figure 3.8: Correlation estimation using weighted differences (WD) compared to GPS of enhanced TLEs.

3.5.5. CORRELATIONS

Thus far only the errors and uncertainty have been analysed for all position and velo-
city components. However, these components are highly related. Such a strong correl-
ation was demonstrated (in Figures 3.4 and 3.5) between the along-track position and
radial velocity, and radial position and along-track velocity. To complete the uncertainty
model, the correlations have to be taken into account. For analyses, like error propaga-
tion and sampling, these relations can have a significant influence on the outcome.

Figures 3.8 and 3.9 show joint and marginal distributions of the MVN distribution
for enhanced and classic TLEs respectively. The marginal distributions are shown on
the diagonal and are visualized using kernel density estimation. The joint distributions
are shown as scattered data at the non-diagonal positions. The GPS and WD results are
shown in blue and red, respectively. Note that each joint distribution is shown twice, as it
remains identical when axes are switched. Thus only the joint distributions on one side
of the diagonal need to be considered.

The first thing to note is that WD is able to estimate correlations for both TLE types.
Visually it can be argued that for classic TLEs the best overlap with the GPS data is ob-
tained. However, this does necessarily hold true, as will be demonstrated shortly. For en-
hanced TLEs the WD results show narrower bands overlapping the GPS results for most
combinations. This, however, does not affect the correlations. The cause is attributed
to narrow margins, which indicate underestimation of the radial position, along-track
velocity and both cross-track components (diagonal positions 1, 3, 5 and 6). Moreover,
the margins of the along-track position and radial velocity (diagonal positions 2 and 4)
are properly estimated. This again confirms the results of the standard deviations as
presented in Table 3.3.

The strong correlations between the along-track position and radial velocity, and ra-
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Figure 3.9: Correlation estimation using weighted differences (WD) compared to GPS of classic TLEs.

dial position and along-track velocity, are approximated well for both TLE types. They
present the only strong correlations present in both GPS- and weighted-differenced data.

Lastly, the WD distributions tend to have stronger central peaks in the marginals, but
nonetheless the distributions appear somewhat symmetric and approximately Gaus-
sian.

The actual values of the estimated and true correlation matrices are shown in Tables
3.5 and 3.6. The top half presents the correlation matrix obtained using GPS differenced
TLEs, while the bottom half presents the correlations found through weighted TLE dif-
ferencing.

For enhanced TLEs, looking at Table 3.5, it can be seen that the variables that are only
very weakly correlated (values below ±0.10), the correlations tend to be overestimated
on average by a factor 3-4. At the same time the relationship between the radial position
and along-track velocity is underestimated by 30 %. The inverse relationship between
the along-track position and radial velocity, however, is spot on. Lastly, although the
magnitudes could be estimated better, it is important to note that the sign of the correla-
tion is always estimated correctly (with the exception of ρrW ,vW ). This seems to indicate
that correlation information could be potentially recovered from TLE data alone.

For classic TLEs, looking at Table 3.6, similar conclusions can be drawn. The mag-
nitudes of (weak) correlations are overestimated, while the very large ρrR ,vS is underes-
timated significantly. It is likely that propagation affects the correlations. Unlike previ-
ously, the signs of the weaker correlations are not even estimated correctly.

From this it has to be concluded that:

• correlations are difficult to estimate, where eTLEs show better behavior than cTLEs;

• no very strong (false) correlations were introduced nor correlations present ig-
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GPS rR rS rW vR vS vW

rR 1.00 0.08 0.06 -0.11 -0.93 -0.16
rS 0.08 1.00 -0.09 -1.00 0.05 -0.08
rW 0.06 -0.09 1.00 0.08 -0.11 -0.17
vR -0.11 -1.00 0.08 1.00 -0.03 0.10
vS -0.93 0.05 -0.11 -0.03 1.00 0.14
vW -0.16 -0.08 -0.17 0.10 0.14 1.00

WD rR rS rW vR vS vW

rR 1.00 0.33 0.05 -0.34 -0.67 -0.49
rS 0.33 1.00 -0.56 -1.00 0.01 -0.34
rW 0.05 -0.56 1.00 0.56 -0.58 0.27
vR -0.34 -1.00 0.56 1.00 -0.01 0.35
vS -0.67 0.01 -0.58 -0.01 1.00 0.07
vW -0.49 -0.34 0.27 0.35 0.07 1.00

Table 3.5: GPS (top) and weighted (bottom) differenced (WD) derived correlation matrices for enhanced TLEs.

GPS rR rS rW vR vS vW

rR 1.00 0.04 0.25 -0.02 -0.98 0.06
rS 0.04 1.00 0.04 -1.00 -0.09 -0.11
rW 0.25 0.04 1.00 -0.04 -0.30 0.00
vR -0.02 -1.00 -0.04 1.00 0.07 0.12
vS -0.98 -0.09 -0.30 0.07 1.00 -0.03
vW 0.06 -0.11 0.00 0.12 -0.03 1.00

WD rR rS rW vR vS vW

rR 1.00 -0.06 -0.13 0.06 -0.63 -0.22
rS -0.06 1.00 0.12 -1.00 0.01 -0.12
rW -0.13 0.12 1.00 -0.13 0.13 -0.07
vR 0.06 -1.00 -0.13 1.00 -0.01 0.13
vS -0.63 0.01 0.13 -0.01 1.00 0.16
vW -0.22 -0.12 -0.07 0.13 0.16 1.00

Table 3.6: GPS (top) and weighted (bottom) differenced (WD) derived correlation matrices for classic TLEs.
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Figure 3.10: Uncertainty and correlation of classic TLEs as a function of AOL for GPS (solid lines) and weighted
differenced (dashed lines) results. Legend entries are sorted to corresponding value at AOL = 0°.

nored by the method.

Combining Tables 3.3, 3.5, and 3.6, the covariance matrix is now fully defined. This
information is important input to many types of error analyses, such as collision avoid-
ance (COLA) and entry-point predictions [37]. Note that also for the uncertainty the
estimation at epoch proved slightly worse than the estimation of the growth. This clearly
indicates a sensitivity at the TLE epoch, where values are small and switch sign. There-
fore, the sensitivity of the correlations is investigated further in the next section.

3.5.6. COVARIANCE SENSITIVITY

Intermediate propagation epochs were introduced to create a more evenly distributed
set of error samples. It was chosen to generate samples at fixed positions in the orbit,
rather than a fixed time interval, to eliminate any effect this might have on the error. In
this section the sensitivity of the error as a function of AOL is investigated.

Figure 3.10 shows the standard deviation of the position and velocity samples in the
RSW components and their correlation coefficients. This analysis has been performed
for both types and results were found to be similar. Previously, the classic TLEs showed
worst results for the estimation of the correlation coefficients. Hence the results for this
type are shown. The standard deviations are normalised with their maximum magnitude
for each component. The plot shows both GPS (solid lines) and weighted TLE differ-
enced (dashed lines) solutions. The cross-track components are not shown. As for previ-
ous exercises, TLE differencing could not be used to obtain satisfactory approximations
of these components.

First, the amount of variation of both correlation and uncertainty is quite striking.
A variation in uncertainty of more than 35 % can be observed in the radial position and
along-track velocity. Similarly, the along-track position and radial velocity vary signific-
antly in uncertainty throughout the orbit.

For the correlation the case is perhaps even more variable. Correlations between
most variables change from moderately correlated to uncorrelated and even switch sign,
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depending on the position in the orbit. These (estimated) correlations should be used
with caution.

Secondly, these trends and extrema are captured relatively well using WD. The most
notable deviation is the correlation between radial position and along-track velocity. The
true correlation (almost 1) is underestimated by almost 35 %, as already demonstrated by
Table 3.6. Although the match between GPS and WD seemed very poor judging from this
table, the right plot of Figure 3.10 tells a different story.

Again, the patterns are likely linked to the SGP4 propagation model, which captures
the mean motion, and throughout an orbit creates predictable points of fluctuating er-
rors in the state components. As also the direction of error of the components are pre-
dictable, the errors are also correlated.

A clear distinction between weakly and strongly correlated variables is present. The
first class seems to vary significantly, change sign and average out over one orbit. The
strongly correlated variables are almost invariant to the AOL.

Lastly, it is interesting to note that the enhanced TLEs are commonly reported at
around the ascending node. The uncertainty in the components is much lower there.
Detailed analysis between enhanced and classic TLEs should take this into account.

Overall, the following can be concluded:

• uncertainty and correlations vary greatly throughout the orbit;

• the trend of the correlations is captured rather well, despite the poor instantan-
eous estimation;

• the correlation between radial position and along-track velocity is underestim-
ated, regardless of argument of latitude.

3.6. CONCLUSIONS
Enhanced TLEs offer improved uncertainty and error-growth properties. Even after the
switch to enhanced TLEs the classic type remain in use, likely for additional tracking
purposes. It is, however, simple to distinguish between the two in the presence of a mix
by looking at the AOL.

The presence of a temporal bias was demonstrated and found to be of the order of
the TLE update interval. Moreover, an asymmetry between forward and backward pro-
pagation was demonstrated. Both effects can have great influence on the propagation
errors. This holds true especially considering their complete opposite nature in classic
and enhanced TLEs. It is paramount to take these effects into account for any applic-
ation relying on propagation of TLEs using SGP4, such as stitching TLEs for creating a
continuous state-time solution.

Even for applications that employ the state at TLE epoch, it can be beneficial to con-
sider the temporal bias and evaluate the state at the epoch of minimum mean error in-
stead.

Robust least-squares regression was proposed as an alternative to data binning. This
method has been shown to provide a continuous solution. This allows easy evaluation
of the temporal bias. Moreover, it handles unedited data very well, reducing the need for



3

48 3. TLE UNCERTAINTY ESTIMATION

TLE and data pruning and tuning of parameters. Furthermore, component-error ana-
lysis has shown that this approach extends well for all position and velocity components.

TLE differencing can accurately estimate important error characteristics, like the
temporal bias, error uncertainty and growth. Even correlations can be estimated to some
degree. The correlations seem very sensitive to variations in argument of latitude. This is
likely true for other parameters. Nonetheless, there is a clear distinction between strong
and weakly correlated variables. The former vary and average out over one orbit, while
the latter remain invariant.

Weighted differencing was compared against pairwise differencing. WD uses tem-
poral bias information to determine the reference state. It has been shown to perform
better than PD on all exercises. Especially the consistent (marginal) overestimation of
major error components makes the technique favorable.

In conclusion, weighted differencing method using robust least-squares regression
was proposed to improve previous TLE differencing methods. The proposed method
was shown to be superior on all tests, consistently providing better approximations of
the GPS differenced solutions.

The method is validated for the GOCE satellite during the period of investigation.
Due to the low orbital altitude and increased TLE-update frequency further investigation
is necessary in order to extend these conclusions to LEO in general. However, even for
lower TLE-update rates, the method is expected to still perform satisfactorily, due to the
intermediate evaluation epochs and the resulting near-continuous error data in time.
Also, considering that the orbit considered presents a limit case in many respects, it is
expected that the method will perform well in orbits in which errors are less and the
SGP4 model provides a better fit.

The method is useful for the error analysis of a set of TLEs itself and in providing
uncertainty input for other types of analysis. The method is computationally fast, can
be applied to any object in the SATCAT, and deals well with noisy data. It is thus very
suitable for demanding applications, such as conjunction analysis, that require frequent
and fast processing for a large number of objects.
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Satellite reentry predictions are used to determine the time and location of impacts of de-
caying objects. These predictions are complicated by uncertainties in the initial state and
environment models, and the complex evolution of the attitude. Typically, the aerody-
namic and error propagation are done in a simplistic fashion. Full six-degrees-of-freedom
modeling and attitude control is proposed for studying the historic reentry case of the
Gravity field and steady-state Ocean Circulation Explorer satellite. Improved error mod-
eling and estimation of the initial state and atmospheric density are introduced for both
global positioning system and two-line elements states. A sensitivity analysis is performed
to identify the driving parameters for several models and epochs. The predictions are com-
pared against tracking and impact predictions, and predictions by the European Space
Agency Space Debris Office. The performed predictions are consistently closer to the true
decay epoch for several starting epochs, while providing narrower windows than other
predictions with higher confidence.

NOMENCLATURE

a = acceleration, m/s2

CD , CS , CL = aerodynamic drag, side, lift force coefficient

1Minor modifications have been made for this thesis.
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Dmax = Kolmogorov-Smirnov test statistic
d = dummy sensitivity parameter
dp = particle collision diameter, m
E = specific orbital energy, m2/s2

F = cumulative distribution function
FK = ballistic coefficient scaling factor
F̂ = sample cumulative distribution function
fC = aerodynamic bridging function
I = inertia tensor, kgm2

i = orbital inclination, rad
K = control gain matrix
K = ballistic coefficient, m2/kg
K n = Knudsen number, kgm2

k = number of uncertainty parameters
L = characteristic flowfield dimension, m
m = mass, kg
N = total number of samples
NS = number of search curve samples
N⊂ = sample size of subset
NR = number of sub-sampling repeats
n = mean motion, rad/s
P = specific work, J/(kgs)
p, q , r = roll, pitch, and yaw rates, rad/s
Q = state weighting matrix, various
R = control weighting matrix, 1/(Nm2)
r = position, m
Sr e f = reference area, m2

Si = first-order sensitivity index
ST i = total-order sensitivity index
T = control torque, Nm
u = control vector, Nm
v = velocity, m/s
x0 = nominal state vector
xcom = location of the center of mass, m
αa = angle of attack, rad
βa = side-slip angle, rad
β? = TLE BSTAR drag term
ε = tolerance
θ̇ = Earth’s rotational rate, rad/s
λ = mean molecular free path length, m
µ = normal mean
µ? = log-normal mean
ρ = atmospheric density, kg/m3

σa = bank angle, rad
σ = normal standard deviation
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σ? = log-normal standard deviation

4.1. INTRODUCTION
Reentry predictions are important for determining the impact locations and times of
decaying objects. Fragments often survive reentry and impact Earth, especially in case
of large spacecraft with high-temperature resistant components. These predictions can
be distinguished by their forecasting period into long term to medium term, short term,
and break-up and survival predictions. For each type the tools, underlying methods, and
analyses are distinct [29].

Short-term predictions range from several days to hours before reentry, starting from
around 200 until 80 km altitude, when break-up commonly occurs. Tracking and Impact
Predictions (TIPs), publicly released by the Joint Space Operations Center (JSpOC) 2, are
the most common type, but short-term predictions are regularly performed by various
actors [53–56]. Short-term predictions commonly report the expected decay epoch and
the associated uncertainty as a percentage of the remaining orbital lifetime (for TIPs gen-
erally ±20% or more). The uncertainty in remaining time can be used to compute the
potential footprint along the satellite ground-track. Short-term reentry predictions are
invaluable for many activities, such as tracking, informing relevant authorities, avoiding
false detection by missile-warning systems, attributing liability resulting from impact,
etc. [57]

Despite their importance, there is little research into these types of predictions, des-
pite many promising developments in related fields. Areas of potential improvement are
identified as spacecraft and aerodynamic modeling, statistical uncertainty propagation,
and atmospheric modeling. The former two areas are the main focus of this chapter and
explained in more detail below. The influence of atmosphere modeling is highlighted in
the chapter and uncertainty estimation techniques for the atmospheric density are in-
vestigated. Improvements in thermospheric density and wind modeling [48, 58–60] and
new and better forecasting of space-weather proxies [61] can benefit reentry predictions
significantly, but are not further treated.

Improving the spacecraft and aerodynamic modeling can provide more accurate res-
ults, while reducing the number of assumptions. Commonly, the object is modelled as
point-mass under the influence of aerodynamic drag deceleration, neglecting lift and
side-force contributions [29]. Performing these predictions is far from straight-forward.
The drag coefficient should account for changes in the flight environment [62, 63], which
is either not included [53, 55] or through simplified analytic relations [54]. Likewise,
changes in attitude orientation and motion should be accounted for, but it is difficult
to predict all possible modes. This especially holds for slender bodies, where stable and
tumbling modes create a myriad of different drag (and lift) scenarios. Finally, it is im-
portant to account for the relative likelihood of the possible modes to fully assess the
final probability distribution.

All these effects can be accurately modelled in full six-degrees-of-freedom (6DOF)
simulations, improving the fidelity of the simulations, while reducing the number of

2https://www.space-track.org/#/decay, retrieved: August 8, 2017

https://www.space-track.org/#/decay
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assumptions on the evolution of the satellite’s attitude. 6DOF simulations are already
employed in spacecraft-oriented break-up and survival analysis, such as Spacecraft At-
mospheric Reentry and Aerothermal Breakup (SCARAB) by the European Space Agency
(ESA) [64], and dispersion analysis of planetary entry vehicles [65]. Statistical 6DOF
reentry simulations have been previously applied to reentry predictions of Delta-K rock-
et bodies [37]. Compared to point-mass predictions, the 6DOF simulations are more
computationally expensive and require the object’s shape, mass, and inertia properties
to be known in greater detail.

The modeling and quantification of the uncertainties present in the state and mod-
els, and subsequent propagation of these uncertainties, can further improve the accur-
acy of predictions. Many methods assume a static symmetric uncertainty of ±20 % on
the predicted decay epoch [54, 66]. Little research has been performed into the validity
of these assumptions for a statistically significant number of objects over a long period.
One study found that the true empirical confidence of the TIP window was dependent
on the time to decay (TTD) and varied from 93 % to 98 % for 180 objects between 1987
and 1990 [57]. A study of reentry campaigns for 15 objects found that 5 % of the pre-
dictions fell outside the ±20 % window used by ESA [54]. The true dispersion bound-
aries and asymmetry are most sensitive to the atmospheric density and the initial rota-
tional state [37], which can vary significantly per reentry. Statistical methods, such as
Monte-Carlo (MC) propagation, transform the initial uncertainty under the influence of
stochastic models to obtain a final desired distribution, providing more accurate inter-
vals and insight into the shape of the distribution [37, 66]. The drawback is that perform-
ing these statistical predictions is considerably more computationally expensive. Sev-
eral promising techniques offer more efficient error propagation [67–69] and sampling
strategies [70], but are not further investigated at this stage.

This thesis aims to investigate the effect of uncertainties in short-term reentry pre-
dictions by studying the past reentry of ESA’s Gravity field and steady-state Ocean Circu-
lation Explorer (GOCE) satellite using statistical error propagation and improved space-
craft and uncertainty modeling. GOCE was a geodynamics and geodetic mission launched
on 17 March, 2009 and re-entered on 11 November, 2013 3. The attitude of GOCE was
controlled with magnetorquers. However, the reentry of GOCE is not considered a con-
trolled de-orbit, which involves targeting low-risk impact zones. GOCE’s reentry took
significantly longer than initially predicted, due to its aerodynamic shape and controlled
attitude, and much lower atmospheric densities than predicted. The reentry was previ-
ously studied by the ESA/ESOC Space Debris Office (SDO) [71] and Japan Aerospace Ex-
ploration Agency (JAXA) [56]. Furthermore, the reentry of GOCE is particularly interest-
ing, because of the availability of many different measurements, such as TLEs, additional
tracking by JSpOC, dedicated radar trackings, GPS solutions, and accurate solutions for
the attitude. All these data allow for benchmarking the models and approaches.

For the reentry of GOCE, SDO implemented a number of improvements to their pre-
diction method, including an asymmetric uncertainty window and by accounting for the
transition from controlled to uncontrolled attitude motion. The latter was simulated by
changing the drag coefficient after the attitude controller was assumed to be saturated,

3http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Facts_and_figures, retrieved:
August 8, 2017

http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Facts_and_figures
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effectively using two values of the drag coefficient. For controlled and stable motion the
drag coefficient was estimated from GPS and ground station tracking data, while the drag
coefficient for uncontrolled motion was obtained as the mean value from 6DOF simu-
lations using SCARAB [71]. The latter drag coefficient was held constant. It is not clear
whether the systematic errors in the atmospheric density at the time of reentry and the
dependency on the flight regime were properly accounted for. The atmosphere models
are generally not unbiased for the lower regions [38, 72] and especially not during the
period of GOCE’s reentry.

This thesis proposes statistical reentry predictions of GOCE using an improved ver-
sion of the 6DOF reentry simulator as described in [37]. The simulator is extended by
modeling the attitude controller. Further improvements are made to uncertainty mod-
els and estimation techniques for the initial translational state and atmospheric density.
Initial conditions (both state and uncertainty parameters) are derived from both Global
Positioning System (GPS) data and Two-Line Elements (TLEs). A sensitivity analysis is
performed to identify the driving uncertainty parameters and their time dependency.
Finally, the predictions are benchmarked against TIPs and SDO predictions.

The chapter is structured as follows. First, the trajectory simulator, including pro-
pagation, spacecraft, and environment models, is detailed in Sec. 4.2. The error pro-
pagation and the process of uncertainty modeling and estimation for both GPS-derived
and TLE-derived states is presented in Sec. 4.3. In Sec. 4.4, the results of several reentry
prediction cases and sensitivity analysis are presented and discussed. Lastly, the conclu-
sions are given in Sec. 4.5.

4.2. SPACECRAFT PROPAGATION AND MODELING
The explanation of the complete reentry prediction simulator is split up into the (de-
terministic) propagation of a single trajectory (this section), and the modeling, estima-
tion, and propagation of errors (Sec. 4.3).

4.2.1. EQUATIONS OF MOTION

The reentry simulator consists of a 6DOF trajectory propagator. The translational and
rotational state are propagated using a numerical integrator. The complete state is rep-
resented by 13 state variables: the position and velocity in inertial Cartesian coordinates,
the attitude quaternion, and the rotational rate in the body frame.

The equations of motion are integrated using a Runge-Kutta-Fehlberg 4(5) variable
step-size integrator. The tolerance is set to εr el = εabs = 1×10−8. The step-size is allowed
to vary between a minimum and maximum value of 1×10−4 and 1×103 s, respectively.
The EGM2008 gravity field model is used up to order and degree 5 4. Due to a desire
to perform sensitivity analysis of many input parameters a simulation involving Monte-
Carlo propagation of uncertainty, the computational cost a an individual run needs to
be limited. The chosen settings were found to provide a good trade-off between accur-
acy and computational efficiency. Finally, the aerodynamic accelerations are modelled
using:

4http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html, retrieved:
August 8, 2017.

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
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Figure 4.1: Schematic of the 44-panel GOCE aerodynamic model, which includes the origin and principal axes
of the satellite physical coordinate frame (SPCF).

Table 4.1: GOCE satellite properties as of October 28, 2013.

Symbol Value Unit

xcom [2.536, 0.004, 0.001] m
m 1002.152 kg

I

 173.0 20.2 −1.7
20.2 2750.5 −1.1
−1.7 −1.1 2723.2

 kgm2

aA =−1

2

 CD

CS

CL

 Sr e f

m
ρv2

A (4.1)

where CD , CS and CL are the aerodynamic force coefficients, which will be defined in
Sec. 4.2.3. Sr e f is the reference area of the satellite, normalized as a unit area of 1 m2 in
both the generation of the coefficients and Eq. (4.1). The spacecraft mass m is given in
Sec. 4.2.2. Lastly, v A is the velocity with respect to the atmosphere and ρ the atmospheric
density, modelled using the NRLMSISE-00 model [38].

4.2.2. SPACECRAFT MODEL

GOCE is modelled as a combination of 44 flat panels, as illustrated in Fig. 4.1. The mass,
center of mass, and inertia properties of GOCE are provided by ESA for the entire mission
duration 5.These properties remained constant after October 28, 2013, and are used for
the simulation. The position of the center of mass xcom , the mass m, and the inertia
tensor I in the satellite physical coordinate frame (SPCF) are shown in Table 4.1.

5https://earth.esa.int/web/guest/-/goce-mass-property-file-8276, retrieved: August 8, 2017.

https://earth.esa.int/web/guest/-/goce-mass-property-file-8276
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Table 4.2: Summary of aerodynamic regimes and flow theories.

Regime Knudsen number (Kn) Theory

Free molecular K n ≥ 10 Diffuse reflection
Transitional 0.001 ≤ K n < 10 Bridged
Continuum K n < 0.001 Mod. Newtonian

4.2.3. AERODYNAMIC MODEL
Throughout the decay and reentry the aerodynamic forces and moments need to be ac-
curately modelled. To this end an aerodynamic database is constructed that relates aero-
dynamic force and moment coefficients to the spacecraft attitude (in terms of angle of
attack αa and side-slip angle βa) and the Mach number, M .

However, as the spacecraft re-enters Earth’s atmosphere, the atmospheric properties
(reflected by the Knudsen number), and therefore the aerodynamic behavior, change
substantially. In space (> 100km) the atmospheric density is low and interaction be-
tween the gas molecules is rare, while at lower altitudes inter-molecular collisions start
playing an important role. Different aerodynamic theories are thus required to model
the aerodynamics. To accommodate this, three separate flow regimes are considered.
The transitional regime provides a bridging between the free-molecular and continuum
regimes.

These three regimes are distinguished by the Knudsen number:

K n = λ
L = mpp

2πd 2
pρL

= M
NA

p
2πd 2

pρL
(4.2)

K n ≈ M̄
NA

p
2πd̄ 2

pρL
(4.3)

where λ is the mean molecular free path length and L the characteristic flowfield dimen-
sion. λ can be expressed as a function of the density, ρ, particle collision diameter, dp ,
and particle mass, mp . In turn, mp can be expressed as the ratio of the molar mass M
and Avogradro’s number, NA . The formula is simplified by assuming the mean values
M̄ = 28.9kgkmol−1 and d̄p = 367pm [37].

The aerodynamic coefficients can then be generated and used depending on the re-
gime. This approach is summarized in Table 4.2. For the free-molecular flow, a diffuse re-
flection model is used to describe the molecule-surface interaction [73]. The continuum
flow is modelled using the modified-Newtonian theory, a local-inclination method suit-
able for hypersonic aerodynamics [37, 74]. A routine is implemented to derive coeffi-
cients for both free-molecular and continuum regimes. A coefficients database for the
free-molecular flow was previously derived for GOCE and used to verify the implement-
ation [75]. Note that shadowing is not taken into account, as its effects are considered
negligible for the GOCE panel model. A selection of the coefficients is shown in Fig. 4.2.

The drag and lift force, and pitch-moment coefficients (Figs. 4.2a-b, c-d, and e-f, re-
spectively) are shown as a function of the angles of attack and sideslip (Figs. 4.2a, c, e,
and b, d, f, respectively). FMV indicates the free-molecular solution obtained by an ex-
ternal source [75]. The figure highlights the differences between the free-molecular and
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Figure 4.2: Selection of aerodynamic force and moment coefficients for GOCE for the free-molecular (FM)
regime and continuum (Cont) regime, including an externally produced source FMV for verification.

continuum-flow regimes. It can be seen that the drag coefficient is almost half for the
continuum flow regime, while the lift coefficient is substantially higher. The two free-
molecular solutions (F M and F MV in the figure) show good agreement, demonstrating
correct implementation of the coefficient database generator.

The intermediate transitional regime is modelled using a bridging function between
the coefficients of the other regimes. Any force or moment coefficient CX can be found
using the following relation [76]:

CX = fC (K n)(CXF M −CXcont )+CXcont (4.4)

fC (K n) = sin2
(
π

3+ log10 K n

8

)
(4.5)

where fC (K n) is the bridging function, and has a value of 0 at K n = 0.001, 1 at K n = 10,
and in between zero and one for K n ∈ (0.001, 10).

This particular bridging function is often referred to as the “Shuttle” bridging func-
tion and was deduced from Space Shuttle data [76]. A “universal” bridging function does
not exist and differs per object. The sine-squared form of Eq. (4.5) is a common choice,
as it provides a smooth transition between the free-molecular and continuum-flow re-
gimes. Moreover, it is preferred over the erf-log form, which approaches the bridging
coefficients of zero and one asymptotically, making the sine-squared form more com-
putationally efficient. The function is typically tuned by its two parameters, in this case
a1 = 3/8 and a2 = 1/8, which are typical values found for the Shuttle, but also in line with
other (blunt) bodies [77].
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Figure 4.3: Example of the bridging function value for a typical reentry trajectory of GOCE.

Figure 4.3 shows the value of the bridging function throughout a typical reentry for
GOCE. It can be seen that between 160 and 80 km the spacecraft is in the transitional re-
gime. The altitude is not strictly decreasing, due to the oblate surface model. The decay
epoch is achieved at 80 km, so the trajectory is not simulated into the continuum regime.
Nevertheless, the continuum coefficients are important for the transitional regime.

4.2.4. CONTROLLER
GOCE was equipped with magnetorquers to stabilize its attitude. These torquers contin-
ued to function throughout the reentry. For a slender body like GOCE, a stable attitude
has significant impact on the reentry predictions.

In Fig. 4.2 it can be seen that the drag coefficient for αa = βa = 0° is 3.15, compared
to CD = 13.24 for αa = 90°. For a constantly tumbling motion around the pitch axis the
effective mean drag coefficient would be 9.41, almost three times higher than in a stable
configuration. Not accounting for the controlled attitude would result in predictions that
significantly underestimate the reentry epoch.

The maximum step size of the integrator needs to be limited to the control frequency
to ensure proper response. The total number of integration steps is therefore increased,
causing additional round-off errors and computational cost. Nevertheless, a control fre-
quency of 10 Hz is chosen. The frequency was empirically found to provide a reasonable
trade-off between control stability and computational cost.

A simple linear-quadratic regulator is implemented to simulate the torque control of
GOCE. The input to the controller is the deviation from the nominal rotational state ∆x:

∆x = [∆p,∆q,∆r,∆αa ,∆βa ,∆σa]ᵀ (4.6)

representing full-state feedback. Note that the attitude is represented here by the aero-
dynamic anglesαa ,βa , andσa . For propagation, however, quaternions are used instead.

The nominal state at epoch is assumed as follows:

x0 = [0, −n, 0, 0, 0, 0] (4.7)
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Table 4.3: Diagonal elements of the controller input and output weighting matrices Q and R.

Elements Value Unit

[q11, q22, q33] [0.2−2, 0.03−2, 0.02−2] nrad−2 s2

[q44, q55, q66] [0.15−2, 0.06−2, 0.15−2] rad−2

[r11, r22, r33] [20−2, 40−2, 20−2] nN−2 m−2

Table 4.4: Gains for the LQR controller.

p q r αa βa σa

x 1.00×101 0 0 0 3.92×10−3 -1.60×10−2

y 0 1.33×102 0 2.67×10−2 0 0
z 0 0 1.00×102 0 −3.17×10−1 3.92×10−2

where the only non-zero value is the pitch rate with respect to the inertial frame, as-
sumed to be equal to the mean motion, n. The control outputs are torques around the
body-frame axes. The control response u is defined as a function of the deviation multi-
plied by the control gains:

∆u = [Tx , Ty , Tz ] =−K∆x (4.8)

where K is the control gain matrix, which needs to be determined.
The sensitivity of the controller is determined by input and output weighting ma-

trices Q and R, respectively. Only the diagonals of the matrices are non-zero, the values
are derived from maximum values observed during normal operational modes for GOCE
and drag-free mode specifications are given in Table 4.3 [78].

Linearized equations of motion are used, and longitudinal and lateral control are
decoupled [79]. The control gain matrix K is obtained by numerically solving the matrix
Riccati equation using Q and R along a nominal 3DOF reentry trajectory.

The optimal gains remain nearly constant throughout the trajectory. Only for lower
altitudes (< 60km) there is some variation in the optimal gains. As the reentry simula-
tions are stopped at 80 km, the gains are assumed to stay constant throughout the tra-
jectory. Table 4.4 lists the control gains obtained.

4.3. ERROR MODELING, ESTIMATION, AND PROPAGATION
Error propagation is central to performing statistical reentry predictions. Error propaga-
tion, much like regular propagation, solves an initial-value problem, represented by the
non-linear transformation of an initial uncertainty under the influence of a stochastic
environment over time.

There are different error sources. A distinction can be made between state and model
uncertainties. The initial state is uncertain due to uncertainties in the original obser-
vations, the imperfect models that relate observations to state variables, and approx-
imations made in the orbit determination process. The environment and acceleration
models are inherently deficient, and are further affected by errors in model inputs. For
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reentry predictions the uncertainty in atmospheric density outweighs all other model
contributions [80]. It is therefore the only model uncertainty considered.

4.3.1. ERROR PROPAGATION
The final decay-time distribution is the uncertainty of main interest. The initial uncer-
tainty is propagated to obtain a final uncertainty using MC. The uncertainties are mod-
elled as a deviation on top of the nominal state and sampled using a pseudo random-
number generator (PRNG). The final probability density function (PDF) is estimated us-
ing kernel-density estimation to obtain a non-parametric solution of the decay-time dis-
tribution.

The convergence of the final distribution is investigated. A simulation with 10000
samples is performed starting at 48 hours prior to the reentry. Six different sub-sample
sizes N⊂ are defined as test cases, where N⊂ =100, 200, 400, 1000, 2000, 4000 samples.
For each value of Ns a random sub-sampling of the total number is done to obtain an
estimate of the final PDF using kernel-density estimation (KDE). Depending on the sub-
sample size N⊂, the sub-sampling is repeated Nr times: Nr =3200, 1600, 800, 320, 160,
96, respectively. These values were empirically derived and found to provide a sufficient
convergence on the test statistic.

To investigate the convergence of the simulation as a function of the number of
samples, a two-sample Kolmogorov-Smirnov (KS) test has been performed. The KS test
is a non-parametric statistical test to assess whether two sample sets are of the same con-
tinuous distribution, by comparing the cumulative distribution function (CDF) of each
set. The KS test statistic is computed as the maximum absolute difference between the
CDFs:

Dmax = max
x

(|F̂ (x)−F (x)|) (4.9)

where Dmax is the test statistic, and F̂ and F present the CDF of the sub-sample and full
set, respectively.

The KS test statistic Dmax is a measure of how well a subset approaches the full set.
For each sub-sampling a different F̂ is obtained. Therefore, for each sub-sample size N⊂
the test can be performed Nr times, providing an estimate of the Dmax value. Figure 4.4
shows boxplots of Dmax as a function of N⊂. As expected, the variability and mean go
down with increasing number of samples. These values asymptotically approach zero,
as the number of samples goes to infinity. The trend suggests that an exponentially in-
creasing number of samples is required for a linear increase in accuracy.

A 5 % error in the CDF would result in a maximum error of 45 minutes or 1.7 % of TTD
near the median. At this stage the width of high-probability confidence interval is such
that in relation the error is considered acceptable. N⊂ = 1000 exceeds the maximum
error exactly once (Dmax = 5.5% in all 320 comparisons). The median error for 1000
samples is merely 2.6 % (or 24 minutes in median shift, less than 0.9 % of TTD).

4.3.2. UNCERTAINTY IN THE TRANSLATIONAL STATE
The translational uncertainty is modelled as a six-dimensional multi-variate normal dis-
tribution (MVN), expressed in the orbital frame as the radial, along-track, and cross-
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Figure 4.4: Range of Kolmogorov-Smirnov (KS) test values for MC sample size.

Table 4.5: Initial standard deviation of errors of GPS-derived state.

σrR σrS σrW σvR σvS σvW

cm cm cm mms−1 mms−1 mms−1

1.03 12.7 1.31 0.15 0.009 0.016

track position and velocity. The orbital frame is a local frame, in which the errors behave
quasi-normal. Standard deviations and means are considered for each dimension, as
well as correlations between parameters. The MVN is defined by the mean vector and
covariance matrix. These values and how they are estimated is different for GPS-derived
and TLE-derived initial states and treated separately next.

GPS-DERIVED INITIAL UNCERTAINTY

For the GPS-derived state, an estimate of the uncertainty is obtained from the orbit de-
termination residuals. The orbit determination was performed in Ref. [81]. The corres-
ponding residuals of November 9, 2013 were taken to obtain the standard deviations and
correlations as reported in Tables 4.5 and 4.6, respectively.

TLE-DERIVED INITIAL UNCERTAINTY

The process of estimating uncertainty from TLEs is different. For TLEs, observations or
residual information is not publicly available. Fortunately, there are several methods to
estimate this uncertainty [21]. Methods that rely on external data (e.g., raw observations

Table 4.6: Correlation matrix for initial state obtained through POD from GPS.

Component rR rS rW vR vS vW

rR 1.00 0.80 -0.03 -0.80 -0.93 -0.06
rS 0.80 1.00 -0.00 -1.00 -0.54 -0.05
rW -0.03 -0.00 1.00 0.00 0.04 0.02
vR -0.80 -1.00 0.00 1.00 0.55 0.05
vS -0.93 -0.54 0.04 0.55 1.00 0.06
vW -0.06 -0.05 0.02 0.05 0.06 1.00
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Figure 4.5: Overview of TLEs as a function of longitude and latitude (a) and frequency of TLEs per day (b),
where the portion of cTLEs are outlined.

or GPS/SLR solutions) are not considered, as these data are not available for many ob-
jects.

For this study a newly developed robust weighted differencing (WD) method is used,
as presented in Chapter 3 [82]. It differs from traditional differencing methods in that
the TLE at epoch is not considered as truth. Instead, a weighted truth is estimated using
multiple TLEs. The method is also robust, removing the need for outlier removal and
filter tuning. Moreover, the method only requires TLEs and Simplified General Perturb-
ations (SGP4) model for propagation, so it is generally applicable to any object in the
satellite catalog (SATCAT).

Figure 4.5a gives an overview of the TLEs as a function of latitude and longitude at the
TLE epoch for a period of 42 days prior to reentry, which is a reproduction of Fig. 3.2 [82].
The color of each marker corresponds to the bars in Fig. 4.5b.

The bar plot in Fig. 4.5b shows the number of TLEs for each day. Bars that are (partly)
outlined indicate the portion of TLEs associated with the ascending node (latitude ∼ 0◦).

The period after October 21, 2013 is considered as the reentry period. It has almost
twice the number of TLEs (101 versus 52) and an equal mix of TLEs associated with a lat-
itude of ≈ 0◦ and ≈ 90◦ (50 versus 51, respectively). The additional TLEs are assumed to
result from additional tracking by JSpOC. It is shown that these are, in fact, classic TLEs
and enhanced TLEs, respectively, which exhibit significantly different error characterist-
ics, as described in Chapter 3. Therefore, they will be treated separately.

Table 4.7 shows the standard deviation of the error at the TLE epoch as obtained by
the WD method. Comparing the two TLE types, it can be seen that the uncertainty in
eTLEs is roughly half that of cTLEs.
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Table 4.7: Initial standard deviation of errors at TLE epoch, derived using the weighted differencing technique
from Chapter 3.

Types σrR σrS σrW σvR σvS σvW

km km km ms−1 ms−1 ms−1

eTLE 0.089 2.4 0.033 2.9 0.11 0.018
cTLE 0.46 6.2 0.14 7.6 0.46 0.13

Table 4.8: Bounds on uniform rotational uncertainty [78].

Type Unit Roll Pitch Yaw

Attitude rad ±0.15 ±0.06 ±0.15
Rates mrads−1 ±0.20 ±0.03 ±0.20

4.3.3. UNCERTAINTY IN THE ROTATIONAL STATE

The uncertainty in the rotational state is not estimated separately for GPS and TLEs.
Rather, the rotational state is assumed to be distributed uniformly within the maximum
values for the drag-free mode and given in Table 4.8 [78].

As the angles are very small it is acceptable to sample uniformly directly within the
reported bounds. However, for larger bounds direct uniform sampling of the angles be-
comes invalid. As sampling in spherical coordinates causes roughly an equal number
of samples per elevation, the samples will tend to get more concentrated towards the
poles. In such a case the samples should be drawn uniformly over a sphere, as described
in Ref. [37].

4.3.4. UNCERTAINTY IN THE ATMOSPHERIC DENSITY

The atmospheric density is modelled using the NRLMSISE-00 model. The atmospheric
density has a log-normal uncertainty. The mean and variance depend on the altitude
and space-weather conditions. The uncertainty for the 120−200km altitude range was
derived in Ref. [37] and found to be µ? = 0.98 and σ? = 1.13. The uncertainty for the
200−400km altitude range is µ? = 0.93 and σ? = 1.17 [38].

Note that the mean here is an average mean and can vary significantly depending
on space-weather conditions. In Ref. [72] several atmospheric models are compared for
altitudes ranging from 150-240 km. It is found that the mean is typically given within
±10% and a standard deviation around 15%.

To sample the uncertainty in the atmospheric density, the values of µ? and σ? need
to be determined. As with the initial translational state uncertainty, there are several
ways of determining these values. In Ref. [37], values from literature were used. How-
ever, these values are conservative, as they are derived for many different objects and
conditions simultaneously. Determining the true parameters on a per-object, or per-
reentry basis, will provide more narrow and tailored uncertainty distributions. For this,
object-specific data are required.

The mean density error µ? is estimated for each starting epoch and each input set
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Figure 4.6: Estimated mean density error µ? for GPS-based density estimates.

separately. The atmospheric bias is sampled at the start of the simulation and remains
fixed throughout a single simulation. The atmospheric uncertainty σ? is assumed to
be 1.082 for GPS and derived from analysing the GPS-derived accelerations in the next
section. Due to the limited temporal resolution of TLE-derived density ratios (see Sec.
4.3.4), σ? is assumed to be 1.13, in accordance with the uncertainty found for several
test-objects [37].

GPS-DERIVED DENSITY ESTIMATES

To estimate the atmospheric density uncertainty parameters, GPS-derived non-gravita-
tional accelerations are used, as obtained in Ref. [81]. These accelerations are assumed
to primarily consist of the aerodynamic contribution. Modelled aerodynamic accelera-
tions are computed using attitude solutions, the NRLMSISE-00 atmospheric model, and
the aerodynamic database. The differences between the modelled and observed acceler-
ations are explained by (i) random errors in the density modeling, (ii) systematic errors
in density models, and (iii) systematic errors in the aerodynamic models. The contri-
butions of (ii) and (iii) are coupled through Eq. (4.1) and estimated jointly as the mean
density error µ?. The contribution of (i) is estimated as σ?.

Figure 4.6 shows the 10-minute averaged density ratios. The estimate of σ? is ob-
tained by subtracting the 10-minute averaged signal from the 10 Hz signal. The value for
the entire analysis period is used and estimated to be 1.082, as mentioned earlier. It is
assumed that it is representative for the reentry period as well.

For the estimates of µ? the average over one orbital revolution was taken at several
epochs prior to reentry: 168, 96, 72, 48, 24, 12, 6, 3, and 2 hours. These values are in-
dicated in Fig. 4.6. The method allows for very accurate predictions of the atmospheric
uncertainty.

TLE-DERIVED DENSITY ESTIMATES

The drawback of the GPS-derived density estimates is that it relies on accurate and fre-
quent GPS solutions. GPS data are generally not available or existent for most objects in
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the SATCAT.
For TLE states the ratio of the observed and modelled ballistic coefficients is derived

instead, which is similar to the ratio of observed and modelled aerodynamic accelera-
tions, and can be used to estimate the mean density error µ?. The density variability
σ?, however, cannot be estimated using this method, due to the low frequency of the
TLEs (in the order of two per day). This value needs to be taken from literature instead.
Moreover, the mean density-error obtained using TLEs is considered less accurate, as it
presents the average over a longer period.

The ballistic coefficient is already reported asβ? as part of the TLEs. During orbit de-
termination, the estimate of β? includes the difference between the true and predicted
atmospheric density by the simple exponential density model of SGP4, as well as other
modeling deficiencies. Estimates of β? often have large spikes and negative values, and
are therefore not used in this study.

Instead the ballistic coefficient is obtained through retrofitting. A history of the semi-
major axis is used to determine the rate of change of the orbital energy. The energy and
semi-major axis are related through the following equation for an unperturbed two-body
problem:

E = v2

2
− µ

r
=− µ

2a
(4.10)

where E is the energy per unit mass. The work done by the atmosphere can be approx-
imated by [83]:

P A = v ·aA =−1

2
Kρn3r 3

(
1−2

θ̇

n
cos i

)
(4.11)

where K is the ballistic coefficient, P is the work, a the acceleration, θ̇ the Earth’s rota-
tional rate, i the inclination, and n the mean motion.

The energy at each state is computed and numerically differentiated to compute the
rate-of-change of the energy, Ė . By assuming that the atmospheric drag dominates other
non-conservative perturbations, Eq. (4.11) can be equated to Ė , from which an estimate
of K can be obtained.

Figure 4.7 shows the result of the ballistic coefficient retrofitting for both TLE types
(solid lines), as well as the ballistic coefficients reported by the TLEs (dashed lines). The
β? from the TLEs was related to the ballistic coefficient K using the following formula 6:

β? = ρ0K

2
(4.12)

Discrepancies between ballistic coefficients obtained using retrofitting and those re-
ported by the TLEs originate from errors absorbed by β? during the orbit determination,
and differences between NRLMSISE-00 and the atmospheric model of SGP4. Overall,
eTLE solutions appear to be much more consistent and stable. For cTLEs, a similar trend
(with a clear bias) between cβ? and cRF can be observed until November 5, 2013. For the
remaining period this difference diverges, due to increasing differences between the two

6http://celestrak.com/columns/v04n03/, FAQs: Two-line Element Set Format, retrieved: August 8,
2017.

http://celestrak.com/columns/v04n03/


4.4. RESULTS

4

65

Figure 4.7: Ballistic coefficients for both TLE types: enhanced (e) and classic (c). For each type, the coefficients
are obtained from two sources: as estimated using retrofitting (RF) and as reported in the TLEs (B).

atmosphere models. For the same (final) period the retrofit is seen to fluctuate greatly,
due to increasing variations in TLE accuracy. The mean, however, remains stable. Espe-
cially for cTLEs, it is recommended to use smoothing to obtain a better estimate of the
ballistic coefficient at the cost of further reducing the temporal resolution.

The modelled ballistic coefficients are obtained from the aerodynamic model for the
same period, and evaluated at the TLE epochs. A constant attitude αa = βa = 0° is as-
sumed, while the speed ratio is derived from the TLE states. The ratio of the retrofit and
modelled ballistic coefficients is used to estimate µ?. The value has to be obtained by
smoothing the results over several TLEs, resulting in µ? = 0.810 for the entire reentry
period under consideration.

4.4. RESULTS
First, the effect of the controller and atmospheric modeling is investigated in Sec. 4.4.1.
Second, the differences between the GPS-based and TLE-based reentry predictions are
explored in Sec. 4.4.2. Third, the statistical uncertainty propagation is compared against
simplified uncertainty propagation methods in Sec. 4.4.3. For these first three studies,
GPS-based predictions starting at 48 hours prior to reentry are used as a baseline with
1000 samples. Fourth, the sensitivity of the predictions to the uncertainty parameters
for various models and starting epoch is investigated in Sec. 4.4.4. Fifth, GPS-based pre-
dictions are made at several epochs prior to the true decay epoch. These predictions are
compared with the multiple historical TIP messages and SDO predictions in Sec. 4.4.5.

4.4.1. CONTROLLER AND ATMOSPHERIC MODELING
To investigate the effect that the modeling has on the simulation results several cases
are ran and compared. These cases focus on the comparison of modelled, ideal, and
no control (Cases A-C), and the effect of the atmospheric uncertainty (Case A and D-E).
Table 4.9 gives an overview of the different settings for each case.

Note that Case A presents the baseline, with all models implemented, and transla-
tional and rotational motion simulated. The logarithmic standard deviation of atmo-
spheric uncertainty σ? as reported in literature is used, to highlight the proportionality
of this uncertainty in general, compared to other error sources.

The results are shown in Fig. 4.8. The decay-time distributions are shown as the prob-
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Table 4.9: Overview of simulation cases for different modeling scenarios.

Case DOF Attitude
control

µ? σ?

A 6 Yes 0.816 1.13
B 3 Ideal 0.816 1.13
C 6 No 0.816 1.13
D 6 Yes 0.980 1.13
E 6 Yes 0.816 1.06

Figure 4.8: Decay-time distributions for different modeling scenarios, compared to the true reentry epoch. An
overview the scenarios is given in Tab. 4.9

ability density as a function of the simulation time. Note that the simulation start epoch
was exactly 48 hours before the decay epoch.

Case A overestimates the true decay time, having a mean of 53 hours (10 % more).
The width of the distribution is rather large, i.e., 40 hours (3σ bounds), covering over 26
orbits.

Case B presents several simplifications: only translational motion (3DOF) and the
influence of the drag is simulated, reducing the state vector from 13 to 6 variables. The
major advantage of 3DOF is that the computational efficiency is much higher, as the
variable step-size integrator is not limited by the control frequency. Because the aero-
dynamic angles of αa = βa = 0° have been fixed, the drag coefficient only varies with
Mach number. The same aerodynamic database of the 6DOF simulation is used for
the computation of CD for the 3DOF simulation. As can be seen, the resulting decay-
time distribution for this case is shifted towards the right by 4.3 hours, overshooting the
true decay time by almost 10 hours. This case represents an overly idealized attitude-
control scenario. Small aerodynamic angles of the order of the rotational uncertainty
during controlled motion, the aerodynamic lift contribution, and uncontrolled motion
after controller saturation are not accounted for. The width of the distribution is about
10 % wider than for Case A, which is caused by the shift in median.
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Table 4.10: Overview of simulation cases for different modeling scenarios.

Case Source State Atmosphere

A GPS OD residuals Accelerations
F eTLE Differencing RF, literature
G cTLE Differencing RF, literature

Case C illustrates the effect of an uncontrolled attitude. The controller, together
with the aerodynamic shape of GOCE, makes the reentry unique and difficult to pre-
dict. Compared to stable motion the drag of tumbling motion is nearly 3 times higher,
shortening the reentry significantly. The results show that the inclusion of a controller
is crucial for the proper reentry simulation of GOCE and by extension other controlled
satellites. The median is situated at 36 hours. The spread is similar to before at 25 hours,
or 70 %.

Cases B and C present limit cases for the controlled reentry. Underestimation of the
maximum control torques will result in impact predictions between Cases C and A, while
overestimation of the maximum torques will result in predictions within Case A and B.

Case D illustrates the effect of not accounting for the bias in the atmospheric dens-
ity. Such a case presents itself when the mean density error cannot be estimated due to
insufficient knowledge of the attitude and/or spacecraft mass and geometry. In this case
values from literature have to be used, as was done by in Ref. [37]. The result shows that
for GOCE the density would be overestimated, causing a faster reentry than in reality.
Together with Case C, the atmospheric-density bias presents the major driver in predic-
tion accuracy. Clearly, estimating the bias improves the results significantly, and should
be applied whenever possible.

Case E presents what would happen if the atmospheric uncertainty were halved. On-
going research into atmospheric models show great potential for reducing the atmo-
spheric uncertainty. The PDF in this case is much narrower, reducing the width of the
PDF to 25 hours (at 3σ bounds). The large difference highlights the importance of re-
ducing the atmospheric uncertainty. Moreover, the averaged density bias used for case
D, as derived in Ref. [37], is likely too close to one and should in reality be smaller. Es-
pecially, considering the mean bias of µ? = 0.93 obtained using the Jacchia dataset for
the 200−400km range, as presented in [38]. Unfortunately, data to accurately assess the
uncertainty of atmosphere models in the 120−200km range are extremely limited.

4.4.2. GPS-BASED VERSUS TLE-BASED PREDICTIONS
Different uncertainty estimation methods were derived and presented in Secs. 4.3.2 and
4.3.4. Based on the availability of GPS solutions, a more accurate initial state and better
atmospheric uncertainty parameters can be obtained. The GPS-based reentry predic-
tions are compared against the more general TLE-based predictions. For TLEs a distinc-
tion is made between enhanced and classic TLEs.

Figure 4.9 shows the result of Cases F and G compared to Case A. Cases F and G
show the results for the enhanced and classic TLEs, respectively. The enhanced TLEs
were shown to have better accuracy and reduced error-growth for forward propagation.
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Figure 4.9: Decay-time distributions for TLE-derived states and uncertainty parameters, compared to GPS
baseline prediction and the true reentry epoch.

The improved propagation stability of enhanced TLEs is limited to SGP4 and does not
necessarily improve the prediction ability. The improved accuracy at epoch, however,
causes a small, but positive difference.

Compared to Case A both decay-time distributions are wider, which is to be expected
due to increased uncertainty in the initial state. The 3σ width is 54 and 56 hours for en-
hanced and classic TLEs, respectively. TLE-based predictions are found to be about 35 %
wider than the GPS-based predictions. Moreover, a shift towards the right can be ob-
served for both TLE predictions, due to the slightly lower estimated atmospheric-density
bias as a result of the smoothing process.

However, considering that the positional accuracy is on the order of decimetres for
GPS and kilometres for TLEs, the difference in reentry prediction uncertainty is not that
large. In contrast to the atmospheric-density bias, the positional uncertainty has only
a moderate effect on the final decay-time distributions. By extension, the differences
between Case F and G are even less. Enhanced TLEs were found to be twice as accurate,
but this only results in a 4 % reduction of the final uncertainty window.

4.4.3. SIMPLIFIED ERROR PROPAGATION
Commonly, simplified strategies are employed to propagate the error in time. Benefits of
such strategies are low computational cost and a reduced (uncertainty) modeling effort.
Two common approaches are investigated further and compared to statistical error pro-
pagation. In both approaches only the nominal state of the spacecraft is propagated to
obtain the median of the final decay-time distribution. The uncertainty window is then
derived, either by placing an empirical uncertainty on the nominal state or by perform-
ing two additional propagations to obtain the bounds.

In the case of empirical uncertainty bounds, generally the uncertainty is assumed
to be ±20% of the remaining orbital lifetime on top of the nominal decay time. These
bounds are derived by studying historic re-entries. Reference [57] shows that confidence
intervals of TIPs range from 93 % to 98 %, for orbital lifetimes ranging from seven days
to three hours, respectively. The assumption that the uncertainty window width is al-
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Figure 4.10: Statistical error propagation (6DOF) compared to simplified error propagation strategies (TIP and
factored nominal) for performing reentry predictions of GOCE 48 hours prior to reentry.

ways ±20% provides a good rule of thumb for estimating 2σ bounds. This assumption,
however, is population based, and does not necessarily extend well to individual (future)
cases. In the case of propagating additional samples to obtain the bounds, commonly
the ballistic coefficient is varied ±20% to obtain samples for the lower and upper limit of
the uncertainty.

Both approaches assume that the nominal state represents the uncertainty median.
Furthermore, the first approach assumes that the uncertainty is symmetrical about the
assumed median, while the second approach assumes a symmetrical uncertainty in the
product of the atmospheric and aerodynamic uncertainty, yielding an asymmetric dis-
tribution in time.

To investigate these two approaches further, their results are compared against the
statistical reentry predictor. The starting epoch is chosen to be 48 hours prior to the
actual decay. At this epoch both 6DOF and TIP predictions were found to be close to
each other, but overestimating the true decay time significantly.

Figure 4.10 shows the reentry predictions. The true impact is indicated using the
solid black vertical line at 48 hours. For the 6DOF statistical reentry predictions, the ob-
tained uncertainty distribution is visualized using a histogram (using 1 hour bins) and
kernel-density estimation. Moreover, the 2.5σ (98.758 %) confidence interval is indic-
ated using the dashed lines. This value represents the upper limit of the TIP confid-
ence. The actual TIP results are plotted as the three dash-dotted lines, to demonstrate
the empirical uncertainty bounds. Lastly, the approach using varying values of the bal-
listic coefficient is shown using the long-dashed lines. The different variations are indic-
ated by their FK value, where FK = 1±0.20 represents the ±20 % case described above.
In total nine different values for FK were chosen (including the nominal case FK = 1), to
illustrate the effect of using different values.

The median of the statistical error propagation is comparable to the TIP prediction
for this epoch. The nominal single propagation corresponding to FK = 1 also lies very
close to the median of the statistical propagation. Such agreement only occurs when the
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uncertainties of the translational and rotational state of the distributions are relatively
symmetrical and unbiased. For this case a good estimate of the median of the decay-
time uncertainty can be obtained using a single propagation of the nominal state. Note
that this only holds for a nominal 6DOF propagation and not a single 3DOF propagation.
It was previously demonstrated that the nominal 3DOF propagation would overshoot
the true decay time even further.

As can be seen, the uncertainty distribution is asymmetrical. The upper limit is fur-
ther away from the median than the lower limit, which is a characteristic of reentry dis-
tributions. Both the TIP window (TW) and the 2.5σ window of the KDE (KW) are of
comparable width: 1440 and 1463 minutes, respectively. However, by default the uncer-
tainty of the TIP is symmetrical in time. The lower bound of the TIP overestimates the
uncertainty, while the upper bound fails to capture the full width of the uncertainty.

Looking at the four pairs of equal variation to the ballistic coefficient, FK = 1± (0.10,
0.12, 0.15, 0.20), it can be seen that resulting windows are indeed asymmetric in time.
These windows are, however, much more asymmetric than the uncertainty distribution
obtained using the statistical approach. The lower bound of FK = 0.88 shows good agree-
ment with the statistical window, but its corresponding upper bound of FK = 1.12 over-
shoots by more than an hour. The propagation FK = 0.88, 1.00, 1.11 would likely res-
ult in the best agreement with the statistical method in this case. The earlier described
FK = 1± 0.20 results in too conservative estimates. It is apparent that the bounds are
very sensitive to the choice of FK . Considering the results of this study, the choice of FK

depends highly on the satellite under consideration, the remaining orbital lifetime, and
the propagation set-up.

4.4.4. SENSITIVITY ANALYSIS

INTRODUCTION

The full uncertainty model is 13-dimensional. To investigate which parameters drive
the uncertainty, a sensitivity analysis is performed. The sensitivities of the reentry sim-
ulation with respect to the uncertainty parameters are computed for various degrees of
modeling and for several starting epochs

For the sensitivity analysis the extended Fourier amplitude sensitivity test (eFAST)
method is used [84, 85]. eFAST is suitable for analysing the sensitivities of non-linear
systems. The method varies the input parameters along a sinusoidal search curve of a
particular frequency, causing a variation in simulation output. eFAST decomposes the
variance of the output to the input parameters by Fourier analysis. The search curve
has to be sampled with enough fidelity to recover the search-curve frequencies in the
Fourier analysis. The minimum recommended number of samples, NS , is 65. Moreover,
the curves are re-sampled NR times. The total number of samples is thus N = NS NR k,
where k is the number of uncertainty parameters.

The primary outputs of the eFAST method for the analysis are the first-order and
total-order sensitivity indices. Both indices assume values between 0 and 1, where 0
indicates no influence and 1 indicates complete dependence. The first-order sensitivity
index is the variance of the output at the parameter’s particular frequency divided by
the total output variance. The total-order sensitivity index is calculated as the remaining
variance after the contribution of all other parameters is removed, and includes non-
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linear and correlated effects.
An additional uncertainty parameter is introduced, which is not used in the reentry

simulator. This parameter is referred to as the dummy parameter and has no influence
on the output. Ideally, the sensitivity indices of the dummy parameter should be zero.
However, due to the stochastic nature the indices will be non-zero. The sensitivity to
the dummy is used to test for significance of the other sensitivities. Parameters with a
sensitivity index of less than or equal to the dummy sensitivity should be considered not
significantly different from zero.

The sensitivity analysis is performed for three different simulation set-ups: 3DOF,
controlled 6DOF, and uncontrolled 6DOF. Moreover, for most time-dependent models
the sensitivity of the output to its parameters is also time dependent. To investigate
this dependency further the sensitivity indices are computed for simulations starting
at several values of the remaining orbital lifetime.

The number of search curves per parameter is chosen to be 5 with 260 samples per
curve. Previous trials were conducted with NS = 65 and NS = 130, but resulted in high
sensitivity indices for the dummy parameter. As the atmospheric uncertainty is the
primary contributor to the total uncertainty, the other parameters are relatively small
in comparison. Including the dummy parameter and with the chosen settings for the
search curves, this results in N = 18200 samples for 6DOF and N = 10400 for 3DOF per
analysis.

The sensitivity indices were found to be severely affected by outliers in the data. A
routine was therefore implemented to check for outliers in the results. The studentized
residuals of the samples of each search curve were calculated separately. Samples with
a residual of higher than 4 were labelled as outliers. Figure 4.11 shows an example of
the simulation output along a single search curve with outliers. Two types of outliers are
present in the figure: a null result (caused by a crash in the simulation) and an unrealistic
reentry time. These spikes cause interference in the Fourier analysis and can throw off
the resulting indices significantly. The values of the outliers are replaced by a linearly
interpolation of neighboring samples. The occurrence of outliers was found to be well
below 1 %.

MODEL SENSITIVITY

Figure 4.12 shows the result of the eFAST analysis for all three simulation set-ups at two
different starting epochs. The starting epochs chosen for this visualisation are 12 hours
and 2 hours of remaining orbital lifetime. The epochs were selected close to reentry,
yet significantly far apart in time. The model was found to be more sensitive to other
uncertainty parameters close to reentry, except the atmospheric uncertainty, resulting
in higher values for the sensitivities in general and values further outside the dummy’s
range. The time dependency and sensitivities at earlier epochs will be analysed in more
detail in the next section.

Figure 4.12 shows the first-order and total-order sensitivity indices for each para-
meter and each set-up. The different set-ups are distinct by the different colors, where
the first-order sensitivity index is hatched. Moreover, by default the total-order sensitiv-
ity index is always equal or greater than the first-order sensitivity.

It is immediately clear from Fig. 4.12 that for any set-up at any starting epoch, the
simulation is most sensitive to the atmospheric density, ρ. For this reason the bars of
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Figure 4.11: Example of two types of outliers in the simulation output results along a single search curve for
the radial velocity.

Figure 4.12: Sensitivity indices of the uncertainty parameters for various simulation set-ups at two different
starting epochs: 12 hours (a) and 2 hours (b) remaining orbital lifetime.
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the remaining parameters are shown on a scale that is four times smaller. Two factors
diminish the sensitivity of the predictions to the atmospheric density: the remaining
orbital lifetime (less time is spent in the atmosphere) and the growing influence of other
parameters. The atmospheric density sensitivity is almost completely made up of the
first-order sensitivity index, confirming that the atmospheric density has a very direct
contribution to the reentry predictions.

The sensitivity of the dummy parameter is indicated as d in the figure. Using the
increased number of samples, false first-order sensitivities were reduced to negligible
values. Increasing the number of samples does not significantly reduce the total-order
sensitivity, but primarily affects its precision. At the selected number of samples the
sensitivity indices of the dummy parameter were consistently Sd < 0.0005 and STd <
0.01. Convergence of these values was further confirmed by performing t-tests on the
indices. Moreover, it was found that values of dummy sensitivities tend to decrease with
the introduction of additional parameters and shorter propagation times. This can be
seen in the figure, where the STd for the uncontrolled 6DOF set up at 2 hours is smallest.

Amongst the translational parameters, the along-track velocity component is con-
sistently found to be the primary first-order driver of the final uncertainty. The radial-
position component is the second most influential translational parameter. Although
these two parameters are known to be highly correlated, their sensitivities differ due to
the magnitude and bias of their uncertainty. The sensitivity indices of both parameters
also increase closer to reentry and will be further investigated in the next section.

For the rotational parameters of the controlled reentry, the first-order sensitivity in-
dices are negligible and the total-order indices are at the threshold of the dummy para-
meter’s level. Therefore, these sensitivities should be considered non-significant from
zero. The insignificance of the rotational parameter is caused by their small initial un-
certainties and the rotational control. Regarding the other parameters, the sensitivities
of the controlled 6DOF and 3DOF set-ups are very similar.

For the uncontrolled 6DOF set-up the aerodynamic angles αa and βa were found to
be the most influential parameters. The lesser significance ofσa can be explained by the
high-degree of rotational symmetry GOCE around the X-axis. The larger influence of βa

is due to the slightly larger projected area in the XZ-plane, compared to the XY-plane.
The minor first-order sensitivity to the initial pitch and yaw rates (q and r , respectively),
can be attributed to their small initial values and aerodynamic stability of GOCE. Con-
versely, the roll has a significant first-order sensitivity and the highest total-order of the
rotational rates.

From the uncontrolled case it can also be seen that introduction of additional sig-
nificant parameters yields an increase in the total-order sensitivity of parameters with
weak first-order sensitivities. It is difficult to assign the true significance to such para-
meters and this primarily demonstrates the inter-dependency of translational and rota-
tional state.

TIME DEPENDENCY

Previously, it was already shown that the sensitivity indices at 12 hours and 2 hours
of remaining orbital lifetime are slightly different. To investigate the time dependency
of these parameters in more detail the analysis is repeated for other starting epochs,
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Figure 4.13: Sensitivity of all non-significant translational parameters of the controlled 6DOF model with re-
spect to time.

namely at 168, 96, 72, 48, 24, 12, 6, 3, and 2 hours of remaining orbital lifetime. Fig-
ure 4.13 shows the time evolution of the sensitivity indices. Only the parameters with
non-significant sensitivities are shown. The sensitivity indices of the atmospheric dens-
ity are not shown in the figure. Its sensitivity indices slowly decrease as the others in-
crease, starting at Sρ = 0.9563 and STρ = 0.9967 at 168 hours.

Figure 4.13 confirms the importance of the along-track velocity component, followed
by the radial position. The radial position, however, converges to the other uncertain-
ties (the cross-track position and radial velocity) for increased orbital lifetime, while the
along-track velocity remains clearly the dominant parameter in this model at all epochs.

Overall, the sensitivity (both first and total order) of the predictions grows sharply
as the orbital lifetime decreases. In practice, this effect is expected to be only larger, as
the magnitude of the uncertainty in these parameters also increases close to reentry, due
to the growing influence of disturbances (such as the atmospheric density) on the orbit
determination.

4.4.5. PREDICTION COMPARISON

Apart from the final decay message, seven TIP messages were released for GOCE at vari-
ous epochs prior to reentry. The SDO has similarly performed several predictions prior
to reentry. SDO predictions started on October 23, 2013, with the assumption that the
attitude controller would fail for a 20 mN drag threshold, resulting in tumbling motion.
These early predictions placed the reentry at around November 6. From November 1,
2013, the threshold was raised to 50 mN. Later, the case where the attitude controllers
would fail only very late into the reentry was considered [71]. Only the predictions res-
ulting from this latter case are compared.

For the 6DOF predictions, it is chosen to start the reentry predictions at common TIP
moments prior to the true reentry epoch; these are 2h, 3h, 6h, 12h, 1d, 2d, 3d, 4d, and
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Figure 4.14: Comparison of 6DOF with TIPs and SDO reentry predictions for several prediction epochs.

7d prior to the true decay epoch. The decay-time distribution was estimated using KDE.
A 2.5σ confidence interval was used to estimate the bounds. This value was chosen for
comparison against TIPs and SDO predictions. Reference [57] shows that TIPs range
from 93 % to 98 % confidence, depending on the orbital lifetime. Similarly, the SDO
windows have 2σ confidence based on multiple predictions over only 15 reentry cam-
paigns [54]. Using 2σ bounds would likely be too optimistic, while 3σ is not comparable
to the confidence associated with the other predictions.

Figure 4.14 compares the resulting predictions. The horizontal axis corresponds to
date of prediction, and the vertical axis to the prediction error as a percentage of TTD.
For each prediction the confidence interval and median is indicated. As a general trend
the relative prediction window (as a percentage of the TTD) remains roughly constant.
The 6DOF, TIP, and SDO intervals are on average 46 %, 65 %, and 43 % wide, respectively.
All are thus wider than the 40 % rule of thumb.

The windows for the TIPs were on average 41 % wider than for 6DOF. A true compar-
ison with the TIP window, of course, depends on the confidence level of the windows, for
which only empirical values are available from literature. As the width of the TIP is sig-
nificantly more than the 40 % described in those studies, it is assumed that the method
for determining the window has changed. A true comparison is therefore very hard to
make. Nonetheless, the confidence level chosen for the 6DOF windows is likely higher
than TIPs and SDO predictions, while providing windows of the same order or much less.
These relatively small widths, while providing higher confidence for statistical 6DOF can
be attributed to the attitude controller and improved atmospheric uncertainty model-
ing.

For all predictions the median of the 6DOF is found to be closer to the true reentry
epoch, compared to the TIP midpoints and SDO’s medians. For the 6DOF predictions
the distributions are slightly asymmetric, where the median is on average located at 7
3 % (in terms of the total distribution width) from the midpoint towards the lower bound.
The asymmetry is found to be characteristic for decay-time distributions, where long re-
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entries are statistically more likely than short re-entries.
Except for the final three predictions (starting at 6, 3, and 2h, respectively), the me-

dian overshoots the true decay epoch. A maximum of 10 % (about 5 hours) is observed
for the prediction made at 48 hours prior. This offset was already observed in the pre-
vious results presented. The median of all SDO predictions seems to be earlier than the
true reentry epoch. The earlier medians can be explained by the modeling of the uncon-
trolled motion using the drag coefficient obtained from SCARAB, without accounting for
the lower atmospheric densities.

4.5. CONCLUSIONS
The decay-time distribution accuracy for the Gravity field and steady-state Ocean Cir-
culation Explorer (GOCE) satellite is dominated primarily by systematic errors in atmo-
spheric density and attitude control, while its precision is dominated by the atmospheric
uncertainty. To a lesser degree, the precision is also affected by the initial translational
uncertainty.

The study proposed an uncertainty model for the atmospheric density to account
for (systematic) modeling errors in the atmospheric and aerodynamic models. Sub-
sequently, two different uncertainty estimation methods were presented for Global Po-
sitioning System (GPS) and Two-line Elements (TLE) derived states. The resulting ap-
proach produces accurate results for dealing with a biased atmosphere and/or aerody-
namic model. By analysing the density-modeling error from GPS-derived non-gravita-
tional accelerations, a better estimate of the density uncertainty could be obtained. For
TLEs similar results could be obtained, albeit at a much coarser temporal resolution.
Considering the importance of the atmospheric uncertainty, additional modeling (espe-
cially of its evolution) should improve results even further.

The attitude control is found to significantly affect the median of the reentry predic-
tions. The predicted median for a remaining orbital lifetime of 48 hours was found to lie
anywhere between 17 and 55 hours depending on when the controller was assumed to
be saturated. Therefore, it is important to properly account for this control. By modeling
the attitude control and motion in six degrees-of-freedom (6DOF) simulator, it is not ne-
cessary to assume a constant drag coefficient and introduce any discontinuities to this
value. The assumptions on controller saturation could be reduced to maximum torques,
which were sourced from literature. Finally, systematic errors and uncertainties in the
atmospheric density were included throughout the simulation.

The effect of atmospheric uncertainty on the reentry prediction uncertainty for GOCE
is found to outweigh all other contributions in the uncertainty modeling effort. Halv-
ing the atmospheric uncertainty results in a halving of the final decay-time uncertainty.
Moreover, the difference between TLE-derived and GPS-derived initial translational un-
certainty results in a 35 % improvement, despite GPS being up to four orders of mag-
nitude more precise. In previous studies the initial rotational uncertainty was found to
be another main driver for the precision, but the attitude control mostly negated this
influence.

Two simplified error propagation strategies were examined. Propagating only the
translational motion of a single nominal trajectory resulted in significant overshooting of
the decay epoch, even for such a strongly attitude controlled satellite as GOCE. A single
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6DOF propagated nominal state, however, showed good agreement with the median of
the uncertainty distribution for GOCE. This agreement is due to the relatively unbiased
and symmetrical initial uncertainty distributions. The empirical uncertainty window, as
used by the Tracking and Impact Predictions (TIPs), does not capture the asymmetry of
the uncertainty distribution. Moreover, the window width is not a constant factor of the
remaining orbital lifetime. Although these effects can be included in an empirical ap-
proach, it needs to be stressed that it remains based on populations of historic re-entries
and does not necessarily correspond to individual future cases. Approaching the lower
and upper limits of the uncertainty distribution by varying the ballistic coefficient, pro-
duced better bounds. Varying the ballistic coefficient by ±12 % produces limits with the
best agreement to the statistical distributions. The case of ±20 % produced far too con-
servative results. The approach showed clear asymmetry, although slightly too much,
resulting in a too conservative upper bound. This suggests that perhaps different per-
centages should be used for the lower and upper bounds. The bounds were found to be
very sensitive to these values. Selecting the best value(s) is unfortunately not straight-
forward and likely depends on the satellite, modeling, and also the orbital lifetime. The
approach is only recommended when using a high-fidelity (6DOF) propagation model
and when many samples are infeasible.

The sensitivity analysis further demonstrates that the atmospheric uncertainty is the
primary driver of the decay-time distribution. For the controlled reentry the along-track
velocity and radial position are of secondary importance. The first-order and total-order
sensitivity of these parameters is on the order of 0.01-0.03 and 0.03-0.05, respectively.
The significance of these parameters is non-neglible for performing accurate reentry
predictions. Moreover, the sensitivity indices increase sharply as a function of the re-
maining orbital lifetime. In addition, the estimation error of these parameters also grows
close to the reentry epoch.

From the sensitivity analysis of the controlled 6DOF set-up it can be concluded that
the dimensions of the uncertainty model can be greatly reduced, at no significant loss of
accuracy. The entire rotational uncertainty and several position and velocity compon-
ents can be ignored. This should improve the performance of the reentry simulations
significantly. It is, however, not possible to extend these conclusions for reentry simula-
tions in general. Especially not on the importance of rotational uncertainty.

For the uncontrolled reentry set-up it was shown that the rotational parameters were
more influential than the translational parameters. In this study, the angles of attack
and sideslip were found to be the dominant rotational parameters. The ranking of the
rotational parameters and absolute values of the sensitivity indices is highly dependent
on the initial rotational uncertainty and the aerodynamic characteristics of the satel-
lite. The rotational uncertainty is expected to play an even larger role for other bodies,
considering GOCE’s unique aerodynamic shape and the very small initial rotational un-
certainty. To improve the efficiency of the MC error propagation in general a more in-
telligent sampling strategy should be employed that takes into account the sensitivity of
the uncertainty parameters.

For the 6DOF reentry predictions of GOCE, the median was found consistently closer
to the true decay epoch than neighboring TIPs and predictions by the Space Debris Of-
fice (SDO) of the European Space Agency. Moreover, the statistically obtained windows
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are on average41 % narrower than the TIP windows. The 6DOF and SDO predictions are
found to be of comparable relative width. A true comparison on the width is difficult
as the associated confidence can only be empirically determined, for which not enough
cases have been studied. Nonetheless, statistical 6DOF predictions provide smaller or
equal windows with a high confidence for GOCE. For non-controlled slender bodies,
such as rocket bodies, the windows at the same confidence level will likely be much
wider.

The results demonstrate that by modeling the uncertainties per object and perform-
ing proper error propagation, the resulting distributions are tailored specifically to the
reentry under consideration. It is recommended to perform statistical 6DOF reentry
predictions for objects for which aerodynamic models are available or can be easily con-
structed.
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Although regularised propagation methods have a good performance (accuracy versus
evaluations), they suffer from a number of practical difficulties, such as propagation to a
fixed time, making them ill-suited for practical applications. Several methods that address
these limitations are proposed, thoroughly discussed, and analysed on diverse test cases.
Dromo outperforms the conventional propagation methods significantly. It is shown that
regularised methods, through some adaptations, can be successfully applied to different
orbit problems. The proposed method is recommended especially for computationally de-
manding problems.

5.1. INTRODUCTION
Numerical integration has become the standard for solving problems in orbital mechan-
ics, in favour of analytical and semi-analytical techniques [86]. Cowell’s method, how-
ever, has the major drawback of being far less efficient, due to the many computations at
intermediate time steps. Regularised propagation methods offer a significant reduction
in steps for the same numerical accuracy [87, 88]. Through the transformation of the
independent variable and equations of motion (EOMs), the numerical and dynamical
stability is improved.

Research in satellite orbit propagation is mainly focused on the modelling of differ-
ent perturbations. These models present the dominant contribution in terms of ac-

1Minor modifications have been made for this thesis.
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curacy. However, these more advanced models come at a computational price. Espe-
cially when the propagation of a large catalogue of objects is concerned, the computa-
tional efficiency becomes crucial. Recently, regularisation methods have regained mo-
mentum [89–96].

Regularised methods, nonetheless, have only been scarcely adopted for solving real
orbit problems. This can likely be attributed to the more difficult implementation and
practical issues that arise from the transformations of the independent variable (i.e.,
time) and the EOMs. Especially, propagating to a fixed time presents a major practical
challenge for such methods, as time has become a dependent variable through the time
transformation. Several solutions are proposed, thoroughly discussed, and analysed.
The proposed solution are implemented for Dromo [95], a specific regularised propa-
gation method. Dromo features only eight EOMs (formulated as variations of paramet-
ers (VOP) elements) and a separate treatment of perturbations that can and cannot be
derived from a potential. Dromo with the proposed adaptations is compared against
two (standard) propagation methods, namely Cowell’s method and Modified Equinoc-
tial Elements (MEEs) [97]. The methods are compared for a number of representative
test cases.

The aim of the thesis is to analyse how regularised methods compare to conventional
methods, when their practical limitations have been addressed, and to identify uses for
regularised methods. The focus is mainly on efficiency, defined as computational cost
over accuracy.

First, regularisation and the formulation of Dromo are first explained. Second, the
methodology of the proposed solutions is given. Third, the experimental set-up is ex-
plained, including the test approach, problems, and cases. Fourth, the results are pre-
sented and discussed. Finally, the main conclusions and recommendations are given.

5.2. BACKGROUND
The theory of regularised propagation is introduced, after which the theory of Dromo is
given.

5.2.1. REGULARISED PROPAGATION
Regularisation aims to remove singularities and dynamical instability from the EOMs,
leading to less integration errors and more efficient integration. It commonly follows a
two-step approach. First, a transformation of the independent variable is introduced.
The general form of this transformation is known as the Sundman transformation, as
given by Equation 5.1. The relationship between the fictitious time s and physical time t
is chosen such that for a constant step size h =∆s, t → 0 as r m → 0. Considering a highly
eccentric orbit, the step size will become very small at pericentre and very large at apo-
centre. Analytic step-size regulation is achieved when the truncation becomes uniform
at each time step. Second, the EOMs are transformed into a more suitable set of para-
meters for describing orbital motion, further improving the numerical properties [98].

ds = A
dt

r m (5.1)

where A is a scaling factor and m the order of the time transformation. The optimal
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combination of m and A will depend on the type of orbit, integrator, and perturbations.
Additionally, the regularised EOMs can be reformulated through the theory of VOP.

The transformed parameters, referred to as (orbital) elements, are chosen such that they
are constant for idealised motion (e.g., two body). As the elements are constant (or lin-
ear) for idealised motion, only the perturbations have to be integrated.

5.2.2. DROMO AND COMPARISON OF REGULARISED METHODS

Many different regularised methods exist. The most popular classical methods are Kus-
taanheimo-Stiefel (KS) [99] and Sperling-Burdet (SB) [100]. Recently, there has been
development towards leaner methods that take advantage of quaternions [89–96]. In
particular, Dromo seems very interesting and is a VOP method derived from the Burdet-
Ferrándiz [101] regularization. Dromo employs only eight EOMs, which is close to non-
regularised methods (often six) and less than other regularised methods: Sperling-Burdet
and Kustaanheimo-Stiefel feature 12 and 10 differential equations, respectively [102].
Other important advantages include: non-degenerate quaternions, perturbing acceler-
ations in the orbital frame, unique formulation for all perturbed conics, and a separate
treatment of perturbing forces which are partially or fully derivable from a potential [95].

A number of classical and modern methods are compared in Table 5.1. The orbit is
highly eccentric eccentric (e = 0.95 and rp = 6800km) and is often used as a benchmark-
ing problem in literature [88, 103]. Stiefel-Scheifele (SS) represents the benchmark for
this problem. The table reports the final position (x, y , and z) after 288.12768941 mean
solar days (roughly 50 revolutions), the number of steps per revolution (steps/rev), and
the absolute error with respect to the benchmark. Additional results for Dromo, MEEs,
and Cowell were obtained. The unified state model (USM) [103, 104] uses only seven
ODEs (which can be reduced to six) based on the velocity hodograph and quaternions.

It can be seen that on the test problem, all regularised methods (SB, KS, and Dromo)
perform much better than the others. This is not at all surprising as the orbit is highly
eccentric. Dromo is found to be a bit more expensive than KS on this problem. This is
confirmed in Ref. [96], which further shows that Dromo is superior over the other meth-
ods for problems with lower eccentricities (e = 0, 0.3, 0.7).

5.2.3. DROMO FORMULATION

Dromo (derived from Greek, meaning: a running or race) was initially developed in
Ref. [93]. In Ref. [95], the method for a separate treatment of perturbing forces which
are derivable from a potential is extended. A time element was finally introduced in
Ref. [96].

Dromo employs eight elements: three for orbital shape and motion in the orbital
plane ζ1−3, four to describe the orientation ζ4−7, and one related to time ζ0.

Note that all quantities in Dromo are non-dimensional, by introducing units for time
and length as n−1

0 and R0, respectively. Here R0 is the initial radius and n0 the initial

circular mean motion (i.e., n0 = n(a = R0) =
√
µ/R3

0 ).

The perturbations are expressed in the orbital frame. This is convenient for many
perturbations (e.g., drag, thrust, etc.). Moreover, perturbations derivable and non-deriv-
able from a potential are treated separately, allowing for propagation that is consistent
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Table 5.1: Comparison of several methods for the oblate Earth plus Moon after 288.12768941 days.

SS [88] SB [88] KS [88] Cowella [88]

x [km] −24219.050 −24218.818 −24219.002 −24182.152
y [km] 227962.106 227961.915 227962.429 227943.989
z [km] 129753.442 129753.343 129753.822 129744.270
Steps/rev 500 62 62 240
Error [km] 0.318 0.501 42.5

Dromo Cowellb MEE USM [103]

x [km] −24218.829 −24256.391 −24256.980 −24219.049
y [km] 227961.980 227980.068 227979.117 227962.106
z [km] 129753.414 129762.509 129761.798 129753.442
Steps/rev 113 453 188 372
Error [km] 0.256 42.4 42.4 42.1
a Note that Cowell’s method here indicates the formulation in Ref. [105], which
uses the total energy as an independent parameter.
b Note that Cowell’s method here indicates the Cartesian formulation.

with total energy. The total perturbing acceleration f is given by:

f = P+∇R = P− ∂R(t ,ζ)

∂ror b
(5.2)

where P is the sum of all non-potential accelerations, R the total perturbing potential, ∇
the gradient operator, and ror b represents the orthonormal basis {î, ĵ, k̂}, given by { r

r , k̂×
î, h

h }, where the angular momentum is h = r×v. Similarly, the perturbing accelerations f
and P are composed of the radial, transverse, and normal components.

TIME TRANSFORMATION

The time is transformed from physical time t to fictitious timeφ, using a Sundmann time
transformation of order two:

dt

dφ
= r 2

h̃
= 1

ζ3s2 (5.3)

where A = h̃ and m = 2. ζ3 and s will be defined in the next section. The pseudo-angular
momentum h̃ is defined as

h̃ = r

√
2

(
E + 1

r

)
−

(
dr

dt

)2

(5.4)

where E is the total orbital energy and the relation between h̃ and h is h̃ =
p

h2 +2r 2R.
The independent variable φ can be considered as a perturbed version of the true an-

omaly ν, and is, therefore, also referred to as the pseudo true-anomaly. φ varies linearly
with ν with an additional angular drift γ, such that ∆φ=∆ν+γ. γ is defined as:
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γ=∆ω+
Ω∫

Ω0

cos i dΩ+2

t∫
0

R

h̃ +h
dt (5.5)

The numerical solution can be further improved by removing time t also from the
EOMs. Looking at Equation 5.3 it can be seen that even for unperturbed motion the
physical time does not necessarily vary linearly with respect to φ. Due to the time trans-
formation, the problem has been partly moved to EOMs, giving rise to a number of com-
plications. First, the integration of physical time leads to errors in approximating time
itself. Second, large variations of the time derivative can present a bottleneck, driving
the integration accuracy of the entire state. Lastly, the time accuracy directly influences
the state accuracy when the state at a certain epoch is desired.

Two different alternative time formulations are possible: the linear and constant time
elements [96]. In total this gives three options for the expression of time. These options
will from hereon be referred to as non-dimensional physical time t , linear time element
ζ0l , and constant time element ζ0c .The relations between time t and the time elements
ζ0l and ζ0c are given by:

ζ0l = t − Vr

2E ζ3s
− 1

E
p−2E

arctan

(
Vr

s +p−2E

)
(5.6)

ζ0c = ζ0l −a3/2φ (5.7)

where Vr is the radial velocity, s the pseudo-transverse velocity, and ζ3 the inverse pseu-
do angular-momentum, to be introduced in the next section. The differential equations
are:

dζ0l

dφ
= a3/2

[
1+ dE

dφ

(
6a arctan

(
Vr

k4 +k3

)
+k1

)
+

(
fr

ζ3s
−2R

)
k2

]
(5.8)

dζ0c

dφ
= a3/2

[
dE

dφ

(
6a arctan

(
Vr

k4 +k3

)
−3aφ+k1

)
+

(
fr

ζ3s
−2R

)
k2

]
(5.9)

where dE
dφ is the rate-of-change of the total energy and fr the radial component of the

perturbing acceleration. k1−4 are relations that simplify the notation and are defined to
be:

k1 =
p

aVr

s2

(
ζ3 + s

k4
+ 2k3

ζ3
+1

)
k2 = 1

s2

(
k4

ζ3
+ k3

k4
+ V 2

r

k4s

)
k3 = ζ1 cosφ+ζ2 sinφ

k4 = ζ3 +
p
−2E
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SHAPE AND ORIENTATION

As mentioned before the set ζ1−7 can be split up into elements concerning the shape and
dynamics ζ1−3, and the orientation of the orbital plane ζ4−7. The first three elements are
obtained by introducing the generalised orbital element ζ3 = h̃−1, from which ζ1 and ζ2

follow as integration constants. The remaining four constants of motion ζ4−7 describe
the orientation and are closely related to quaternions.

The ODEs of the elements with respect to the independent parameter are

dζ1

dφ
= sinφ

s

(
fr

ζ3s
−2R

)
−

(
s

ζ3
+1

)
cosφ

dζ3

φ
(5.10)

dζ2

dφ
= cosφ

s

(
2R − fr

ζ3s

)
−

(
s

ζ3
+1

)
sinφ

dζ3

φ
(5.11)

dζ3

dφ
=− 1

s4

[
Vr ζ3s

(
2R − ζ3s

s +ζ3

∂R

∂ζ3

)
+Vt Pt + ∂R

∂t

]
(5.12)

dζ4

dφ
= 1

s

[
fn

ζ3sVt
(ζ7 cos∆φ−ζ6 sin∆φ)+ζ5(Vt − s)

]
(5.13)

dζ5

dφ
= 1

s

[
fn

ζ3sVt
(ζ6 cos∆φ+ζ7 sin∆φ)−ζ4(Vt − s)

]
(5.14)

dζ6

dφ
=−1

s

[
fn

ζ3sVt
(ζ5 cos∆φ−ζ4 sin∆φ)−ζ7(Vt − s)

]
(5.15)

dζ7

dφ
=−1

s

[
fn

ζ3sVt
(ζ4 cos∆φ+ζ5 sin∆φ)+ζ6(Vt − s)

]
(5.16)

where the pseudo-transverse s, transverse Vt , and radial velocity Vr are given by

s = ζ3 +ζ1 cosφ+ζ2 sinφ (5.17)

Vt =
√

s2 −2R (5.18)

Vr = ζ1 sinφ−ζ2 cosφ (5.19)

It is important to note that ∆φ in Eqs.(̇5.13-5.16) represents the difference between
the current and initial value∆φ=φ−φ0, and not the step size. The initial value ofφ0 can
be arbitrarily chosen when the initial Dromo state is constructed. A common choice for
φ0 is the initial true anomaly φ0 = ν0 or just φ0 = 0.

Alternatively, when the perturbations are mainly conservative, the third element ζ3

can be replaced by the total energy E , replacing Equation 5.12 by

dE

dφ
= 1

ζ3s2

(
uPr +Pt

√
s2 −2R + ∂R

∂t

)
(5.20)

where ζ3 can then be obtained through the following equation:

ζ3 =
√
ζ2

1 +ζ2
2 −2E (5.21)

In conclusion, only eight first-order ODEs need to be numerically integrated with
Dromo. Different options for a set of eight equations have been present, these are: one
related to time (Equation 5.3, (5.8), or (5.9)), three related to the shape of the orbit (Eqs.
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(5.10), (5.11), and (5.12) or (5.20)) and four related to the orientation of the orbital plane
(Eqs. (5.13) to (5.16)). The Dromo state thus consists of the following eight elements

ζ= [t or ζ0l or ζ0c , ζ1, ζ2, ζ3 or E , ζ4, ζ5, ζ6, ζ7]

By default (unless stated otherwise) the following set is used:

ζ= [ζ0c , ζ1, ζ2, E , ζ4, ζ5, ζ6, ζ7]

5.3. METHODOLOGY
The formulation of Dromo presented has a number of practical limitations. These lim-
itations are generally true for any regularised method. To facilitate the implementation
of these methods, the issue of propagating to a final time is considered. Although this
treatment considers time, the methodology presented can in fact be used for finding the
final state at any value of one of the dependent parameters, such as the orbital altitude
(in case of re-entry) or any of the instantaneous orbital elements.

5.3.1. FIXED TIME PROPAGATION
Although the time transformation has many advantages, the major drawback is that time
has become a dependent parameter and the relationship between both is non-linear.
Therefore, propagating to a certain epoch is not straightforward. The final value of the
independent parameter φ f corresponding with the final physical time t f can only be
obtained numerically. This presents a problem for applications that require the state at
an exact time, e.g., orbit determination.

The approximations of the final independent parameter and dependent time are in
this section denoted as φ̂ f and t̂ f .

The procedure of propagating to a final time has a number of drawbacks. First of
all, finding the corresponding φ̂ f can be computationally expensive, as will be demon-
strated. Secondly, since φ̂ f is only approximated and thus differs from the true unknown
value, also the integrated t̂ f will not be exactly the desired t f . Lastly, a small variation (or
error) in φ̂ f can lead to a very large deviation in t̂ f . This sensitivity is illustrated in Fig-
ure 5.1, where a change of about 0.35 rad inφ leads to a variation in t of almost 250000 s.
The error in time translates into additional state errors. It is therefore important to find
a very good approximation in a computationally lean manner.

Three different solutions to this problem exist, which will be explained in more de-
tail. Each method will be treated based on their implications on function evaluations,
accuracy, and ease of implementation. To gain better insight in the differences in accur-
acy, the error in the final time can be split up as follows:

ε= |t f − t̂ f | = εn +εa +εe (5.22)

where εn is the numerical error due to the numerical integration (containing both round-
off and truncation errors) and is dependent on the integration scheme. εa is the error
due to approximation of φ̂ f by the different methods, such that |t (φ̂ f )− t (φ f )| = εa . This
error stems from convergence tolerance (if iterations are required). It has to be noted
that this tolerance should be set individually from the integrator tolerances. Finally, εe is
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an additional estimation error introduced by the methods in finding φ̂ f . The last source
is not immediately intuitive, but will become clear. The error due to estimation is defined
as:

εe = |t̂ f (integrator+estimator(t f ))− t̂ f (integrator(φ̂ f ))| (5.23)

where the first t̂ f is the result of the integration and estimation procedure combined and
the second t̂ f is when the integration is repeated (without the estimation procedure)
using the estimate of the independent parameter φ̂ f . The difference between these two
is the impact of the estimation.

HOUSEHOLDER

Householder methods are a class of iterative root-finding algorithms. Newton’s method
(sometimes also Newton-Raphson) and Halley’s method are first-order and second-or-
der Householder members, respectively. Newton only uses the function gradient, while
Halley uses additional second-order derivative information. Halley’s method is con-
sidered to be more stable and generally faster, as it has a cubic upper bound for the rate
of convergence, as opposed to quadratic for Newton’s method. The scheme is initial-
ised with an initial guess φ̂ f0 , which is updated after each iteration until convergence to
within a set tolerance. The iterative schemes for Newton’s and Halley’s method are given
by:

φ̂ fn+1 = φ̂ fn −
f

f ′ φ̂ fn+1 = φ̂ fn −
2 f f ′

2 f ′2 − f f ′′ (5.24)

where the derivatives are found using Eqs.(̇5.3) and (5.17):

f = tn − t f (5.25)

f ′ = d f

dφ̂
= 1

ζ3s2 (5.26)

f ′′ = d2 f

dφ̂2
= −2(−ζ1 sin φ̂ fn +ζ2 cos φ̂ fn )

ζ3s3 (5.27)

This approach is both very accurate and expensive. As the integration is restarted for
each new guess φ̂ f , the error due to estimation is not present (εest i mati on = 0). How-
ever, the number of function evaluations can be high: roughly equal to the number of
iterations times number of evaluations necessary to propagate a single trajectory. The
number of iterations depends on the quality of the initial guess and the required level of
convergence. Also, convergence is not guaranteed.

BISECTION

The second method uses bisection to successively approximate the φ f . This is a simple
root-finding method that repeatedly bisects an interval. As the maximum bisection in-
terval is limited to the maximum step size, the state is first propagated until it overshoots
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the target t f . The step is then reverted to the last point corresponding to φn , such that
tn < t f . The step size is subsequently halved and the procedure repeated.

The approach is very simple to implement. The convergence is linear, which is slower
than the other methods. However, the procedure requires no derivatives, initial guesses,
and restarts. Therefore, requiring only a moderate number of additional function eval-
uations. However, the accuracy is only moderate, as additional numerical errors are in-
troduced in the process, through the increasingly smaller steps.

HERMITE INTERPOLATION

The third and final method solves φ f using interpolation. Out of the many different
choices that exist (e.g., Lagrange polynomials, splines, etc.), a Hermite polynomial is
chosen. Hermite polynomials (as opposed to Lagrange/Newton polynomials) use high-
er-order derivative information. Here, only the states and its first-order derivatives are
used. Since this method is very akin to an extrapolation polynomial used by numerical
integrators, the error made will be of the same order as the integration error, making it
suitable for combination with numerical integration.

The first integration step after overshoot tn > t f is denoted φn . Along with the state
at φn , a number of additional points before and after are used. The interpolation of time
is illustrated in Figure 5.1. The orbit used for this example is Problem 1 and is introduced
in Section 5.4.4.
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Figure 5.1: Hermite interpolation of the final time
after 49.5 revolutions.

110 115
8.4

8.6

8.8

9

9.2

·106

Pseudo true anomaly φ [rad]

T
im

e
t

[s
]

Interpolation

True

States

Derivatives

Solution

Figure 5.2: Improper interpolation of the final time
due to too large step-size using time elements.

The values of the independent and dependent parameter are reduced according to
Eqs.(̇5.28) and (5.29). For the independent parameter, it is essential for a good fit that the
values are around zero. Moreover, the final time is subtracted, such that the polynomial
p(φ̄ f ) = 0 needs to be solved.

φ̄i =φi −φn (5.28)

t̄i = ti − t f (5.29)

The polynomial can then be generated using the set of points {t̄i , ṫ , φ̄i }. The usual
way would be to (numerically) compute the divided-difference table, from which the
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polynomial can then easily be found. However, it is proposed to solve the expression
for the polynomial coefficients analytically as a function of the data points, such that
c = f (φ̄, t̄, ṫ), making it more efficient to set-up the polynomial. Note that one such set of
expression for the coefficients needs to be found for each integration order. The polyno-
mial then becomes:

t̄ = p(φ̄;c) =
N∑

i=1
ci φ̄

i−1 (5.30)

The roots of the polynomial are then solved to find potential candidates for φ̄ f . For
polynomials of up to order four, closed-form analytic solutions exist. For higher orders,
the roots must be solved numerically, which are found as the eigenvalues of the polyno-
mial’s companion matrix, defined as:

C (c) =


0 0 · · · 0 −c1

1 0 · · · 0 −c2

0 1 · · · 0 −c3
...

...
. . .

...
...

0 0 · · · 1 −cN

 (5.31)

The number of roots (real and imaginary, including multiplicity) is equal to the poly-
nomial order. To find the correct root, knowledge about the solution is applied to elim-
inate candidates. The following conditions are used to identify the proper root:

φ̄ f ∈R φ̄n−1 < φ̄ f < 0 (5.32)

The final independent variable is then φ̂ f =φn + φ̄ f .

The method is both accurate and efficient. The accuracy of the solution is driven by
the fit of the polynomial alone, as the solving of the eigenvalues is exact (only round-
off). Similarly, the estimation error is of the same order as the numerical errors for a
single step, thus εest i mati on ≈ 0. The method uses even less evaluations than bisection.
Lastly, no initial guess is required and the method can be applied for any parameter. The
implementation, however, is perhaps the most involved of the three methods.

If the parameter is part of the state, the step-size controller of the integrator ensures
that a good spacing of data points for the polynomial is obtained. However, this can not
be guaranteed when the parameter is derived from the state (in case of a time element),
resulting in improper interpolation of the final time. Figure 5.2 illustrates the problem
of improper interpolation. Although the polynomial satisfies the state and derivative
constraints, the solution for φ̂ f is off. In such a case, time (instead of a time element)
can be integrated around the solution. Note that the error of the interpolation can be
easily obtained by integrating from φn−1 to the estimated φ̂ f . Using this error, the step
size can be modified and the quality of the interpolation checked in a trial-and-error
approach.
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5.4. EXPERIMENTAL SET-UP
The general set-up of the numerical simulation is explained below, followed by an in-
troduction to the numerical integration techniques used. Finally the test problems are
given. Dromo (with the proposed solution) is tested for the following cases:

Case A: Time-state options investigates the effects of using different options for time.

Case B: Fixed-time propagation compares the three solutions for propagating to a fixed
end in terms of time and positional accuracy.

Case C: Force modelling analyses the difference between conservative and dissipative
perturbations.

Case D: Numerical integrators investigates different numerical integration techniques.

Case E: Different orbits compares the effect of orbits for the test problems.

5.4.1. GENERAL SET-UP
The aim is to make the comparison between the regularised and non-regularised meth-
ods as realistic as possible. The following two important aspects ensure this.

First, Runge-Kutta Dormand-Prince 5(4) (DOPRI5) is used for all methods by de-
fault, unless stated otherwise. This integrator features step-size control, even though
regularised methods could propagate with high accuracy using a fixed step-size integ-
rator, through their analytic step-size control. However, doing so for the non-regularised
methods would result in very poor performance and an unfair comparison.

Second, all problems are integrated to a fixed final time, not a pre-computed final
value of the independent parameter that corresponds to the final time. This distinction
is important, as it was already discussed, that integration to a final time is not straightfor-
ward with regularised methods. Usually for benchmarking the final independent para-
meter is first estimated with very high precision and the state is then propagated to the
final value of the independent parameter instead. This approach, however, does not ac-
curately reflect the computational costs associated with finding the final value φ f .

5.4.2. ERROR AND REFERENCE POSITION
For each of the problems the orbit is integrated to the final time to obtain the final state
for various numerical tolerances between 10−6 and 10−14. The final state is converted
to the Cartesian position r̂ and then compared against a reference position r. This com-
parison highlights the computational effort required to reach a certain accuracy (and
vica-versa). The error is computed as the minimum between the absolute and relative
error:

ε= min

(
‖r̂− r‖,

∥∥∥∥ r̂− r

max(|r̂|, |r|)
∥∥∥∥)

(5.33)

A reference solution is not available for most tests. Unless the motion is unperturbed,
the solution has to be found numerically. For this, a solution is computed using Dromo
with the householder approach. The tolerance chosen is at least one order lower than
the minimum tolerance for the test.
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5.4.3. FORCE MODELLING
In addition to two-body unperturbed motion, the effects of the Earth’s oblateness and
atmosphere are analysed. The models, introduced in more detail below, can be con-
sidered crude. However, they represent two fundamental ingredients, namely conser-
vative potential-derived and dissipative perturbations. Therefore, they are represent-
ative for more advanced models and will suffice in highlighting differences among the
methods.

OBLATENESS

Variations in the Earth’s gravity field can be expressed as both a perturbing acceleration
f or potential R. Accounting for only oblateness, the potential and acceleration are given
by [98]:

R J2 =
J2µR2

E

2r 3

(
1−3sin2 i sin2(ν+ω)

)
(5.34)

fJ2 =−∇R J2 (5.35)

To facilitate comparison with literature, the following constants were assumed [87]:
µ= 398601km3 s−2, RE = 6371.22km, and J2 = 1.08265×10−3.

DRAG ACCELERATION

Due to the presence of an atmosphere the satellite will experience drag, dissipating the
satellite’s orbital energy. A simple tabulated exponential density model, based on USSA-
1976 and CIRA1972, is assumed [106]. A spherical Earth is assumed and the co-rotation
neglected. The drag acceleration is:

fdr ag = 1

2
ρvᵀv

SCD

m
(5.36)

where the constants CD = 2.2 and S/m = 0.01m2 kg−1 are assumed [95].

5.4.4. TEST PROBLEMS
The analysis is executed for several test problems. Table 5.2 gives an overview. By default
Problem 1 is used for Cases A to D, for Case E all three problems are analysed. The initial
positions are given in Table 5.3.

Table 5.2: Overview of the orbits of the different test problems.

# a [km] e [–] i [°] T [d] Revs [–] Note

1 136000 0.95 30.0 100 17.43 “Example 2” [87]
2 6777 0.0012 51.4 2 31.12 ISS 2

3 29600 0.0005 55.2 20 34.57 GSAT0101 3

Problem 1 was originally introduced as “Example 2” in Ref. [87] and is commonly
used throughout literature [88, 93, 95]. Problem 2 is a near-circular low-earth orbit (LEO).
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Table 5.3: Initial position and velocity of different test problems.

# x0 [km] y0 [km] z0 [km] vx0 [kms−1] vy0 [kms−1] vz0 [kms−1]

1 0 −5888.9727 3400 10.691338 0 0
2 −276.511 4783.577 4790.565 6.89916 2.17263 −2.55463
3 −6836.512 2513.848 −28685.790 −0.99054 −3.53321 −0.07189

The orbit of the ISS (orbit 925) is used as a reference. Of course, for the propagation
in LEO a more accurate atmospheric model is necessary. Nonetheless, the exponential
model that was selected will show the effect of a dissipative force. Moreover the gravity
model including only J2 is not considered very accurate for this type of orbit. Finally,
Problem 3 uses the orbit of the first Galileo satellite (GSAT0101) as a reference. The TLE
at epoch 15051.14284834 (February 20, 2015) is used for the initial conditions. As the
satellite is in MEO, it will not experience the effects of the atmosphere or oblateness as
much as a LEO satellite. Nonetheless, both the drag and J2 perturbations are modelled.

5.4.5. INTEGRATORS

Except for unperturbed motion, the EOMs need to be integrated numerically. The choice
of integrator also has a large influence on the accuracy and efficiency. Distinctly different
types of integrators are analysed to assess their performance. These include a single-step
(DOPRI), multi-step (Adams-Bashforth-Adams-Moulton or ABAM), and Taylor-Series in-
tegrators (TSI).

For each integrator, only the absolute and relative tolerances are changed to obtain
different data points of the accuracy versus the number of function evaluations. The
tolerances in each case are set equal for each parameter, such that εabsi = εr eli = ε∀i .

DORMAND-PRINCE 5(4)
DOPRI is a member of the Runge-Kutta (RK) family and convenient for adaptive step-
size. RK techniques approximate a Taylor-series extrapolation of a function by evalu-
ating the first derivative at different points within the interval and do not rely on pre-
vious solutions. Unfortunately, the truncation error is not available as part of the solu-
tion and requires the evaluation of another RK method of one order less or higher [107].
DOPRI5(4) is a fifth-order integration method, where the fourth-order is used for error
control. The method is implemented in Matlab as ode45, and is used as is.

ADAMS-BASHFORTH-ADAMS-MOULTON

Multi-step methods take advantage of the history of previously evaluated steps. In case
of predictor schemes the new step is predicted using only the history available. A cor-
rector uses the derivative at this new point to further improve the solution. ABAM, uses
the AB predictor and AM corrector. The difference between the predicted and correc-
ted values offers a measure of the error at each step. Only two derivatives are evaluated
for each step, independent of the order. However, these methods are more complex to
program and require special starting methods [108]. The integrator is implemented in
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Matlab as ode113, with adaptive order and step size based on the theory presented in
Ref.[109].

TAYLOR SERIES INTEGRATION

TSI uses higher-order derivatives to expand the solution around the known point. In
theory, a solution can be represented by an infinite series. In practice, the series is trun-
cated after a desirable order K . TSI is very efficient as large steps can be made. However,
it is difficult to implement. Automatic derivation up to any order is achieved by rewrit-
ing the EOMs using recursion formulas. To derive the recursion formulas, additional
state variables need to be introduced. Due to this overhead, TSI is only more efficient
when a problem can be solved many times [110]. Complications arise from models that
are discrete/discontinuous (e.g., look-up tables). Most models can only be made piece-
wise continuous. The derivatives are therefore only valid within a certain region, limiting
the maximum step size to its boundary. The value of the independent parameter at the
boundaries need to be found using a root-finding algorithm. Interpolation of models
can either be done once (for simple models) or on a need basis. Derivatives of numerical
(black-box) models can be obtained through finite differencing. In Ref. [111] a practical
introduction of the subject is presented.

The order K and step size h need to be controlled to keep the truncation error in
bounds, while maximising computational efficiency. An estimate of the truncation error
is generally obtained from the higher-order terms. The following step-size controller,
which computes the Lagrange remainder using the last two terms, is used [112]:

h0 =
(
min
∀i

{
εi

|(xi )K−1|
}) 1

K−1

h1 = exp

[
1

K −1
ln

(
min
∀i

{
εi

|(xi )K−1|+K |(xi )K |h1

})] (5.37)

The estimate for the step size can be iterated further (by obtaining h2 by substituting
h0 = h1 etc.), but only the first iteration is applied. The order is assumed to be fixed
throughout the integration and is optimised for each tolerance.

SIMPLIFICATIONS OF THE ATMOSPHERIC MODELLING

To simplify integrating with TSI, the following atmospheric model is assumed (for Case
D only): ρ = exp(−0.0037313432835821h−29.7025074606039041), giving a good fit for
h ≥ 800km. The EOMs for the gravity with oblateness (J2) are taken from Ref. [112], with
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the following additionally derived equations and recurrence relations:

f4 = vᵀv ( f4)k =
k∑

j=0
(v)ᵀk (v)k− j (5.38)

v =
√

f4 (v)k = 1

( f4)0

k∑
j=1

(
3 j

2k
−1

)
( f4) j (v)k− j (5.39)

ρ = a exp(−br ) (ρ)k = a(−b)k
k∑

j=1

j (r ) j (ρ)k− j

k
(5.40)

f5 = vρ ( f5)k =
k∑

j=0
(v) j (ρ)k− j (5.41)

f =−1

2
f5v

SCD

m
(f)k = 1

2

SCD

m

k∑
j=0

( f5) j (v)k− j (5.42)

where f4 and f5 represent some auxiliary introduced variables and

a = exp(bRE −29.7025074606039041)

b = 0.0037313432835821

5.5. RESULTS AND DISCUSSION
Each of the cases is analysed and their results are presented and discussed.

5.5.1. CASE A: TIME-STATE OPTIONS
The linear and constant time elements have been presented. The numerical properties
of the three options have been extensively studied in Ref.[96]. In general, it is found
that the time elements outperform the physical time on all test problems. As expected,
for circular orbits with only J2, all three options perform roughly equal. Similarly, they
converge with higher number of function evaluations. For these two cases the physical
time can be considered, as the equations are much simpler.

The time elements were found to be most accurate (up to 3-6 orders in magnitude)
for low number of function evaluations, where the accuracy of the time t is dominating
the integration. The evolution of all three options over two full orbits on Problem 1 are
shown in Figure 5.3. As can be seen from the plot the physical (non-dimensional) time
exhibits a sigmoid-type curve for every revolution. For this specific problem, this beha-
viour is driven by variations in the radius r . However, looking at Eqs. (5.3) and (5.4), a
similar trend occurs for variations of the orbital energy. As time is a strictly increasing
function, it is by definition hard to approximate with a polynomial and therefore diffi-
cult to integrate. Only when the orbit is circular (and mainly conservatively perturbed)
or the integration steps become small, a good fit can be obtained.

5.5.2. CASE B: FIXED-TIME PROPAGATION
Three solutions for propagating to a fixed time have been proposed. Figure 5.4 shows
the error made in approximating final time (solid lines) and in position (dashed lines) as
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Figure 5.3: Evolution of different time elements (Case
A) for two revolutions on problem 1.
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Figure 5.4: Error in final time as a function of the de-
rivative evalutions for different approximation meth-
ods (Case B).

a function of the number of function evaluations.
The ability of the householder method to estimate time correctly is constant, regard-

less of the number of function evaluations. This is to be expected considering the earlier
discussion about how the iterative scheme decouples the error of estimation from the
solution. The bisection and Hermite interpolating methods show only a small differ-
ence. Both approach the accuracy of the householder method as the number of function
evaluations increases. As the step size goes down with increasingly stringent tolerances,
the integration steps get smaller and thus closer to the value of t f that is to be estimated,
therefore reducing the impact of estimation.

Looking at the position error (dashed lines), the householder method actually per-
forms worst, due to its inefficiency. The difference between the other two methods is
again relatively small. However in terms of function evaluations the Hermite interpol-
ation method is between 7 (for high accuracy) to 24 % (for low accuracy) more efficient
than bisection.

5.5.3. CASE C: FORCE MODELLING
Next, the effects of different perturbations are investigated. First, the unperturbed mo-
tion is analysed, followed by perturbed motion due to the Earth’s oblateness (J2), and
finally the atmospheric drag is added. The results are shown in Figure 5.5.

For the unperturbed case (solid line), Dromo clearly performs best and the function
evaluations and precision are hardly impacted by the tolerances settings. Ideally the
precision would be perfect, as the elements are not impacted by the integration as their
derivatives are zero and thus remain constant. The small error that is present and the
associated number of function evaluations stem from the approximation of φ f and any
numerical errors during conversion from and to Cartesian coordinates.

It can further be seen that MEE is about an order more accurate compared to Cowell,
for a given number of function evaluations. The errors originate from the integration of
the true longitude alone (as the other five are constant).
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Figure 5.5: Comparison of different force models
(Case C) on test problem 1.
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Figure 5.6: Comparison of different integration
methods (Case D) on test problem 1.

For the second case (J2, dashed line), again Dromo performs best. Compared to
MEEs, Dromo has a better accuracy and is more efficient. It is remarkable that for a
low number of function evaluations the other methods do not even offer a useful solu-
tion, Moreover, for Dromo the minimum error remains unaffected, though the number
of function evaluations has increased. This shows the benefit of Dromo’s approach to
treating the perturbation as a conservative potential, in which the total energy does not
change. The other two methods show a shift upwards, signifying a reduction in accuracy
for a given number of function evaluations.

Lastly, for the case with both a conservative and a non-conservative perturbation
(J2 + drag, dotted line), all methods show a reduction in accuracy. Especially Dromo
shows a significantly reduced accuracy. Nonetheless, the method still performs best,
especially with a low number of function evaluations, where it is over two orders more
accurate than MEE.

5.5.4. CASE D: NUMERICAL INTEGRATORS

The fully-perturbed problem is analysed for three different variable step-size integrat-
ors: DOPRI5(4), ABAM, and TSI. Figure 5.6 shows the results. The differences among
the integrators are most profound for the more stringent tolerance settings (higher eval-
uations). ABAM is found to be more efficient than DOPRI5(4) (or any other RK-family
integrator) on this problem, especially for high-accuracy applications. For Dromo and
MEE there is only an improvement in function evaluations. ABAM for Cowell’s method
shows better performance at a reduction in accuracy. This is likely due to the large vari-
ation of the states for this method, as ABAM relies on previous states.

Only results for TSI of Cowell’s method were obtained. It can be seen that TSI per-
forms significantly better than DOPRI and approaches ABAM for the lower number of
function evaluations. Increasing the tolerance above 10−13 yields no additional benefits
in terms of accuracy at the expense of evaluations. Three factors however have to be
taken into account when viewing these results. First, the atmospheric model was further
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simplified for the comparison. If more advanced models are used, the step size has to
be limited further. Secondly, the dimension of the Cartesian TSI state is 22 as opposed
to 6 for the regular implementation, which has not been taken into account in the num-
ber of function evaluations. Lastly, finding the optimal order for TSI was found to be
non-trivial. No order controller gave consistent results on this problem and was thus
optimised for each run and shown in Table 5.4.

Table 5.4: Optimal Taylor-series integration order for a given tolerance, determined throught trial-and-error.

Tolerance 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15

Order 14 16 16 16 18 20 18 18 19

5.5.5. CASE E: DIFFERENT ORBITS
The fully perturbed case of Problem 1, given by Figure 5.5, was already analysed. Prob-
lems 2 and 3 are also analysed. Their results are shown in Figures 5.7 and 5.8, respect-
ively. Comparing Problem 2 to Problem 1, Dromo and MEE are much closer to each
other. For the lower number of function evaluations, Dromo is about 1-2 orders more
accurate than MEE, compared to 2-4 orders for the fully perturbed case of Problem 1.
For a higher number of function evaluations two methods even converge and reach the
same minimum error.
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Figure 5.7: Comparison of methods on circular LEO
(Case E, Problem 2).
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Figure 5.8: Comparison of methods on circular MEO
(Case E, Problem 3).

As can be seen from the figures, Dromo also performs best for these problems. Both
Dromo and MEE achieve a maximum accuracy, after which higher tolerances do not
result in increased accuracy. This is caused by the total round-off error becoming dom-
inant over the decrease in the total truncation error. Dromo compares favourably in this
respect against MEE, by achieving a lower minimum error of around one order less.

Both Problems 2 and 3, compared to 1, show Dromo and MEE closer to each other.
From this it can be concluded that MEE performs relatively worse on highly elliptic or-
bits. The convergence of Dromo to MEE, which is present in Problem 2, but not in 3
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indicates that this should be attributed to atmospheric drag.

5.6. CONCLUSIONS
The time elements have very interesting properties and prove a useful addition to the
Dromo formulation, especially for low-accuracy computations on problems where the
orbital radius and/or energy vary.

Two methods for propagating to a fixed epoch have been proposed, namely bisec-
tion and Hermite interpolation. Both methods work very well. In terms of accuracy they
approach the classical Householder method for stringent tolerance settings. Although
their absolute accuracy lacks behind the iterative scheme, overall their performance in
terms of positional accuracy over function evaluations is better in all cases. The dif-
ferences between bisection and Hermite interpolation are largest in the low-accuracy
region, where Hermite interpolation is up to 25 % more efficient in terms of function
evaluations.

Dromo dominates the other methods for all cases and problems, especially in terms
of computational effeciency. Cowell’s method performed worst on all problems. Dromo
and MEE performed roughly equal for a small portion of the regime with high accuracy
and number of function evalutions on Problem 2 (LEO with drag). Dromo is found to be
very efficient, finding relatively accurate solutions for a limited number of evaluations.
Similarly, Dromo is able to propagate more accurately than other methods, demonstrat-
ing a higher maximum accuracy, at a fraction of the computational cost of the other
methods.

The choice of numerical integrators has an effect on performance. ABAM works very
well with VOP formulations. TSI outperforms ABAM and DOPRI5(4) for Cowell’s method.
However, a number of practical issues have been presented that have to be addressed,
especially expansion for discontinuous models and order control. TSI for Dromo should
provide an additional gain in performance; it remains to be seen how much additional
overhead is introduced. The number of additional state variables that needs to be intro-
duced is large, due to Dromo’s more complex ODEs.

In conclusion, it is demonstrated that Dromo, through the proposed adaptations,
can be successfully applied to real orbit problems, providing significant benefits in both
accuracy and number of functions evaluations. These findings should hold true for reg-
ularised propagation methods in general. The advantage in terms of computational ef-
ficiency is most significant for low- to medium-accuracy applications. For the propa-
gation of LEO satellites, Dromo offers an improvement in accuracy (for a given number
of function evaluations) of up to seven orders in magnitude, compared to the standard
Cowell’s method using Cartesian coordinates. The proposed method is recommended
for all orbit problems that have been analysed. Especially great potential is foreseen for
highly demanding applications, such as the propagation of a large catalog of objects,
where currently (semi-)analytic techniques are employed.
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Verified interval orbit propagation provides mathematically guaranteed solutions of satel-
lite position and velocity over time. These verified solutions are useful for conjunction
analysis and other space-situational-awareness activities. Unfortunately, verified meth-
ods suffer from overestimation and explosive interval growth, limiting the possible pro-
pagation time and thus their applicability. Different orbital-element state models have
been shown to increase the maximum propagation time to a degree, but at the expense
of significant overestimation introduced by the state transformations. This thesis pro-
poses the Dromo state model for verified integration. Dromo is a regularized variation-of-
parameter formulation of the perturbed two-body equations of motion. Taylor models are
implemented for both integration and transformation. Moreover, a technique is developed
for dealing with time uncertainty resulting from verified regularized propagation. Dromo
significantly prolongs the maximum forecasting window, producing verified trajectories
of days up to weeks in duration for the low-Earth orbit regime. A sensitivity analysis of
the integrator settings identifies combinations that produce stable and computationally
efficient solutions. A sensitivity study of the orbital parameters shows that the method is
applicable to a large orbital regime, especially for low-Earth orbit regions that contain
high densities of space debris.

6.1. INTRODUCTION
Space debris composes the largest group of observable objects in Earth orbit, and pre-
sents a major threat to operational spaceflight [113]. Collision prediction methods gen-

1Minor modifications have been made for this thesis.
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erally compute potential collisions, by propagating initial states and state errors as prob-
ability density functions to an estimated time of closest approach [114–117]. Verified in-
terval orbit propagation (VIOP) presents a different approach to conjunction analysis [118].
VIOP generates bounds on the state that are guaranteed to encompass the exact solu-
tion at any given time. The non-intersection of VIOP solutions mathematically rules out
possible collisions, whereas an intersection implies the possibility of a collision, how-
ever, with an unknown likelihood. This unique mathematical property makes VIOP
interesting for many space-situational-awareness (SSA) activities, potentially in com-
bination with statistical methods. Verified integration has previously been applied to
computing Solar-System dynamics [119], intersections between near-Earth objects and
Earth [120, 121], and satellite conjunctions [118, 122]. Verified predictions of the Iridium-
Cosmos collision were studied in Ref. [118]. The error build-up of regularized formula-
tions was analysed using interval arithmetic in Ref. [123].

Verified methods are known to suffer from overestimation, which results in rapid
growth and explosion of the verified solutions after short periods of integration. Differ-
ent state models are shown to improve the forecasting window up to four to ten times [118].
A differential algebra formulation of the simplified general perturbation (SGP4) model
was used for uncertainty propagation in Ref. [124]. Due to the interval transformations
from Cartesian coordinates to the propagation state model and back, a large amount of
additional overestimation is introduced. Especially, the overestimation resulting from
the transformation of the initial uncertainty is included in the propagation, reducing the
overall effectiveness. Regularized methods for verified propagation have recently been
suggested as a state model [123]. However, the time transformation in regularization
brings forth additional practical challenges, as described in Chapter 5 [125].

This thesis aims to increase the time until solution explosion by proposing the reg-
ularized Dromo formulation as the state model [95]. Moreover, the research aims to re-
duce the overestimation in the interval state transformations. Also, the thesis proposes
a new technique for converting time uncertainty into additional post-propagation un-
certainty in position and velocity. The study primarily focusses on low-Earth orbit (LEO)
satellites. LEO presents a demanding environment and is very relevant for collision pre-
diction and avoidance.

The chapter is structured as follows. First, a background of interval analysis and veri-
fied orbit propagation is provided in Sec. 6.2. Regularized propagation and the proposed
Dromo state model are given in Sec. 6.3. The interval state transformations and the de-
veloped time uncertainty transformation technique are presented in Sec. 6.4. In Sec. 6.5,
the models and set-up of the study are explained. Section 6.6 shows the results of the
transformation techniques, a comparison of Dromo with other state models, and a sens-
itivity analysis into the integrator settings and orbital parameters. Lastly, the conclusions
are given in Sec. 6.7.

6.2. VERIFIED PROPAGATION
VIOP is an uncertainty analysis method that applies initial-value-problem (IVP) inter-
val methods to the satellite equations of motion (EOMs). In this, the initial uncertain-
ty, model uncertainty, and numerical truncation and rounding errors are modeled and
bound by intervals. VIOP provides a verified interval solution of the position and velo-
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city of a satellite trajectory over time, which is mathematically guaranteed to contain all
possible trajectories. This characteristic makes verified integration interesting for many
different applications.

A classical application of VIOP in celestial mechanics is the propagation of asteroid
state vectors [119, 126]. If the interval solution, which encloses all possible trajectories,
fails to intersect the Earth, an impact can be mathematically ruled out. This is opposed
to statistical methods, which only ascribe probabilities to certain events, and are not able
to rule any out.

It is realistic to consider that for physical applications, the mathematical proof holds
for the model (i.e., the ordinary differential equations (ODEs) and its parameters) and
the given initial conditions. Inherently, the mathematical model has a limited fidelity
and the initial conditions are often not known perfectly (e.g., derived from observations).
So the mathematically guaranteed solution does not necessarily translate to the physical
world. To account for this, the modeling and initial condition errors have to be conser-
vatively estimated and included in the uncertainty of the system.

Interval analysis (IA) in general and Taylor Models (TM) specifically are presented
in Sec. 6.2.1. IA suffers from overestimation, which is the inclusion of trajectories that
should not be contained within the interval. Several sources of overestimation are dis-
cussed in detail in Sec. 6.2.2. Finally, Sec. 6.2.3 discusses the verified solution of initial
value problems.

6.2.1. INTERVAL ANALYSIS AND TAYLOR MODELS
IA is an extension of real-number arithmetic to intervals and was developed by Moore in
the early 1960s [127]. A real interval X is defined as the set of real numbers lying within
(and including) a given lower and upper bound:

X = [X , X ] = {x ∈R |X ≤ x ≤ X } (6.1)

where the under- and overline indicate the lower and upper bound, respectively. The
width of the interval is calculated as w(X ) = X−X , and the midpoint as m(X ) = (X+X )/2.
IA describes rules for the basic arithmetic operations, such as addition, multiplication,
and inversion [128]:

X +Y = [X +Y , X +Y ] (6.2)

X Y = [min(X Y , X Y , X Y , X Y ),max(X Y , X Y , X Y , X Y )] (6.3)

X −1 = [X −1, X −1] (6.4)

where a special formulation of the inversion is used when 0 ∈ X .
Most mathematical operations and functions have been defined for IA, as well as

expansion to interval vectors and matrices. An example of an interval calculation is
presented in Sec. 6.2.2. When interval calculations are performed numerically, special
rounding techniques ensure that the interval bounds are always rounded outward to the
next machine- representable number. This ensures that rounding errors are absorbed
within the intervals during all computations.



6

102 6. VERIFIED REGULARISED INTERVAL ORBIT PROPAGATION

TM recursively computes high-order multivariate polynomial function approxima-
tions of IA to reduce overestimation due to the dependency problem. With TM possible
cancellation of sub-parts of the function can be detected [129]. The dependency prob-
lem is discussed in Section 6.2.2. TMs have been developed by Berz and Makino, and
Hoefkens since 1996 [126, 129, 130]. A separate remainder term rigorously bounds the
approximation error due to truncation, to control the dependency problem of IA [130].

The TM T f of a function f of up to order k is written as:

f (x) ∈ T f (x) = p f (x)+R f (x) for x ∈ [X , X ] (6.5)

p f (x) =
k∑

n=0

f (n)(a)

n!
(x −a)n (6.6)

where p f (x) is the expansion of f (x) around a up to order k. The interval remainder
is R f . To obtain the interval remainder bound, the remainder, i.e., the (k + 1)th term,
of the series expansion can be quantitatively bounded using different interval methods.
The choice of method has a significant impact on the performance of TMs and many
bounding schemes have been proposed [131, 132].

6.2.2. OVERESTIMATION
Overestimation is the inclusion of non-solutions within the interval. Three sources for
overestimation can be distinguished: wrapping, cancellation, and dependency. Wrap-
ping and dependency are discussed in more detail below. Cancellation occurs when the
regular floating-point result of an operation has a small magnitude compared to the in-
dividual numbers, for instance, when subtracting two large and nearly equal numbers.
The floating-point result is a number of relatively small magnitude, while in IA the widths
of the interval are always additive and thus result in a large interval with large overestim-
ation [131].

In recurrent computations, overestimation leads to the inclusion of non-solutions
in subsequent analyses, giving rise to even more overestimation. This leads to a phe-
nomenon known as interval explosion: an exponential growth of the interval solution.
When interval explosion occurs, further computation becomes physically nonsensical.
Interval explosion can also occur for stable dynamical systems.

WRAPPING

Wrapping occurs when the true shape of the uncertainty cannot be sufficiently repres-
ented by an interval. Consider an initial uncertainty that is described by a circle. The
representation of this uncertainty in Cartesian coordinates results in a square interval.
Therefore, the interval contains many non-solutions outside the original circle. In VIOP,
the wrapping effect occurs not only when enclosing the initial uncertainty in interval
form, but also at every step of the integration, as the continuous dynamical system is
numerically discretized [131]. The recurrent wrapping at each time step might only pro-
duce a small amount of overestimation, but cumulatively it can lead to interval explo-
sion.

The wrapping effect can be reduced by choosing a different coordinate system. In
the example of the 2D circular uncertainty, polar coordinates can be used to perfectly
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describe the uncertainty without any overestimation at all. Likewise, for orbit propaga-
tion, different state models can be used to better describe the uncertainty and thus limit
wrapping overestimation at each step. Furthermore, state models with slow-varying ele-
ments can reduce the number of integration steps necessary and thus the number of
times wrapping occurs. The downside of a different state model is that the initial un-
certainty and final solution after propagation often need to be transformed, which itself
introduces overestimation.

The unified state model (USM) and modified equinoctial elements (MEE) are invest-
igated in Ref. [118], and outperform the classic Cartesian state model significantly in
propagation time to solution explosion. The hybrid-interval trajectory is a novel tech-
nique proposed in Ref. [118], and propagates multiple state models concurrently. In this
approach, only the intersection of the interval solutions (in Cartesian coordinates) be-
comes the true verified solution. Solutions outside the intersection of the intervals pro-
duce overestimation, as verified methods demand that all solutions are enclosed. The
technique is effective in reducing the overestimation of the instantaneous verified solu-
tion. However, the intersection of the intervals must be computed in a common coordin-
ate system, which introduces overestimation in the transformation. Therefore, hybrid
intervals do not improve the propagation time until solution explosion.

DEPENDENCY PROBLEM

Dependency results from multiple occurrences of one or several variables in a system of
equations. While a variable may take on any value within its interval, it must take on the
same value in each occurrence. However, this dependency is not taken into account in
interval arithmetic [133, 134]. To illustrate the dependency problem, the interval solu-
tions G and H of equivalent functions g (x) and h(x) are computed for X = [2, 3] [134]:

g (x) = x

x −1

G([2, 3]) = [2, 3]

[2, 3]−1
= [2, 3]

[1, 2]
= [1, 3]

h(x) = 1+ 1

x −1

H([2, 3]) = 1+ 1

[2, 3]−1
= 1+ 1

[1, 2]
= 1+ [0.5, 1] = [1.5, 2]

where w(G) = 2 and w(H) = 0.5. G overestimates the true width by a factor four. The
dependency problem increases with the complexity of the equations and the number of
occurrences. Often, it is not possible to rewrite the equations to reduce dependency.

6.2.3. VERIFIED INITIAL VALUE PROBLEM SOLVERS
In traditional IA the solution at each integration step is computed in two stages [135].
In the first stage, the existence and uniqueness of a solution are proven by computing a
rough enclosure of the solution, referred to as the a-priori solution, which is valid over
the integration step, from t1 to t1 +∆t . The rough enclosure can potentially significantly
overestimate the solution. A smaller (or tighter) solution is desired. In the second stage,
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a tighter solution is computed, which provides the instantaneous verified solution at
time t1. The exact details of each step depend on the specific solver that is used and are
not important for the application. The a-priori solutions are used when a continuous
solution is desired, while the tight solutions are the starting point for each integration
step.

Many software packages exist that use TM for verified integration, including COSY [129],
VNODE-LP [133], VSPODE [134], and RiOT [136]. These packages differ in how range
bounding is implemented and what techniques are used for computing the tighter en-
closure in the second stage. The packages further differ in their availability [137]. A
survey of available packages on the basis of propagation time until solution explosion
shows that VSPODE (Validating Solver for Parametric ODEs) is very promising [118].

VSPODE uses a unique algorithm for computing tighter enclosures, which addresses
the wrapping effect by propagating the intermediate results using TMs as a function of
the model parameters and initial values [134]. This means that intervals of both initial
state and model parameters are parametrically expressed in the solution and evaluated
in the last step. VSPODE solves parametric autonomous IVPs. For non-autonomous sys-
tems, the EOMs need to be adapted to an autonomous form by introducing an additional
pseudo-state variable.

The VSPODE solver is controlled by three tuning parameters: k, q , and ε, where k
is the order of the interval Taylor series (ITS) with respect to time, q is the order of the
TM as a function of the initial intervals and uncertain parameters, and ε the numerical
tolerance controlling the step-size. The order q determines how well the intervals are
described as a function of the initial intervals and uncertain parameters, and thus the
effectivenes in reducing overestimation when computing tighter enclosures. The sens-
itivity of the verified solution to the tuning parameters is investigated in Sec. 6.6.6. An-
other important parameter of VSPODE is the number of uncertain quantities Nu , which
is the sum of uncertain state variables and system parameters. The computational cost
of VSPODE is proportional to a power Nu q [134]. Therefore, it is important to minimize
Nu , which will be discussed in Secs. 6.5 and 6.6.6.

6.3. REGULARIZED PROPAGATION
Regularization aims to remove singularities and dynamical instability from the EOMs,
leading to less integration errors and more efficient integration. This is achieved by a
transformation of the independent variable (in orbital mechanics a Sundman transform-
ation is commonly used for this) and the introduction of a new set of variables instead of
position and velocity to represent the motion [138]. Sometimes, these new variables are
integrals of the two-body problem, and their variations when the motion is perturbed
can be obtained by the variation-of-parameters (VOP) technique, starting from the un-
perturbed solution of the equations of motion.

6.3.1. DROMO AND COMPARISON OF REGULARIZED METHODS

Two popular methods are Kustaanheimo-Stiefel (KS) [99] and Sperling-Burdet (SB) [100]
regularizations. Since 2000, new special perturbation methods that take advantage of
quaternions have been developed [89–96].
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Dromo is a modern VOP method derived from the Burdet-Ferrándiz regularization [93,
101]. It has been applied to the propagation of asteroid orbits for computing planetary
close encounters, and for the lifetime analysis of space debris [139]. Dromo is also used
for covariance propagation of asteroids [140]. Dromo employs only eight EOMs, which
is close to non-regularized methods (often six) and less than other regularized methods:
KS and SB feature 10 and 12 differential equations, respectively [102]. In Ref. [95] a new
version of Dromo is presented, which allows a separate treatment of perturbing forces
that are derivable from a potential and those that are not. The behavior of the EOMs can
be further improved through the use of time elements [96].

Dromo is compared against a number of classical and modern methods in Table 6.1.
This table is a reproduction of Table 5.1. Stiefel-Scheifele (SS) [141] represents the bench-
mark for this problem. The table gives the final state of a satellite in a highly eccentric
(e = 0.95 and rp = 6800km) orbit about the Earth. The motion is perturbed by the Earth’s
oblateness (J2) and third-body gravitational attraction of the Moon. The orbit is integ-
rated for 288.12768941 mean solar days (roughly 50 revolutions). The final position (Rx ,
Ry , Rz ), number of steps per revolution (steps/rev), and the absolute error with respect
to the benchmark are reported. Additional results for Cowell, Dromo, and MEE, and
USM [103] are added to the original comparison table reported in [142].

Table 6.1: Comparison of results from literature of several methods for the oblate Earth plus Moon after
288.12768941 days [103, 142].

SS [142] SB [142] KS [142] Cowell-
Ea [142]

Rx [km] −24219.050 −24218.818 −24219.002 −24182.152
Ry [km] 227962.106 227961.915 227962.429 227943.989
Rz [km] 129753.442 129753.343 129753.822 129744.270
Steps/rev 500 62 62 240
Error [km] baseline 0.318 0.501 42.5

Dromo [125] Cowella [125] MEE USM [103]

Rx [km] −24218.829 −24256.391 −24256.980 −24219.049
Ry [km] 227961.980 227980.068 227979.117 227962.106
Rz [km] 129753.414 129762.509 129761.798 129753.442
Steps/rev 113 453 188 372
Error [km] 0.256 42.4 42.4 42.1
a "Cowell-E" indicates the formulation in Ref. [105], which uses the total energy
as an independent parameter, while "Cowell" indicates the classic Cartesian
formulation.

On the test problem, all regularized methods (SB, KS and Dromo) perform much bet-
ter in terms of accuracy than the others. This is not at all surprising as the orbit is highly
eccentric. Cowell, MEE and USM are integrated using Runge-Kutta Dormand-Prince
5(4) variable step-size integrator. The final errors of these three methods were matched
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to the Cowell-E final error by changing the numerical tolerances, to provide a direct com-
parison of the number of integration steps per revolution. The cost and error of Dromo
are comparable to other regularized methods. On problems with lower eccentricities
(e = 0, 0.3, 0.7) it performs much better than the other methods, as shown in Chapter 5
and Ref. [96]. The Dromo transformation equations to Cartesian coordinates are more
accurate than KS [123]. MEE and USM have much better performance (approaching the
performance of Dromo) for less eccentric orbits (e < 0.3) [103, 125]. The lean formula-
tion, regularized properties, and good performance on a wide range of problems, make
Dromo interesting for verified propagation.

6.3.2. DROMO FORMULATION
In Dromo, the motion is represented by the non-dimensional physical time (ζ0) and
seven parameters, which are first integrals of the two-body problem. Three of the para-
meters (ζ1−3) fix the shape of the osculating conic and the remaining four are the com-
ponents of a unit quaternion (ζ4−7), which describes the orientation of the orbital plane
and of a reference direction on it. All quantities in Dromo are made non-dimensional
by introducing units for time and length as n−1

0 and R0, respectively. These quantities
are defined when the Dromo state is first computed. Here, R0 is the initial radius and n0

the initial circular mean motion (i.e., n0 = n(a=R0) =
√
µ/R3

0 ) [95]. For intervals, R0 is

defined as R0 =
√

m(X0)2 +m(Y0)2 +m(Z0)2. Here m(X0) is the midpoint of initial inter-
val X0 in x-direction, as discussed in Section 6.2.1.

The perturbations are expressed in the orbital reference frame (i.e., consisting of the
radial, transverse, and normal components [143]) and separated into those derivable
and non-derivable from a potential. The separation allows for conservation of energy,
when only conservative forces are applied. The total perturbing acceleration f is given
by:

f = P+∇U (6.7)

where P is the sum of all perturbations that are non-derivable from a potential and ∇U

is the gradient of the total perturbing potential.

EQUATIONS OF MOTION

The physical time t is non-dimensionalized as ζ0 = tn0, and is a function of the fictitious
time φ through Eq. (6.8). Along Keplerian motion φ behaves like the true anomaly. The
entire derivation of the elements is presented in Ref. [95], and only the ODEs and relevant
transformation equations are presented here. The ODEs of the elements with respect to
the independent parameter are [95]

dζ0

dφ
= 1

ζ3V 2
s

(6.8)

dζ1

dφ
= sinφ

Vs

(
fr

ζ3Vs
−2U

)
−

(
Vs

ζ3
+1

)
cosφ

dζ3

dφ
(6.9)

dζ2

dφ
= cosφ

Vs

(
2U − fr

ζ3Vs

)
−

(
Vs

ζ3
+1

)
sinφ

dζ3

dφ
(6.10)
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dζ3

dφ
=− 1

V 4
s

[
ζ3Vr Vs

(
2U − ζ3Vs

Vs +ζ3

∂U

∂ζ3

)
+Vt Pt + ∂U

∂t

]
(6.11)

dζ4

dφ
= 1

2Vs

[
fn

ζ3VsVt
(ζ7 cos∆φ−ζ6 sin∆φ)+ζ5(Vt −Vs )

]
(6.12)

dζ5

dφ
= 1

2Vs

[
fn

ζ3VsVt
(ζ6 cos∆φ+ζ7 sin∆φ)−ζ4(Vt −Vs )

]
(6.13)

dζ6

dφ
=− 1

2Vs

[
fn

ζ3VsVt
(ζ5 cos∆φ−ζ4 sin∆φ)−ζ7(Vt −Vs )

]
(6.14)

dζ7

dφ
=− 1

2Vs

[
fn

ζ3VsVt
(ζ4 cos∆φ+ζ5 sin∆φ)+ζ6(Vt −Vs )

]
(6.15)

where fr and fn are the radial and normal components of the total perturbing accelera-
tion vector and Pt the transverse component of all perturbing accelerations not derived
from a potential. The pseudo-transverse Vs , transverse Vt , and radial velocity Vr are
given by

Vs = ζ3 +ζ1 cosφ+ζ2 sinφ (6.16)

Vt =
√

V 2
s −2U (6.17)

Vr = ζ1 sinφ−ζ2 cosφ (6.18)

It is important to note that∆φ in Eqs. (6.12)-(6.15) represents the difference between
the current and initial value of the independent variable (∆φ=φ−φ0), and not the step
size. The initial value of φ0 can be arbitrarily chosen when the initial Dromo state is
constructed. A common choice for φ0 is the initial true anomaly φ0 = ν0 or just φ0 = 0.

Alternatively, when the contribution of the perturbation (P) to the total perturbation
(f) is small, the ODE of the third element ζ3 can be replaced by that of the total specific
energy E :

dE

dφ
= 1

ζ3V 2
s

(
Vr Pr +Pt

√
V 2

s −2U + ∂U

∂t

)
(6.19)

where ζ3 can then be obtained through the following equation [95]:

ζ3 =
√
ζ2

1 +ζ2
2 −2E (6.20)

FROM DROMO TO CARTESIAN COORDINATES

Cartesian coordinates are directly obtained through the transformation matrix CRI of
the local-vertical local-horizontal frame R to the inertial frame I , defined by [95]:
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CRI = C0Cφ (6.21)

C0 =
 1−2ζ2

5 −2ζ2
6 2ζ4ζ5 −2ζ6ζ7 2ζ4ζ6 +2ζ5ζ7

2ζ4ζ5 +2ζ6ζ7 1−2ζ2
4 −2ζ2

6 2ζ5ζ6 −2ζ4ζ7

2ζ4ζ6 −2ζ5ζ7 2ζ5ζ6 +2ζ4ζ7 1−2ζ2
4 −2ζ2

5

 (6.22)

Cφ =
cos∆φ −sin∆φ 0

sin∆φ cos∆φ 0
0 0 1

 (6.23)

The non-dimensional Cartesian position and velocity components are obtained as:

[RX , RY , RZ ]ᵀ = CRI [r, 0, 0]ᵀ (6.24)

[VX , VY , VZ ]ᵀ = CRI [Vr , Vt , 0]ᵀ (6.25)

where the position and velocity can be dimensionalized using the quantities R0 and n0,
for distance and time, respectively, as defined previously.

FROM CARTESIAN TO DROMO ELEMENTS

Before transformation, the Cartesian coordinates are first non-dimensionalized using
the quantities R0 and n0, as described in Sec. 6.3.2. The orbital radius r , radial velo-
city Vr , transverse velocity Vt , and pseudo-transverse velocity Vs are first calculated us-
ing [95]:

r =
√

R2
X +R2

Y +R2
Z (6.26)

h = ‖h‖ = ‖r×v‖ (6.27)

Vr = r ·v

r
(6.28)

Vt = h

r
(6.29)

Vs =
√

V 2
t +2U (6.30)

which are used to express the Dromo parameters ζ1−3, and the transformation matrices
CRI and C0:

ζ3 = 1

r Vs
(6.31)

ζ1 = (Vs −ζ3)cosφ0 +Vr sinφ0 (6.32)

ζ2 = (Vs −ζ3)sinφ0 −Vr cosφ0 (6.33)

CRI =
(

r

r
,

h

h
× r

r
,

h

h

)
(6.34)

C0 = CRI Cᵀ
φ

(6.35)
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The quantity ζ0 is simply the non-dimensionalized physical time. The initial value of
t can be chosen arbitrarily, and in this study it is always set equal to 0. Note that ζ3 →∞
as r Vs → 0, however, it can be assumed that this is not realized for the considered motion
in the presence of a non-zero potential(see Eq.(6.30)) and radius r >> 0. The remaining
elements can be found by using the transformation matrix C0:

ζ7 = 1

2

√
1+C0(1, 1)+C0(2, 2)+C0(3, 3) (6.36)

ζ4 = C0(3, 2)−C0(2, 3)

4ζ7
(6.37)

ζ5 = C0(1, 3)−C0(3, 1)

4ζ7
(6.38)

ζ6 = C0(2, 1)−C0(1, 2)

4ζ7
(6.39)

where C0(i , j ) denotes the element of C0 in the i -th row and j -th column. When ζ7 = 0
special formulas for the elements ζ4−6 have to be used, which can be found in Ref. [95].

6.4. METHODOLOGY
Dromo is proposed as a state model to further improve the propagation time to solution
explosion. The use of a regularized formulation is here referred to as verified regular-
ized interval orbit propagation (VRIOP). Cartesian coordinates are used to express the
initial state and uncertainty and perform analysis after propagation, such as computing
conjunctions. All initial uncertainties are assumed to be represented by intervals.

The simplest uncertainty transformation method is Monte Carlo (MC), where the un-
certainty distribution (in this case an interval) is sampled to a sufficient degree and each
individual sample is transformed to the propagation state model, to construct the new
transformed distribution. For interval transformation, the minimum and maximum val-
ues in each dimension are taken to be the new intervals. MC intervals are non-verified as
the obtained intervals only approach the true interval. Verified interval transformation
techniques will be discussed in Sec. 6.4.1.

The physical time has become a dependent variable and thus has an uncertainty that
will grow with propagation. The uncertainty in the time variable needs to be converted
to additional position and velocity uncertainty. A new procedure for this is proposed in
Sec. 6.4.2.

6.4.1. VERIFIED TRANSFORMATIONS
Verified transformation ensures that solution enclosure is maintained. Any IA technique
can be used for the transformation and does not have to match the technique used for
the propagation. For example, IA is used for the transformations and TM for the propa-
gation in Ref. [118].

Transformations give rise to additional overestimation due to the non-linear equa-
tions. Also the transformation needs to be performed twice: once to the propagation
state model and once more after integration, back to Cartesian coordinates. The overes-
timation introduced by the transformation results in a large additional uncertainty even
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Figure 6.1: Position interval volume growth with propagation time for the Cartesian, MEE, and USM state
models (reproduced from Fig.7 of Ref. [118]).

before any propagation is done and can even outweigh the benefits an alternative state
model may provide. In Ref. [118] the MEE and USM are compared against Cartesian co-
ordinates for the VIOP of a satellite in a circular orbit at 400km altitude. The different
solutions explode after a different time of propagation. To illustrate the effects of the
transformations and the benefits of different propagation models, the results have been
reproduced in Fig. 6.1. The results for Dromo will be directly compared to the same trial
in Sec. 6.6.4.

Due to the additional uncertainty from the transformations, the Cartesian solution
outperforms the MEE and USM until a propagation time of 4 h. The initial volumes of
MEE and USM transformed back to Cartesian coordinates are 703 and 601 km3, respect-
ively. Considering that the initial uncertainty is only 1×10−6 km3, the overestimation
due to transformation is very large indeed.

Figure 6.1 shows once and twice-per-orbit oscillations of the volumes. For Cartesian
coordinates the oscillation is by far the largest. These oscillations illustrate the overes-
timation due to wrapping in a Cartesian cuboid as the uncertainty is rotated along a full
orbit.

IA transformations are shown to a produce large overestimation for MEE and USM [118].
IA and TM transformations are implemented in this research. TM transformations fol-
low the same two-step approach as TM integration: a rough solution enclosure is first
computed, which is then tightened using TM. The TM is expressed as a function of the
original Cartesian initial interval conditions. Dependency arising from the transform-
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Figure 6.2: Proccess for selecting the range of φ for removing time uncertainty.

ation equations can be reduced when the tighter solution is computed, which helps to
reduce overestimation.

6.4.2. TIME UNCERTAINTY TRANSFORMATION
Due to the time transformation that is included in Dromo ODEs, physical time is re-
garded as a state variable and therefore it is integrated along with the other seven Dromo
parameters. From Eqs. (6.8) and (6.16) it is clear that the derivative of time with respect
to φ depends on ζ1−3. Any uncertainty in these variables results into a growing uncer-
tainty in the physical time variable itself. An uncertainty in time is impractical for many
applications. A process for obtaining only the position and velocity uncertainty at a spe-
cific time t1 is outlined below.

The uncertainty of the physical time at a given φ is represented by the time interval
[t , t ]. Conversely, a desired time t1 will be present in a number of solutions for various
values φ. The first and last of the integrated solutions at φi (i = 0,1, . . . , N ) containing t1

are denoted as:

φnLB = min
i
φi φnU B = max

i
φi where t1 ∈ [t i , t i ] (6.40)

It is important to expand the range outward and include the neighboring solutions
of φ on the lower and upper bound, such that all solutions between φnLB−1 and φnU B+1

are considered. Here nX + 1 and nX − 1 indicate the solutions after and before nX , re-
spectively. Although intervals t of solutions at φnLB−1 and φnU B+1 certainly do not con-
tain t1, it is not known which solutions in the ranges [φnLB−1, φnLB ] and [φnU B , φnU B+1]
might contain t1. The resulting Cartesian volumes of the integrated solutions between
[φnLB−1, φnU B+1] need to be joined to get the total verified solution for a given time t1.
The process is illustrated in Fig. 6.2.

As VSPODE uses a variable step size, subsequent values of φ can be far apart. The
large spacing results in overestimation in two ways. First, the a-priori solution, com-
pared to the tight enclosure, is larger for large step sizes. Only the a-priori solution is
valid over theφ range from one step to the next. Second, all solutionsφnLB−1 untilφnU B+1

have to be considered. At large step sizes, this will likely contain many solutions that do
not include t1. To overcome these issues a refinement is made. The integration is per-
formed again from φnLB−1 to φnU B+1 by using a smaller fixed step size. This will produce
smaller a-priori solutions and discard integration steps that do not contain t1.
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The procedure can even be repeated to further reduce the total volume, albeit at di-
minishing improvements (reduction of wrapping and narrowing the consideredφ range)
for a given reduction in step size. Each refinement does require additional integration
steps and so presents a trade-off between volume and computational effort. On the
whole, the number of integration steps required when refining once for a single time
t1 is likely small, compared to the total number of integration steps taken from t0 to t1.
The optimal strategy for refinement will depend on the number of time-certain verified
solutions required and depends on the application.

6.5. EXPERIMENTAL SET-UP
The experimental set-up of this study is similar to that of Ref. [118], to be able to compare
the Dromo state model directly to the previously obtained results for MEE and USM.
Only two uncertainty parameters are included in the study: the atmospheric-density
uncertainty factor and the model-error acceleration. The uncertainty parameters and
eight uncertainty state variables result in a total of ten uncertainty quantities (Nu = 10).
These quantities are introduced and discussed in the following sections.

6.5.1. INITIAL STATE

Two initial uncertainty models are used: the simple and correlated model. In the simple
model the initial uncertainty state is modeled as a uniform and uncorrelated six-dimen-
sional distribution in the inertial Cartesian frame. The simple model is included to make
the results more comparable to previous studies [118]. Also the initial widths are the
same as in Ref. [118]: 10 m and 0.1 ms−1 in the position and velocity components, re-
spectively. The magnitudes are realistic even for very-low orbiting satellites, depending
on the measurement type considered [144].

The second correlated initial uncertainty model has two important distinctions: the
uncertainties are expressed in the orbital frame and made correlated. The orbital frame
is a common reference frame for expressing uncertainty in the state. Specifically, the
transverse (or along-track) position uncertainty and radial velocity uncertainty, and ra-
dial position uncertainty and transverse velocity uncertainty are inversely correlated, as
was demonstrated in Chapter 3.

To prevent wrapping the solutions twice, the entire conversion from the uncertainty
in the orbital frame to Dromo is executed in one step. This is done by substituting the
transformation equations from the orbital frame to the inertial Cartesian frame in the
Cartesian to Dromo transformation equations presented in Sec. 6.3.2. Moreover, two
inversely correlated variables are modeled only by a single initial uncertainty. The two
variables are then simply defined as the positive and negative copy of this combined un-
certainty variable. This approach reduces the number of uncertain variables and allows
for cancellation.

6.5.2. ATMOSPHERIC DENSITY

As the research concerns LEO satellites, atmospheric drag needs to be accounted for. A
simple tabulated exponential density model, based on U.S. Standard Atmosphere 1976
and CIRA1972 models, is used [145]. A spherical Earth and a co-rotating atmosphere are
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assumed. The drag acceleration is modeled by:

fdr ag =−1

2
ρ‖vr el‖vr el K (6.41)

where the ballistic coefficient is defined as K = 0.05×10−6 km2 kg−1 [118].
For LEO, atmospheric density is by far one of the most uncertain model paramet-

ers. To model this, a random unbiased error of ±20% is assumed [38, 118, 146], see also
Chapter 4. The atmospheric drag is modeled as an interval by multiplying the accelera-
tion by an interval factor:

Fdr ag = [0.8, 1.2]fdr ag (6.42)

6.5.3. GRAVITY FIELD
Variations in the Earth’s gravity field are modeled as a perturbing potential, having con-
tributions to both the perturbing acceleration f and the potential U . Accounting for
oblateness only, the potential and acceleration are given by [143]:

U J2 =
J2µR2

E

2r 3

(
1−3sin2 i sin2(ν+ω)

)
(6.43)

fJ2 =−∇U J2 (6.44)

where the following constants were assumed [147]: µ= 398601km3 s−2, RE = 6371.22km,
and J2 = 1.08265×10−3. The uncertainty arising from the limited knowledge on the
model parameters and limited order and degree of gravity terms are discussed in Sec. 6.5.5.

6.5.4. GRAVITATIONAL ATTRACTION OF THE MOON
The third-body gravitational attraction by the Moon is modeled. This is the only third-
body perturbation considered, as the goal is to investigate the effect of this type of per-
turbation and not necessarily the contribution of different particular bodies. Moreover,
the particular perturbation of the Moon is included in most regularized propagation
studies [95, 105, 125, 147], but not in the previous study [118]. The third-body perturba-
tion depends explicitly on the physical time, so that the uncertainty related to this vari-
able appears explicitly in the EOMs. This perturbation is implemented in Dromo as de-
rived from a perturbing potential. The perturbing acceleration and the Moon’s position
in the Earth-centered inertial frame are:

fM =− µM

r 2
sM

rsM (6.45)

rM =−1

2
Q

[
2sin(ωt ),

p
3cos(ωt ), cos(ωt )

]
(6.46)

where Q = 384400km, ω = 2.665315780887×10−6 rads−1, and µM = 4902.66km3 s−2.
The distance vector rsM = rM − rs can be obtained from Eqs. (6.21) and (6.24). The com-
putation of the potential UM and the perturbing accelerations is straightforward. The
partial derivative of the potential is:
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∂UM

∂t
= 1

2
µMωQ

(
2cRx +

p
3Ry + sRz

Q3 − 2caX +p
3saY + saZ(

a2
X +a2

Y +a2
Z

)3/2

)
(6.47)

where aX = Rx − sQ, aY = Ry + 1
2

p
3cQ, aZ = Rz + 1

2 cQ, s = sin(ωt ), and c = cos(ωt ).

6.5.5. MODELING ERRORS

The model only includes a limited number of perturbations with a limited fidelity. More-
over, all model parameters (e.g., physical quantities µ and J2) are only known approxim-
ately. To account for both, these contributions are combined into a single additional
modeling error acceleration vector, where each component is estimated to be enclosed
within [−10−8,10−8]kms−2 [118, 148].

It could be beneficial to include unmodeled contributions to the gravity field as an
uncertainty interval on top of the J2 parameter. Dromo treats perturbations arising from
a potential separately from other perturbing accelerations. In this way, an uncertainty in
a conservative potential will not cause a growth in uncertainty in orbital energy. How-
ever, practically this means the introduction of another uncertainty parameter, which
significantly affects the computational efficiency and is therefore not included in this
study.

6.6. RESULTS
The study investigates TM transformation, a correlated initial interval uncertainty mo-
del, and Dromo as a propagation state model. As a result of the chosen state model, a
method for removing the time uncertainty by converting it to additional positional and
velocity uncertainty is developed. The results of the transformation are separated in
the wrapping effect and dependency problem, presented in Secs. 6.6.1 and 6.6.2. The
different initial uncertainty models are compared in Sec. 6.6.3. In Section 6.6.4, Dromo
is compared against previous state models. The integration of the time uncertainty is
detailed in Sec. 6.6.5. Finally, a sensitivity analysis is presented in Secs.6.6.6-6.6.8.

6.6.1. TRANSFORMATION WRAPPING EFFECT OVERESTIMATION

By using a different state model for the propagation, overestimation is unavoidable and
mainly due to two sources: wrapping and dependency. The overestimation due to wrap-
ping represents how much an interval cuboid in one state space remains cuboid in an-
other state space and results from the choice of state models. The overestimation due
to dependency measures the complexity of the transformation and also depends on the
verified transformation technique.

To better understand the effect of the transformation technique, the wrapping con-
tribution is investigated first. The initial interval state in Cartesian coordinates is trans-
formed to a Dromo initial interval and back. In this process the Cartesian cuboid is
wrapped inside a Dromo cuboid, and then wrapped back in a Cartesian cuboid. To neg-
ate the dependency problem of the transformation method, the MC method is used for
both transformations using 10000 samples. Figure 6.3 shows the final interval compared
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Figure 6.3: MC transformation of the initial uncertainty interval from Cartesian to Dromo and back around the
initial position at t0.

to the original interval. The relative growth with respect to the nominal state (x0, y0, z0)
at t0 is shown.

It can be seen that the initial interval has grown significantly. The final interval has
a large spread in the XY- and XZ-plane, but occupies a relatively narrow band in the
YZ-plane, causing most of the overestimation due to wrapping of the final Dromo to
Cartesian transformation. The shape of the final point cloud appears normally distrib-
uted in the three dimensions, while the original point cloud was a cuboid of even density.
This change is caused by the transformation equations, in which certain combinations
of values are physically not compatible.

The volume of the back-and-forth result is estimated to be 2.48×10−3 km3 by draw-
ing a convex hull around the samples, while the corresponding cuboid measures
11.12×10−3 km3. The overestimation due to wrapping is thus a factor 4.48. In a sim-
ilar fashion, the overestimation of the velocity volume is by a factor 3.36. These factors
are small compared to the overestimation due to dependency and thus the total over-
estimation. Nonetheless, wrapping occurs at every integration step. This illustrates the
downside of verified propagation in Cartesian space. The ellipsoid rotates 360 deg every
orbit and is wrapped by a Cartesian cuboid at each step.

To investigate the wrapping in the Dromo space the volume of the samples is es-
timated by fitting a three-dimensional and four-dimensional convex hull around ζ1−3

and ζ4−7, respectively. The volume of the convex hull is compared to the volume of
the cuboid interval to obtain an overestimation factor. The obtained (hyper)ellipsoid
volumes are extremely small compared to the cuboid volumes and nearly zero. Due to
limited machine precision, computing an exact overestimation factor is nonsensical, so
it can only be noted that the overestimation due to wrapping is very significant.

Comparing the wrapping effect of the transformation from Cartesian to Dromo, and
also Dromo back to Cartesian, the major part of the wrapping effect is caused in the ini-
tial transformation. Nevertheless, the overestimation due to wrapping is still 300 times



6

116 6. VERIFIED REGULARISED INTERVAL ORBIT PROPAGATION

Figure 6.4: Inflation factor of the initial uncertainty interval with respect to MC for both directions, using TM
for both directions (TMTM), TM only for Dromo back to Cartesian (MCTM), IA for both directions (IAIA), and
lastly IA only for the transformation back to Cartesian (MCIA).

smaller compared to the same transformation for USM and MEE [118].

6.6.2. TRANSFORMATION DEPENDENCY PROBLEM OVERESTIMATION
The second source of overestimation due to transformation is the dependency problem,
which depends on the interval technique used. In Ref. [118], standard IA is used for
both directions of the transformation between Cartesian and Dromo variables. For this
study TM transformations are implemented and compared against IA. To differentiate
between both directions of transformation, the verified methods are used for the entire
forth-and-back transformation and also starting from the previous MC interval solution
in Dromo state space. The MC solution, which already accounts for the wrapping effect,
is used as a baseline for the transformation. For the TM transformations, a TM order
of q = 4 and tolerance of ε = 10−16 are used. The result of the comparison is shown in
Fig. 6.4.

The figure shows the interval inflation factor as the transformed Cartesian interval
width divided by the MC interval width obtained earlier. The inflation factor of the
Cartesian coordinates is between five and nine when IA is used for both transforma-
tions. The inflation in x-direction is largest, which is approximately in the cross-track
direction in this particular example. Overall, the inflation is roughly similar for each
of the Cartesian components. Comparing the different techniques, TM transformation
provides significantly better results than IA and is close to the MC transformation. The
final position volume of the TM solution is four times the MC volume, compared to an
increase of a factor 195 for IA.

Both techniques perform significantly better on the Dromo-to-Cartesian transform-
ation than vice-versa, as illustrated by the MCTM and MCIA results. This further in-
dicates that the initial transformation introduces the most overestimation. The final
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Cartesian position volumes of MCTM and MCIA are both 152 % larger than MCMC. The
velocity volumes are larger than the position volumes for both techniques, with also a
larger difference between the two: 220 % for MCTM and 435 % for MCIA compared to
MCMC.

The significantly smaller volumes for MC suggest that applications where the initial
conditions are obtained from empirical data would benefit from transforming the data
to the propagation state model directly, before computing the initial intervals. In conclu-
sion, the final volume of the TM transformation, back to Cartesian space, is 0.044 km3,
which is roughly four orders of magnitude larger than the initial volume of 1×10−6 km3.
Much of the overestimation is due to the inherent wrapping effect of the chosen Dromo
state model. This is unavoidable, when the model is used for propagation. Nonetheless,
this is four orders of magnitude smaller than the starting volumes of the MEE and USM
state models used in Ref. [118], as shown in Sec. 6.4.1.

6.6.3. INITIAL INTERVAL MODELS

The correlated initial uncertainty model assumes a dependency between uncertainty
in the state variables. The marginal distributions and thus intervals remain exactly the
same as the simple (uncorrelated) model. The usage of fully correlated variables reduces
the number of uncertain variables, simplifying the transformation problem and allow-
ing for additional cancellation and removal of dependency when the tighter enclosure is
computed. To compare the effect of correlated uncertainty among variables, the uncer-
tainties in the transverse position and radial velocity, and radial position and transverse
velocity are assumed to be correlated with a correlation coefficient ρ = −1 [82]. This
reduces the number of uncertain parameters from six to four.

To benefit from this reduction, the entire initial uncertainty transformation from
the orbital frame to inertial Cartesian coordinates and Cartesian coordinates to Dromo
elements is combined into a single transformation. The correlation is not carried on
through the propagation and only affects the first transformation, which was previously
shown to cause the largest overestimation. A reduction in width of all Dromo elements,
compared to the uncorrelated situation, is observed. The interval width of the elements
is reduced by a factor between 1.3 and 4.4. This reduction is quite significant, consid-
ering that the marginal distributions are identical. The correlated samples have roughly
similar orbital energy and thus produce smaller initial Dromo intervals. Transformed
back to Cartesian coordinates, the resulting position and velocity volumes are a factor
1.7 and 1.9 smaller, when correlations are introduced.

6.6.4. COMPARISON WITH OTHER STATE MODELS

Two initial uncertainty models are used for the comparison. The first is the simple ini-
tial uncertainty model, which is also used for MEE and USM in Ref. [118]. However,
this model gives much smaller starting intervals when using TM transformations with
Dromo compared to Ref. [118], in which IA transformations were used for both state
models. To account for this, a second model is introduced that inflates the initial Carte-
sian uncertainty by a factor 25, such that the forth-and-back Cartesian position volume
is 688km3 and roughly equal to that obtained with MEE and USM. In this way differences
between Dromo x25, MEE, and USM are due to the propagation stability only.
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Figure 6.5: Position interval volume growth with propagation time for the Cartesian, MEE, USM, and Dromo
state models.

The verified orbit is propagated until solution explosion, for both initial uncertainty
models and compared to the previous values shown in Fig. 6.1. The settings for VSPODE
are as follows: q = 3, k = 16, and ε = 10−14. These settings (or tuning parameters) were
introduced in Sec. 6.2.3. The comparison with Cartesian, MEE and USM state models is
shown in Fig. 6.5.

Dromo with the uncorrelated TM initial volume is able to propagate for almost 300
hours until interval explosion, whereas the Dromo x25 model is able to propagate for al-
most 200 hours. This is much longer that the previously obtained durations of 5, 30, and
35 hours for Cartesian, MEE, and USM, respectively. Dromo is able to provide a stable
verified propagation, which is at least five times longer with respect to that obtained
with the other state models. For applications, such as conjunction analysis, this allows a
significantly longer forecasting period.

6.6.5. TIME TRANSFORMATION
A Dromo interval solution at a given φ has an uncertainty in both Cartesian coordinates
and time. For most analyses, this time uncertainty is often undesirable. To construct an
interval of position and velocity only for a given epoch, a range of integrated solutions
needs to be considered. The developed process was discussed in Sec. 6.4.2. A target
epoch of t1 = 10h is chosen for the x25 Dromo propagation. The first integrated solution
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Figure 6.6: Interval solutions of the variable step-size integration and two refinements around the target time
t1 of 10 hours.

containing t1 has a time interval width of w(t ) = 62.4s and is shown in Fig. 6.6. The
interval solutions are shown as the result of three levels of refinement. The third refined
level with step size hφ = 0.001 is considered the final and desired Cartesian interval.

In the first unrefined level, the total Cartesian interval is obtained by finding all integ-
rated solutions that contain t1 and expanding the range of solution outward. Although
the two outer integrated solutions do not contain t1, they are included, as it cannot be
known which solutions in-between do contain the target time. The downside of the res-
ult from the first unrefined level is that it produces large overestimation when joined. As
the step size is large, the range inφ is also large. A better result is obtained when the step
size is refined.

For the second level (now including refinement), the integration is restarted at each
of the previous integrated solutions and propagated to the next with a fixed step-size of
hφ = 0.01. The process of selecting only the integrated solutions that contain the target
time and the expansion of the range is repeated. As a result of the finer spacing, 6 out of
the 15 new solutions are discarded, giving a narrower range in φ.

For the third level, the same process of refinement is repeated, but with an even finer
step size of hφ = 0.001. Out of the 78 solutions, 73 contain t1 or are at the boundaries.
A further refinement can be made, if required. To obtain the final verified Cartesian
interval at the specified time t1, the a-priori solutions of each of the 73 solutions are
joined.

A major advantage of this method is that the final verified Cartesian interval consists
of a large number of individual solutions, allowing for more complex shapes than a single
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six-dimensional interval cuboid. In many cases, such as in this example, a single cuboid
would have a large overestimation due to wrapping: a single cuboid wrapping all 73 sub-
intervals is 3.5×107 km3, compared to 1.4×105 km3 for a union of the sub-intervals, as
estimated by fitting a convex hull around all the corner coordinates. The overestimation
due to wrapping is almost a factor 250.

The large cuboid and the set of smaller ones can be used for further analysis, includ-
ing conjunction analysis. For instance, if an intersection between the large cuboid of two
objects is detected, a more refined comparison between the respective smaller cuboids
can be made. The process of computing interval intersections and collision predictions
is treated in Ref. [118].

The shown intervals are nearly square in the y z−plane and very small in the along-
track direction, even if this direction contains most of the uncertainty. By studying the
contribution of Dromo elements on the positional uncertainty, it is found that the along-
track uncertainty is almost entirely absorbed by the time uncertainty. So while the ODE
of this element is directly dependent on other elements, it has only a marginal effect
on the overall system through the third-body perturbation of the Moon. This allows the
regularized formulation to remain stable for so long.

6.6.6. SENSITIVITY OF THE PROPAGATION TIME TO TUNING PARAMETERS

This section describes the different tuning parameters and how they affect the propa-
gation using Dromo and is followed by a sensitivity study. For certain combinations of
the tuning parameters, VRIOP sometimes produces significantly worse results, despite
only small changes to the parameters, creating plateaus of successful combinations in
the tuning-parameter space. This instability has been noted in Ref. [118] and will be
demonstrated and discussed further.

The ITS order k presents a trade-off between computational efficiency and numer-
ical sensitivity. A high value of k tends to be much more computationally efficient. At
higher orders the step-size can often be made very large, at the cost of introducing nu-
merical sensitivity in the higher-order terms. The coefficients of the higher-order terms
become very small, while the independent variable is raised to a high exponent. Also, in
practice, a satellite orbit model is only continuously differentiable by approximation. For
instance, the atmospheric density results from a tabulated model. This trade-off holds
true for Taylor-series integration of satellite trajectories in general [149]. Ref. [134] also
notes a worsening in breakdown time on the Lotka-Volterra problem for increasing order
k. The larger steps result in a slight increase in overestimation in the tightened solutions
and thus shorter propagation time until explosion.

A higher TM order q generally results in a higher accuracy and longer propagation
time until explosion, at the cost of numerical efficiency and sensitivity. The computa-
tional cost is roughly raised to the power of Nu q , where Nu is the number of uncertain
quantities (state variables and model parameters). As q increases, the success of a run
becomes very sensitive to the other parameters and initial conditions.

Finally, the numerical tolerance ε directly drives the step-size control. Due to the
large model uncertainty and overestimation, the numerical accuracy has only a small
effect on the solution and thus time until interval explosion. However, it still significantly
impacts the computational efficiency. Also, the numerical tolerance generally needs to
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Figure 6.7: Sensitivity of propagation time to various combinations of the tuning parameters: TM order q , ITS
order k, and tolerance ε.

be large for high values of q , to produce successful runs.
The following ranges of parameters are investigated: k ∈ [6, 18], q ∈ [1, 4], and ε ∈

[10−8, 10−17]. Also q = 5 and 6 were considered, but no successful results could be ob-
tained even with very tight tolerances. Moreover, tighter tolerances such as ε = 10−18

and 10−19 produced results similar to 10−17, at higher computational cost. Tolerances
beyond 10−16 are below double precision, however the VSPODE solver produces differ-
ent solutions for all mentioned tolerances, suggesting different behavior of the step-size
control algorithm. This is especially clear for order q = 4, as will be demonstrated.

Figure 6.7 shows the result of the propagation time in hours until interval explosion
for a range of tuning parameters. The best propagation results are obtained for the TM
order q = 4, with the ITS order k = 8 and tolerance ε= 10−17. The resulting propagation
time until interval explosion is 354 h.

From the graphs it can be seen that an increase in the TM order results in a longer
propagation time. The relative increase in additional propagation time with increasing
order q is 24 % (q = 2 to 3), 20 % (q = 3 to 4) and 12 % (q = 3 to 4). The gain in additional
propagation time thus seems to converge. There exists a clear separation in propaga-
tion time between successful and unsuccessful combinations of the tuning parameters,
which is roughly a factor 5. The number of successful solutions decreases with the TM
order q . Moreover, no successful runs for orders 5 and 6 were obtained within the given
parameter space.

It can further be seen that the propagation time decreases slightly with increasing
integration order. This is due to overestimation remaining after computing the tighter
enclosure, also noted in Ref. [134]. The decrease from order k = 6 to 18 is less than 5 %.
For certain choices of the tuning parameters, k is important in achieving successful runs.
Some drops in lines of solutions with varying k can also be observed for q = 1 and 3.
For the former there is a clear pattern. This phenomenon is also observed by Ref. [118].
These solutions are only slightly unstable, within a stable region of the tuning-parameter
space.

The numerical tolerance has little effect on the actual propagation time amongst suc-
cessful runs, especially below the value of ε= 10−12. More stringent tolerance settings are
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Figure 6.8: Sensitivity of CPU simulation time to various combinations of the tuning parameters: TM order q ,
ITS order k, and tolerance ε.

required to produce successful runs of higher orders of q .
Without performing a computationally costly survey of the tuning parameter space,

it is advised to start with a low TM order, combined with high ITS order and medium
tolerance, for example, k = 16 and ε = 10−14. Such a combination tends to produce the
most robust results and is also computationally favourable (as will be discussed next).

6.6.7. SENSITIVITY OF CPU TIME TO TUNING PARAMETERS

The corresponding CPU simulation time to obtain the results of Fig. 6.7 are shown in
Fig. 6.8. The sensitivity study is entirely performed on an Intel i7-4712HQ CPU at 2.30 GHz
with a maximum Turbo frequency of 3.30 GHz.

There is a wide spread of CPU simulation time and there is still a clear separation
between successful and unsuccessful runs, although the distinction is less pronounced.
The relationship between propagation time until explosion and CPU simulation time is
strongly non-linear. For instance, the solution with the best result (longest propagation
time of 352 h) took 185092 s (or 51.4 h), while the successful solution that required the
shortest computation time was obtained with q = 1, k = 16 and ε= 10−8 and took a total
of 225 s to complete for a propagation time of 172 h. Therefore, increasing the propaga-
tion time by a factor two comes at the expense of increasing the computational cost by a
factor 323.

The ITS order k also has a strong effect on the computational cost, which is inversely
related to the order. Comparing the solutions obtained with order k = 6 and 18, the
decrease in computational cost is roughly a factor 18 for all TM orders, considering only
the successful runs. The propagation time until explosion only marginally decreases,
while providing more successful solutions. So, higher orders of k are recommended.
Small values of k should be considered when a dense history of solutions is desirable.

Finally, a good trade-off for the numerical tolerance is more difficult to obtain. In
contrast to the propagation time, there is quite a significant spread among the different
tolerance settings for a given value of q . More stringent tolerances significantly increase
the computational load at almost no improvement in propagation time. The least strin-
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Figure 6.9: CPU simulation time compared to propagation time for various combinations of the tuning para-
meters: TM order q , ITS order k, and tolerance ε.

gent tolerance for a given combination of k and q , while producing successful results,
is thus most favorable. The CPU simulation time decreases with increasing ITS order k.
Also, high values of TM order q require more stringent tolerances.

6.6.8. CPU TIME VERSUS PROPAGATION TIME

To better understand the trade-off between solution stability and computational effe-
ciency, the same results as shown in Figs. 6.7 and 6.8 are combined to construct a Pareto
front shown in Fig. 6.9.

A line is fitted to approximate the Pareto frontier, solutions to the bottom and/or
right of this line are likely to be infeasible. The groups of successful solutions belonging
to each of the TM order q are clearly identifiable and separated. Varying order k creates
hockey-stick patterns, with increasing order towards the bottom. The only exceptions
are some solutions with q = 4, ε = 10−16, which are intersecting the group of solutions
obtained with q = 3.

The unsuccessful solutions are also clearly separate from successful solutions. Groups
of constant order q of unsuccessful solutions are less distinct, due to the invariance of
propagation time with q for this group. So, if the propagation time until solution explo-
sion does not improve with increasing order q , it can be that only unsuccessful solutions
are generated.

The intermediate solutions are also a distinctly separate group. These present solu-
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Figure 6.10: Sensitivity of propagation time to orbital parameters.

tions that are generally within a successful region of the tuning-parameter space, but
perform worse than neighboring solutions. These are also visible in Fig. 6.7 and previ-
ously discussed. The figure further confirms that even higher orders of q will likely only
produce unsuccessful runs or only a small improvement in propagation time at a large
computational cost.

6.6.9. ORBITAL SENSITIVITY

To further investigate the sensitivity of the propagation time, a study across various or-
bits is conducted. The perigee altitude hp , eccentricity e, and inclination i are varied.
The initial uncertainty remains the same in each case. The various choices for the or-
bital parameters are:

hp ∈ {250, 300, 350, 450, 550, 700, 850, 1050, 1250, 1500}

e ∈ {0.0001, 0.01, 0.05, 0.1, 0.2, 0.4, 0.7, 0.9, 0.95, 0.99}

i ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}

To limit the number of runs, the orbital parameters are varied only one parameter
at a time with respect to a nominal orbit: hp = 350km, e = 0.05, and i = 40°. So 28
simulations are performed for three sets of tuning parameters. Following the results of
Secs. 6.6.6 and 6.6.7, the following combinations of q/k/ε are investigated: 2/10/10−17,
3/12/10−17, and 4/14/10−17. The results of this study are shown in Fig. 6.10.

Looking at the perigee altitude, the propagation time until solution explosion ini-
tially strongly grows with increasing altitude, which is explained by the reduction in at-
mospheric density and the diminishing effects of the oblate gravity model. Above 550 km
the rate of increase is milder. For the setting 4/14/10−17, no successful solutions were
obtained beyond 450 km. Several values of k and ε were seen to not avail. It is clear that
a complex TM with a high order increases the propagation time until explosion, but also
results in a more sensitive solution. For higher orbits, it is advisable to not model the
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atmospheric density separately, but to include it in the combined uncertainty accelera-
tion, as discussed in Sec. 6.5.5. For the other two settings, the propagation continues to
increase with hp ; the maximum propagation time achieved is 633 h.

Considering the orbital eccentricity, the propagation time is improved with increas-
ing order, which is to expected. At the altitude of the nominal orbit all three settings are
equally stable. Slightly eccentric orbits (e = 0.05) produce more stable solutions than
nearly circular orbits (e = 0.0001). Results are obtained to about an eccentricity of 0.4,
where the propagation time is 25 % less than at e = 0.05. Instead of the tabulated atmo-
sphere model, a continuously differentiable model could be used when the orbit is very
eccentric [149].

Finally, looking at the inclination, there is a clear and similar trend for each of the
three settings. Compared to the maximum propagation time at 0° inclination, the min-
imum is about 28 % lower and occurs between i = 60° and 70°. The propagation time
increases again towards i = 90°. This dependency is caused by the oblate gravity field.
Perturbations to the orbital plane due to the J2-term are known to have the largest mag-
nitude between i = 45° and 90°. For the values of eccentricity and perigee altitude of the
nominal orbit, the variation in inclination has no effect on the solution stability.

The different settings presented here and many more attempted in trial and error,
further illustrate the sensitivity of VRIOP to its tuning parameters, especially for higher
values of the TM order q . To achieve a robust set of tuning parameters across a different
range of orbital parameters, a trade-off between propagation time, computational cost,
and sensitivity needs to be made. From the wide range of values studied, the following
settings are recommended: q = 3, k = 12, and ε= 10−17.

6.7. CONCLUSIONS
The proposed Dromo state model and Taylor Model (TM) transformation method for the
verified interval orbital propagation (VIOP) result in a much more stable state model,
compared to previously investigated models. For comparison, a satellite in a circular
low-Earth orbit (LEO) at 400km is propagated, including perturbations caused by the at-
mosphere and the oblate gravity field. Dromo is able to propagate for almost 300 h until
solution explosion, compared to 5, 30, and 35 h for Cartesian, MEE, and USM, respect-
ively. This result is due to a smaller initial uncertainty volume and better propagation
stability. Starting from a comparable initial uncertainty volume the resulting propaga-
tion time is nearly 200 h.

Wrapping of the Cartesian intervals in the Dromo space is found to be the primary
source of overestimation in the transformation. Wrapping of Dromo intervals back in
Cartesian space inflates the position and velocity volumes by a factor 4.5 and 3.4, re-
spectively. TM transformation produces significantly less overestimation than interval
analysis (IA) transformation. The total initial positional uncertainty overestimation is
reduced by a factor 1600 compared to previous studies. Compared to Monte Carlo (MC)
(i.e., overestimation due to dependency only), the position volumes of a back-and-forth
transformation using TM and IA are 4 and 195 times larger, respectively. When both
TM and IA are used to only transform the intermediate MC result back to the Cartesian
space, the resulting inflation is only 1.5 for both. This shows that the Cartesian-to-
Dromo transformation introduces most of the overestimation.
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The uncertainty in the time state variable is initially zero, but is shown to quickly
grow in interval width and to acquire much of the uncertainty present in the along-track
direction. This allows for a very good representation and absorption of the orbital un-
certainty. Moreover, it improves the stability of the integration, as the physical time has
only marginal influence on the other elements.

To remove time uncertainty from the verified solutions a process for transforming it
into additional position and velocity uncertainty has been proposed and demonstrated.
To remain verified, the solution needs to consider a wide range of φ, which introduces
additional overestimation. This overestimation can be reduced by re-integrating sec-
tions of the trajectory with a finer and fixed step-size ∆φ.

A study has been conducted to analyze the sensitivity of verified regularized interval
orbit propagation (VRIOP) to tuning parameters: the Taylor-expansion order of integ-
ration k, the TM order q , and the numerical tolerance ε. The propagation time until
solution explosion is found to vary between 172 h and 354 h for a LEO satellite. Gener-
ally, the propagation time increases with a higher TM order q , but at a diminishing rate,
increasing 24, 20 and 12 % changing q from 1 to 4. The propagation time is slightly neg-
atively correlated with the expansion order k of the integration: less than 5 % from k = 6
to 18. The propagation is hardly affected by the numerical tolerance ε, especially below
10−14.

Certain regions of the tuning space are shown to produce many unsuccessful solu-
tions, which generally abort integration at 15 % of the propagation time, compared to
neighboring successful solutions. Higher TM orders q are more sensitive and require
more stringent tolerance settings and higher values of ITS order k. No successful solu-
tions are obtained for order q = 5 and higher. For unsuccessful runs the propagation
time does not vary with q and can serve as indication of an unsuccessful region of the
tuning-parameter space.

The CPU time is found to have a large spread for all tuning parameters, varying from
minutes to days in length. The CPU time increases to a power of q , is inversely pro-
portional to the numerical tolerance, and exponentially decays with k. Considering the
small impact of k and ε on the propagation time and the diminishing return with increas-
ing values of q , the following settings are recommended: q = 3, k = 12, and ε= 10−17.

Finally, the sensitivity to the perigee altitude, eccentricity and inclination were in-
vestigated. For nearly circular orbits, a higher altitude results in increased propagation
time up to 633 h at hp = 1500km. The TM order q = 4 is not able to provide successful
solutions beyond hp = 450km. This is likely due to overmodeling of the increasingly un-
perturbed motion. The removal of the atmospheric density as an uncertain parameter
is then recommended. Eccentricities beyond e = 0.4 did not produce any satisfactory
results, which is likely due to solution steps far transcending the altitude brackets of the
tabulated atmosphere model. For the inclination, there is a variation of 28 % in propaga-
tion time with respect to the maximum at i = 0°, but viable solutions are obtained over
the entire range.

The propagation time of VRIOP is almost 10 times longer than previously obtained
in literature. The maximum forecasting window of verified solutions ranges from several
days to nearly a month, depending on the integrator settings, orbital regime, and initial
uncertainty. Thus Dromo greatly increases the applicability of VRIOP to conjunction
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analyses and other SSA activities, especially where verified solutions are required or can
provide additional advantages.





7
CONCLUSIONS AND

RECOMMENDATIONS

The thesis concerns the problem of accurately quantifying and predicting space-debris
trajectories. This has been investigated with a focus on the error modelling, estimation
and propagation of space-debris orbits for the purpose of improving space-situational
awareness (SSA) predictions, including short-term re-entry predictions and conjunction
analysis.

Chapters 2 to 6 have presented the work that addresses the various research ques-
tions. The overarching conclusions that answer these questions will be given in Sec-
tion 7.1. Section 7.2 presents recommendations on topics for future research.

7.1. CONCLUSIONS
The aim of the research is:

To improve space-debris orbit prediction and analysis, to facilitate reducing
the number of potential satellite collisions and improving re-entry and im-
pact location forecasting.

The primary focus is on low-Earth orbit (LEO), which contains the vast majority of
space debris, and on using actively maintained and publicly available data sources, cov-
ering the broad spectrum of orbits.

The primary research question is:

What aspects of space-debris trajectory modelling and propagation impact
the quality of space-debris orbit predictions?

The following sections address this primary and the derived research sub-questions.

7.1.1. SPACE-DEBRIS SITUATIONAL AWARENESS

What space surveillance data sources on space-debris orbits are available,
how do they come about, and how are they disseminated?
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To better understand SSA trajectory predictions, it is important to understand how space-
debris objects are tracked, and how their orbital state and related physical characterist-
ics are determined from such observations using estimation models. The primary focus
here is on Two-Line Elements (TLEs) that are published in the satellite catalogue (SAT-
CAT) and maintained by the United States Space Command (USSPACECOM). SATCAT
remains the largest source of publicly available ephemeris.

What are the primary gaps and limitations of these data for performing space-
debris analysis and predictions?

Two challenges in SSA have been identified: the growing number of objects that need
to be tracked and the quality of the trajectory data. Although the number of objects in
space is rapidly increasing, there is a trend in Space Surveillance and Tracking (SST) to
meet this demand in a number of key ways. More nations and commercial entities are
developing SSA capabilities. New radars with a high capacity for tracking a large num-
ber of objects have become operational. These new sensors are also capable of tracking
much smaller objects than previously possible, below 10 cm in LEO. The sensor loca-
tions are in regions, such as the southern and eastern hemisphere, where the coverage
was historically limited. The sensors have the ability of integrating in existing networks,
such as the Space Surveillance Network (SSN).

The primary challenge for SSA activities is the data availability and format. Espe-
cially, the continued use of TLEs is troublesome due to the limited accuracy and the
lack of covariance information, and satellite parameters, such as parameters for the at-
mospheric drag, solar radiation pressure and attitude. The primary contributor to the
accuracy of TLEs is the underlying analytical Simplified General Perturbations model
(SGP4), which is necessarily used for both estimation and propagation of all TLEs. SGP4
has a history of 40 years (status 2020) and remains in place for more practical rather
than scientific and technological reasons. Since 2013, a new step in the process of estim-
ating TLEs was introduced, creating an undocumented new version: the enhanced TLE
(eTLE). eTLEs are more accurate merely by the method of estimation and processing,
which will be discussed next.

7.1.2. SPACE-DEBRIS STATES AND UNCERTAINTIES

How can modelling and simulation address the current gaps and limitations
in space surveillance and tracking data for the purpose of debris analysis and
orbit predictions?

Covariance data, or any form of an error estimate or estimation residuals, are essen-
tial for proper error propagation, which purpose is to provide an estimate of the pos-
sible volume containing the state over time. The error volumes are vital for defining
(radar) search volumes, object correlation, conjunction analysis, and re-entry predic-
tions, amongst others. The covariance and a number of interesting error characteristics
can be estimated using only TLE data, given a number of TLE states for a particular ob-
ject, within a time window, are available.

Due to the challenging environment of the lower part of LEO, the final month of
the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is studied. Both
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enhanced and classic TLEs were found to be released simultaneously, over this period.
Moreover, high-accuracy GPS solutions are also available for comparison.

The temporal bias is an offset from the TLE epoch to the epoch where the TLE is actu-
ally most accurate. This bias is in the order of the update interval, which typically ranges
in the order of hours to days. The bias is negative for classic TLEs and is demonstrated
to be positive for enhanced TLEs. The error of eTLEs thus first becomes smaller when
propagated into the future, before growing larger beyond the interval of the temporal
bias.

During the period studied, eTLEs are twice as accurate as classic TLEs at the pub-
lished epoch. Also, the rate of error growth of eTLEs is a factor three smaller when
propagating forward compared to propagating backward, both over two days. The for-
ward shift of the epoch with minimum error, improved propagation stability, and the
overall better accuracy of eTLEs makes them much more suited for forward propaga-
tion applications. Extra caution should be taken for applications that require backward
propagation, such as stitching TLE solutions.

The improvements are by design and a result of eTLEs being estimated from pseudo
observations derived from high-precision orbit determination (HPOD) states that are
also propagated beyond the TLE epoch. When converting TLEs for non-SGP4 applica-
tions, advantage should be taken of the maximum accuracy by accounting for the tem-
poral bias.

Robust least-squares regression is able to handle noisy data and uses only publicly
available (e)TLEs. It is preferable over previous data binning and differencing methods
for estimating the temporal bias, instantaneous (co)variance, and strong correlations in
the absence of external data sources.

Error characteristics estimated using only (e)TLE data are verified by using GPS data.
The temporal bias is estimated with an error of less than 3 % for both TLE types. The
standard deviations for the significant error components are overestimated by up to
50 %. Strong correlation coefficients of more than ±0.5 are also obtained accurately, al-
lowing the cross couplings to have an important contribution during state error propa-
gation when relevant.

For re-entry predictions the ballistic coefficient is an important parameter for the
rate of decay, and the likely re-entry epochs. In orbit estimation the atmospheric density
model and the spacecraft model (e.g., ballistic coefficient) are coupled through the drag
acceleration. As a result, the TLE-reported ballistic coefficient is model dependent and
in practice very unreliable. When a different atmospheric density model is considered
for the re-entry prediction, the parameter must be re-estimated. The ballistic coefficient
of a given satellite for a given atmospheric model must be estimated by a process called
retrofitting.

Together, the estimated covariance data and ballistic coefficient supplement the TLE
state estimate for the purpose of space-debris orbit predictions. These models that were
derived and implemented are able to resolve some of the gaps and limitations in the
by-far largest public database of space-debris objects.
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7.1.3. RE-ENTRY PREDICTIONS

What are the primary drivers of short-term re-entry prediction accuracy? How
well do currently operational re-entry predictions perform and how can they
be further improved?

Current short-term re-entry predictions apply either a window on the predicted (nom-
inal) re-entry epoch or on the ballistic coefficient. The fact that in the past a significant
number of cases has fallen outside predicted confidence windows demonstrates that
these approaches are not a reliable substitute for state-error propagation.

The effect of different (error) components on short-term re-entry predictions can
only be investigated by first considering high-fidelity error and dynamics models. To
this end, a six degrees-of-freedom (6DOF) state-error propagator is used to study the
re-entry of the GOCE satellite.

The re-entry epoch bias is primarily determined by the atmospheric bias and the
spacecraft attitude evolution. The attitude evolution was shown to have a large impact
on the re-entry epoch accuracy. In fact, using the wrong assumptions can lead to re-
entry predictions that are outside the predicted confidence bounds, caused by the intro-
duction of an unwanted bias. In any case, a complete range of likely attitude scenarios
needs to be considered. The atmospheric bias is a product of the systematic errors in the
atmospheric density model and the spacecraft aerodynamic model. The bias can lead
to significant under- or overestimation of the atmospheric accelerations during re-entry.
The systematic error is between 15 and 23 % on the total aerodynamic acceleration dur-
ing the last month of GOCE.

Fortunately, the atmospheric bias can be estimated by comparing the predicted and
actual dynamical behaviour of the satellite. Using GPS-derived accelerations, this bias
can be estimated with high accuracy and frequency. Due to the coupling between the at-
mospheric density model and the spacecraft model (e.g., ballistic coefficient), the TLE-
reported ballistic coefficient cannot be directly used, when a different atmospheric dens-
ity model is considered. Instead, this parameter must be estimated by a process called
retrofitting. The obtained biases have a lower accuracy and coarser temporal resolution.
To improve the accuracy, the estimates need to be averaged over an interval of a few days,
further reducing the temporal resolution. This becomes problematic if the atmospheric
bias is not stable over the period considered.

The spacecraft attitude evolution has a significant effect on the prediction accuracy
in the case of elongated and complex shapes. For GOCE, the re-entry can take roughly
three times longer with a stable attitude (for minimum cross-sectional area) compared to
tumbling, as the mean ballistic coefficient is much higher than in a stable frontal config-
uration. Determining the transition point where the attitude motion behaviour changes
from stable to tumbling is difficult, and requires knowledge on the spacecraft, and care-
ful modelling and analysis.

The re-entry epoch accuracy, on the other hand, is primarily driven by the atmo-
spheric uncertainty. The initial translational uncertainty has a small contribution, but
becomes larger closer to re-entry. Although GPS orbit solution is four orders of mag-
nitude more accurate than for TLE, GPS-based predictions are 35 % more precise than
TLE-based.
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The predicted decay-epoch distributions are not symmetric and are shown to be
slightly log-normal. Several simplifications to the re-entry prediction method are made
to approach methods that are in use today. A nominal state derived by choosing mean
values for all uncertainties is shown to be very close to the actual mean of the full uncer-
tainty distribution. However, assuming a symmetric interval about the nominal point
will result in solutions outside the ±20 % interval on the upper tail. An asymmetric in-
terval can be obtained by adding a factor of ±12 % to the ballistic coefficient and addi-
tionally propagating these extrema. However, a general approach for choosing this value
is lacking and the results are very sensitive to the choice of the factor. The limited pre-
cision affects the operational application of re-entry predictions significantly and only
allows for meaningful impact-time and impact-location windows shortly before actual
re-entry, in the order of a couple of hours.

Several drivers for re-entry predictions have been identified, that either affect the
prediction accuracy or prediction precision. For the case study, real-time operational
predictions and post-re-entry research predictions from literature have been shown to
operate on various levels of simulation fidelity and specificity of spacecraft modelling.
At least for the case study, it was shown that a move towards high-fidelity and specific
models, including error models, can help improve the re-entry predictions.

7.1.4. PROPAGATION OF SPACE DEBRIS

How can the propagation of space-debris trajectories be made more efficient
and robust?

Regularisation offers an improved dynamically and mathematically stable formulation
of the equations of motion. Dromo is a modern regularised formulation that compares
favourably against other regularised formulations.

A major practical challenge of regularised methods is propagating a given state to a
specific epoch. This limitation arises from the time transformation, in which time be-
comes a dependent variable to be numerically solved. Therefore, time, too, is prone to
numerical truncation and round-off errors. Moreover, iterative root-finding is used to
stop the integration at the given epoch, which itself introduces a third estimation error.

Three distinct root-finding methods to obtain a solution at a fixed physical time are
identified and compared: Halley’s method, bi-sectioning and (Hermite) interpolation.
Halley’s method is shown to be the most accurate, but also the most computationally
expensive technique. Hermite interpolation requires no iterations and is more efficient
than bi-sectioning, but requires the most effort to implement.

Dromo is only absolutely more accurate than Cowell’s method, using Cartesian co-
ordinates, and modified equinoctial elements (MEE) on problems with highly-elliptical
orbits (e ≈ 0.95). Over a wide range of LEOs, Dromo requires less function evaluations
for a given accuracy. The difference compared to the other methods reduces when the
orbits are more circular, have a lower altitude, and include atmospheric perturbations.
Considering an orbit similar to that of the International Space Station (ISS), Dromo takes
up to three times less function evaluations than MEE and over two orders less than Cow-
ell’s propagation scheme. Only for the tightest numerical tolerances the efficiency of
Dromo and MEE converged on this problem.
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A multi-step numerical integrator, such as Adams-Bashforth-Adams-Moulton, takes
advantage of the linearity of the Dromo scheme and can further improve the efficiency;
it requires up to five times less function evaluations when compared to Dormand-Prince
Runge-Kutta. Unlike for Cowell and MEE, the multi-step integrator is shown to not affect
the maximum accuracy of Dromo, over the orbit propagation problems analysed. This
suggests that the Dromo formulation is very linear and the errors are driven by numerical
round-off, rather than truncation.

The research has shown propagation of space-debris trajectories using regularised
equations of motion can improve the accuracy and reduce the number of function eval-
utions, but also introduces practical challenges. In the thesis solutions are proposed,
resulting in robust methods for trajectory propagation.

7.1.5. ERROR PROPAGATION OF SPACE DEBRIS

How can verified numerical analysis techniques be applied to space-debris
propagation? What are the main challenges and how can they be overcome?

The major difficulty of verified integration is controlling the overestimation, which causes
the artificial and exponential growth of the solution enclosure. Due to the highly per-
turbed environment and the large mean motion, verified solutions of LEO satellites be-
come unstable after mere hours of propagation time. Different orbital state formulations
can improve the propagation stability, but at the cost of additional overestimation in the
transformation between Cartesian coordinates.

Dromo is shown to greatly improve the verified solution stability. For a 400 km LEO,
the solution is stable for nearly 300 hours. This presents a factor 60 improvement over
Cartesian coordinates and at least a factor eight improvement over other orbital ele-
ments, such as USM and MEE.

The primary source of overestimation in the transformation of the initial Cartesian
position and velocity uncertainty to Dromo elements is wrapping. Taylor models (TM)
are able to significantly reduce the wrapping effect, but also result in a 50 % increase in
propagation time.

The dependent time variable will also have an interval solution, which must be re-
duced to a certain time epoch for most analyses to be meaningful. A novel process for
transforming the time uncertainty to additional Cartesian position and velocity uncer-
tainty was successfully developed and demonstrated. The processes allow the solution
to remain verified. The final Cartesian uncertainty consists of a collection of smaller
cuboids, which, taken together, are able to represent more complex uncertainty shapes
and prevent overestimation due to wrapping.

During propagation most of the uncertainty is shown to be absorbed in the (depend-
ent) time variable, which is equivalent to an uncertainty in the position of a satellite
along its orbit. By itself, time has little influence on the other orbital parameters. This
makes the Dromo formulation very suited for representing and absorbing the growth of
orbital uncertainty.

Verified regularised orbit propagation is sensitive to the tuning parameters of the
verified solver. Not all combinations result in satisfactory solutions and certain combin-
ations are both less stable and computationally more expensive. A Pareto front can be
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used to represent the trade-off between propagation stability and cost, and to identify
the most interesting combinations of the tuning parameters.

The propagation stability improves with increasing orbital altitude, with solutions
over the entire range of 250 to 1500 km. Near-circular orbits are most stable and no solu-
tions are obtained for eccentricities beyond e = 0.4. The inclination has a marginal effect
on the solution stability, with the least stable inclination at 70 degrees (30 % shorter fore-
casting time).

This verified regularised propagator is shown to be much more stable than any known
previously published efforts. This allows the forecasting window to be prolonged from
several hours to several weeks, improving the practical application of interval methods
for space-debris predictions.

7.2. RECOMMENDATIONS
Several improvements to space-debris state prediction methods are suggested and in-
vestigated in this research. However, as space is increasingly “congested, contested, and
competitive” the demanding space-debris problem is only becoming more complex and
potentially severe. In this section recommendations for future research into this topic
are made.

7.2.1. SPACE-DEBRIS SITUATIONAL AWARENESS

A growing awareness of space debris in the last two decades has seen a promising de-
velopment of SSA by various nations and space agencies. However, for the moment this
remains mostly complementary and thus dependent on the SSN. SSA is shown to be of
high commercial and strategic importance. Moreover, due to the global nature of the
space domain, SSA should be a multi-nation effort at the very least. So, much like the
need to have independent GNSS capabilities, the European nations should desire a fully
independent European SSA capability. Broadly, this requires research into space sur-
veillance network architecture and design, sensors, data sharing, and estimation and
prediction models.

The orbital ephemeris format, data sharing, and estimation and prediction models
are highly interlinked, as discussed thoroughly in this thesis.

Regarding data sharing, enhanced TLEs show that as early as 2013 the estimation of
TLEs started moving away from SGP4 towards numerical methods in the background
with TLEs merely as the publishing format. This artificially improves the accuracy, pro-
motes the continued use and development of SGP4/TLE-based tooling, and persuades
third parties to keep generating and sharing TLEs. A common format beyond TLEs is
needed that is more accurate, easy to use and share, and most importantly includes cov-
ariance data. A good candidate is the Orbit Ephemeris Message (OEM), in combination
with the Orbit Parameter Message (OPM) by the Consultative Committee for Space Data
Systems (CCSDS) [150]. Ultimately, a proper choice of format and desired accuracies
should be driven top-down, by the SSA needs, rather than bottom-up, by the surveillance
network and strategic interests. Research is necessary on what orbital parameters, and
their quality and frequency, are required to successfully perform SSA and space traffic
management (STM) activities in the current and also future space environment.



7

136 7. CONCLUSIONS AND RECOMMENDATIONS

There is a growing trend towards more networked and smarter systems, especially
in the case of mega constellations. These systems should be able to both autonomously
perform collision avoidance, as well as share (planned) avoidance responses with oper-
ators and other autonomous systems. Topics such as manoeuvre deconfliction, respons-
ibility, and timing are all necessary to study in the context of autonomous systems.

Models developed for supplementing TLE data with estimates of the covariance and
ballistic coefficient were shown to partly address some of the gaps and limitations in
TLEs. Ultimately, it is necessary to replace TLEs with a more modern format and include
this information as obtained directly from the estimation process. However, this either
requires the cooperation of the United States government or another organisation, with
similar space-debris surveillance capabilities, and a desire to publicly provide and main-
tain a catalog. In the latter case, the architecture of such a network, the types of sensors,
and models for the catalog, all need to be investigated to suit the needs of the space
environment for decades to come.

A serious, but likely, scenario is that TLEs remain prevalent in the coming decades. In
this scenario, it is important to continue to research possible improvements of TLE eph-
emeris. In this thesis, a method is developed for deriving high-dimensional covariance
data. Similar, processing of TLEs should be investigated. For instance, through under-
standing the HPOD models and estimation methods underlying eTLEs, the process of
creating eTLEs can be carefully reversed to a certain degree. A level of accuracy could be
achieved that lies somewhere in between that of eTLEs and the unknown original HPOD.
Conveniently, such a state is directly suitable for high-fidelity predictions.

7.2.2. RE-ENTRY PREDICTIONS

The re-entry predictions of GOCE show promising results for using high-fidelity re-entry
predictions compared to traditional methods. The computational expense is negligible
when considering the limited number of high-risk objects for which these predictions
are desired. The only disadvantage is the required object knowledge and modelling. It is
recommended to investigate the usage of basic or analytic shapes for the aerodynamic
modelling for such trajectory predictions. This holds especially if these shape paramet-
ers can be related to already existing resources, such as the Database and Information
System Characterising Objects in Space (DISCOS) maintained by the European Space
Agency (ESA).

What constitutes high-risk objects is another possible line of research, and should
include factors such as size, the presence of materials able to survive the stresses of at-
mospheric re-entry, and also the effect of attitude.

Assumptions on the spacecraft attitude can result in discrete re-entry scenarios and
have a significant effect on the predicted re-entry epoch. Re-entry predictions should
allow for the various scenarios and in the case of multiple likely scenarios a joint predic-
tion. It is recommended to research both the range of possible scenarios, as well as the
unification into a continuous re-entry prediction solution from several scenarios.

The atmospheric uncertainty is driving both the accuracy and precision of re-entry
predictions. It is demonstrated that the systematic errors can be estimated and there-
fore corrected for. At present, the random error of atmospheric density models results
in a ±20 % random error on the predicted re-entry epoch. At two days in advance, this
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translates to nearly 10 hours. The corresponding possible impact location on Earth is
somewhere along the ground track of six orbital revolutions. To improve short-term re-
entry predictions, improvements in thermospheric density and wind prediction mod-
els, and new and better forecasting of space-weather proxies are necessary. Especially
additional measurement data of this region are needed to improve our knowledge and
ultimately these models.

7.2.3. SPACE-DEBRIS STATE AND UNCERTAINTY PROPAGATION
Regularised methods are often benchmarked on exotic high-elliptical and hyperbolic or-
bits, offering an accuracy that is simply beyond the capability of more conventional for-
mulations. This is useful for certain specific applications, such as the long-term integ-
ration of near-Earth asteroid trajectories. For near-circular LEOs, regularised methods
are not necessarily more accurate than other methods, but can still provide a significant
reduction in the number of function evaluations. Factors, such as CPU time per function
evaluation and ease of implementation, should be taken into account when comparing
different methods. However, for applications where the absolute number of function
evaluations is important, regularised methods can provide numerical benefits and even
enable unique capabilities. A broad survey of possible applications of regularised orbit
propagation is recommended, such as for real-time problems (with hardware).

The current forecasting window of verified solutions is increased from the order of
days to weeks, making the technique more interesting for SSA analyses. Further im-
provements are still desired however, and alternative interval overestimation-reduction
techniques from other fields should be investigated, such as interval subdivision and
interval constraints.

Conjunction analysis using verified solutions of multiple satellites is promising and
should be further investigated, to really understand the benefits of verified propagation
for conjunction analysis. So far, only LEO was investigated; different regimes, such as
MEO and GEO, are also very good candidates, the reduction of perturbing accelerations
should make for more stable solutions, compared to LEO, and thus even longer forecast-
ing times.

The instantaneous overestimation due to coordinate transformation is reduced by
TM, but still remains very large. More work into practical methods for transforming the
initial uncertainty is needed. Especially, considering that the initial interval is commonly
derived from confidence intervals and only verified by assumption.
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