

Delft University of Technology

Countermeasures against Fault Injection Attacks in Neural Networks and Processors

Köylü, T.C.

DOI
10.4233/uuid:ba9ccec6-589e-4bff-8555-17bdf48c4712
Publication date
2023
Document Version
Final published version
Citation (APA)
Köylü, T. C. (2023). Countermeasures against Fault Injection Attacks in Neural Networks and Processors.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:ba9ccec6-589e-4bff-
8555-17bdf48c4712

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:ba9ccec6-589e-4bff-8555-17bdf48c4712
https://doi.org/10.4233/uuid:ba9ccec6-589e-4bff-8555-17bdf48c4712
https://doi.org/10.4233/uuid:ba9ccec6-589e-4bff-8555-17bdf48c4712

COUNTERMEASURES AGAINST FAULT INJECTION
ATTACKS IN NEURAL NETWORKS AND PROCESSORS

COUNTERMEASURES AGAINST FAULT INJECTION
ATTACKS IN NEURAL NETWORKS AND PROCESSORS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 15 september 2023 om 12:30 uur

door

Troya Çağıl KÖYLÜ

Master of Science in Computer Engineering,
Bilkent Üniversitesi, Ankara, Turkije,

geboren te Çanakkale, Turkije.

Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. S. Hamdioui, Technische Universiteit Delft, Promotor
Dr. ir. M. Taouil, Technische Universiteit Delft, Copromotor

Onafhankelijke leden:
Prof. dr. G. Smaragdakis, Technische Universiteit Delft
Prof. dr. H. Stratigopoulos, Université de Paris, Frankrijk
Prof. dr. ir. N. Mentens, Universiteit Leiden
Dr. E. I. Vatajelu, Université Grenoble Alpes, Frankrijk
Prof. dr. K. Zhang, Technische Universiteit Delft, reservelid

Overige leden:
Dr. Z. Erkin, Technische Universiteit Delft

This work is partly from a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 722325.

Keywords: fault injection attack, countermeasure, machine learning, neural net-
works, processor, hardware security, artificial intelligence

Front & Back: "Real, Digital, and The Change" by T.Ç. Köylü.

Copyright © 2023 by T.Ç. Köylü

ISBN 978-94-6384-472-7

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Acknowledgements ix

Summary xiii

Samenvatting xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 2
1.2 Fault Injection Attacks . 2

1.2.1 Fault Threat . 3
1.2.2 Fault Injection . 4

1.3 State of the Art Countermeasures . 5
1.3.1 Prevention-based Countermeasures 6
1.3.2 Detection-based Countermeasures 6
1.3.3 Redundancy-based Countermeasures 6

1.4 Research Topics . 7
1.4.1 Instruction Flow-based Fault Attack Detection. 7
1.4.2 Smart Sensor-based Fault Attack Detection 7
1.4.3 Verification-based Fault Attack Detection 8

1.5 Contributions of the Thesis . 8
1.6 Thesis Organization. 8

2 Background 11
2.1 Cryptosystems: AES and RSA . 12

2.1.1 Overview. 12
2.1.2 AES . 13
2.1.3 RSA . 15

2.2 The RISC-V ISA . 16
2.3 ANNs: CNNs, RNNs, and Hopfield Networks 17

2.3.1 Overview. 18
2.3.2 CNNs . 20
2.3.3 RNNs . 21
2.3.4 Hopfield Networks . 23

3 Fault Attack Modeling and Evaluation Methodology 25
3.1 Overview . 26

3.1.1 Fault Modeling and Evaluation for Reliability 26
3.1.2 Fault Modeling and Evaluation for Security 26

v

vi CONTENTS

3.2 Threat Model . 26
3.2.1 Threat Model for RSA . 27
3.2.2 Threat Model for ANNs . 28

3.3 Fault Modeling . 29
3.4 Evaluation Method . 31

3.4.1 Evaluation for Vulnerable Region Identification 31
3.4.2 Evaluation for Fault Detection . 32
3.4.3 Evaluation for Fault Correction 32
3.4.4 Evaluation for ANN Protection . 33

4 Instruction Flow-based Fault Attack Detection 35
4.1 Concept. 36

4.1.1 Design Phase. 36
4.1.2 Evaluation Phase. 37

4.2 Instruction Sequence Analysis . 37
4.3 RNN-based Fault Detection . 41

4.3.1 Using RNNs for Detecting Faults in Instruction Sequences. 41
4.3.2 Hardware Implementation of the RNN-based Module 42

4.4 CAM-based Fault Detection. 43
4.4.1 Using CAMs for Detecting Faults in Instruction Sequences 44
4.4.2 Hardware Implementation of the CAM-based Module 44

4.5 BF-based Fault Detection . 45
4.5.1 Using BFs for Detecting Faults in Instruction Sequences 45
4.5.2 Hardware Implementation of the BF-based Module 46

4.6 Hopfield Network-based Fault Detection and Correction 47
4.6.1 Using Hopfield Networks for Detecting and Correcting Faults in In-

structions . 47
4.6.2 Hardware Implementation of the Hopfield Network-based Module . 48

4.7 Experimentation for Fault Detection Performance 49
4.7.1 Experimental Setup . 49
4.7.2 Performed Experiments . 51
4.7.3 Results . 52

4.8 Experimentation for Fault Correction Performance 55
4.8.1 Experimental Setup . 55
4.8.2 Performed Experiments . 56
4.8.3 Results . 57

4.9 Discussion . 59
4.9.1 Discussion of the Fault Detection Performance 59
4.9.2 Discussion of the Fault Correction Performance 62

5 Smart Sensor-based Fault Attack Detection 65
5.1 Designing Sensitive Circuits as Smart Sensors. 66

5.1.1 Using RO PUFs as a Multi-Sensor 66
5.1.2 RO PUF-based Fault Attack Detector Design 67
5.1.3 Hardware Implementation of the RO PUF-based Detector 69

CONTENTS vii

5.2 Designing Operation-based Smart Sensors 70
5.2.1 Deterministic Strategy - The ∆-Detector 70
5.2.2 Statistical Strategy - The Σ-Detector 71
5.2.3 Combining Both Strategies. 74

5.3 Experimentation for Sensitive Circuit-based Smart Sensors. 75
5.3.1 Experimental Setup . 75
5.3.2 Performed Experiments . 75
5.3.3 Results . 76

5.4 Experimentation for Operation-based Smart Sensors 80
5.4.1 Experimental Setup . 80
5.4.2 Performed Experiments . 81
5.4.3 Results . 83

5.5 Discussion . 86
5.5.1 Discussion of the Sensitive Circuit-based Sensor. 86
5.5.2 Discussion of the Operation-based Sensor 87

6 Verification-based Fault Attack Detection 89
6.1 Protection through Memory Verification 90

6.1.1 Background on Lightweight Block Ciphers and Hash/MAC Func-
tions . 90

6.1.2 Concept . 92
6.1.3 Design . 92
6.1.4 Variants . 94

6.2 Protection through Smart Redundancy 94
6.2.1 Concept . 95
6.2.2 Application . 97
6.2.3 Implementation . 97

6.3 Experimentation for Memory Verification-based Protection 97
6.3.1 Experimental Setup . 98
6.3.2 Performed Experiments . 98
6.3.3 Results . 99

6.4 Experimentation for Smart Redundancy-based Protection 103
6.4.1 Experimental Setup . 104
6.4.2 Performed Experiments . 104
6.4.3 Results . 105

6.5 Discussion . 108
6.5.1 Discussion of the EMS-based Memory Verification 108
6.5.2 Discussion of the Smart Redundancy-based ANN Inference Verifi-

cation . 110

7 Conclusion 113
7.1 Summary . 114

7.1.1 Introduction . 114
7.1.2 Background . 114
7.1.3 Fault Attack Modelling and Evaluation Methodology. 114
7.1.4 Instruction Flow-based Fault Attack Detection. 114

viii CONTENTS

7.1.5 Smart Sensor-based Fault Attack Detection 114
7.1.6 Verification-based Fault Attack Detection 114

7.2 Future Directions . 115

Bibliography 117

Curriculum Vitæ 131

List of Publications 133

ACKNOWLEDGEMENTS

This thesis is the end product of my Ph.D. journey which took a bit more than four years.
As I started almost like a complete stranger to the field of hardware security, it was not
a smooth ride. For a while, I did not have a specific research topic; and when I had it, I
was only able to publish a single conference paper. Furthermore, I was nothing like the
person I am now. Therefore, it is an understatement if I say I am delighted to be at this
point and be able to publish this thesis.

I would like to start by thanking my promotor, Prof. dr. ir. Said Hamdioui. Without
the opportunities you created for me, none of this would be possible. However much
I thank you, it will not be enough. Second, I would like to thank my co-promotor and
daily supervisor, Dr. ir. Mottaqiallah Taouil. Dear Motta, despite our occasional(!) dis-
agreements, I need to admit that most of the share in this dissertation belongs to you.
To be completely honest, I do not think I would complete this dissertation if you were
not here. I am eternally grateful for all the idea discussions on the board, weekly meet-
ings online, and late-night paper submission marathons. Next, I would like to thank Dr.
Cezar Rodolfo Wedig Reinbrecht and Dr. ir. Antenneh Bogale Gebregiorgis - the Post-
docs in our group that I was lucky enough to work with. Dear Cezar, not only do I owe
you the lion’s share of many of my publications; the framework you provided and your
supervision constitutes the very basis of this dissertation. Dear Anteneh, we were only
able to work together for a brief amount of time but you provided the final contribution
I needed to complete this dissertation. I hope these thanks compensate for some of the
beers I owe you after the World Cup matches. I would like to thank you both, in addition
to these, for your companionship. Returning to the contributions to my dissertation,
an important part belongs to my co-authors: Dr. ir. Moritz Christiaan Reiner Fieback
(who also very kindly helped with the Dutch translations in the thesis and the propo-
sitions), Luíza Caetano Garaffa, Mahdi Zahedi, Dr. Marcelo Brandalero, and Ir. Hans
Okkerman. Thank you for making these publications possible. Other important thanks
belong to the people that I wanted to be my paranymphs: Dr. Qiang Liu, Elizaveta Ole-
govna Emenova, and Dr. ir. Hoang Anh Du Nguyen. Thank you all for your friendship,
guidance, and support. The times that you were here were the highlights of my Ph.D.
journey. Lastly, I want to extend my thanks to my M.Sc. supervisor Prof. dr. Çiğdem
Gündüz Demir and high school teachers İrfan Cantürk and Şebnem Cantürk, without
whom I would not be in a Ph.D. program to begin with.

In the four-plus years that I was here, I was lucky to meet wonderful people that
helped me academically, professionally, and personally. First and foremost, I was lucky
to have Haji, Arwa (both albeit for a short time), Mark, and Shayesteh as colleagues
in our Hardware Security group. Likewise, it was a privilege to share the floor with the
members of the Testing group: Hanzhi (Oscar), Asmae, and Guilherme, who I started
the Ph.D. journey with. Of course, I cannot forget the Emerging Technologies group
that includes Jintao, Muath, Amin, Abdelqader, and Abhairaj. Finally, it is an under-

ix

x CONTENTS

statement to say that the Computer Engineering group runs on our support staff: Fran-
cis, Paul, Susan, Erik, Meike, Joyce, Lidwina, Laura, Trisha, intern secretaries, and the
cleaning/cooking/other staff. Thank you all for turning my working time in the Com-
puter Engineering group into a great experience.

The wonderful people that I met during my time in the Ph.D. was by no means lim-
ited to the Computer Engineering group. First, I want to thank the amazing people in our
department: Michael (Miao), Alexandra, Jacopo, Arne, Fouwad, Matti, Mathijs, Filip,
Marc, Lingling, Mahroo, Carmina, Medina, Luise, Ramon, Ivan, Gabriel, Fenghua,
Bruno, Honorio, Uljana, Mahta, Tara, Innocent, Mansureh, Stephan, Georgi, Michael
(Mainemer), Pavan, Thiago, and Hale. Thank you for making the working environment
a very special place that I loved to come, walk around, and have lunches; as well as
missed greatly during the quarantines. Second, I want to thank the wonderful people
I met during my time in the Netherlands in general: Miloš, Sanja, Ege, Pong, Danyi,
Joëlle, Giulia, Elif, Marieke, Morgane, Lorenza, Eva, Lisa, the amazing people in Delfts
Bleau, and all my wonderful colleagues in Riscure. Third, I want to thank the people
in TUDelft that helped me in other ways. This includes human resources, library, and
graduate school personnel; as well as graduate school instructors. Next, I want to thank
my RESCUE project fellows, starting from Xinhui, Esteban, Cem, Dymtro, and Çağrı.
Thanks to you, our meetings in various European cities were really fun experiences.
Mentioning people that made visiting European cities fun, I want to thank fellow Ph.D.s
that I met in conferences, including but not limited to Patrick, Weiyan, Pietro, and Xhe-
sila. Finally, I want to thank my friends from Turkey, including but not limited to Bertan,
Simge, Fahrettin, Başak, and Seher: I of course did not forget the good times we had
just because I came to the Netherlands.

The pandemic was a hard time for everybody. For me, the hardest was to lose my
grandmother Mariş and grandfather Fevzi during that time, who I was not able to see
for a while or attend their funerals. I want to thank you, everything I do today is possible
because of the way you raised me. In these hard times, my family was by my side. This
includes Habibe, Şahin, and Gülcan: my family in the Netherlands and like always, my
mother and father. Thus, a very special thanks to Meltem and Murat, to whom I owe
everything. I dedicate this thesis to you - my family.

I want to conclude my thanks with two special ones. The first is for a person that will
be remembered, respected, and cherished as long as there are Turks: Atatürk. Thanks
to your efforts and sacrifices in order to modernize Turkey, it was possible for me to
complete this dissertation. The second is for the Dutch. These people hosted me for
more than four years and essentially provided me with a second home. In spite of many
cultural differences, at no point I felt like an outsider or did not belong there. Thank you
for your amazing hospitality.

I know I am certainly missing some names here and not thanking enough the ones
that I did not. So this is to everybody that got happy with my happiness, sad with my
sadness; and care that this thesis was published: Thank you. . .

Fortis fortuna adiuvat. -
Fortune sides with the daring.

Roman proverb

SUMMARY

Machine learning has gained a lot of recognition recently and is now being used in many
important applications. However, this recognition was limited in the hardware security
area. Especially, very few approaches depend on this powerful tool to detect attacks dur-
ing operation. This thesis reduces this gap in the field of fault injection attack detection
and prevention in neural networks and processors.

This thesis presents our methods of machine learning-based fault attack detection
and prevention in different chapters, after providing the background information. Our
first idea is to detect fault attacks from the processor’s instruction flow. The essence of
the idea is that machine learning algorithms can learn the generated machine instruc-
tion sequences of a security-sensitive application. Thereafter, any fault in the instruc-
tions can be detected. The thesis demonstrates this idea by using RNN, CAM, and BF.
Additionally, it demonstrates how to correct them using Hopfield networks.

The second idea is to use smart sensors to detect fault attacks. The first type of smart
sensor is sensitive to multiple changes, such as in clock signal and supply voltage. The
thesis demonstrates how to design such a sensor using RO PUFs. The second type of
smart sensor is based on the operation of the device. The thesis demonstrates a design
for ANNs, where the smart sensor detects fault attacks from discrepancies in neuron
activation rates.

The thesis finally presents the idea of preventing fault attacks using smart verifica-
tion. The first way is attained via a memory verification module, which verifies data from
the external memory before processor execution. The second way is designed to protect
ANNs via redundancy. However, the thesis presents a way to do this more efficiently, by
using smart and selective redundancy.

xiii

SAMENVATTING

Machine learning heeft recentelijk veel erkenning gekregen en wordt nu in veel belang-
rijke toepassingen gebruikt. Echter, in het veld van hardwarebeveiliging was deze erken-
ning vrij beperkt. Er zijn weinig methoden die dit krachtige gereedschap gebruiken om
aanvallen te detecteren. Dit proefschrift draagt bij aan het verkleinen van deze leemte op
het gebied van de detectie en preventie van foutinjectie-aanvallen in neurale netwerken
en processors.

Dit proefschrift presenteert onze op machine learning-gebaseerde detectie- en pre-
ventiemethoden van foutaanvallen in verschillende hoofdstukken, na het verstrekken
van de achtergrondinformatie. Ons eerste idee is om foutaanvallen in de instructie-
stroom van de processor te detecteren. De essentie van het idee is dat machine learning-
algoritmen de instructiereeksen van een beveiligingsgevoelige applicatie kunnen leren.
Vervolgens kan elke fout in de instructies worden gedetecteerd. Dit proefschrift demon-
streert dit idee door gebruik te maken van een RNN, CAM en een BF. Bovendien laat het
zien hoe de fouten gecorrigeerd kunnen worden door middel van Hopfield-netwerken.

Het tweede idee is om slimme sensoren te gebruiken om foutaanvallen te detecte-
ren. Het eerste type slimme sensor is gevoelig voor meerdere veranderingen, zoals het
kloksignaal en de voedingsspanning. Dit proefschrift laat zien hoe je zo’n sensor kunt
ontwerpen met behulp van PUFs gebaseerd op ROs. Het tweede type slimme sensor is
gebaseerd op de werking van het apparaat. Dit proefschrift demonstreert een ontwerp
voor kunstmatige neurale netwerken, waarbij de slimme sensor foutaanvallen detecteert
op basis van verschillen in de activeringssnelheden van neuronen.

Tenslotte presenteert dit proefschrift twee implementaties van het idee om foutaan-
vallen te voorkomen met behulp van slimme verificatie. De eerste manier waarop dit
wordt bereikt, is via een geheugenverificatiemodule, die gegevens uit het externe geheu-
gen verifieert voordat de processor deze uitvoert. De tweede manier beschermt KNN’s
door middel van redundantie. Dit proefschrift presenteert een manier om dit efficiënter
te doen, door gebruik te maken van slimme en selectieve redundantie.

xv

LIST OF FIGURES

1.1 Classification of Fault Injection Attacks . 3
1.2 Classification of Fault Injection Countermeasures 5

2.1 The Cryptosystem Environment . 12
2.2 Secure Cryptosystem Environment . 13
2.3 The AES Round . 14
2.4 The RSA cryptosystem . 16
2.5 RV32I Instruction Formats . 18
2.6 Classification of Machine Learning Methods 19
2.7 The Artificial Neuron . 19
2.8 Typical MLP . 20
2.9 Sample CNN . 21
2.10 Feedback Layer Architecture . 22
2.11 Time Rolled and Unrolled Recurrent Cell . 22
2.12 Time Unrolled LSTM Cell . 23
2.13 Sample Hopfield Network over a State Iteration 24

3.1 Relation between Vulnerability Evaluation Classes 31
3.2 Relation between Detection Evaluation Classes 32
3.3 Relation between Correction Evaluation Classes 33
3.4 Relation between ANN Protection Evaluation Classes 33

4.1 Faulty Instruction Detection Concept . 36
4.2 Design Methodology of Instruction Flow-based Detectors 36
4.3 Two Cases of Instruction Sequences . 38
4.4 Instruction Processing Sequence . 40
4.5 Protection Analysis for CRT-based Implementation 40
4.6 Cost Analysis for CRT-based Implementation 41
4.7 The RNN Used in This Chapter . 42
4.8 Efficient Hardware Implementation of RNN-based Detector 43
4.9 Typical CAM Architecture . 44
4.10 Efficient Hardware Implementation of CAM-based Detector 45
4.11 Typical BF Architecture . 46
4.12 Efficient Hardware Implementation of Hopfield Network-based Detector

and Corrector . 49
4.13 FPR Analysis for the BF . 51

5.1 Example of an RO PUF Architecture . 66

xvii

xviii LIST OF FIGURES

5.2 RO PUF-based Detector Concept . 67
5.3 SoC with the RO PUF-based detector . 68
5.4 FSM-based Implementation of the RO PUF-based Detector 69
5.5 Conceptual Architecture of the ∆-Detector 71
5.6 Example Activation Map of a Convolutional Layer of AlexNet 72
5.7 Conceptual Architecture of the Σ-Detector 73
5.8 Hardware Architecture of Σ-Detector . 74
5.9 Clock Glitching . 76
5.10 Voltage Glitching . 76
5.11 Unique PUF Responses . 79
5.12 Variable Inverter Chain Length via Switches 80
5.13 Neuron Activation Rates for Fault Injection into the Convolution 4 Layer of

AlexNet . 82

6.1 The EMS Concept . 92
6.2 The EMS Architecture . 93
6.3 Experiment 1 - Evaluation Results of Fault/Code/Data Injection Attacks on

EMS Variants . 100
6.4 Experiment 1 - Evaluation Results of Replay Attacks on EMS Variants . . . 101
6.5 Results of Experiment 2 - Undetected Misclassifications for Unprotected,

Random, and Variance Schemes . 107

LIST OF TABLES

4.1 Design Parameters of RNN, CAM, and BF-based Detectors 50
4.2 Results of Experiment 1 - Vulnerability Assessment of Processor 52
4.3 Results of Experiment 2 - Vulnerability Assessment of Instruction Buffer . 53
4.4 Results of Experiment 3 for the RNN-based Detector 54
4.5 Results of Experiment 3 for the CAM-based Detector 54
4.6 Results of Experiment 3 for the BF-based Detector 55
4.7 Area Overhead of the Three Detector Implementations 55
4.8 Results of Experiment 1 for the Hopfield Network-based Detector and Cor-

rector . 57
4.9 Results of Experiment 2 for the Hopfield Network-based Detector and Cor-

rector . 58
4.10 Results of Experiment 3 for the Hopfield Network-based Detector and Cor-

rector . 58
4.11 Area Overhead of the Hopfield Network-based Detection and Correction

Module . 59

5.1 Results of Experiment 1 - Clock Glitching . 77
5.2 Results of Experiment 2 - Voltage Underfeeding 78
5.3 Results of Experiment 3 - Voltage Glitching 78
5.4 Used ANN Structures . 81
5.5 Two Best Parameter Selections for Σ-Detector Calibration 83
5.6 Results of Experiment 1 - Performance Evaluation of the ∆-Detector 84
5.7 Results of Experiment 2 - Performance Analysis of the Σ-Detector 85

6.1 Comparison of Lightweight Ciphers . 91
6.2 Comparison of Lightweight Hash Functions 92
6.3 Results of Experiment 2 - Performance Penalty 102
6.4 Hardware Overhead of EMS Variations . 103
6.5 Overhead Comparison of EMS with the State of the Art 103
6.6 Results of Experiment 1 - Random versus Summation Scheme Comparison 106
6.7 Results of Experiment 1 - Random versus Variance Scheme Comparison . 106
6.8 Results of Experiment 3 - State of the Art Versus Our Schemes 108

xix

LIST OF ABBREVIATIONS

AES Advanced encryption standard. v, xvii, 4, 8, 11, 12, 13, 14, 15, 17, 62, 75, 77, 80, 86,
90, 91, 103, 109, 114

AHB Advanced high-performance bus. 98

AI Artificial intelligence. 2

ALU Arithmetic logic unit. 52

AMBA Advanced microcontroller bus architecture. 98

ANN Artificial neural network. v, vi, vii, xiii, xvii, xix, 8, 9, 11, 17, 19, 20, 21, 23, 26, 28, 29,
30, 31, 33, 34, 65, 70, 71, 72, 73, 74, 80, 81, 82, 83, 84, 85, 86, 87, 88, 94, 95, 96, 97,
104, 105, 107, 110, 114, 115, 133

BF Bloom filter. vi, xiii, xv, xvii, xix, 8, 35, 40, 45, 46, 49, 50, 51, 52, 53, 54, 55, 59, 60, 61,
62, 114

BRAM Block random access memory. 98, 103

CAM Content addressable memory. vi, xiii, xv, xvii, xix, 8, 35, 40, 43, 44, 45, 49, 50, 52,
53, 54, 55, 59, 60, 61, 62, 114

CFI Control flow integrity. 6

CFIC Control flow integrity checkers. 7

CNN Convolutional neural network. v, xvii, 2, 8, 11, 17, 19, 20, 21, 23, 31, 80, 86, 104, 115

CPU Central processing unit. 43, 69

CRT Chinese remainder theorem. xvii, 15, 17, 27, 36, 37, 40, 41, 49, 50, 51, 52, 53, 54, 55,
57, 58, 59, 60

DCNN Deep convolutional neural network. 80

DES Data encryption standard. 4, 13, 62

DMR Dual modular redundancy. 7, 8, 95, 104, 107, 110

DNN Deep neural network. 2, 19, 110

DRAM Dynamic random access memory. 93, 98

xxi

xxii LIST OF ABBREVIATIONS

DSP Digital signal processing. 59

ECC Error correcting code. 7, 62, 69

EEA Extended Euclidean Algorithm. 37, 59

EM Electromagnetic. 5, 6, 86

EMS Embedded memory security. vii, xviii, xix, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103,
108, 109, 110, 114

FIFO First in-First out. 44

FPGA Field-programmable gate array. 50, 56, 75, 81, 98, 102

FPR False positive rate. xvii, 46, 50, 51, 61

FSM Finite state machine. xviii, 44, 45, 69

GB Gigabyte. 81

GCM Galois/Counter mode. 103

GE Gate equivalent. 91, 92

GPU Graphical processing unit. 81

HD Hamming distance. 69

HDL Hardware description language. 98

IC Integrated circuit. 66, 70

ID Identification. 48

IoT Internet of Things. 2, 3, 16, 65, 67, 90, 92, 99, 108, 109, 110, 133

IP Intellectual property. 69

IRQ Interruption request. 43

ISA Instruction set architecture. v, 6, 8, 11, 16, 30, 40, 62, 114

JTAG Joint Test Action Group (boundary-scan architecture standard). 26

kb Kilobit. 86

kB Kilobyte. 51, 85, 98, 102

LLC Last level cache. 93

LIST OF ABBREVIATIONS xxiii

LSTM Long short-term memory. xvii, 22, 23

LUT Lookup table. 42, 43, 55, 59, 80, 86, 102, 103

MaC Multiplication-and-accumulation. 43

MAC Message authentication code. vii, 61, 90, 91, 92, 93, 94, 99, 100, 101, 102, 103, 108

MLP Multilayer perceptron. xvii, 19, 20, 21, 110

MM Multi-bit fault in memory. 29, 52

MP Multi-bit fault in processor. 29, 52

MUX Multiplexer. 59

NA Not applicable. 92, 102

NIST National Institute of Standards and Technology. 13, 15

NSA National Security Agency. 15

OM One fault in memory. 29, 52

OP One fault in processor. 29, 52

opcode Operation code. 17, 41

OS Operating system. 62, 93

PUF Physically unclonable function. vi, xiii, xv, xvii, xviii, 66, 67, 68, 69, 75, 79, 80, 86,
87, 93, 114, 133

qubit Quantum bit. 15

RAM Random access memory. 54, 55, 102, 103

ReLU Rectified linear function. 19, 21, 28, 84, 115

RFID Radio-frequency identification. 90, 91

RNN Recurrent neural network. v, vi, xiii, xv, xvii, xix, 8, 11, 17, 19, 21, 22, 23, 35, 40, 41,
42, 43, 44, 49, 50, 52, 53, 54, 55, 60, 61, 62, 114, 133

RO Ring oscillator. vi, xiii, xv, xvii, xviii, 8, 9, 66, 67, 68, 69, 75, 80, 86, 87, 114

ROM Read-only memory. 86

RSA Rivest–Shamir–Adleman (cryptosystem). v, vi, xvii, 4, 7, 8, 11, 12, 13, 15, 16, 17, 26,
27, 29, 32, 36, 40, 41, 49, 56, 60, 62, 114, 133

xxiv LIST OF ABBREVIATIONS

RTL Register-transfer level. 37

SaM Square-and-multiply. 15, 16, 37

S-box Substitution box. 14, 15

SCA Side-channel analysis. 2

SHA Secure hash algorithm. 91, 92, 103, 109

SoC System-on-chip. xviii, 37, 68, 69, 98, 109

SPN Substitution-permutation network. 90

SRAM Static random access memory. 5, 54

tanh Hyperbolic tangent. 19, 21, 28

TE Trust execution. 109

TMR Triple modular redundancy. 7, 8, 63, 110

TOCTTOU Time-of-check-to-time-of-use. 109

TPM Trusted platform module. 109

UART Universal asynchronous receiver-transmitter. 98

UV Ultraviolet. 5

WW2 World War 2. 12

XOR Exclusive OR. 15, 48, 62, 69, 71, 80

1
INTRODUCTION

1.1 MOTIVATION

1.2 FAULT INJECTION ATTACKS

1.3 STATE OF THE ART IN FAULT ATTACK COUNTERMEASURES

1.4 RESEARCH TOPICS

1.5 CONTRIBUTIONS OF THE THESIS

1.6 THESIS ORGANIZATION

Machine learning has been the driving force of many technological advances; including
speech recognition, game playing, and visual object detection. Its use in the domain of
hardware security, however, has been very limited. This is especially the case for detecting
fault injection attacks, which pose a great threat to digital devices. This dissertation aims
to combine these two fields: developing machine learning-based smart detection tech-
niques against fault attacks, especially to protect neural networks and processors.

This chapter introduces the motivation and the problem by investigating the threat of
fault injection attacks and the limitations of state-of-the-art countermeasures. Next, it
discusses the research topics that are the focus of the dissertation. Thereafter, it states the
contributions of this thesis and finalizes with the organization of the remaining chapters.

1

1

2 INTRODUCTION

1.1. MOTIVATION
Hardware faults due to external factors were first an issue for electronic devices in the
upper atmosphere and space. These were randomly caused by radioactive particles and
they affected the reliable operation of a device [1]. Today, an attacker can use many tech-
niques to inject calculated faults into everyday electronic devices. In addition to affect-
ing reliable operation, these calculated faults can also cause secret information leakage.
In the age of widespread IoT devices, fault injection attacks can be disastrous.

Hardware security is a cat-and-mouse game between the designers and the attack-
ers. An attacker will always search for the low hanging fruit: a vulnerability that is easy to
exploit [2]. A vulnerability that is costly and complex requires special equipment, exper-
tise, and continuous access to the device. It is rarely practical or beneficial for an attacker
to target these vulnerabilities. Thus, it is important to complicate fault attacks for com-
mercial devices; such as IoT, smartphones, personal computers, clouds, and cars. An
under-explored way to attain this complication is to use machine learning.

Over recent years, machine learning algorithms achieved many tasks. These include,
but are not limited to, the following: game playing [3], carrying out daily conversa-
tions [4], and visual object detection [5]. Today, the capabilities of ChatGPT (a conversa-
tion bot [6]) and DALL-E (an AI image generator [7]) captivate everybody, the scientific
and general population alike. Despite these achievements, the use of machine learning
in hardware security was very limited. The only significant exception to this is the use
of DNNs, especially CNNs for power-based SCA: linking power usage of a device to a se-
cret [8, 9]. This is mostly, however, a reactionary trend after the success of CNNs in other
domains, which naturally raised questions [10]. Even a bigger under-exploration exists
for fault injection attack countermeasures; the vast majority of machine learning usage
for fault detection is related to robotics [11, 12].

This dissertation mainly focuses on this unexplored potential: online fault injection
attack detection using machine learning algorithms. That is, a machine learning algo-
rithm working alongside the device to actively detect fault injections. There are many
benefits for such an approach that come from the properties of machine learning: (i)
effectiveness - makes it harder to create exploitation through fault injection, (ii) gener-
ality - enables to protect many applications/processes at once, (iii) robustness - attacks
against the protection itself are mostly ineffective.

1.2. FAULT INJECTION ATTACKS
Fault injection attacks are the act of injecting deliberate faults into hardware. Figure 1.1
details these attacks. A fault attack mainly has one of two goals: stealing data or dis-
rupting functionality. The first goal is especially relevant in the case of cryptosystems,
which use secret keys. The second goal means making the output of a process faulty or
crashing the device altogether and thus, it is a relevant threat to every digital process.
How dangerous this can be was shown in the Qantas Flight 72 incident, where the air-
craft made a sudden pitch-down movement due to hardware faults [13]. Adding to this
danger, fault attacks can be carried out by a variety of techniques, which require differ-
ent levels of physical tampering with the device. Non-invasive techniques do not require
any tampering, semi-invasive techniques require depackaging (i.e., removal of the plas-

1.2. FAULT INJECTION ATTACKS

1

3

Figure 1.1: Classification of Fault Injection Attacks

tic package), and invasive techniques additionally require decapsulation (i.e., removing
some layers of the chip with the use of chemicals). Next, fault attacks require an operat-
ing device in the field, where faults disrupt the operation. Finally, fault attacks typically
need physical access to (node) devices operating in the field to inject faults. Examples
include IoT nodes, smartphones, decoders, game consoles, and cars. It must be noted
that certain software-driven fault attacks do not need this physical access and can attack
after establishing access through the network.

To conduct a fault injection attack, an attacker must conduct two phases of opera-
tion. The first phase is the determination of the fault threat and the second phase is fault
injection. The following subsections define each phase.

1.2.1. FAULT THREAT

This phase comprises the determination of the threat. It aims to answer questions such
as: "What are the vulnerabilities if faults occur in hardware?", "Where and when should
the faults be injected to exploit these vulnerabilities?", and "How many faults are needed?".
To answer these questions, there are three ways of fault analysis: simple, differential, and
non-differential. All are explained next.

Simple fault analysis: As the name implies, this analysis comprises analyzing non-
complex situations. For example, consider the sample high-level programming code
for a pin code checking application in Algorithm 1. This code accomplishes bit-by-bit
checking of the provided and actual pin codes. A simple fault analysis for this applica-
tion can determine that a fault injected during the execution of line 2, which skips the
loop altogether, can bypass the check.

Differential fault analysis: There are many cases where simple fault analysis would
not be sufficient. A prime example is cryptosystem implementations, which are com-

1

4 INTRODUCTION

Algorithm 1 Pseudo-Code of a Basic Pincode Check Program

Input: User entered pincode pin, correct pincode pincor, bitlength of pincode B
Output: Device unlock value unlock

1: unlock ← 1 ▷ Set initial unlock value to 1
2: for each bit b ∈ [0,B) do ▷ Bit-by-bit pincode check
3: if pin[b] ̸= pincor[b] then
4: unlock ← 0 ▷ In case bits do not match
5: end if
6: end for

posed of complex mathematical formulations. In such cases, an effective method is to
compare a faulty output with the golden version. This was illustrated for DES encryp-
tion [14], RSA decryption [15, 16], and AES encryption [17, 18, 19, 20, 21].

While these analyses depend on completely different formulations based on the cryp-
tosystem they target, they can all be investigated in similar steps. First, they all indicate
where faults should be present: which round in DES and AES, which variable or cal-
culation in RSA. Then, they provide a mathematical formula, where faulty and golden
cryptosystem outputs are inputs and information about the secret key (i.e., a bit, parts,
or the entirety) is the output. Of course, the differential fault analysis methods do not
work when faults are injected elsewhere. Furthermore, they can still fail to provide key
information in some cases where the faults are correctly injected. Therefore, most of
these analyses reduce the secret key search space rather than providing the entire key.

Non-differential fault analysis: While not as common as the differential fault analysis,
there are methods that do not require the golden output of the cryptosystem. That is,
they can leak secret key information only from the faulty output. This was illustrated for
RSA [22] and AES [23, 24].

1.2.2. FAULT INJECTION
After the identification of the threat, the next phase is the physical injection of the faults.
This subsection investigates the fault injection techniques in groups based on how inva-
sive they are.

Non-invasive fault injection: Successful non-invasive fault injection techniques were
demonstrated by underfeeding voltage to a device [25, 26, 27, 28], voltage glitching [29],
clock glitching [30], and heating the device [31]. All these techniques require non-complex
injection devices and little expertise. However, it is not possible to inject granular faults,
such as bit-flips into specific locations.

The only exception to this is software-driven techniques, which enable granular fault
injections, as well as do not require physical access to the device under attack. These
techniques depend on how secure the attacked device is. For the no security case, an
attacker can maliciously escalate access privileges to gain full control and inject faults
anywhere [32]. For the low to medium security case, an attack such as buffer overflow is
needed. While it is possible to inject faults to memory locations with this attack, there

1.3. STATE OF THE ART COUNTERMEASURES

1

5

Fault Injection
Countermeasures

Prevention

Redundancy

Passive Shields

Detection Sensors

Checkers

Active Shields

Time

Space

Figure 1.2: Classification of Fault Injection Attack Countermeasures

is no control over the exact location [33]. Finally, for the high-security case, a complex
attack such as Rowhammer or CLKScrew is needed [34, 35]. With Rowhammer, it is pos-
sible to randomly flip bits around the target memory location with persistent reading.
With CLKScrew, it is possible to inject faults by changing the core frequency where a se-
curity sensitive application is running, through the software-based energy management
system. As a consequence, the attackers in these cases have very limited control over
injected fault value and location.

Semi-invasive fault injection: Semi-invasive fault injection was demonstrated by ex-
posing the depackaged chip to a flashlight. This way, the attacker is able to inject bit-flips
in target SRAM cells [36].

Invasive fault injection: Invasive fault injection comprises the most complex tech-
niques. Not only special expertise and material are required to decapsulate the chip
while keeping it operational, but the fault injection equipment is also usually very tech-
nical. Examples for invasive fault injection include UV light exposure [37], EM exposure
with a spark device [38], and using lasers [39, 40, 41]. These very complex techniques
enable the attacker to inject bit-flips in the desired location, practically giving full fault
injection control.

1.3. STATE OF THE ART IN FAULT ATTACK COUNTERMEASURES

As Sections 1.2.1 and 1.2.2 established, faults pose an important threat to the reliability
and security of electronic devices; as well as there are many cheap or very effective tech-
niques to inject them. As a response, there are a number of methods to protect against
fault injection attacks. We can investigate them in three groups based on their aim: pre-
vention, detection, and (applying) redundancy. Figure 1.2 illustrates these groups and
the proceeding subsections detail them.

1

6 INTRODUCTION

1.3.1. PREVENTION-BASED COUNTERMEASURES

For preventing fault attacks, only passive shields are proposed. These are metal meshes
over the circuit, covering its sensitive parts against EM and optical fault injections [42].
However, passive shields do not protect against other techniques, such as voltage under-
feeding or clock glitching.

1.3.2. DETECTION-BASED COUNTERMEASURES

In contrast to the prevention techniques such as passive shields, detection-based coun-
termeasures enable the detection of more fault injection techniques. First, active shields
expand the coverage of passive shields. A way to implement them is to transfer encoded
data on the shield and constantly monitor its integrity [43].

To further expand the coverage to other types of fault injections, sensors can be used.
These sensors can monitor voltage, the clock signal, and light to detect abrupt changes
caused by fault injections. However, to prevent different fault injections, multiple sen-
sors must be used simultaneously in a device, which is costly.

The last method to detect fault attacks is to use checkers. A checker does not aim
to detect the physical disturbance in voltage, the clock signal, etc. Instead, they aim to
detect its effect on the device. A very common use of checkers is for CFI. In general,
these checkers verify executed program instructions in order to detect unexpected pro-
gram behavior [44]. A way to achieve this is to first divide the program into instruction
blocks, which are connected to each other through jumps or branches. As the proces-
sor executes the instructions in a block, the checker calculates a signature. At the end of
the block, it compares this signature with the stored version [45]. Any deviation means
a fault attack. This method has a number of limitations. First, all possible branches of
a program should be accounted for in advance. This creates storage and computational
overhead at runtime for complex programs. Furthermore, attacks against the checker
or the signature to replace the protection is still a viable strategy. If so, it is not pos-
sible to retroactively detect faults in proceeding blocks. Lastly, these checkers usually
require modifications to the processor, which further complicates the checker imple-
mentation. To address these limitations, a number of variations were proposed. First,
appending the execution history is a solution to enable retroactive faulty instruction ex-
ecution. Of course, this further complicates the control flow for complex programs with
many branches [46]. Second, using masks to connect sequences of instructions to the
previous ones and encrypting them together can be used to account for attacks against
the checker, as one fault would not be enough to replace them anymore. However, this
requires ISA extension, damaging applicability [47]. Lastly, using the checker as a hard-
ware module that interacts with the processor and the memory is a way to remove the
need for processor modification. However, existing methods typically do not address the
other limitations of checkers, such as self-vulnerability against faults [48].

1.3.3. REDUNDANCY-BASED COUNTERMEASURES

The last group of countermeasures uses redundancy to detect and prevent fault attacks.
They can use redundancy either in time or in space. Using redundancy in time basically
means carrying out a verification operation later and comparing the results for faults.
This can be attained by very simple software-level techniques, such as repeating instruc-

1.4. RESEARCH TOPICS

1

7

tions or using multiple copies of variables that are prone to faults [49, 50]. Another way
to attain time-based redundancy is at the algorithm-level. This was shown for RSA [51,
52, 53]. While these countermeasures are simple to add, they incur considerable latency,
typically doubling the execution time.

The other way to use redundancy is in space with additional hardware. Examples
include ECC [54, 55], DMR [56], and TMR [57]. ECC, such as parity, is bits added to the
data in order to detect (and correct) faults. However, they are only able to detect and
correct a limited number of bit-flips. DMR and TMR on the other hand duplicate and
triplicate the hardware that is vulnerable to faults. In the case of DMR, the replicated
hardware does the same operation and the results are compared to detect faults. As
TMR means triplicating the hardware, a majority voting on the three results can be used
to also correct. While both DMR and TMR are very effective against fault attacks, they
incur a heavy area overhead, which makes them only suitable for high-end devices.

1.4. RESEARCH TOPICS
The research topics in this dissertation aim to address the limitations of state-of-the-art
countermeasures against fault injection attacks, especially in protecting neural networks
and processors. This dissertation focuses on three types of countermeasures, as listed in
the following. They are described in the proceeding subsections.

1. Instruction flow-based fault attack detection

2. Smart sensor-based fault attack detection

3. Verification-based fault attack detection

1.4.1. INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION
This research topic focuses on improving CFIC. As mentioned in Section 1.3.2, CFICs
have three main limitations: the need for accounting all possibilities of the program flow,
self-weakness against fault attacks, and requiring modifications in the processor. While
individual methods can remedy one of these limitations, they usually do it by introduc-
ing another.

It is clear that variations of the existing methods are not able to solve all limitations
at once. New approaches are needed, such as the ones based on machine learning.

1.4.2. SMART SENSOR-BASED FAULT ATTACK DETECTION
This research topic focuses on the main limitation of using sensors: the inability to cover
multiple attack surfaces (as mentioned in Section 1.3.2). A considerable amount of re-
sources and energy can be saved by using sensors that detect different types of fault in-
jections.

This can be addressed in multiple ways. One way to address it is to identify circuits
that are sensitive to different changes (such as in voltage and clock) at once. Then, they
should be calibrated to work with electronic devices in unison. The second way is to
use sensors that detect faults in the operation of the electronic device. These should be
calibrated to a specific operation and detect deviations from the expected working.

1

8 INTRODUCTION

1.4.3. VERIFICATION-BASED FAULT ATTACK DETECTION
This research topic focuses on solutions that are as effective in verification as using re-
dundancy (specifically DMR and TMR), but do not create the same overhead (see Sec-
tion 1.3.3).

Ways to address this include using smart verification modules that are more efficient
and using smart redundancy based on the specifics of the operation.

1.5. CONTRIBUTIONS OF THE THESIS
The contributions of this thesis mainly follow the research topics described in Section 1.4.
They are explained in the following.

Instruction flow-based fault attack detection: In this dissertation, we regard the ma-
chine instructions of a software application as learnable patterns, where faults create de-
tectable disruptions. As such, we employed the entire machine learning procedure: data
collection, training with non-faulty instructions, and evaluating the detection perfor-
mance with faulty instructions. We further proposed three smart tools that are compat-
ible with this procedure and demonstrated their effectiveness/efficiency; namely RNN,
CAM, and BF. In the end, we also expanded the detection capability with correction,
using Hopfield networks.

Smart sensor-based fault attack detection: We demonstrated two ways to detect fault
attacks by using smart sensors: using ROs and monitoring the operation by a smart sen-
sor module. ROs are sensitive to changes in the environment, enabling them to detect
changes in multiple sources. For monitoring the operation, we focused on the ANNs,
where we used a smart sensor that detects faults from neuron activation rates.

Verification-based fault attack detection: We worked on a number of application-
based examples that are important in cyberspace. The first is neural networks, where
we verified the operation with smart redundancy (i.e., redundancy tailored for neural
networks that achieve more efficient protection). We also demonstrated the verification
of stored data in security-sensitive applications.

1.6. THESIS ORGANIZATION
The remainder of this thesis is organized as follows:

Chapter 2 discusses the required background information for following the remain-
der of the thesis. This includes the RISC-V ISA (which is used by our processor imple-
mentations), the RSA and AES cryptosystems (which we aimed to protect), and a brief
introduction to ANNs with a focus on RNNs, CNNs, and Hopfield networks (which are
used in this dissertation).

Chapter 3 presents the fault attack modeling and detection (and correction) evalua-
tion that we propose, in order to determine the effectiveness of our solutions.

The remaining chapters focus on the contributions of this dissertation. First, Chap-
ter 4 presents the instruction flow-based fault attack detection concept and the four meth-
ods we used to achieve it.

1.6. THESIS ORGANIZATION

1

9

Chapter 5 presents our smart sensor-based fault attack detection concept, by first
defining what we refer to as smart sensors. Then, it describes the RO-based smart sensor
to detect clock and voltage variations at once. Finally, the chapter concludes by dis-
cussing the neuron activation-based sensor for neural network implementations.

Chapter 6 presents the verification-based fault attack detection methods that we em-
ployed in this dissertation. It first presents smart redundancy techniques for ANNs.
Thereafter, it presents memory verification.

Finally, Chapter 7 concludes the thesis by summarizing the key points of each chap-
ter and providing directions for future work.

2
BACKGROUND

2.1 CRYPTOSYSTEMS: AES AND RSA
2.2 THE RISC-V ISA
2.3 ANNS: CNNS, RNNS, AND HOPFIELD NETWORKS

Smart hardware development for fault attack detection in security-sensitive operations
requires knowledge of multiple disciplines. The first is what to protect: the cryptosystem.
The second is where the operation runs: the architecture. The last is with what to protect:
machine learning.

This chapter presents these concepts briefly, which will help to follow the discussion in
the subsequent chapters. First, it introduces what cryptosystems are in general, with a
focus on two very widely used ones: AES and RSA. Next, it details the RISC-V ISA, which is
used as the architecture in numerous processor implementations in the electronic world.
Finally, it provides an introduction to machine learning and ANNs by describing CNNs,
RNNs, and Hopfield networks; which we used in this dissertation.

Parts of this chapter are from the following publications: [58], [59], [60], [61]

11

2

12 INTRODUCTION

a

m

ch

e

b

Figure 2.1: The Cryptosystem Environment (a: sender, b: receiver, ch: communication channel, e: attacker, m:
message)

2.1. CRYPTOSYSTEMS: AES AND RSA
The need for secure communication and thus, data obfuscation techniques dates back
to antiquity. Earlier examples include cryptosystems such as Caesar’s cipher (every let-
ter substituted with the letter of distance three in the alphabet) and Enigma (German
encrypted communication machine in WW2): both relying on the obfuscation of the
working principle of the cipher. Once this working principle is learned or leaked, the
cryptosystem effectively became useless.

As a consequence, modern cryptography is based on Kerckhoff’s principle: a cryp-
tosystem should be secure even if an attacker knows every detail about it, with the ex-
ception of a secret key [62]. The following subsections detail this understanding. First,
Section 2.1.1 presents the overview of modern cryptosystems. The next two subsections
present the cryptosystems that we focused on in this dissertation: Section 2.1.2 AES and
Section 2.1.3 the RSA cryptosystem.

2.1.1. OVERVIEW
As mentioned, a cryptosystem aims to obfuscate a message so that only the sender and
the receiver can understand the meaning, while any third party (i.e., an attacker) that in-
tercepts it during the transmission cannot. This results in the following key elements in a
cryptosystem-based environment: sender, receiver, message, communication channel,
and attacker. This is illustrated in Figure 2.1.

In the figure, the sender (a) wants to send a message (m) to the receiver (b). However,
communication channel (ch) is insecure: there can be an attacker (e) that intercepts
all the messages sent through this channel. The premise of a cryptosystem is to have a
system that no matter how many messages the attacker intercepts, it is practically im-
possible for them to understand the meaning. It is also assumed that the attacker fully
knows how the cryptosystem works. To achieve this, cryptosystems introduce two oper-
ations to the sender and the receiver: encryption and decryption. Figure 2.2 illustrates
this security update on the cryptosystem environment.

2.1. CRYPTOSYSTEMS: AES AND RSA

2

13

a

c

ch

e

b

sender key receiver key

m d

Figure 2.2: Secure Cryptosystem Environment (a: sender, b: receiver, c: ciphertext, ch: communication chan-
nel, d: decrypted message, e: attacker, m: message)

In the figure, the sender uses the sender key to encrypt (i.e., obfuscate) the message
(also referred to as plaintext). This results in a ciphertext (c), which is meaningless to
any attacker that does not possess the receiver key. When the receiver receives this ci-
phertext, they use the receiver key to decrypt (i.e., unveil the meaning). The decrypted
message (d) is the same as the original message.

As a direct result of the discussion above, a cryptosystem consists of three stages: key
generation, encryption, and decryption. A common way to group cryptosystems is via
their key generation stage; if the sender key is the same as the receiver key, the cryp-
tosystem is referred to as symmetric. If they are different, the cryptosystem is referred
to as asymmetric. Using either group is typically a trade-off: symmetric cryptosystems
commonly use the same or very similar operations for encryption and decryption. This
results in cheaper operations, hardware reuse, using fewer key bits to attain a similar de-
gree of security, etc. On the other hand, in symmetric cryptosystems, the sender and the
receiver should somehow exchange the key without leaking it on the insecure channel.
Asymmetric cryptosystems do not have this issue, as their keys can be calculated sepa-
rately over the insecure channel. The following subsections detail one example for both
types of cryptosystems: AES for symmetric and RSA for asymmetric.

2.1.2. AES
DES, the previous worldwide accepted encryption standard, became obsolete by the end
of the 1990s. Computers at the time were able to brute-force the cipher (i.e., try all key
guesses exhaustively) in a number of days. Accordingly, NIST organized a competition
for the next encryption standard. The contestants were measured on a range of criteria;
such as security and ease of implementation. The Rijndael cipher [63] won the compe-
tition and it is now referred to as AES [62].

There are three AES variations that feature 128, 192, or 256-bit keys. Based on the
selection, AES takes 10, 12, or 14 rounds. An AES round consists of four layers in order
to achieve confusion (i.e., the obscure relationship between plain and encrypted mes-
sage) and diffusion (i.e., diffusing the influence of each plaintext bit to ciphertext bits):

2

14 INTRODUCTION

8

A

ByteSub

ShiftRow

MixCol

KeyAdd

A0 A1 A2 A3 A12 A13 A14 A15

128

S

8

B0 B1 B2 B3

8

S

8

 B15

8

S

8

8

MixCol MixCol MixCol MixCol

8

ki,0

8
ki,15

8

Figure 2.3: The AES Round [62]

ByteSub, ShiftRow, MixCol, and KeyAdd. The AES round is illustrated in Figure 2.3. On
the figure, A is the 128-bit (16-byte) input, A j is the j th byte of A, B is the intermedi-
ate output, and ki , j is the j th byte of i th round subkey (obtained by the key scheduling
algorithm of AES).

The following details what each layer in an AES round achieves, as well as the AES key
scheduling algorithm. Note that AES encryption and decryption are mostly the same.
Thus, the differences during both operations are noted.

• ByteSub: This layer substitutes the input byte with another byte (e.g., B j = S(A j)),
based on an inverse calculation in the Galois field [64]. There is no need to carry
out this calculation during encryption or decryption however, as the input-output
substitution table is fixed. The 16x16 table used in encryption is called the S-box
and its reverse is used in decryption.

• ShiftRow: This layer mixes the bytes among each other via shifting in modulus 16.
The first bytes in each block are transferred directly to the next layer. The second
bytes are shifted one to the left, the third bytes by two, and the fourth bytes by
three. The decryption reverses this shifting.

• MixCol: The MixCol boxes in this layer accomplish a linear transformation, using
matrix multiplication with the input vector of bytes in the Galois field. The matrix
values are pre-determined and stored. The inverse operation is used in decryp-
tion.

• KeyAdd: This layer adds the subkey bytes to the output bytes from the last layer.

• AES Key Schedule: In order to not use the same key over and over, the AES algo-
rithm generates as many keys as there are rounds (plus one for initial key addition).

2.1. CRYPTOSYSTEMS: AES AND RSA

2

15

For 128-bit AES for instance, this results in 10+ 1 = 11 subkeys. Round i subkey
is obtained by XOR and transformation operations of the words (i.e., 32-bits) of
round i −1 subkey. The transformation operations acting on a word are RotWord
that reverses the byte order, SubWord that applies S-box, and Rcon that modifies
the word with pre-computed values.

Today, all variants of AES (i.e., 128, 192, and 256-bit keys) are considered secure: it
is not feasible to break the key by brute-forcing. For instance, NSA allows top secret
documents to be sent by using AES-192 or 256 [65].

2.1.3. RSA

In contrast to AES, RSA is an asymmetric algorithm that is based on modular exponen-
tiation. It is composed of three phases (see Figure 2.4): key generation (which solves
the key distribution problem of symmetric algorithms), encryption, and decryption. In
the key generation phase, the receiver generates a public and a private key based on two
large primes p and q (Steps 1-6 of Figure 2.4). The public key kpub consists of e (the pub-
lic exponent) and n (product of two large prime numbers p and q), while the private key
kpr consists of d (the private exponent) and n. The public key is available to everyone
and can be used to send encrypted messages to the receiver. In RSA, the encryption is
performed by exponentiating the message m with the public exponent e, which results
in the ciphertext c (Step 9 of Figure 2.4). When the ciphertext is received, the receiver
can decrypt the original message mdec by exponentiating the ciphertext with the private
exponent d , which is only available to the receiver (Step 11 of Figure 2.4).

The security of RSA depends on the selection of prime numbers p and q . As n is pub-
lic, as shown in Step 2, an attacker may obtain p and q by brute-forcing the factorization
of n. To overcome this, large numbers are used, typically in the order of 1024 bits and
beyond. As a consequence, the selection of large numbers affects the encryption and
decryption performance (Steps 9 and 11). To speed them up, different algorithms have
been proposed. A popular technique for faster exponentiation is SaM (see Algorithm 2).
SaM decomposes the exponentiation in a series of iterative square operations and po-
tential multiplications based on the binary representation of the key. As a result, this
algorithm has logarithmic time complexity. A second algorithm is based on CRT (see Al-
gorithm 3). This method first computes the exponentiation for two smaller numbers p
and q as modulo (typically also using SaM). Thereafter, it linearly combines these results
to obtain the actual exponentiation in the larger modulo n. The performance gain in
CRT comes from this task division. This algorithm typically uses the extended Euclidean
algorithm [66] to calculate modular inverses of p and q . CRT provides a significant per-
formance advantage when big integers are used.

Finally, it is important to mention that RSA is not suitable to be used in the post-
quantum computers era, just as other public key cryptosystems [67]. As a result, NIST
has an ongoing post-quantum algorithm selection and standardization process. The aim
of this procedure is to identify algorithms whose keys cannot be recovered via brute-
force trials, even when qubits replace classical bits [68].

2

16 INTRODUCTION

Sender Receiver

I. Key Generation

1 : Generate two large primes (p, q)

2 : n ← p ×q

3 : Φ(n) ← (p −1)× (q −1)

4 : Generate e ∈ {1,2, . . . ,Φ(n)}

| g cd(e,Φ(n)) = 1

5 : d ← e−1mod Φ(n)

6 : {kpub ,kpr } ← {(e,n), (d ,n)}

7 : kpub = (e,n)

II. Encryption

8 : Generate message m

9 : Encrypt m: c ← me mod n

10 : c

III. Decryption

11 : Decrypt c: mdec ← cd mod n = m

Figure 2.4: The RSA cryptosystem [62]

Algorithm 2 SaM (for RSA decryption) [62]

Input: Private key kpr = (d ,n) and ciphertext c
Output: Decrypted message mdec = cd mod n

1: Let db = {db0 ,db1 , . . . ,dbB } be the base-2 (bit) representation of d
2: mdec ← c
3: for i ← B −1 downto 0 do
4: mdec ← m2

dec mod n ▷ square in every step
5: if dbi = 1 then ▷ branch condition
6: mdec ← (mdec × c) mod n ▷ multiply if the key bit is 1
7: end if
8: end for

2.2. THE RISC-V ISA
RISC-V is an open source ISA that is used in many processor implementations. First,
it is an efficient architecture and thus, it is a prime choice for resource-constrained IoT
processors. Second, it is very accessible, so it can be extended based on the application
requirements [69]. As such, there are more lightweight versions like PicoRV32 [70] and

2.3. ANNS: CNNS, RNNS, AND HOPFIELD NETWORKS

2

17

Algorithm 3 CRT (for RSA decryption) [62]

Input: Private key kpr = (d ,n), two (secret) large primes (p, q) and ciphertext c
Output: Decrypted ciphertext mdec = m

1: mp ← cd mod p ▷ smaller modulo exponentiation for p
2: mq ← cd mod q ▷ smaller modulo exponentiation for q
3: ap ← q−1 mod p ▷ auxiliary calculation for p
4: aq ← p−1 mod q ▷ auxiliary calculation for q
5: mdec ← ([q ×ap]mp + [p ×aq]mq) mod n ▷ combination

more security-oriented versions like SAES32 that feature AES related instructions [71].

The base format of RV32I contains four core instruction formats; either 32, 64, or
128 bits and several optional extensions [72]. The four core instruction formats are R-
type: used for arithmetic and logical operations where three registers are involved; I-
type: used for short immediate and loads; S-type: used for loads, stores, and branches;
and U-type: used for long immediate and unconditional jumps. There are several format
extensions, such as floating point (extension F) or compressed instructions (extension
C), which aim to provide flexibility to adapt the processor according to the needs of the
target application.

The base 32-bit instruction set RV32I, which we focused on in this dissertation, in-
cludes 47 instructions that can be grouped into six types if we consider two additional
variants with respect to the four core instruction formats. These two extra formats are
the B-type (used for conditional branches, which is a variation of the S-type) and J-type
(used for unconditional jumps, which is a variation of the U-type). Figure 2.5 illustrates
the format of different instruction types. In all of them, the least significant seven bits
are used as opcode. Aside from the U-type and J-type formats, bits 12 to 14 are referred
to as the function 3 (f3) field. These two fields determine the functionality of the instruc-
tion. In the R-format, which is used for operations where three registers are involved, an
additional function 7 (f7) field is used to specify extra functionality details. This field is
seven bits wide, from bit 25 to 31. Six of these bits are always 0. The value of the 30th bit
is used to further clarify the instruction. For example, an f3 value of {000}2 may indicate
addition or subtraction. If the 30th bit equals 0 (i.e., f7 equals {0000000}2), the operation
equals an add, otherwise (when f7 is {0100000}2) a subtraction is performed.

2.3. ANNS: CNNS, RNNS, AND HOPFIELD NETWORKS

ANNs are the most prominently used tools of machine learning. With their usage, it is
now possible to achieve tasks like image processing [5], speech recognition [73], and big
data applications [74]). Nowadays, they are also being used in many automated and
critical tasks such as real-time object detection and decision-making, as is the case for
autonomous driving [75].

The following subsections first discuss how machine learning operates in general and
what is the basis for the artificial neuron and its networks (Section 2.3.1). Thereafter, they
discuss specific ANNs that we used in this dissertation (Sections 2.3.2, 2.3.3, and 2.3.4).

2

18 INTRODUCTION

Figure 2.5: RV32I Instruction Formats [72].

2.3.1. OVERVIEW

Machine learning aims to improve an automated data processing task with experience [76].
This experience is learned from the training data, or more precisely, from the features of
this data. The first step of a machine learning algorithm is therefore the feature extrac-
tion phase, where meaningful elements from the data are extracted. The second step is
the training of the algorithm, which is the learning of the experience (training data). The
final step is the evaluation. In this phase, the performance of the algorithm is measured
by using new data as input.

With this basis, many machine learning algorithms have been proposed. Figure 2.6
classifies them and indicates the most popular algorithms that are also relevant in the
hardware security field. The first metric for classification in the figure is based on the
learning or training method: supervised, unsupervised, and reinforced. Supervised learn-
ing uses labeled data during training. This means that there is a teacher that provides
the labels or desired states for the training data [77]. It is possible to further divide su-
pervised learning algorithms into two sub-classes, depending on whether an algorithm
produces discrete or continuous variables. The production of discrete variables is used
for the classification or categorization of data. The production of continuous variables
on the other hand is referred to as regression, which is typically used for data prediction
or function estimation.

In contrast to supervised learning, unsupervised learning uses unlabeled data. This
means such machine learning algorithms should directly act on the provided data with-
out the existence of a teacher [78]. For this reason, there is no great distinction between
training and evaluation phases in unsupervised learning. It is possible to subdivide
these kinds of algorithms into two: clustering and feature reduction. Clustering is the
task of grouping data instances without known labels and feature reduction is the task of
reducing the dimension of data for more effective and efficient processing.

Finally, reinforcement learning can be considered as a middle ground between su-
pervised and unsupervised learning. It tackles the problem of being able to learn an
optimal-like behavior as an agent via trial-and-error, in a dynamic environment [79].
This type of learning is especially used in game-playing (such as backgammon or check-
ers) and in robot-environment interaction scenarios.

2.3. ANNS: CNNS, RNNS, AND HOPFIELD NETWORKS

2

19

Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning

Discrete Continuous Clustering Feature Reduction Q-learning

N-nearest neighbors

Decision trees

Naïve Bayes

Support vector machines

Markov models

Neural networks

(Multilayer) Perceptron

Recurrent neural networks

Convolutional neural networks

Linear regression

Logistic regression

Neural networks

K-means

Gaussian processes

Neural networks

Principal component analysis

Linear discriminant analysis

Independent component analysis

Genetic algorithms

Neural networks

(Stacked) Autoencoder

Deep belief networks

Figure 2.6: Classification of Machine Learning Methods

Σx
w

f y

Figure 2.7: The Artificial Neuron

As can be seen in Figure 2.6, ANNs or its variants are typically employed in all types
of machine learning. This can be attributed to two factors: (i) the authentic imitation of
the artificial neuron and their networks to the exceptional biological counterparts and
(ii) the success that deep ANN structures (i.e., DNNs) attained over the last decade. This
subsection elaborates on (i), while Section 2.3.2 focuses on these deep structures.

ANNs are complex structures based on the artificial neuron of the McCulloch-Pitts
model [80], illustrated in Figure 2.7. This basic representation shows the processing of
the input vector x. First, its dot product is taken with the weight vector w . The result is
provided to a non-linear function f (e.g., Sigmoid [81], tanh [82], and ReLU [83]). This
function produces the output y . In a biological context, this model imitates the nonlin-
ear firing behavior of neurons. The learning is achieved by modifying w with training
data.

This neuron is used as a basis and many of them are connected with each other to
form an ANN. With appropriate architectures and training strategies, many tasks have
been achieved by using ANNs. A very common example is the MLP. It is an ANN that is
composed of multiple layers of neurons: a neuron in one layer is connected to all of the
neurons in the previous and the next layer, but is not connected with the neurons in the
same layer. Most typically, an MLP;

• Consists of one input, multiple hidden, and one output layer.

• Used for supervised classification.

2

20 INTRODUCTION

i nput

i0

i1

iK

h0

h1

hL

o0

o1

oM

out put

Input

layer

Hidden

layer

Output

layer

Figure 2.8: Typical MLP

• The number of output neurons is equal to the number of classification classes.

• Trained by the backpropagation method [84].

The backpropagation method aims to adjust the weights of the neurons in the net-
work. This is achieved by first calculating the error between the input and the desired
output via a loss function, during the training phase. The contribution to this error from
individual weights is reduced by adjusting them in the direction of the negative error gra-
dient. As this process is propagated from the outer layers to the inner ones, the learning
method is called backpropagation.

The subsequent subsections show how the artificial neuron, ANN, and MLP ideas
can be modified to create different architectures and accomplish a variety of tasks.

2.3.2. CNNS
CNNs [85], where an example is illustrated in Figure 2.9, are ANNs with a higher number
of layers (thus, the association with the term deep learning). Some layers are specialized
for visual tasks, such as image classification and object recognition. A CNN includes
a couple of fundamental layer types (typically in the order presented): convolutional,
pooling, nonlinearity, and fully connected/dense.

• Convolutional layer: This layer can be inspected in two aspects: functional and struc-
tural. Functionally, this layer accomplishes filtering between the input and its learned
filters (different kernels), and as filtering refers to convolution, it is called the convo-
lutional layer. The functional output of this layer is feature maps that the proceeding
layers can learn from (see the convolution output in Figure 2.9). Structurally, this layer
is formed by a notion called weight sharing. In this layer, different neurons use the
same weights to simulate a convolution. When the weight updates are calculated in
the training phase, these updates are aggregated and applied the same for the shared
weights.

• Pooling layer: This layer only compresses the output of the earlier layers (see the pool-
ing output in Figure 2.9). Over a grid of selected size (e.g., 4×4), it averages or takes

2.3. ANNS: CNNS, RNNS, AND HOPFIELD NETWORKS

2

21

input

convolution

convolution
output

compression

pooling
output

fully connected
output output

full connection full connection

Figure 2.9: Sample CNN [87]

the maximum value. So the grid is expressed by a single number. Note that there is no
learning in this layer.

• Nonlinearity layer: Simulating the nonlinear firing behavior of a biological neuron,
this layer maps its input to an output based on the selected nonlinear function. These
are commonly Sigmoid, ReLU, or tanh. There is also no learning in this layer.

• Fully connected layer: This layer is the standard MLP layer. Found in the last part of
a CNN, this structure accomplishes the final classification. An important observation
here is that, due to the earlier layers (especially the pooling layer), the input to this
layer has a much smaller dimension than its original form (see the fully connected
output and output in Figure 2.9). This effective feature reduction is the key to the
effectiveness of CNNs, solving issues like the vanishing gradient in deep neural archi-
tectures [86].

2.3.3. RNNS

A main lacking feature of the ANNs discussed previously is that they do not inherently
support sequential data, i.e., a data instance explained by previous instances (e.g., nat-
ural language). Processing this kind of data requires an ANN that has layers working as
in Figure 2.10; where given an input, previous state information affects the output of the
layer. This layer contains two parts: a feedforward part with a transfer function Γ(.) and a
feedback loop containing the delay unit. The delay unit is used to take the previous out-
put/state information into consideration. A neural network that is constructed by these
two components is referred to as an RNN.

With their ability to relate time information to make decisions, RNNs are being used
in many tasks. For example, given a sequence of elements, an RNN can be trained to

2

22 INTRODUCTION

Γ(.)

delay

i nput out put

Figure 2.10: Feedback Layer Architecture [88]

⌢

f

delay

i nput

W

out put

⇒
⌢

f

i nputt0

W

out putt0

⌢

f

i nputt1

W

out putt1

Figure 2.11: Time Rolled and Unrolled Recurrent Cell [89]

predict the next element in the sequence. Likewise, fully connected layers at the end of
an RNN can help to make a time-relevant categorization.

An RNN consists of one or more layers and contains at least one layer of recurrent
cell(s). Figure 2.11 shows how such a cell processes information over time, both in com-
pact and unrolled over time forms. In the case of this dissertation, the information is the
about-to-be-executed instructions that constitute an instruction sequence. During the
first time step, the recurrent cell takes the first instruction from the sequence as input
at time t0 and computes the dot product of it with the weight matrix W . The result is
used as an input to a nonlinear function f (usually tanh). In the following time steps
(i.e., t1, t2, etc.) the same operation is repeated for the next instructions of the sequence.
The only difference here is that the output of the previous time step is concatenated with
the next instruction input before the dot product computation. After a certain time step,
the result is related to the proceeding layers, which can be fully connected layers or can
contain recurrent cells.

Here, it must be noted that simple RNNs struggle when many time steps are con-
sidered in the data, due to the poor long-term memory pheomenon [90]. As a corollary,
LSTM [91] was proposed. This network contains augmented recurrent cells of the RNN,
which perform extra operations (called gates). These gates are basically composed of
additional non-linear functions such as sigmoid σ or hyperbolic tangent f , as well as
additions and multiplications as shown in Figure 2.12. In essence, the main purpose of
these gates is to select the parts from the sequence of inputs that need to be remembered
and the parts that need to be forgotten in order to improve long-term memory capability.

2.3. ANNS: CNNS, RNNS, AND HOPFIELD NETWORKS

2

23

× +
× ×

⌢

σ σ f σ

f

out putt0i nputt0

W

× +
× ×

⌢

σ σ f σ

f

out putt1i nputt1

W

Figure 2.12: Time Unrolled LSTM Cell [89]

2.3.4. HOPFIELD NETWORKS
Hopfield networks are basic memory structures that recall patterns. A sample Hopfield
network with one iteration is illustrated in Figure 2.13. The memory in the example con-
tains six neurons (n0 to n5) and hence, it can recall patterns of length six. For simplicity,
it can be assumed here that the patterns consist of bipolar bits, i.e., x ∈ {−1,1}6. When
a new pattern xnew is provided for evaluation, the network tries to reconstruct it with
the resembling patterns that were previously learned. Initially, the state equals the in-
put, i.e., ξ0 = xnew . Thereafter, the new state is obtained by multiplying the current state
ξ0 with the weight matrix W , resulting in ξ1. In general, the state update formula for t
iterations equals the following [92]:

ξt+1 = sgn(W ξt). (2.1)

Here, sgn represents the sign function with the output either equal to -1 (if the argument
is negative) or 1 (if it is positive). The iterations end when the new state equals the cur-
rent one, i.e., ξt+1 = ξt . Furthermore, the weight matrix is simply obtained from the dot
product of the learning patterns, i.e., W =∑N−1

i=0 (xi xT
i), where xi |i ∈ [0, N) are the learned

patterns.
The main issue with the example Hopfield network in Figure 2.13 is its very limited

memory capacity. According to the formula provided in [93], this Hopfield network is
expected to only memorize 0.84 patterns. The capability of storing patterns has to be
increased, which can be achieved by including non-linear operations inside the neurons.
This enables both a capacity increase and an improved ability to distinguish between
close patterns. This is indicated by the following formula [94], which is a modification of
Equation 2.1:

ξt+1[l] = sgn[
N−1∑
i=0

F (xT
i ξ

(l+)
t)−

N−1∑
i=0

F (xT
i ξ

(l−)
t)]. (2.2)

Here, ξ(l+)
t and ξ(l−)

t only differ in bit l , where ξ(l+)
t [l] = 1 and ξ(l−)

t [l] =−1. F is the afore-
mentioned nonlinear function that increases the capacity. If F (a) = a2, the simple Hop-
field network is obtained. When the exponent is higher, the recall capability of the neu-
rons and thus the overall memory capacity increases in a nonlinear fashion [95]. For

2

24 INTRODUCTION

n0

n1

n2

n3

n4

n5

W05

x[0]

x[1]

x[2]

x[3]

x[4]

x[5] n0

n1

n2

n3

n4

n5

ξt1[0]

ξt1[1]

ξt1[2]

ξt1[3]

ξt1[4]

ξt1[5]

Figure 2.13: Sample Hopfield Network over a State Iteration

instance, when F (a) is changed from a2 to a3, the expected number of stored patterns
with the same six neurons increases from 0.84 to 3.35.

3
FAULT ATTACK MODELING AND

EVALUATION METHODOLOGY

3.1 OVERVIEW

3.2 THREAT MODEL

3.3 FAULT MODELING

3.4 EVALUATION METHOD

Every proposal of protection must be evaluated by test or simulation. The same holds
for fault attack countermeasures, which should be evaluated by their detection of faults.
While this point is well established in computer reliability, it is usually an afterthought in
computer security.

This chapter presents how we evaluate our fault injection detectors and correctors. First,
it gives an overview of our three-step fault modeling and evaluation methodology. Then,
it elaborates on the threat models we consider. Next, it describes the fault models that
we create based on the considered threat models. Finally, the chapter concludes with the
evaluation methods to determine fault detection and correction performances.

Parts of this chapter are from the following publications: [96], [58], [97], [98], [59], [60], [61]

25

3

26 FAULT ATTACK MODELING AND EVALUATION METHODOLOGY

3.1. OVERVIEW

Developing solutions against faults for reliability and security have many similarities,
as well as major differences. In terms of similarities, both try to detect faults. Thus,
both their evaluation strategies include the simulation of faults and reporting of the ef-
fect. The main difference however lies in the security approach assuming an attacker,
while the reliability approach assumes environmental factors. This creates major differ-
ences in the types and the manner of injected faults. Furthermore, the evaluation strat-
egy should also be different, as leaking information is an additional issue for security.
These are investigated next.

3.1.1. FAULT MODELING AND EVALUATION FOR RELIABILITY

There are a number of factors that can cause the hardware of an electronic device to
generate faults. These are solar radiation [1], aging [99], changes in supply voltage or
temperature, and inherent defects in the device [100].

Testing for these includes the following three-step procedure: defect modeling, fault
analysis, and test generation [101]. Defect modeling is the recreation of a possible defect
at the circuit-level, such as adding a very high resistor between two points to model a
defective open. Next, in fault analysis, the effects of the defect are investigated by sup-
plying exhaustive inputs. Last, in test generation, tests are proposed for identifying these
faults in the operational versions of the same device.

3.1.2. FAULT MODELING AND EVALUATION FOR SECURITY

While the aforementioned three-step procedure should also hold for security evalua-
tions, each security study defines its own procedures, which can vary greatly. For in-
stance, a study that developed solutions against JTAG attacks proposes to investigate
attacks as known and unknown; and report the detection rate [102]. Another study that
proposes a control flow checker for instructions on the other hand, gives a formula for
the probability of missing instruction faults [103]. Of course, different studies may re-
quire different evaluation approaches, but it is apparent that there is a need for formal-
ization.

Our formalization for fault attack modeling and evaluation for security follows a sim-
ilar structure to reliability, albeit with differences in each step. We name the three steps
as the following: threat model, fault modeling, and evaluation. Each is elaborated next.

3.2. THREAT MODEL

The first step to model fault attacks is to determine the threat model. This was explained
briefly in Section 1.2.1, but basically, it is the identification of what can happen if there
are faults in hardware.

Threat identification is related to which security-sensitive operation is conducted in
hardware. Two main focuses of this dissertation are the RSA cryptosystem and ANNs.
The threat models that we consider for these two operations are investigated in the fol-
lowing subsections.

3.2. THREAT MODEL

3

27

3.2.1. THREAT MODEL FOR RSA
There are two very well-known and applicable threats for RSA implementations, which
are referred to as Bellcore and Bao in this thesis. They are explained in detail next.

The Bellcore Threat: One of the first fault exploitation methods against RSA is Bell-
core [15]. This theoretical study demonstrated that some particular faults allow mali-
cious parties to break CRT-based RSA implementations (i.e., obtain the key). The attack
aims at inserting a fault into one of the smaller modulo exponentiation (see Algorithm 3)
to provoke an erroneous result. By comparing the wrong output with the correct output
from fault-free decryption, the key can be mathematically retrieved. To understand the
attack in more detail, let’s revisit the smaller modulo exponentiations mp ≡ cd mod p
and mq ≡ cd mod q . There are two coefficients (a,b) that satisfy the following three
properties:

p1. mdec = m ≡ a ×mp +b ×mq mod n.

p2. a ≡ 1 mod p, a ≡ 0 mod q .

p3. b ≡ 0 mod p, b ≡ 1 mod q .

Let’s assume that a fault occurred during decryption which affected mp only (line 1
in Algorithm 3). As mp ≡ cd mod p, property p1 will change and the faulty m′

p can be
expressed by Equation 3.1. In case the fault-free mdec is available, a differential calcu-
lation can be made; this is shown in Equation 3.2. From this equation, the value of q
could potentially be derived, as shown in Equation 3.3. In case the result of Equation 3.2
is not divisible by p, the value of q can be retrieved. Hence, RSA can be easily broken
as n = p × q . A later study showed that the correct message mdec is even not needed to
break the cryptosystem [22].

m′
dec ≡ a ×m′

p +b ×mq mod n. (3.1)

mdec −m′
dec = (a ×mp +b ×mq)− (a ×m′

p +b ×mq) = a(mp −m′
p). (3.2)

gcd{a(mp −m′
p),n} =

{
q, if mdec −m′

dec mod p ̸= 0.

n, otherwise.
(3.3)

The Bao Threat: A second popular fault exploitation method against RSA is presented
by another study [16], which introduces two threats. Both are based on the idea of intro-
ducing bit faults to leak one bit of the secret exponent d at a time. To understand why
this strategy works, the decryption operation can be rewritten in such a way that the key
bits are used independently from each other. This is shown in Equation 3.4. In this equa-
tion, di presents the i th bit of the key and N the bit length of the modulus n. The values
ti depend on the ciphertext c as shown in Equation 3.5.

mdec ≡ t dN−1
N−1 × t dN−2

N−2 × . . .× t d1
1 × t d0

0 mod n. (3.4)

3

28 FAULT ATTACK MODELING AND EVALUATION METHODOLOGY

ti ≡ c2i
mod n : i ∈ {0,1, . . . , N −1}. (3.5)

The first attack injects a bit fault into the ciphertext. More specifically, one of the ti ’s
is made faulty by one bit. It can be quickly observed from the equation that only one
of the N terms of Equation 3.4 will differ from the correct decryption. Hence, when the
faulty output is divided with the fault-free output, either a 1 (when the involved key bit
is 0) or the ratio between them (when the involved key bit is 1) is expected as the result.
This is shown in Equation 3.6. Note that the first condition on this equation, when di = 0,
means that m′

dec mod n ≡ mdec mod n. Thus, no information can be gained in this
case. For the other case however, an attacker can calculate all possible 1-bit faults on

ti ’s, and compare it with the result of
m′

dec
mdec

, which are both assumed to be accessible.
When a match is found, the attacker infers both i and di = 1. This attack is then repeated
to find other bits of the secret exponent d .

di =
0, if

m′
dec

mdec
≡ 1 mod n.

1, if
m′

dec
mdec

≡ t ′i
ti

mod n.
(3.6)

In the second attack, the bit fault is injected into the secret exponent d . Namely, di

is made faulty. In a similar way, Equation 3.7 is now applicable. In the equation, both
cases di = 0 and di = 1 leak information. The secret bit is 0 or 1 when the division of the
correct and faulty decrypted messages results in ti or 1

ti
, respectively. This attack is then

repeated to find the other bits.

di =
0, if

m′
dec

mdec
≡ ti mod n.

1, if
m′

dec
mdec

≡ 1
ti

mod n.
(3.7)

3.2.2. THREAT MODEL FOR ANNS
An attacker may have two goals in using fault attacks on an ANN: leaking secret informa-
tion or tampering with the operation. The first goal of leaking information is meaningful
in a limited number of cases. One such case is when the attacker tries to do reverse en-
gineering on the network architecture using faults. In one study, the authors injected
faults into the inputs, weights/bias, summation of the neuron, and the activation func-
tion to create a faulty operation, which they used to determine the parameters of the last
hidden layer of a network [104].

The second goal, tampering with the ANN operation, was demonstrated using a va-
riety of techniques. One technique is to use adversarial inputs, i.e., altering an input
minimally such that a person cannot tell the difference but ANN inference becomes
wrong [105]. To the best of our knowledge, there are no studies that demonstrate this
attack using fault injection, but it should be possible to create such behavior by injecting
faults into the input layer. Another technique is to attack various elements in the network
using fault injection. In one study, the authors targeted the weights and biases [106] and
in another, they targeted the activation functions (ReLU, Sigmoid, and tanh) [107]. Both
studies managed to achieve misclassifications. For safety-critical operations, such as au-

3.3. FAULT MODELING

3

29

tonomous driving, creating misclassifications during object recognition can easily cause
devastating results [106].

We investigate how an attacker can realize these threats against ANNs in three secu-
rity scenarios. Note that as most ANNs are usually employed in software, the focus of
these threats is aligned accordingly.

No Security: When a system has no added security measures, the attacker can raise
their privilege to change memory content [32]. In this scenario, the attacker has full
control and may change values at any location.

Low to Medium Security: In this scenario, the attacker is not directly able to change
data. However, a buffer overflow attack [33] can be used to overwrite parts of the memory
and in turn affect the ANN. In this scenario, attackers have partial control: they can inject
faults but have no control over the exact location.

High Security: In a very secure scenario, a more sophisticated attack that exploits hard-
ware vulnerabilities is required. Hence, Rowhammer attacks can be a valid option [34].
As a result, the attacker can cause bit-flips in random locations around the target mem-
ory space. The attacker in this scenario has very limited control on the fault value and
location.

3.3. FAULT MODELING
After the identification of the threat, the next step is to create the faults that can realize
these threats. As the focus of a fault attack is to disrupt the output, we focus on faults that
can achieve this. Accordingly, we created three sets of fault models (the first two for RSA
and the last for ANNs) to make different investigations. These are elaborated on next.

Fault Models Set 1: The first set of fault models that we designed can be used by an
attacker to determine vulnerable locations in the system. There are four location-based
fault models:

1. OM. This fault model represents a one-bit flip in the main memory.

2. OP. In this fault model, one random bit flip occurs in any part of the processor.

3. MM. In this fault model, multiple random bit flips occur in any part of the main
memory (from one to four, where the latter is set to limit the simulation times).
Note that these faults may fall in any place, and hence, they are not necessarily
concentrated in the same or adjacent memory row.

4. MP. In this fault model, multiple random bit flips occur in any part of the processor
(from one to four, again for the same reason).

3

30 FAULT ATTACK MODELING AND EVALUATION METHODOLOGY

Fault Models Set 2: We created the second set of fault models in order to evaluate the
instruction fault detection capabilities of a detector. Here, the fault models represent
different types of faults that alter instructions and can take place, for example, in the in-
struction memory or the instruction buffer of the processor. These models are expected
to have a more direct effect on the output of the device and aim to cover the state-of-the-
art attacks that cause instruction changes. It contains five types of fault models:

1. Single bit fault model. This fault model represents a single-bit flip that may happen
in any bit of the instruction.

2. Single byte fault model. A byte fault refers to multiple-bit flips within a single byte
of the instruction. Any fault that provokes a change in a random byte falls into this
fault model.

3. Branch-to-opposite fault model. This fault model contains bit flips that change a
branch instruction to the opposite branch instruction. As we consider the RISC-
V ISA, these bit flips must happen in the f3 field. As such, the instructions are
swapped between branch equal<->branch not equal, branch less than<->branch
greater or equal and branch less than unsigned<->branch greater or equal unsigned.

4. Instruction-to-instruction fault model I. This fault model extends the previous, by
also including the faults resulting in the change of other instructions to each other.
This change can be in the same format (e.g., from branch equal to branch greater)
or in different formats (e.g., from branch to add). One constraint in this fault model
is that only a branch instruction can be glitched into another branch instruction.
The reason for this is that when a non-branch instruction is glitched into a branch,
it is very easy to detect the fault as the control flow of the program breaks and the
program typically crashes.

5. Instruction-to-instruction fault model II. This fault model is the same as variation
I, but without the branch constraint.

Fault Models Set 3: We created this set of fault models specifically to target neural net-
work implementations, based on the threat explained in Section 3.2.2. More specifically,
we assume that an attacker wants to achieve misclassifications using fault injection at-
tacks during the ANN inference. As such, there are no extra limitations on the faults the
attacker can use, as the aim is not to leak information. The faults can be injected into
the memory, processor, datapath, and/or buffers. Note that a fault injection attack tar-
geting the main memory or the processor during a software ANN operation can alter
the weights and biases to cause misclassifications. The same threat persists for hard-
ware accelerators, where a fault injection into the datapath or buffers results in the same
outcome [108].

Accordingly, these fault models assume that an attacker can modify weights and/or
biases during an inference operation. Note that this does not comprehend attacks on
internal operations (e.g., activation functions) or intermediate outputs. Nevertheless,
faults injected in those places will most likely have equivalent effects to faults in weights
and biases for many cases, if not all. Additionally, we do not consider attacks that tamper

3.4. EVALUATION METHOD

3

31

crash

successful

exploitable

Figure 3.1: Relation between Vulnerability Evaluation Classes

with the input (i.e., using adversarial inputs). Finally, we assume that the aim of the
attacker is to disrupt the reliable operation, and hence, we assume no limitation on the
value or location of weights and biases that are targeted with faults.

The following summarizes the properties of the faults that this set considers.

• Fault locations - A fault can affect any layer of the ANN with adjustable (learned)
parameters. For a CNN for example, these layers include convolutional and fully
connected layers (see Section 2.3.2). The parameters include weights and biases.

• Fault types - We consider single-bit and byte faults defined in Fault Models Set 2.
Referring to the applicable threat model explained in Section 3.2.2, byte faults are
applicable for the low/medium security scenario, where the attacker can define
new values for the weights. In contrast, a bit fault could take place in the high
security scenario. The location of the bit faults is randomly selected and hence
could have a low or large impact.

3.4. EVALUATION METHOD
Evaluation methods should follow the aim of the study. In this dissertation, we have mul-
tiple aims: (i) identifying the vulnerable regions of a processor, (ii) measuring the detec-
tion capacity of proposed detectors, (iii) measuring the correction capacity of proposed
correctors, and (iv) measuring the protection capacity of proposed countermeasures in
ANNs. In the following subsections, we describe the evaluation method, as well as the
used fault models set for each aim.

3.4.1. EVALUATION FOR VULNERABLE REGION IDENTIFICATION
The aim of this evaluation is to identify which regions of the processor are more vulner-
able to faults. Thus, this evaluation should reveal which location-based attack strategy
yields more effective results, in terms of diminishing reliability and denial-of-service.

To reflect this, we created a three-step attack evaluation, per faulty run (e.g., per en-
cryption/decryption) (see Fault Models Set 1 in Section 3.3): crash, successful, and ex-
ploitable. The relation between these classes is shown in Figure 3.1, where the relative
size of the classes is not representative.

The crash class contains the runs where the processor halts due to the fault and no
output is observed. The successful class consists of the runs where the output of the run

3

32 FAULT ATTACK MODELING AND EVALUATION METHODOLOGY

security

decryption

fault

Figure 3.2: Relation between Detection Evaluation Classes

is faulty. A subset of this class is the exploitable class, where the faulty output results in
an information leak, based on the threat model. For instance, for RSA, this means that
the faulty output can be exploited using Bellcore or Bao threats (Section 3.2.1).

3.4.2. EVALUATION FOR FAULT DETECTION

This evaluation method is designed for determining the effectiveness of a detector in de-
tecting faults. In this dissertation, we use detection to protect cryptosystems. Thus, this
evaluation should give information about preventing incorrect outputs and information
leaks, as well as detecting faults.

Based on this understanding, we created a similar three-step evaluation per faulty
run (see Fault Models Set 2 in Section 3.3) as three coverage rates: fault, decryption, and
security. The relation between these classes is shown in Figure 3.2.

The fault coverage contains the runs where the detector successfully detects one or
more faults. Note that only detecting a single fault is enough, because the device can
then omit the faulty output to prevent information leak. The superset decryption cover-
age also includes cases where the detection failed, but the output of the operation is the
same. This means that there are no information leaks as a result of the fault(s). Finally,
the security superset that contains both fault and decryption sets, also includes the cases
where the output of the operation is wrong but the threat model cannot exploit this re-
sult. Again, an example can be a faulty RSA decryption result where the fault location
does not match with the Bellcore threat requirements.

3.4.3. EVALUATION FOR FAULT CORRECTION

This evaluation method determines the correction capacity of a method. Similar to the
detection case, in this dissertation, we use correction to protect cryptosystems, while
preventing denial-of-service. Thus, an evaluation on correction must reflect when the
cryptosystem works reliably, in addition to when all faults are corrected accurately.

We created a two-step evaluation for determining the correction effectiveness of a
method per faulty run (see Fault Models Set 2 in Section 3.3) as two coverage rates: cor-
rection and operational. The relation between these classes are shown in Figure 3.3.

The correction coverage contains the runs where all faults are accurately corrected
and thus, the operation result is also accurate. The superset operation coverage also

3.4. EVALUATION METHOD

3

33

operation

correction

Figure 3.3: Relation between Correction Evaluation Classes

top5 top1

de
te
ct
io
n

Figure 3.4: Relation between ANN Protection Evaluation Classes

contains the runs where some corrections are not accurate, but the operation result is
correct. Thus, the operation works reliably despite the fault(s).

3.4.4. EVALUATION FOR ANN PROTECTION
This evaluation method is designed for determining the efficiency of proposed protec-
tions for ANNs against fault attacks. Such an evaluation differs from investigating other
security-sensitive operations, such as cryptosystems. This is due to the following prop-
erties of ANNs:

• ANNs are trained to make accurate decisions. This means that intermediate cal-
culations and exact values are not very important, only the end decision matters.

• Many ANNs have inherent fault tolerance. Features such as having many lay-
ers/neurons or having feedback mechanisms help mask the faults at the output [109].

Thus, security evaluation of ANNs must be handled differently, putting more focus
on the accuracy of decisions. Inspired by another work [110], we created a three-step
evaluation that considers this need, specialized for ANNs that make discrete decisions.
Again, this evaluation works per run (i.e., per ANN inference) (see Fault Models Set 3 in
Section 3.3). The coverage classes are detection, top5, and top1. The relation between
them is shown in Figure 3.4.

3

34 FAULT ATTACK MODELING AND EVALUATION METHODOLOGY

The detection coverage consists of the cases where a detector detects one or more
faults during a run. Before explaining the top1 and top5 coverage classes, it is neces-
sary to define the name. In ANNs, the topk inference of the network is correct if one of
the maximum k inference labels is equal to the actual data class. Based on this defini-
tion and the selected protection method, there are multiple ways to use these coverage
classes. If the protection method is a detector, it is more viable to use the top1 coverage
as the combination of detected cases and undetected cases where the top1 inference is
accurate. Likewise, top5 coverage can be used as the combination of detected cases and
undetected cases where the top5 inference is accurate. On the other hand, if the pro-
posed protection is redundancy, it is more viable to use these classes in terms of allowed
top5 or top1 misclassifications due to faults. Here, note that the top1 coverage is not a
subset of top5, as there is no guarantee that a fault that affects the top5 classification will
also affect the top1 classification. This also makes the coverages unrelated.

4
INSTRUCTION FLOW-BASED FAULT

ATTACK DETECTION

4.1 CONCEPT

4.2 INSTRUCTION SEQUENCE ANALYSIS

4.3 RNN-BASED FAULT DETECTION

4.4 CAM-BASED FAULT DETECTION

4.5 BF-BASED FAULT DETECTION

4.6 HOPFIELD NETWORK-BASED FAULT DETECTION AND CORRECTION

4.7 EXPERIMENTATION FOR FAULT DETECTION PERFORMANCE

4.8 EXPERIMENTATION FOR FAULT CORRECTION PERFORMANCE

4.9 DISCUSSION

Every computer application generates a set of recognizable machine instructions, which
are executed by the processor at runtime. By monitoring the execution of these instructions
or their sequences, it is possible to detect and even correct irregularities as faults.

This chapter presents how we detect and correct faults in instructions. First, it presents
the concept of detecting instruction faults through the flow. Second, it presents the idea
of fault detection by learning the expected instruction sequences of an application. Third,
it describes how to use RNNs, CAMs, and BFs in detecting faults in instruction sequences;
and Hopfield networks to correct them additionally. Then, it presents the experimentation
and their results for performance. Finally, it discusses various points of this approach.

This chapter is based on the following publications: [96], [59], [60]

35

4

36 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

instructiont5

instructiont4

instructiont3

instructiont2

instructiont1

instructiont0

instruction buffer

Processor
Detection

fault flag
(if fault detected)

instructiont0

(if no fault detected)

corrected_instructiont0

(if fault detected,
optional)

Figure 4.1: Faulty Instruction Detection Concept

Trained
Detector

Compilation RTL
SimulationCoding

RSA Code Binaries
Training

Fetched
Instructions

Result

Compilation ExecutionCoding
RSA Code Binaries

Detection
Fetched

Instructions

Design Phase

Evaluation Phase

In-the-field

Step 1 Step 2 Step 3 Step 4

Figure 4.2: Design Methodology of Instruction Flow-based Detectors

4.1. CONCEPT
The aim this chapter is to design a detector that works in parallel to the processor, with
the goal of detecting faulty instructions and optionally correcting them (as illustrated in
Figure 4.1). This is attained by a hardware module that is located between the instruction
buffer and the processor. If it does not detect any faults, it just relates the instructions to
the processor for execution. Otherwise, it either halts the process by raising a fault flag
or provides the corrected instruction instead. As such, this module is not disruptive to
the processor implementation and hence, does not require costly modifications to it.

In this dissertation, we propose different methods to implement this module. All
these methods use a similar design approach consisting of two phases: design and eval-
uation. Both phases are described next.

4.1.1. DESIGN PHASE

The design phase consists of four steps, which are illustrated at the top of Figure 4.2.
The aim of step 1 (Coding) is to create a software code or a program. We focus on the
RSA decryption in this chapter. For this, we implement two RSA decryptions in C, one
with and one without CRT. Both implementations generate random public/private keys

4.2. INSTRUCTION SEQUENCE ANALYSIS

4

37

and a ciphertext. The software implementation also contains the EEA needed for CRT.
Moreover, both implementations use SaM for exponentiation. Next, step 2 (Compiling)
compiles the created programs to the target implementation. In this work, we employ
the riscv_gcc (version 7.1) [111] compiler to generate the binaries. These binaries con-
tain all assembly instructions required to generate the instruction sequences.

In step 3 (Simulation), we load the generated binaries into the instruction memory of
the RISC-V processor. This processor is written in RTL and is part of a SoC containing the
processor, cache memory, and peripherals. Next, we simulate this SoC using QuestaSIM
from Mentor Systems [112] and Incisive from Cadence Design Systems [113].

During simulation, instructions are fetched from the instruction memory and are ex-
ecuted. The simulator saves the sequence of executed instructions into a file as output
and marks those related to the decryption. Lastly, step 4 (Training) uses this file of in-
struction sequences to build a training dataset and perform the training process, based
on the used method.

4.1.2. EVALUATION PHASE

The evaluation phase also consists of four steps, as illustrated in the bottom part of Fig-
ure 4.2. The first two steps are similar to the design phase, where the software programs
(Coding) are compiled to the target processor (Compiling). In step 3 (Execution), the
SoC is tested in the field. During this step, the processor fetches the instructions from its
memory. In parallel, those fetched instructions are copied to a buffer to be used by the
detector. Note that at this moment, the system can be exposed to a fault attack. Lastly,
step 4 (Detection) represents the detector evaluating the sequence of instructions and
providing fault detection results. In the presence of an alarm (i.e., when the detector
identifies a fault), the system can take some action. Except for instruction correcting,
this is beyond the scope of this chapter. Some other examples are restarting the opera-
tion of the system and changing secret keys.

To test the effectiveness of the detector, we simulate the processor using our fault
models (see Section 3.3) that are applied in the testbench. We argue though that this
is not different from testing in a real environment. The reason is that our detectors are
solely trained on instruction sequences of fault-free operations. Hence, the detectors
are not aware of any faults. This makes the detection results bias-free and gives an idea
about the performance against unknown or future attacks.

4.2. INSTRUCTION SEQUENCE ANALYSIS
Designing a detection module that was described in Section 4.1 requires two main ele-
ments: a way to extract meaningful information from the instructions and an algorithm
to detect faults in them. This section focuses on the former, while the subsequent sec-
tions focus on the latter.

Every program runs a specific sequence of instructions that is dictated by its opera-
tion. Depending on the data, a program can have multiple execution flows, which create
multiple valid/fault-free/correct instruction sequences. Note that this thesis uses these
terms interchangeably. If a fault occurs, it is very likely that a valid sequence becomes
corrupted. This can lead to erroneous computations or even crashes. Therefore, faults

4

38 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

i ns0 i ns1 i ns2 i ns3 i ns4 i ns5

s0

s1sl

(a)

i ns0 i ns1 i ns2 i ns3 i ns4 i ns5

s0

s1sl

(b)

Figure 4.3: Two Cases of Instruction Sequences

can be detected by investigating the validity of the sequence of executed instructions.
The more instructions an instruction sequence contains, the easier it is to detect a fault
in general, as the order of the instructions is more unique. In contrast, if the instruction
sequence consists of a single instruction only, the probability that a faulty instruction is
still valid is much larger: such as the case when an add instruction is faulted to a subtract
instruction.

A number of studies have investigated a similar concept which can be referred to as
control flow integrity checking [114, 115, 116, 117, 45, 48]. These studies divided the in-
structions of a program into blocks and protected them using signature-based integrity
checks at the end of each block. Even though this approach would theoretically deter-
mine faulty instructions, it has major drawbacks: i) a fault injected into the signature
checker at the end of a block will render the countermeasure inefficient, ii) there are typ-
ically no security dependencies between the blocks and hence if one check is bypassed,
checks in the subsequent blocks cannot detect that, iii) the exhaustive listing of all possi-
ble program behavior is costly, and iv) they typically require modifications to the proces-
sor [44]. We address these shortcomings by simply evaluating sequences of non-faulty
instructions (i.e., the last couple of fetched instructions) continuously in the processor
to determine irregularities when there are faulty ones.

Our instruction evaluation concept is shown in Figure 4.3; where wl denotes the win-
dow length (i.e., the size of the instruction sequence, which contains the last wl instruc-
tions that are being checked), while sl represents the sliding length, i.e., how many in-
structions are skipped between the sequences. In the figure, the following parameters
are used as examples: (a) wl = 5, sl = 1 and (b) wl = 4, sl = 2. Two sequences (s0 and s1)
are indicated for both cases.

Note that an sl of 1 represents an overlap of wl − 1 instructions between two con-
secutive sequences (see Figure 4.3). To prevent instructions from not being checked, sl

must be equal to or smaller than wl .
The window wl and sliding length sl impact the security and cost as follows:

• If the probability of randomly changing an instruction to another valid instruction
by a fault injection attack is p, changing an instruction such that it still matches
a valid sequence of more than one instruction is q , where q ≪ p. In this case, an
adversary’s success rate is reduced to q .

• Furthermore, when instruction sequences are validated (e.g., by a detector) in-
stead of single instructions, the success rate of an attack (i.e., changing a complete
sequence to another one) becomes Q = q wl . Hence, we have Q ≪ q , which also
means that the bigger wl is, the lower the probability of an attack succeeding.

• An instruction can be validated multiple times, as 1 ≤ sl ≤ wl holds. Specifically,

4.2. INSTRUCTION SEQUENCE ANALYSIS

4

39

the instructions are validated in approximately l =
⌈

wl
sl

⌉
different sequences. The

lower sl , the more overlap of instructions in different sequences; hence, more re-
dundant checks are performed. This further reduces the adversary success proba-
bility Q ′ as Q ′ <Q.

Based on these observations, a countermeasure can be designed to protect the sys-
tem by evaluating instruction sequences. A large wl and small sl is expected to increase
the security, but also come with a higher implementation cost. In order to analyze the
trade-off between security versus cost, we propose two evaluation metrics to represent
them. The security can be expressed in how often an instruction gets checked and how
difficult it is to change an instruction without getting detected by the detector. The latter
implies that a bit causing a fault in a valid sequence must lead to another valid sequence
in order to go undetected. Hence, we use the average Hamming distance between the
different sets as a security metric, as shown in Equation 4.1.

Secur i t y = l ×2

N × (N −1)

N−2∑
i=0

N−1∑
j=i+1

HD(seqi , seq j)

B
. (4.1)

In this equation, l denotes how often the same instruction is checked in different se-
quences, HD the hamming distance between two sequences seqi and seq j that is then
normalized with respect to the number of bits in a sequence B , and N the number of dif-
ferent instruction sequences which can be approximately represented by N ≈ (I−wl)/sl .
Here, I represents the total number of instructions. Lastly, to calculate the average HD
between the instruction sequences, the equation is normalized by the number of differ-
ent sequence pairs (i.e., [N × (N −1)]/2).

The security in Equation 4.1 is directly proportional to the number of instruction
checks, and thus a larger wl and smaller sl increases the security. However, at the same
time, using such values will increase the required storage and computational complexity.
The storage can be expressed by the number of bits that need to be stored, while the
computational complexity can be represented by the number of instructions processed
in parallel at a given time. We integrate both concepts in a single cost metric, as shown
in Equation 4.2.

Cost = N ×B × (wl × l), (4.2)

In this equation, the storage requirement equals the product of the number of se-
quences N and the number of bits in each sequence B . For the computational capacity,
we consider the number of instructions that are processed from the moment a new in-
struction is part of the instruction sequence under process until the moment it is not.
Figure 4.4 provides an example for the instruction i nst2 , which shows the number of in-
structions that are processed while i nst2 (the last instruction in the first sequence, indi-
cated by red) is being checked. This number equals wl ×l , which can also be represented

as ip = wl ×
⌈

wl
sl

⌉
. For part (a) of the figure with wl = 3 and sl = 1, this equals ip = 9. For

part (b) with wl = 3 and sl = 2, the number equals ip = 6; and for part (c) with wl = 3 and
sl = 3, it equals ip = 3.

4

40 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

i nst2 i nst1 i nst0

i nst3 i nst2 i nst1

i nst4 i nst3 i nst2

(a) wl = 3, sl = 1 (ip = 9 instructions)

i nst2 i nst1 i nst0

i nst4 i nst3 i nst2

(b) wl = 3, sl = 2 (ip = 6 instructions)

i nst2 i nst1 i nst0

(c) wl = 3, sl = 3 (ip = 3 instructions)

Figure 4.4: Instruction Processing Sequence with (a) wl = 5, sl = 1 and (b) wl = 4

Figure 4.5: Protection Analysis for CRT-based Implementation

We calculate the security and cost metrics for an example application of RSA decryp-
tion with and without CRT. Both algorithms are coded in C language and compiled for
the RISC-V ISA (see Section 4.1). We evaluate the metrics for {wl , sl } ∈ [1,2,3,4,5,6,7,8,9,10],
with sl ≤ wl . Here, we only present the results for CRT case in Figure 4.5 and Figure 4.6,
since the results for the non-CRT are very similar.

Figure 4.5 shows the impact of wl and sl on the security, while Figure 4.6 shows the
impact on the cost metric. The larger wl the higher the security. However, the cost in-
creases faster than the security. This analysis ultimately shows that increasing the in-
struction sequence length brings more protection but at a higher price. In other words,
wl must be chosen carefully, being high enough to provide adequate protection, while
low enough to avoid a high cost. Increasing the parameter sl on the other hand, which is
denoted as the slide in the figure, leads to a faster reduction of cost as compared to the
security.

In this chapter, we select the values as wl = 5 and sl = 1 (for RNN, CAM, and BF;
wl = 1 is required for Hopfield network). This is a reasonable selection as the cost is
not too high. Furthermore, this selection also fits the RNN training and validation per-

4.3. RNN-BASED FAULT DETECTION

4

41

Figure 4.6: Cost Analysis for CRT-based Implementation

formance. The selection of a low wl also fits our goal of lowering the cost of hardware
implementation.

Based on this foundation, the following subsections define different tools fit for de-
tecting faults from instruction sequences. Basically, they are different possibilities on
how to implement the module in Figure 4.1.

4.3. RNN-BASED FAULT DETECTION
In this section, we describe how an RNN can be used to detect faults from instruction
sequences. Then, we present an efficient hardware implementation of this RNN-based
detector.

4.3.1. USING RNNS FOR DETECTING FAULTS IN INSTRUCTION SEQUENCES
We follow the idea proposed by (Moustapha et al., 2008), which detects sensor faults
using RNNs [118]. Our RNN-based detector learns the fault-free instruction flow of RSA.
After learning, it can detect faults that break this flow. The construction of this RNN
consists of three tasks: network design, training, and evaluation. In the network design
task, we select network parameters such as types of layers, number of layers, number of
recurrent cells (also referred to as RNN cells), etc. During the training task, we train the
RNN using a training set of correct decryptions. Lastly, in evaluation, we determine the
performance of the trained RNN by using a test set, which contains faulty decryptions.
The following elaborates on the three tasks.

Network Design: We design our RNN to compute the expectance probability of the
current instruction by using the five previously fetched instructions. Figure 4.7 shows
the layers and the dimensions of the neural network. The neural network contains three
layers (i.e., embedding, RNN, and a dense layer).

The input to the first layer is the fields of the instruction that determine the instruc-
tion type. For the RISC-V; they are opcode, f3, and one bit of f7. Together they have a
length of 11 bits (see Section 2.2). We encode this by using one-hot encoding. The first
layer of the network is the embedding layer. This layer reduces the size of the one-hot
vector to eight elements. The outputs of the embedding layer are connected to the RNN
layer. This RNN layer processes the last five instructions and outputs a vector to the last

4

42 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

i nput

i0

i1

i2047

e0

e1

e7

cell0

5
<

cell7

<

d0

d1

d2047

out put

(Encoded)

Input
Embed.

layer

RNN layer Dense

layer

Figure 4.7: The RNN Used in This Chapter

layer. The last layer (i.e., the dense layer) is used to make the decisions. The neurons in
this layer produce the expectance value of their corresponding instructions (e.g., neu-
ron 659 gives the expectance value of instruction 659). We only look at the output of the
currently fetched instruction as it determines its likelihood of occurrence; an unlikely
instruction indicates a fault.

RNN Training: For training, we construct two datasets with non-faulty instructions.
These sets are the training set and validation set. Then, we use the training set to train the
RNN with the aim of predicting the next instruction when the previous five are supplied.
Next, we use the validation set to calculate a threshold value for the expectance. This
con fthr is the lowest expectance value of all the instructions in the validation set. Later
during runtime, if an instruction has a lower expectance value, the detector considers it
faulty.

RNN Evaluation: For the evaluation, we construct a dataset named test set that con-
tains faulty decryptions. Using this test set, with the trained RNN and calculated con fthr ,
we evaluate the detection rate of faults.

4.3.2. HARDWARE IMPLEMENTATION OF THE RNN-BASED MODULE
Our efficient hardware implementation of the RNN-based detector is shown in Figure 4.8.
It consists of two major components: the embedding layer (containing the input encod-
ing and embedding layer of the RNN) and the Instruction-RNN cell (containing the RNN
cells and the dense layer).

The function of the embedding layer is to generate eight input numbers to the RNN
cells when an 11-bit instruction (i d ∈ {0,1, . . . ,2047}) is provided (see also Figure 4.7). We
implement this layer as a LUT. The hardware implementation also contains a decoded
instruction buffer, which is used to store data to keep up with the instruction fetch speed
of the processor; this is explained in more detail later.

The second component is the Instruction-RNN cell. It is further divided into two
sub-components: five systolic arrays implementing the RNN cells and an Integration
and Prediction unit that combines the outputs of the RNN cells, in order to make a pre-
diction of the correctness of the current instruction. The systolic array architecture [119]

4.4. CAM-BASED FAULT DETECTION

4

43

X

+

X

+

X

+0

Systolic Array - Matrix_Vector_Multiplication - ins_ti

+

+

+

+ +

 Input_a W0j Input_b W1j Input_h W7j

Bias_a

MAC +

Bias_b

<

Threshold

ROM
LUT0

ROM
LUT1

ROM
LUT7

Input_a

Input_b

Input_h

Embedding Layer

11

32

32

32

Integration and Prediction

Current
Instruction

Systolic Array - Matrix_Vector_Multiplication - ins_ti-2

Systolic Array - Matrix_Vector_Multiplication - ins_ti-3

Systolic Array - Matrix_Vector_Multiplication - ins_ti-4

ROM
LUT

Prediction
Weights & Bias

Current
Instruction

W

COUNTER

 Buffer 12x256

256

256

IRQ

Instruction-RNN Cells

...

64

32 32
Systolic Array - Matrix_Vector_Multiplication - ins_ti-1

LUT Decoder

...
...

REG REG REG

...

Figure 4.8: Efficient Hardware Implementation of RNN-based Detector

implements the vector-matrix multiplications of the RNN cells. In total, five systolic ar-
ray units are used where each one contains eight MaC elements. To optimize the RNN
cells, the nonlinear operations are removed at the cost of a loss in accuracy. In addition,
we unroll the cells and pipeline them. To do this, we rearrange the RNN function (that
gives the probabilities for instructions at time ti+1 using five previous instructions), as
follows:

hti =W ′i ns ti +(Z W)′i ns ti−1 +(Z 2W)′i ns ti−2 +(Z 3W)′i ns ti−3 +(Z 4W)′i ns ti−4 +B , (4.3)

where W is the weight matrix for the feedforward input, i ns ti is the embedded layer
output vector for the instruction at time ti (indicated by Inputs in Figure 4.8), Z is the
weight matrix for the feedback input, and B is the collective bias vector (indicated by
Bias_a on the figure). This equation enables us to precompute and store all matrices and
vectors except i nst ’s. This reduces the number of multiplications and additions almost
four times.

The Integration and Prediction unit sums up the results of the five systolic arrays and
additionally implements the dense layer used for the final prediction. The dense layer
contains 2048 neurons, where each neuron corresponds to the expectance probability
of an instruction. In our hardware implementation, we only use a single neuron. When
instruction at time ti+1 becomes available, we load its corresponding neuron weights
from a LUT (indicated by Prediction Weights & Bias on the figure). Secondly, we remove
the Sigmoid activation function as it affects only the output range. As we only compare
the output to a threshold confidence value, no accuracy is lost here. The MaC (for vector
multiplication) and the subsequent adder in this unit implement the last neuron. When
an attack is detected, a signal is sent to the CPU as an IRQ.

The last important point is that our Instruction-RNN-cell outputs a result each 8
clock cycles. As each cycle a new instruction is fetched, we place 7 Instruction-RNN-
cells in parallel to be able to process all instructions. To prevent loss of data, we add
the aforementioned buffer to the embedding layer, which stores 12 instruction features.
Moreover, we replace all floating point numbers in the design with 32-bit fixed numbers.

4.4. CAM-BASED FAULT DETECTION
This section describes how we use CAMs to detect faults in instruction sequences. Then,
we present an efficient hardware implementation of this type of detector.

4

44 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

d at a0
d at a1

. . .

d at aN

search register

quer y

E
n

co
d

er

ad d r ess

Figure 4.9: Typical CAM Architecture

4.4.1. USING CAMS FOR DETECTING FAULTS IN INSTRUCTION SEQUENCES

CAM is a special type of memory, where you query for the location of a specific con-
tent [120]. In other words, it receives data as input and outputs its address in the mem-
ory if this data content exists. CAMs are typically used in network applications due to the
dynamic information flowing in networks. For example, if multiple destinations use the
same path, a CAM is able to store all these destinations on the same address. As a result,
for this type of application, memory usage and performance are optimized.

A typical CAM is illustrated in Figure 4.9. When a query consisting of an instruction
sequence is supplied, all rows are searched for a matching instruction sequence. If there
is a match, the matching row address is encoded and supplied as an output. There are
two characteristics of such an architecture: (i) it finds out whether the query is stored
(and its address if that is the case) and (ii) it accomplishes this typically in a single clock
cycle.

Two of the tasks required for RNN (see Section 4.3.1) are also applicable to the CAM
(i.e., design and the evaluation); no training for a CAM is required.

CAM Design: For designing the CAM, we simply stored the reference dataset (i.e., in-
struction sequences without any faults) in it. For this, the unique instruction sequences
from the training set of RNN can be used. These unique instructions can likewise be ex-
tracted from the program binary. Also due to its deterministic behavior, there is no need
for validation for CAM.

CAM Evaluation: During the evaluation, we query the CAM with new instruction se-
quences, which can include faults. If the input is found in the CAM, the address of the
matched query is retrieved. If a query has no match, it means a fault. We then evaluate
the detection rate of faulty decryptions.

4.4.2. HARDWARE IMPLEMENTATION OF THE CAM-BASED MODULE

Our efficient hardware implementation of the CAM-based detector, which is illustrated
in Figure 4.10, consists of three major components: a buffer, table, and an FSM con-
troller. The function of the buffer is to collect the last five fetched instructions in a FIFO,
which outputs a 5×32 = 160 bit signal. After each newly fetched instruction, the content
of the FIFO is updated by shifting in the newly fetched instruction.

4.5. BF-BASED FAULT DETECTION

4

45

Buffer Layer

32

Current
Instruction

 instruction t4

 instruction t3

 instruction t2

 instruction t1

 instruction t0

 Shift Buffer 5x32
32

32

32

32

32

160

CAM Layer

...

 Table 213x160
Control Layer

Alarm

query

hit

Start

Delay

Main counter > 4

state == Main

Figure 4.10: Efficient Hardware Implementation of CAM-based Detector

A CAM table is then used to identify if the instruction sequence consisting of five
instructions is a valid sequence or not. The internal logic of the CAM compares this
input with every existing entry. The output is 1 (hit) if there is such an entry and hence a
valid sequence, or 0 (miss) otherwise when the sequence is invalid.

The FSM controller makes sure that the initial sequence of five instructions is prop-
erly initialized and synchronizes the communication between the buffer and CAM, in
order to ensure that a fault check happens each time a new instruction is fetched. When
a fault is detected, a fault alarm signal is raised.

4.5. BF-BASED FAULT DETECTION
This section describes how we use BFs to detect faults in instruction sequences. First,
Section 4.5.1 details the concept. Next, Section 4.5.2 presents our efficient hardware im-
plementation.

4.5.1. USING BFS FOR DETECTING FAULTS IN INSTRUCTION SEQUENCES

A BF is a probabilistic data structure that can be used quickly to check whether an ele-
ment belongs to a predefined set or not. A BF can be implemented either in software or
in hardware, and it contains the following key components: i) k different hash functions,
and ii) an m-entry bitmap (representing a set). The hash functions must be indepen-
dent, uniformly distributed, and in order to provide fast operations, they also must have
a limited computational cost.

Figure 4.11 depicts an example of how an element can be added (step a) and looked
up (steps a and b) in a BF. For consistency, we refer to the task of adding elements to the
BF as design, while the look-up operation is referred to as the evaluation.

BF Design: At the beginning of the design phase, all entries in the bitmap are first set
to zero. Next, each item of the training dataset, i.e., instruction sequences without any
faults, is processed by the k different hash functions (see step a on Figure 4.11). Each
hash function produces an integer in the range [0,m), which is used as an index in the
m-entry bitmap. During the design phase, the k bitmap positions indexed by the hashes
are set to 1. This phase ends when all instances of the training dataset are computed,
and the bitmap memory is filled.

4

46 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

Hit?

...

Input
Element

Hash #1

Hash #2

Hash #k

m-entry Bitmap

Hit?

Hit?

0

1

2

...

m - 1
...

Maybe in the
set

Definitely not
in the set

0/1

AND

0/1

0/1

1

0

a) Add Element &
Lookup Element b) Lookup Element

Figure 4.11: Typical BF Architecture

BF Evaluation: Similarly, during the evaluation phase, hash values of instruction se-
quences that may include faulty instructions are computed using the same k hash func-
tions (step a). However, in contrast to the design phase, the resulting indices are now
used to read the content of the bitmap memory. Hence, the k positions are accessed
and their values are fed into an AN D operation (step b). If the AN D returns a 1, there
is a probability (depending on k and m) that the input element belongs to the valid set.
Note that for BF, false positives are possible. If the AN D returns a 0 instead, the element
is definitely not in the valid set.

Notice that a BF never produces false negatives. In other words, it never identifies an
element as a non-member of the set when it actually is. In the context of this chapter,
this property ensures that a non-faulty instruction sequence will never be detected as
faulty. Additionally, the accuracy obtained in the evaluation phase can be pre-adjusted
using the parameters k and m. Many works provide mathematical estimates for accu-
racy bounds based on these variables and we base our analysis on the results of [121].
Provided that the hash functions are perfectly random, the FPR (i.e., the probability that
malicious behavior is mistakenly identified as non-malicious) can be estimated by Equa-
tion 4.4 [121]:

FPR = (1−e−
kn
m)k , (4.4)

where n represents the number of instruction sequences that are part of the set. This
equation allows the parameters to be configured for different levels of accuracy and cost,
and hence, enables for a fast and cheap implementation.

4.5.2. HARDWARE IMPLEMENTATION OF THE BF-BASED MODULE
As mentioned in Equation 4.4, the fault detection rate of a BF depends on three param-
eters: the number of hash functions k, the expected number of elements n that equals
the number of different valid instruction sequences, and the number of entries in the BF
memory m. As this makes the design of BFs application dependent, we provide more
details in the experimental setup (Section 4.7.1).

4.6. HOPFIELD NETWORK-BASED FAULT DETECTION AND CORRECTION

4

47

At this stage, hash functions in our implementation take a 32-bit input and produce
a hash value in a single clock cycle, thus also enabling one-cycle lookups. After the se-
lection of parameters (i.e., k,m), we use the architecture shown in Figure 4.11 to make
the hardware implementation.

4.6. HOPFIELD NETWORK-BASED FAULT DETECTION AND COR-
RECTION

This section describes how we use Hopfield networks to detect and additionally correct
instruction faults. The only difference from previous methods is that we consider indi-
vidual instructions (i.e., instruction sequences of length one). The organization of the
section is otherwise the same.

4.6.1. USING HOPFIELD NETWORKS FOR DETECTING AND CORRECTING FAULTS

IN INSTRUCTIONS
Recall the modified Hopfield network state iteration formula Equation 2.2, in Section 2.3.4.
With this nonlinear equation, it is theoretically possible to store all unique instructions
of a program by using 32 or 64 neurons - equal to the typical instruction size.

There are however two challenges in realizing this. The first and main challenge is
the hardware cost of implementing the nonlinear function F (a). The second is the it-
erative nature of Equation 2.2 in reaching convergence, which makes the hardware im-
plementation more complex due to the potential need for multiple cycles. Note that
the convergence state can also be an invalid instruction. This is typically not a problem
when stored patterns are images and the reconstructed image only differs in a couple of
pixels. However, in our case, even a single bit difference in the corrected instruction can
result in crashes (when a faulty instruction is corrected to an invalid one) or significantly
different results (e.g., when loading a value from an incorrect address or register).

To solve both issues, we analyze Equation 2.2 in more depth. Let’s assume a very
large value for the exponent K in F (a) = aK to increase the performance of the network.
This results in the following equation:

ξt+1[l] = sgn[
N−1∑
i=0

(xT
i ξ

(l+)
t)K −

N−1∑
i=0

(xT
i ξ

(l−)
t)K]. (4.5)

Let us consider two scenarios for this equation. The first case is when ξt = xî (i.e., the
current instruction equals the stored instruction î). In this case, ∀l the following holds:

xT
i ξ

(l+)
t will dominate the summation if ξt = ξ(l+)

t and xT
i ξ

(l−)
t otherwise; and determine

the bit as l = xî [l]. In the end, ξt+1 = xî will hold.

The second case is when ξt differs from xî by one bit, due to for example a fault at l̂ .

Then, l = xî [l] holds ∀l ̸= l̂ . On the other hand, the sign will be reversed for ξt+1[l̂], as

xT
i ξ

(l+)
t will dominate the summation if ξt ̸= ξ(l̂+)

t and xT
i ξ

(l̂−)
t otherwise. This will make

ξt+1 and xî differ in only one bit. Thus, correcting as ξt+1 = xî will be valid.
From these, we conclude from the ideal case that when K is very large, each bit of ξt+1

is heavily influenced by the most similar stored instruction xî . Hence, it is meaningful

4

48 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

to make the instruction correction as ξt+1 ≈ xî . This eliminates the need for multiple
iterations to reach convergence (by equating the new state simply to one of the stored
instructions). In addition, it enables us to simplify the calculations into a bitwise com-
parison with all stored instructions and select the most similar one.

This understanding also makes designing a detector fairly straightforward. Once the
network provides the most similar stored instruction, we can compare it with the cur-
rent instruction. If they are the same, there is no fault. If they differ, we detect a fault
and provide the stored instruction as the corrected version instead. In summary, the
network design, training, and evaluation tasks of our Hopfield network-based detector
and corrector are as follows.

Network Design: The proposed method removes the need to design an explicit net-
work. For our purposes, however, we can think of a network with 32 neurons (matching
the bits of an instruction). This is also the main reason why we use instruction sequences
of one for this detector.

Hopfield Network Training: The training task of the network is also straightforward.
Unique instructions are simply stored for comparison. No other calculation is necessary
during this step.

Hopfield Network Evaluation: During this task, we provide runtime instructions that
might contain faults to the network. The network is then evaluated on its performance
of detecting faulty instructions and the ability to provide their correct versions.

4.6.2. HARDWARE IMPLEMENTATION OF THE HOPFIELD NETWORK-BASED

MODULE
The implementation of our fault detection and correction module is based on the obser-
vations made in the previous Section 4.6.1. We integrate it with a 32-bit RISC-V proces-
sor [72].

The architecture of the module is provided in Figure 4.12. As shown in the figure,
the architecture consists of three stages: Stage 1 - comparison, Stage 2 - calculation,
and Stage 3 - verification. In the comparison stage, the current instruction (denoted as
i nst0) is compared with all stored unique instructions (denoted as sti |i ∈ [0, N)). The
comparison is done with modified XOR gates, which output the total number of bits that
are different. As the maximum difference can at most be 32, five bits are needed.

The calculation stage aims to find the instruction ID (i.e., the storage address of the
instruction in our module) with the minimum difference. To this end, this stage uses
a tree-like structure of min units. These units take four inputs: two difference values
(represented with 5 bits) and two corresponding IDs (represented by log2N bits). This
unit simply forwards the value and the ID of the smaller difference. Naturally, the depth
of the tree depends on the number of stored instructions N . The end product of this
stage is the ID of the most similar stored instruction stmin_diff.

The third and the final verification stage determines if there is a fault. It accomplishes
this by first loading stmin_diff using the ID output of Stage 2. Then, it compares to see if

4.7. EXPERIMENTATION FOR FAULT DETECTION PERFORMANCE

4

49

log2N 5

min unit

min unit

5

5

32

inst0 st0 inst0 st1 inst0 stN-2 inst0 stN-1

min unit

log2N

min unit

min unit

Stage
1

Stage
2

ID
0

ID
1

load instruction

stmin_diff
=

inst0

fault flag

stmin_diff

Stage
3

ID
N-2

ID
N-1

IDstmin_diff

Figure 4.12: Efficient Hardware Implementation of Hopfield Network-based Detector and Corrector

i nst0 = stmin_diff. If they are equal, it sets the fault flag to 0 and to 1 otherwise. In both
cases, it forwards stmin_diff to the processor, which is the same instruction in the no-fault
detected case and the corrected version of the instruction in the fault detected case.

4.7. EXPERIMENTATION FOR FAULT DETECTION PERFORMANCE
This section presents the experimentation conducted to measure the fault attack detec-
tion performance of our detector methods. First, Section 4.7.1 presents the experimen-
tal setup. Next, Section 4.7.2 describes the performed experiments. Finally, Section 4.7.3
presents the results.

4.7.1. EXPERIMENTAL SETUP

We implemented the RSA decryption implementations using 12-bit keys (without loss
of generality) to speed up simulations. Table 4.1 shows the design parameters of RNN,
CAM, and BF.

We used 750 fault-free descriptions (training set) to train the RNN, whereas the val-
idation set consists of 250 fault-free decryptions. We obtained con fthr values of 3.65
for the CRT and 12.69 for the non-CRT case after the training, using the validation set.
The CAM contains 213 entries (i.e., 213 unique instruction sequences) for the CRT case
and 63 for the non-CRT case (for reference: the binary of the decryption implementation
contains 174 instructions for CRT and 44 for non-CRT). Note that these instructions do
not consider speculative or out-of-order execution. However, these features would not

4

50 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

Table 4.1: Design Parameters of RNN, CAM, and BF-based Detectors

RNN
parameter value

s 5
sl 1

#used instruction bits 11
validation ratio 25%

optimizer adam [122]
loss function categorical crossentropy

metrics accuracy
batch size 100

epochs 100
dropout RNN layer: 0.1 (normal, recurrent)

CAM
parameter value

s 5
sl 1

#used instruction bits 32
BF

s 5
sl 1

#used instruction bits 32
n 213 (CRT) - 63 non-CRT
m 512

hash functions fmv, murmur

affect our detectors, as they would create another set of instruction sequences that our
methods can learn.

For selecting the parameters of the BF, we made an analysis using the numbers iden-
tified for CAM. This means n = 213 for the CRT implementation and n = 63 for the non-
CRT implementation. The analysis for these given n values and varying k (number of
hash functions) and m (bitmap) is illustrated in Figure 4.13 (see Section 4.5.1). The plots
immediately show that a higher m reduces the FPR. To have a low FPR, we used m = 512
bits in our experiments. In terms of k, k = 2 results in the smallest FPR for the CRT im-
plementation. For the non-CRT case, k = 3 has the lowest FPR. However, to have a single
design for both cases we select k = 2 as this gives the overall lowest FPR. The hashes that
we select are fnv [123] and murmur [124].

In summary, for the BF-based detector, we have k=2 hashes, n=213 sequences for
CRT, n=63 sequences for non-CRT, and m=512. Also note that, in contrast to RNN that
monitors only 11 bits of the instructions, CAM and BF monitor all 32 bits.

Finally, we evaluate the overhead of our detectors by synthesizing and mapping them
on an FPGA using 10AS066N3F40ELG from the ARRIA 10 family as the target device [125].
The processor and the detector are implemented in hardware and the clock frequency is

4.7. EXPERIMENTATION FOR FAULT DETECTION PERFORMANCE

4

51

Figure 4.13: FPR Analysis for the BF

set to 25MHz.

4.7.2. PERFORMED EXPERIMENTS

This subsection describes the experiments that are used to accomplish the following
goals: (i) make a vulnerability analysis on various fault attack locations and (ii) evaluate
the detector performance of attacks on the most vulnerable location. In total there are
three experiments. In the first experiment, we assess how vulnerable the processor is. In
the second experiment, we evaluate and inject faults only in part of the processor (i.e.,
instruction buffer) to increase the attack’s success rate. This allows us to compare the
detection accuracy of the detectors better in the third experiment. Each experiment is
further described next by specifying which fault models set (Section 3.3) and evaluation
method (Section 3.4) they use.

Experiment 1 - Vulnerability Assessment of Processor: The aim of the first experi-
ment is to analyze the vulnerable parts of a processor against faults. For this, we in-
ject faults into random locations (including the memory and the processor parts), using
the Fault Models Set 1. The binary of the complete program has a size of 10.4kB, from
which 696 bytes contain instructions related to the decryption for CRT; which equals
696/4 = 174 instructions. Similarly, the non-CRT decryption part has a size of 176 bytes).
Since the total memory size is 64kB, only 1.06% of the memory contains the target pro-
gram (0.26% for the non-CRT).

For each fault model, a test set is used that contains single correct decryption and
10,000 runs of it with injected faults. In some trials, the simulator was not able to inject a
fault. This happens for example when a fault is injected into an undefined signal. These
cases are not considered in the results.

Note that this experiment covers all possible cases that can lead to an incorrect de-
cryption result. These include: (i) glitching the memory where the program instructions
and data are stored, (ii) glitching the instructions in the instruction buffer of the proces-
sor, and (iii) glitching the internal processor signals to corrupt intermediate results (like

4

52 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

fault CRT non-CRT
model crash successful exploitable crash successful exploitable

OM 0.07% 0.16% 0.12% 0.00% 0.04% 0.00%
OP 0.94% 2.11% 1.50% 0.16% 0.18% 0.06%

MM 0.26% 0.73% 0.49% 0.02% 0.02% 0.02%
MP 3.40% 4.27% 2.75% 1.65% 1.41% 0.01%

Table 4.2: Results of Experiment 1 - Vulnerability Assessment of Processor

the ALU input or output). Hence, the result of this experiment allows for efficiency com-
parison of different fault injection strategies, using our evaluation for vulnerable region
identification.

Experiment 2 - Vulnerability Assessment of Instruction Buffer: Injecting faults ran-
domly in the processor and memory typically leads to low attack success rates. To in-
crease this, and hence to be able to compare the performances of the detectors better, we
repeat the previous experiment but limit the location of faults to the instruction buffer
only and use the single bit fault model in Fault Models Set 2. We created 2000 different
decryptions and injected bit flips into one or more instructions. For evaluation, we again
use our evaluation for vulnerable region identification.

Experiment 3 - Detector Evaluation: In this experiment, we evaluate the fault detec-
tion performance of our detectors (RNN, CAM, and BF) by injecting faults to the instruc-
tion buffer only. We use all the fault models in the Fault Models Set 2 and use our evalu-
ation for fault detection.

4.7.3. RESULTS

The following presents the results for each of the experiments in Section 4.7.2, as well as
the hardware overhead.

Experiment 1: The results of the first experiment are shown in Table 4.2, as percent-
ages. The results are presented based on the observed outputs for the different fault
models that are considered.

The results show that only a small percentage of the 10,000 fault injection trials for
each model leads to exploitable cases. This shows that randomly injecting faults without
considering the precise location is not very effective.

Another observation is that attacking the processor in general yields better results
than attacking the memory. This is primarily because the actively used memory is small
in contrast to the attack surface. Thus, the majority of the faults do not create any effects.
Therefore, from the results, the best approach is to target the processor with multiple
faults.

Note that there are some 0.00% entries in Table 4.2. These results are due to a low
possibility of occurrence. As an example, for the OM non-CRT case, there are some suc-

4.7. EXPERIMENTATION FOR FAULT DETECTION PERFORMANCE

4

53

CRT non-CRT
crash successful exploitable crash successful exploitable

34.29% 47.76% 28.84% 33.63% 49.97% 10.02%

Table 4.3: Results of Experiment 2 - Vulnerability Assessment of Instruction Buffer

cessful instances. Such an instance can lead to a vulnerability, but it did not in our sam-
ple. The same applies to the case of no crashes.

Experiment 2: Evaluating the detector based on the first experiment would require
many runs for a fair comparison, as only a limited number of cases lead to exploitation.
Therefore, we focus in this experiment on injecting faults in the instruction buffer only.
The results of this experiment are presented in Table 4.3 and are represented in a similar
manner as the results of Experiment 1.

The results show that an incomparably larger percentage of the faults create vulnera-
bilities when the instruction buffer is targeted. This shows that attacking the instruction
buffer is a much more effective and time-efficient fault injection strategy. Another obser-
vation is that the number of exploitable instances is smaller in percentage in non-CRT,
compared to the CRT case. One contributing factor is that the non-CRT case cannot be
exploited with Bellcore.

This experiment indeed shows that glitching the instruction buffer is a better strategy
to compare the performance of the three detectors. However, it must be noted that a
more localized fault attack generally requires more knowledge of the design and better
fault-attack equipment.

Experiment 3: The results of the third experiment are provided in Tables 4.4, 4.5, and 4.6
for RNN, CAM, and BF-based detectors respectively. Each result is in the range of 0.00
and 1.00, indicating no and total protection. The table also includes result information
based on the number of faults that have been injected. For example in single bit fault
model, the first line where f = 1 indicates a single bit fault in one instruction. On the
other hand, the second line where f > 1 indicates single bit fault in two or more instruc-
tions.

The results show that CAM has a 100% detection accuracy for all cases, BF almost
100% in all cases and RNN only has a high detection rate against fault models that com-
pletely change instructions (i.e., fault models 3, 4-I, and 4-II). Note that RNN provides
some detection even for bit and byte fault models. This is because (i) some faults hit on
instruction locations that are learned by the RNN and (ii) some data faults can still dis-
rupt the instruction flow, such as a change in the jump location in a branch instruction.
Overall, the deterministic methods result in higher accuracy.

We also evaluated our detector against 10,000 correct decryptions that are not part
of the training set, validation set, and test set to realize the impact of false positives. In
none of the cases, false positives have been detected and hence, the false positive rate is
0% for all three detectors.

4

54 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

fault decryption security
fault #faults CRT non- CRT non- CRT non-

model (f) CRT CRT CRT

1
f = 1 0.35 0.28 0.70 0.54 0.75 0.88
f > 1 0.65 0.62 0.71 0.69 0.82 0.95

2
f = 1 0.60 0.55 0.80 0.69 0.83 0.95
f > 1 0.88 0.84 0.91 0.86 0.93 0.99

3
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I
f = 1 0.91 0.90 0.95 0.91 0.97 0.99
f > 1 0.99 0.99 0.99 0.99 1.00 1.00

4-II
f = 1 0.88 0.90 0.95 0.91 0.96 0.99
f > 1 0.99 0.99 0.99 0.99 0.99 1.00

Table 4.4: Results of Experiment 3 for the RNN-based Detector

fault decryption security
fault #faults CRT non- CRT non- CRT non-

model (f) CRT CRT CRT

1
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

2
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

3
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.5: Results of Experiment 3 for the CAM-based Detector

Hardware Overhead: Table 4.7 shows the area overhead compared to the Ariane core
in percentage for the three detector implementations: RNN (including a single RNN
cell), CAM (for both CRT and non-CRT cases), and BF. Available resources in absolute
value are indicated in parentheses. Note that the RAM comparison only considers inter-
nal components of the Ariane core, such as caches and buffers (implemented as SRAM
blocks). Hence, no external memory is considered.

As observed in the table, the RNN-based detector is the most expensive implemen-
tation. In addition to requiring a lot of memory, this implementation leads to increased
overhead in the processor. However, if desired, this implementation can be employed by
a single RNN cell. This would reduce the overhead significantly but would also increase
the computation time.

In contrast, both CAM implementations have a much lower overhead, especially the
non-CRT case, due to the limited number of instruction sequences. The memory over-

4.8. EXPERIMENTATION FOR FAULT CORRECTION PERFORMANCE

4

55

fault decryption security
fault #faults CRT non- CRT non- CRT non-

model (f) CRT CRT CRT

1
f = 1 0.99 0.99 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

2
f = 1 0.99 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

3
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.6: Results of Experiment 3 for the BF-based Detector

tool slice LUTs (4182) slice registers (273) block RAM tiles (32)
RNN 15.57% 2.17% 1300.67%
RNN (1 cell) 1.92% 0.17% 162.58%
CAM (CRT) 2.05% 0.07% 61.35%
CAM (non-CRT) 0.55% 0.03% 26.97%
BF 0.51% 0.17% 154.61%

Table 4.7: Area Overhead of the Three Detector Implementations: RNN, CAM, and BF

head in CAM depends linearly on the number of different instruction sequences that
have to be protected. BF implementation on the other hand is a middle ground between
RNN and CAM with respect to LUT and register usage. Moreover, BF has the same over-
head for both CRT and non-CRT implementations.

4.8. EXPERIMENTATION FOR FAULT CORRECTION PERFORMANCE
This section presents the experimentation conducted to measure the fault correction
performance of our Hopfield network-based method. First, Section 4.8.1 presents the
experimental setup. Next, Section 4.8.2 describes the performed experiments. Finally,
Section 4.8.3 presents the results.

4.8.1. EXPERIMENTAL SETUP

The experimental setup for testing the performance of our Hopfield network-based de-
tector and corrector is based on the setup already discussed in Section 4.7.1. As we use
individual instructions for this method, we obtained 120 unique instructions for the CRT
and 48 for the non-CRT implementation.

We carry out network comparison experiments (see Experiment 1 in Section 4.8.2) in
Python and all hardware simulations with our Hopfield-based detection and correction
scheme integrated into a RISC-V processor. During simulations, this module monitors

4

56 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

the fetched instructions, either letting them execute or correcting them accurately or
inaccurately if it detects faults (see Experiments 2 and 3 in Section 4.8.2).

Finally, we evaluate the hardware overhead of our module by synthesizing it for the
FPGA device XC7K325TFFG900-2 from the Kintex-7 family [126] and comparing it with
the RI5CY core [127]; RI5CY is a small scale RISC-V processor and is synthesized on the
same FPGA device.

4.8.2. PERFORMED EXPERIMENTS

This subsection describes the two experiments that we conducted to accomplish to fol-
lowing goals: (i) compare our simplified (bitwise) Hopfield network design with more
complex ones, (ii) evaluate the fault detection performance of the scheme, and (iii) eval-
uate the fault correction performance of the scheme. Each is obtained by a separate ex-
periment. The following details them by specifying which fault models set (Section 3.3)
and evaluation method (Section 3.4) they use.

Experiment 1 - Accuracy of Simplified Hopfield Network: In this experiment, we com-
pare the performance of our simplified Hopfield network based on bitwise comparisons
with the non-simplified F (a) = a2 standard Hopfield network, F (a) = exp(a) [93], and
F (a) = a8. We conduct three trials in this experiment.

In the first trial, we test the performance of the different Hopfield networks with-
out injecting any faults. Here we want to check whether they can store the instructions
properly and analyze how many iterations are needed for convergence. For F (a) = a2,
F (a) = exp(a), and F (a) = a8, we limit the number of iterations to 10 in order to avoid in-
finite loops of non-convergence. In the second trial, we exhaustively inject bit-flips (i.e.,
use the single bit fault model of the Fault Models Set 2) in every bit of the unique instruc-
tions (i.e., there are in total 48×32 = 1536 runs). In the third trial, we corrupt the bytes
(i.e., use the single byte fault model of the Fault Models Set 2) of the unique instructions
to create 20 faulty instances (i.e., there are 48×20 = 960 runs).

The evaluation of these trials does not follow any of our previously described evalu-
ation methods, as this is a special case. Instead, we report the results of instructions that
are corrected in an accurate and inaccurate manner, as well as the average number of
iterations required to reach convergence.

Experiment 2 - Fault Detection Performance: In this experiment, our aim is to test the
fault detection capability of the Hopfield network-based detector and corrector module.
As such, we conduct 1000 RSA runs per fault model in Fault Models Set 2, corrupting up
to 4 random instructions in the instruction buffer per run. We use our evaluation for
fault detection to analyze the performance.

Experiment 3 - Fault Correction Performance: In this experiment, we test the fault
correction performance of our detector. The experimentation is identical to Experiment
2, except that we use our fault correction evaluation in this experiment.

4.8. EXPERIMENTATION FOR FAULT CORRECTION PERFORMANCE

4

57

trial method accurate correction inaccurate correction average iterations

1
bitwise 48 0 1.0

a2 1 47 4.54
exp(a) 35 13 1.31

a8 34 14 1.33

2
bitwise 1488 48 1.0

a2 32 1504 4.63
exp(a) 1089 447 2.26

a8 1055 481 2.26

3
bitwise 782 178 1.0

a2 20 940 4.66
exp(a) 579 381 3.02

a8 537 423 3.18

Table 4.8: Results of Experiment 1 for the Hopfield Network-based Detector and Corrector

4.8.3. RESULTS
This subsection presents the results for each of the experiments in the previous Sec-
tion 4.8.2, as well as the hardware overhead.

Experiment 1: Table 4.8 presents the results of the three trials; it shows how many in-
structions are corrected in an accurate and inaccurate manner, as well as the average
number of iterations required to reach convergence.

As can be observed from the table, our simplified Hopfield network significantly out-
performs the other realizations in terms of accurate corrections and the required num-
ber of iterations. In addition, its implementation is much cheaper.

Experiment 2: Table 4.9 presents the detection results. The presentation of the table is
the same as the Experiment 3 of the previous Section 4.7.3.

As the results show, we achieve perfect or near-perfect detection in all cases except
for fault model 4-I where f = 1. Note that this fault model has constraints that make the
detection harder; instructions are changed into other valid instructions, while branches
are protected. Overall, the decryption and security coverage is even higher than detec-
tion, making it very hard for an attacker to leak information while our module is active.
The non-CRT case is even fully secure against Bao’s attack.

Finally, we also tested the Hopfield network-based detector and corrector with 10,000
non-faulty decryptions. Our module did not raise any false alarms in these runs.

Experiment 3: The correction performance results of our module are presented in Ta-
ble 4.10.

As can be observed from the table, the correction performance does not significantly
vary per implementation, but does vary for different fault models. For the bit-level faults
(fault model 1), our module attains >81% correction rate. When there is only one bit-flip,
the success rate increases to >94%. Furthermore, our module attains a perfect correction

4

58 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

detection decryption security
fault #faults CRT non- CRT non- CRT non-

model (f) CRT CRT CRT

1
f = 1 0.97 1.00 0.98 1.00 0.98 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

2
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

3
f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I
f = 1 0.94 0.93 0.98 0.95 0.99 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II
f = 1 0.98 0.99 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.9: Results of Experiment 2 for the Hopfield Network-based Detector and Corrector

correction operational
fault #faults CRT non- CRT non-

model (f) CRT CRT

1
f = 1 0.94 0.96 0.94 0.97
f > 1 0.81 0.92 0.91 0.97

2
f = 1 0.67 0.77 0.78 0.84
f > 1 0.31 0.63 0.59 0.75

3
f = 1 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00

4-I
f = 1 0.45 0.46 0.49 0.48
f > 1 0.35 0.30 0.60 0.41

4-II
f = 1 0.66 0.76 0.69 0.79
f > 1 0.49 0.58 0.67 0.65

Table 4.10: Results of Experiment 3 for the Hopfield Network-based Detector and Corrector

rate for branch faults (fault model 3). The correction rate however drops for other fault
models. In the majority of the cases for these fault models, however, the correction rates
are still acceptable, i.e., 70.3% on average. The operational coverage on the other hand
reaches 77.7%. The performance particularly suffers when there are multiple faults dur-
ing a single run or faults change an instruction to another valid instruction (especially
in fault model 4-I). Both performance drops are to be expected: it is harder to correct
when there are more faults in different or in the same instruction. It must be stressed
that these cases are not as common as the others.

A final observation from Tables 4.9 and 4.10 is that our module has a significantly
higher fault detection performance than the correction performance. This is because
it is enough to raise one fault flag during a run to successfully detect a fault, while all
faulty instructions should be accurately corrected to achieve a correct run. The latter is
particularly challenging when instructions are changed with multiple bits, making them

4.9. DISCUSSION

4

59

implementation slice LUTs slice registers f7 MUX f8 MUX DSPs
RI5CY core 15857 8333 3373 1286 6
Scheme - CRT 1453 (9.2%) 0 (0.0%) 3 (0.1%) 0 (0.0%) 0 (0.0%)
Scheme - non-CRT 1338 (8.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table 4.11: Area Overhead of the Hopfield Network-based Detection and Correction Module

potentially closer to other stored instructions.

Hardware Overhead: Table 4.11 shows the area of the RI5CY core and the detection
and correction modules for the CRT and non-CRT implementations. Next to the re-
sources required for the detector, the overheads relative to the RISC-V processor are also
indicated in brackets. Both schemes have less than 9.2% overhead when compared to
the RI5CY core in terms of LUT slices.

4.9. DISCUSSION
This section discusses various points regarding our detection and correction performance:
highlights strong points and limitations; presents ways to address them as future direc-
tions. Section 4.9.1 discusses the fault detection performance and Section 4.9.2 discusses
the correction performance.

4.9.1. DISCUSSION OF THE FAULT DETECTION PERFORMANCE
This chapter presented our four methods to detect faults from instruction sequences or
individual instructions. We tested their effectiveness and efficiency using realistic fault
models. The results show in general that the detectors were able to detect faults that
affect an instruction or instruction sequence. The following points conclude their dis-
cussion.

• Functionality: Experimental results show that detectors obtained a 100% accu-
racy for labeling correct decryptions. Note that this also works for decryptions with
different key lengths as the main part of the decryption contains a key-dependent
loop. Increasing or decreasing the loop size will not change the order of the in-
struction flow (except on the boundary of the loop iterations). Similarly, the EEA,
which computes the modular multiplicative inverse of a number that is used in
CRT also consists of a limited number of instructions within a loop. Hence, the
detectors are able to learn this very well.

• Security: Experimental results show that our detectors attain a nearly 100% de-
tection rate for faults that change the instructions for all implementations. For
CAM, BF, and Hopfield network-based methods, nearly any fault in the instruc-
tion buffer could be detected. Note that for successful exploitation, the attacker
typically needs the correct output as well as the exploitable (faulty) output. Ob-
taining the correct output is possible, but is difficult (e.g., the attacker needs to
have access to the platform and run the same decryption without fault injection).
Getting this correct output is not considered in this discussion, we presented our

4

60 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

results assuming a strong attacker that is able to continuously find and exploit one
of the very few uncovered cases.

Another important security feature of our detector is the checking mechanism. As
the detector checks for fault in every fetched instruction, one successful glitch on
this check is not enough to break the system for two reasons. First, the instruc-
tion that is glitched and the evaluation that checks its integrity have to be glitched
both at the right moments. Second, when the flow is disrupted, it is likely that
the detection will catch faults in consecutive instructions as a single instruction is
checked multiple times (except for the Hopfield network-based method) in differ-
ent sequences and a change in the instruction flow will be detected as well. This
can be observed from near-perfect detection rates.

• Weaknesses: One vulnerability of the RNN-based detector is the confidence thresh-
old con fthr value. If an attacker manages to glitch and lower the con fthr value,
more faulty decryptions would be seen as correct by the detector. A designer may
therefore choose to harden this by considering multiple copies of con fthr , or use
some other form of redundancy like parity checks.

The detectors use only input from the instruction buffers to identify faults. Hence,
faults injected into the memory that affects data or faults injected inside the pro-
cessor (e.g., an add instruction could be executed as a subtraction) might not be
detectable. However, the results of Experiment 1 in Table 4.2 show clearly that the
probability of an exploitable injection in this manner is very small. Moreover, even
when a fault injection is successful, only a single bit of the key is typically leaked
for Bao. Hence, it would be very time-consuming to recover the complete key by
such an approach.

• Robustness: Besides glitching the RSA instructions, an attacker could also glitch
the detector itself. To analyze the resiliency of our detector implementations, we
conducted a number of experiments for RNN, CAM, and BF-based detectors. Each
experiment consisted of 20 trials, in which we evaluated the detector performance
under a random fault configuration, using 1000 correct decryptions (the ones that
are not part of any set, see Section 4.7.2) and the 2000 faulty decryptions of instruction-
to-instruction fault model II (see Section 3.3), both with CRT as a case study.

For the RNN, we injected a random bit or byte fault to the network weights. For
the CAM, we again injected a random bit or byte fault to one of the entries, simu-
lating an attack against the memory. For the BF, we injected a bit fault to one of
the BF entries to simulate a memory glitch. Moreover, as we wanted to simulate
faulty hash calculations, we injected a bit fault to the same place of each input.
Each of the trials yielded a similar result: a large number of false alarms for correct
decryptions, but also a considerable increase in fault detection. Most importantly,
the results show that the attacker cannot gain an advantage by trying to glitch the
detector, except for disrupting the operation for correct decryptions.

We did not conduct any experiments for the Hopfield network implementation,
however, it is straightforward to determine the outcome. Changing the stored in-
structions will reduce the correction accuracy significantly. However, it will also

4.9. DISCUSSION

4

61

result in generating more fault flags, as expected instructions will stop matching
with them, reducing the capacity for a stealthy attack. This robustness is a unique
property of our detector, compared to the state of the art.

• Comparison: As the experimental results in Section 4.7.3 indicate, deterministic
methods (CAM and BF) provide more coverage and create less overhead compared
to the RNN. On the other hand, RNN provides a flexibility that is not directly pos-
sible in CAM or BF. By setting the value of con fthr , a user can directly determine
the security level of the system. There is a possibility to adjust the detection rate in
relation to Equation 4.4, by changing values k and m (as n is fixed). However, this
FPR is not exact and does not give the granularity of setting the con fthr . Likewise,
the Hopfield network provides the correction capability and excellent overhead,
while sacrificing the ability to work with instruction sequences of longer length,
which is more secure (see Figure 4.5).

Moreover, the scalability of the CAM solution cannot be guaranteed. Theoretically,
a branch-extensive application can produce a great number of different instruc-
tion sequences. This favors the BF solution over CAM, as in essence, it proposes a
way to compress stored data.

• Uniqueness: The detectors presented in this chapter can be compared with con-
trol flow integrity checkers [44]. However, as mentioned in Section 4.2, we use a
much simpler instruction validation structure than creating control flow blocks
based on program jumps. To elaborate further, we can make a comparison with
the study presented in [45], which can be considered as a baseline control flow
integrity method. In that study, the authors rely on both using encrypted instruc-
tions and comparing block signatures with pre-computed versions. Although ex-
haustive pre-computing theoretically covers all valid and invalid program flows
(while our observation-based method is not exhaustive), such an approach cre-
ates storage and computational overhead, as well as attacks to the architecture
itself are still a viable strategy: a fault replacing the final signature/MAC check can
cause faulty instructions to be executed. If that is the case, it is not possible to
retroactively detect a faulty block further in line. By replacing pre-calculated con-
trol flow blocks with valid instruction sequence observations, we can detect faults
later, even when we miss the original fault occurrence. Finally, our detectors do
not require any modifications to the processor, or any encryption/storage of en-
crypted data, as we only need to create an interface with the instruction buffer.

In order to address the limitations of the control flow integrity checker proposed
in [45], a number of variations have been proposed. First, the authors in [46]
aimed to address the single point of failure (MAC check) issue. As such, the au-
thors proposed to append execution history to the current instruction, making the
decrypted instruction faulty (thus detectable) if there was a fault previously. How-
ever, especially for complex programs, this further complicates the control flow, as
there is a need to adjust for different branches during execution. Second, the au-
thors in [48] aimed to remove the need to modify the processor. As a result, the au-
thors put their integrity checker as a module interacting with the processor and the
memory, similar to our solution. However, their proposal does not address other

4

62 INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

shortcomings of control flow studies, as it does one check per instruction block.
Lastly, the authors in [47] aimed to address the complexity of pre-computing by
eliminating the need for determining all possible branch locations beforehand.
They used masks to connect sequences of instructions to the previous ones and
encrypt them together. To accomplish that, however, they require an extension to
the ISA, limiting general applicability.

• Generality and flexibility: Although we demonstrated the detection results for
two different implementations of RSA, our detector can be used for a variety of
applications. This includes RSA algorithms with protections against other attacks
such as side-channel analysis, other software crypto algorithms as AES, triple-DES
and ECC. Not only crypto algorithms, but also other security-sensitive applications
such as banking and secure boot can be protected. The detector can actually be
used for multiple applications when the weights of RNN, table of CAM, or bitmap
of BF are adjusted at runtime.

The same applies for the Hopfield network: the only requirement is that the de-
signer includes a sufficient number of XORs and a depth of min units (see Sec-
tion 4.6.2). As such, changing the stored instructions are enough to seamlessly
protect different applications without requiring any hardware changes.

• Applicability: We developed our detectors to work in conjunction with the pro-
cessor. When employed, the hardware of the detector will be static. When the user
wants to run a specific security-sensitive application, however, the OS can load
the associated weights to RNN, or memory entries to CAM, BF, and Hopfield net-
work. Another possibility is to include these in the binary. If on the other hand,
the device supports reconfigurable hardware, different RNNs (e.g., with a different
number of layers, cells) or CAM, BF, and Hopfield network with different memory
sizes can be employed with each application.

One point of concern is the operation of detectors during processor interruptions.
When the processor receives an interruption signal, the execution context changes.
Such a signal can be used to halt the operation of our detector. As such, the de-
tector will not process fetched interruption handling instructions. When the in-
terruption ends and the previous context is restored, the detector can continue
its work. Our detector should only work when the processor executes security-
sensitive applications and should be switched off by the OS otherwise.

4.9.2. DISCUSSION OF THE FAULT CORRECTION PERFORMANCE
This chapter also presented an instruction fault correction scheme based on Hopfield
networks. This section concludes by discussing the following points about our correc-
tion scheme.

• Security and Generality: Our scheme is shown to be able to correct faulty instruc-
tions for two RSA implementations. Again, our scheme can be used in general for
any secure application. The only requirement, as mentioned previously, is that the
designer includes a sufficient number of XORs and a depth of min units. As such,

4.9. DISCUSSION

4

63

different applications can seamlessly be protected by our Hopfield network-based
module, without requiring any hardware changes.

• Comparison: Our Hopfield network-based scheme improves upon the state of
the art in different aspects (see Section 1.3.3). Instruction repeating, error cor-
rection codes, and signature comparisons are not able to correct different types of
faults. This is shown to increase the vulnerability for some cases [128]. In contrast,
our scheme is shown to detect and correct various instruction faults with various
amounts of bitflips (up to 11 for fault models 4-I/II in Fault Models Set 2). Next,
only certain hardware TMR can outperform our scheme. Triplicating the instruc-
tion buffer is not sufficient, as a fault injected during the execution of a branch
instruction can cause all three instruction buffers to receive erroneous proceeding
instructions. Our scheme can still detect these faulty instructions, in case they are
not a part of the stored unique instruction set. Thus, triplicating the whole core is
the only option that guarantees the detection and correction of all faulty instruc-
tions, which certainly outperforms our scheme, albeit with a huge added cost.

• Limitations: The results show that our correction performance is not as high as
our detection performance. The main issue causing this is that some faults cause
instructions to be closer to other stored unique instructions. A way to alleviate this
is to make the instructions as different as possible. Hence, a compiler that uses
maximally different instructions to accomplish the same operation can increase
the correction performance significantly.

5
SMART SENSOR-BASED FAULT

ATTACK DETECTION

5.1 DESIGNING SENSITIVE CIRCUITS AS SMART SENSORS

5.2 DESIGNING OPERATION-BASED SMART SENSORS

5.3 EXPERIMENTATION FOR SENSITIVE CIRCUIT-BASED SMART SENSORS

5.4 EXPERIMENTATION FOR OPERATION-BASED SMART SENSORS

5.5 DISCUSSION

A very common countermeasure against fault injection attacks is to use sensors. How-
ever, multiple sensors are needed to cover all fault surfaces, which is a costly solution. In
contrast, smart sensors can detect different faults at once, making them applicable for
resource-constrained devices such as IoT.

This chapter presents how we design smart sensors. First, it presents how we use circuits
that are sensitive to multiple changes (such as supply voltage and clock signal) as smart
sensors to detect fault attacks. Second, it presents how we use operation-based informa-
tion to design a smart sensor, with the case study of ANNs. Thereafter, it presents the ex-
perimentation and their results to measure the performance of these solutions. Finally, it
concludes by discussing various points of this approach.

This chapter is based on the following publications: [97], [58]

65

5

66 SMART SENSOR-BASED FAULT ATTACK DETECTION

Figure 5.1: Example of an RO PUF Architecture [129]

5.1. DESIGNING SENSITIVE CIRCUITS AS SMART SENSORS

This section is focused on using sensitive circuits to cover multiple attack surfaces at
once. We propose to convert an RO PUF to a sensor that detects the voltage and clock-
based fault attacks. The idea is to use this sensor in ICs that accomplish security-sensitive
operations, while reusing the already installed PUF that is used as a security primitive.

We present this idea in multiple steps. First, Section 5.1.1 describes why RO PUFs are
suitable candidates for sensing attacks both through voltage and clock. Thereafter, Sec-
tion 5.1.2 presents the detector design based on RO PUFs. Finally, Section 5.1.3 describes
our efficient hardware implementation of the detector.

5.1.1. USING RO PUFS AS A MULTI-SENSOR

RO PUFs, whose architecture is shown in Figure 5.1, create unique responses by com-
paring different counters. The clock frequency of these counters is determined by the
oscillation frequencies of the selected ROs. Each RO is designed with the same number
of odd inverters that are equal in size and spacing (i.e., they are interconnected exactly
in the same way). Hence, in an ideal world, all ROs have the same oscillating frequency.

In contrast, due to process variations in the real world, the frequency of each in-
verter slightly differs. As a result, the counters end up with different values when the
clock periods are counted for a certain time. By comparing the values of the two coun-
ters, a single-bit response can be generated (i.e., which value is larger). Note that more
response bits can be generated by using more ROs and more counters. In this PUF, the
challenge (i.e., input) defines which ROs are selected to generate the response. For ex-
ample, in Figure 5.1, the binary input "0100" selects RO 0 (for the top counter) and RO
1 (for the bottom counter) to generate the response, while input "1000" uses RO 0 (top)
and RO 2 (bottom).

5.1. DESIGNING SENSITIVE CIRCUITS AS SMART SENSORS

5

67

TIME

PROCESSOR

DETECTOR

RO PUF

SENSITIVE TASK RUNNING

TSTART

START
SECURITY

S S S S

RELEASE OR DROP

RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE

DECIDE

T: TRIGGER (START PUF)
S: SAVE

COMPARES

Start End

Figure 5.2: RO PUF-based Detector Concept

5.1.2. RO PUF-BASED FAULT ATTACK DETECTOR DESIGN
This subsection details how we propose to use the described RO PUFs as detectors against
fault injection. The following describes the different aspects required for this proposal.

Using RO PUFs against Fault Attacks: In general, the RO PUF is easy to implement,
has a medium to low overhead, and provides good responses compared to other types
of PUFs. However, this PUF is very sensitive to thermal, power supply, and noise varia-
tions [130] and hence, to fault injection. Such sensitivity is an important issue in PUFs as
they can impact the PUF reliability. To make PUFs reliable, auxiliary hardware is used to
correct erroneous bits, like error correction codes [131]. On the other hand, using PUF
sensitivity to make sensors [132] in order to monitor the temperature or other environ-
mental conditions has already been proposed. However, using PUFs for sensing fault
injection attacks is largely unexplored.

In this chapter, we assume that the attacker is equipped to perform clock and voltage-
based fault injection attacks to leak sensitive information. Hence, the attacker has phys-
ical access to an IoT sensor or gateway device that contains an RO PUF for cryptographic
operations. This is a very common scenario, as it is the only way to ensure a root of trust
in each device when the network is not fully trusted [133]. However, we only assume
that the attacker can leak information by injecting faults to sensitive operations and ob-
serving the network [18]. Other sophisticated means of leaking information (i.e., side-
channel analysis) is out of this chapter’s scope and protection schemes such as masking
should be deployed for them [134].

To sense when an attack as defined occurs, we use the embedded RO PUF, as Fig-
ure 5.2 shows at a high level. Before starting any security-sensitive operation, the system
activates the detector (indicated by trigger - T on the figure). During the operation, the
detector measures and saves the responses of an RO-based PUF (save - S). When the op-
eration ends, the detector compares the collected responses to a reference value, which
is pre-collected under similar but no attack conditions (COMPARE). If these values are
not identical, an alarm is raised (DECIDE). Consequently, the system can halt the op-
eration, redo the encryption, prevent the output from reaching the user, or provide a
random output value (RELEASE OR DROP).

Working Principle: The RO PUF-based detector operates in two phases: response col-
lection and decision. First, the response collection phase consists of applying a specific
challenge to the PUF multiple times and processing each response. The detector keeps
collecting responses until the sensitive operation (such as encryption) is completed. At
the end of this phase, the detector collects M responses (r) of N bits, where N is given by

5

68 SMART SENSOR-BASED FAULT ATTACK DETECTION

Processor

Cache L1

External
Memory
Control

Ring
Oscillator

PUF

ECC

Hardware
Accelerators

Interconnection

Cache L2 Wired
Comm

Wireless
Comm

Direct
Memory
Access
(DMA)

FIA
Detector

Mode

Response

Challenge

Figure 5.3: SoC with the RO PUF-based detector

the number of comparators (see Figure 5.1). Next, in the decision phase, all M responses
are reduced to a single r by using majority voting on each bit of the responses and the
resulting r is compared to a reference value rr e f . An alarm is raised when r ̸= rr e f .

In order to perform these functions, our PUF must satisfy certain properties. First,
it should be able to detect glitches in a short time window. Second, it should be aging
and change-resistant. Third, it should be integrated into a complete system. These three
properties are explained next.

Detecting Glitches: To guarantee a high detection efficiency, we require a sensitive
PUF, where the response is evaluated after each cycle. Such a PUF would not be use-
ful as a security primitive for the system. To overcome this trade-off, we propose a mi-
nor modification to the PUF and have two modes of operation: reliable and unreliable.
The difference between the two modes is the number of operation clock cycles used to
evaluate the ROs. During reliable operation, the detector produces one response to a
challenge after many cycles (i.e., 100). This makes the response more stable and hence
can be used as a security primitive. During unreliable operation, the PUF produces re-
sponses in each clock cycle. These responses naturally differ from the expected value
but allow the capture of clock or voltage irregularities.

Aging and Environmental Change Resistance: An in-field PUF ages as it is used, which
affects its reliability. This might change the challenge-response pair behavior over time [135].
These changes should not be considered a fault injection attack. Similar behavior can be
observed when the device moves from a warmer to a colder place or vice versa. To ad-
dress these issues, we propose periodic adjustment of the reference challenge-response
pair (cr e f -rr e f) used by the detector. This can be accomplished by operating the PUF
in the reliable mode. For example, by challenging the PUF multiple times, the new ref-
erence can be determined by taking the most occurring value or the average of the re-
sponses. We assume that there are no fault attacks during this operation.

5.1. DESIGNING SENSITIVE CIRCUITS AS SMART SENSORS

5

69

Unreliable
Mode

Wait Task

Ask
Response

Save
Response

Perform
XOR

Alarm and
Protect

 No
Attack

start_FI_detect

ta
sk

_s
ta

rt

task_end HD = 0

HD != 0

attack_det

no_det

Figure 5.4: FSM-based Implementation of the RO PUF-based Detector

System Integration: Figure 5.3 shows the SoC architecture in which the proposed fault
injection attack (FIA) detector is an IP block. As observed in the figure, the detector is
integrated in the same manner as other IPs. The processor can communicate with all
the IPs and the detector using the interconnection infrastructure. The fault injection
attack detector communicates with the PUF, i.e., the detector sets the operation mode
of the PUF (i.e., reliable or unreliable) through the Mode signal, provides the Challenge,
and receives/observes the Response. Note that the ECC block attached to the PUF is only
used in the reliable mode, e.g., for key generation or authentication.

5.1.3. HARDWARE IMPLEMENTATION OF THE RO PUF-BASED DETECTOR

Figure 5.4 shows the FSM implementation of the detector in hardware, for the unreliable
mode. Each time the system is about to run a sensitive operation, it triggers the detector
through the start_FI_detect signal. This signal initiates the FSM with its first state, which
forces the PUF into the Unreliable Mode. The FSM subsequently proceeds to its second
state, i.e., Wait Task, where it waits for the sensitive operation to start. The start of the
sensitive operation is indicated by the task_start signal. When the operation starts, the
FSM alternates between the Ask Response state, where it waits for PUF responses; and
the Save Response state, where the results of the responses are saved.

When the sensitive operation ends, the task_end signal notifies the FSM to enter into
the comparison state called Perform XOR. In this state, the detector performs the major-
ity voting between responses and compares the result with the reference PUF value using
XOR operations. In case the numbers are equal (i.e., HD equals 0), no attack has taken
place. This is signaled in the No Attack state. On the other hand, if the XOR results in a
non-zero value (i.e., HD is nonzero), the FSM transits into the Alarm and Protect state to
notify that an attack has taken place. In this state, the detector sets the attack_det signal
to inform the processor about the attack. Then the CPU can for example prevent the
results from being transmitted to the user.

5

70 SMART SENSOR-BASED FAULT ATTACK DETECTION

5.2. DESIGNING OPERATION-BASED SMART SENSORS
This section describes how smart sensors against fault injection attacks can be devel-
oped based on what operation the IC conducts. This dissertation focuses on ICs that
conduct ANN inference as a case study. This is a very relevant case, as ANNs are now
used for many security-sensitive operations. Arguably, one of the most important such
operations is autonomous driving [75], which is the focus of this section.

We propose two detector strategies for detecting faults from the ANN operation. Sec-
tion 5.2.1 presents our deterministic detector and Section 5.2.2 presents our statistical
detector. Finally, Section 5.2.3 presents the idea of combining both strategies for better
protection.

5.2.1. DETERMINISTIC STRATEGY - THE ∆-DETECTOR
The following presents the working principle, integration, and implementation of our
∆-detector.

Concept: After an ANN is trained, the internal variables of the network are fixed (i.e.,
weights and biases) in the deployment. This means for a specific input, the intermediate
and final outputs will always be the same. Consequently, this deterministic behavior can
be used to detect faults in the system. Consider a specific input, whose ANN inference
intermediates or output is stored as a reference. Then, in the field, we can regularly
supply the same reference as input to the ANN and obtain an inference value. If this
value is different than the reference, one or more faults are present in the network. Such a
detector would detect a very large portion of faults that persist during the check. Namely,
if the faults have an effect on the last layer (this can still be the case when faults are
injected in preceding layers), a detector that monitors this layer can detect the faults,
irrespective of whether they affect the ANN decision or not. Thereafter, the system can
reload the ANN or reboot the application. For the case of a self-driving car, this can result
in signaling the driver that the automated driving will be disengaged due to potential
failures in the ANN.

The selection of the variables used as references may vary depending on the applica-
tion. For example, image classifiers present many different output probabilities as they
assign each input to an image category. In this chapter, we focus on the output values
after an image classification/inference. This strategy depends on the property that a
modification in weights or biases can alter one or more output probability values.

Functionality: We name our deterministic detector as the ∆ (Delta)-detector: this de-
tector checks for the difference between the reference and actual values of the ANN in-
ference output. The ∆-detector initially selects a sample image as the reference input.
Next, it runs the inference of this input in the deployed ANN and saves all the probabili-
ties of each output label, as reference. The resulting conceptual architecture is shown in
Figure 5.5.

Implementation: Here, both software and hardware implementations of the∆-detector
are considered.

5.2. DESIGNING OPERATION-BASED SMART SENSORS

5

71

la
ye

r 1

la
ye

r 2

la
ye

r 3

la
ye

r 4

la
ye

r 5

la
ye

r 6

la
ye

r 7

la
ye

r N

Detector fault signal

reference
input

decision

Reference
Decision

Figure 5.5: Conceptual Architecture of the ∆-Detector

Algorithm 4 Pseudo-Code of the ∆-Detector

Input: reference i nputr e f , ann, reference out putr e f

Output: Fault signal f aul t
1: out put ← ann(i nputr e f) ▷ inference operation
2: f aul t ← 0
3: for each out puti in out put do ▷ out puti : output label of class i
4: if out puti ̸= out putr e f i

then
5: f aul t ← 1
6: end if
7: end for

In case the ANN is part of a software application, the detector must also be employed
in software. This means that besides the ANN, an additional function needs to be called
for fault detection. The function of the ∆-detector is shown in Algorithm 4. First, it loads
the reference input and output labels. Thereafter, it runs the inference process in the
ANN. Last, it collects all output class labels and compares them to their reference values.
Any mismatch raises a fault signal.

In case the ANN is employed as a hardware accelerator, it is more efficient to imple-
ment the detector also in hardware. The hardware implementation of the ∆-detector
follows the same steps described in Algorithm 4. For the loading process (both refer-
ence input and output), the hardware can use the system’s main memory. The usage of
dedicated memories in tamper-proof locations to store the references is also justified for
maximum security. Lastly, the comparison operation (line 4) can be easily implemented
through a bit-wise XOR. If the result is zero among all output class labels, then there is
no fault presence. Otherwise, it raises the fault signal (line 5).

5.2.2. DETERMINISTIC STRATEGY - THE Σ-DETECTOR

The following presents the working principle, integration, and implementation of our
Σ-detector.

5

72 SMART SENSOR-BASED FAULT ATTACK DETECTION

Figure 5.6: Example Activation Map of a Convolutional Layer of AlexNet [5]

Concept: The training process of an ANN updates its internal parameters that are com-
posed of weights and biases. As a result, a trained ANN will exhibit specific internal pat-
terns during inference. One way to analyze such patterns is by evaluating the number of
neurons that are activated in a layer. Our hypothesis is that the ratio of activated neurons
generally lies in specific bounds during normal conditions (i.e., when no fault attacks are
present), as learning algorithms are expected to regularize neuron behavior into a pre-
determined input-output mapping. This hypothesis follows from the firing neuron rate
idea presented in [136], which indeed shows a different activation pattern for regular and
adversary inputs.

When an input is applied to the ANN, the Σ-detector obtains the binary activation
map for each layer, which are of different shapes. Figure 5.6 illustrates an example of
a 55×55×96 activation map obtained from the outputs of the first convolutional layer
of AlexNet [5]. Then, in order to summarize these maps, the Σ-detector calculates the
ratio of activations to the total number of neurons within a layer. For example, if 100K
neurons are activated (i.e., produced a number greater than 0) in the aforementioned
convolutional layer, its activation rate is 100K/(55·55·96) = 0.344. We store one such rate
per layer.

We determine those rates of whether or not a neuron is activated by the following
equation:

acti vati onni , j =
{

0, if outni , j <= 0,

1, if outni , j > 0;
(5.1)

Here, ni , j is the j th neuron of the i th layer and outni , j is its output.

Functionality: The Σ-detector processes the activations as the ANN operates. Fig-
ure 5.7 illustrates its conceptual architecture. When an input is supplied to the ANN,

5.2. DESIGNING OPERATION-BASED SMART SENSORS

5

73

la
ye

r 1

la
ye

r 2

la
ye

r 3

la
ye

r 4

la
ye

r 5

la
ye

r 6

la
ye

r 7

la
ye

r N

Detector

activation ratios

fault signal

input decision

Figure 5.7: Conceptual Architecture of the Σ-Detector

the detector collects the activation rates of each layer. The detector consequently inves-
tigates if these ratios are in expected boundaries, and otherwise generates a fault signal
(which is 1 if a fault is detected and 0 otherwise). The ANN generates an inference deci-
sion in parallel. The final output of the system consists of the decision of ANN and the
value of the fault signal. When a fault is detected, we raise an alarm instead. Similar to
the ∆-detector, the nature of the alarm and the response to it can vary from application
to application.

We name our detector as the Σ (Sigma)-detector as it compares activation rates with
the mean (µ) and standard deviation (σ), where both µ and σ were pre-calculated from
non-faulty data (only a subset of the original dataset is enough). If the value is outside
the expected range (e.g., 3σ from µ), it raises a warning. When one or more warnings are
raised, the output fault signal is set.

Implementation: Same as the ∆-detector, the following describes both software and
hardware implementation of the Σ-detector.

Algorithm 5 details the pseudo-code of the software implementation of the detector.
After obtaining the activations for an input image (line 2), the detector checks layer-by-
layer if the activation value is in the determined boundary (line 4). If not, it raises a
warning (line 5). When the warning threshold is reached, a fault is signaled (lines 8-9).

Figure 5.8 illustrates the hardware architecture of theΣ-detector. Our proposed scheme
can evaluate a layer in a single cycle, which means it can be reused for all layers when it
is designed for the layer with the most number of neurons. The only change along the
layers are the mean and standard deviation values, which are implemented as constants
(i.e., their bits are tied to the Vdd when 1, or ground when 0).

As observed in the figure, the hardware collects and adds the activation results of
the currently executed layer. Instead of dividing by the number of neurons per layer, we
multiply the equation on line 4 in Algorithm 5 by the number of neurons. Hence, the
total number of active neurons Nact is evaluated using the equation abs(Nact −µi ·N) ≤
di ·σi ·N , where N equals the total amount of neurons in a certain layer and Nact = N ·

5

74 SMART SENSOR-BASED FAULT ATTACK DETECTION

Algorithm 5 Pseudo-Code of the Σ-Detector

Input: i nput , ann, calculated µ, calculated standard deviationσ, calculated maximum
allowed distance in terms of standard deviation d , number of warnings to set the
fault signal w ar n

Output: Fault signal f aul t
1: numw ar n ← 0 ▷ initialization of warning
2: act ← ann(i nput) ▷ act : activation ratios
3: for each acti in act do ▷ acti : activation ratio of layer i
4: if abs(acti −µi) ≤ di ·σi then
5: numw ar n ← numw ar n +1
6: end if
7: end for
8: if numw ar n >= w ar n then ▷ fault condition
9: f aul t ← 1

10: else ▷ no fault condition
11: f aul t ← 0
12: end if

act Neuron 0

act Neuron 1

...

act Neuron N

+ Nact - abs <

(μi . Ni) (di . σi . N)
incr Warning

Counter
(numwarn)

>
warn

Fault

for a layer i

Figure 5.8: Hardware Architecture of Σ-Detector

acti . If the equation is not satisfied, the warning counter numw ar n increments. Finally,
comparing the result with the threshold w ar n sets the fault signal.

5.2.3. COMBINING BOTH STRATEGIES
The previous subsections proposed two different fault attack detection strategies. The
first one (i.e., ∆-detector) is very effective, given its fault assumptions hold (i.e., a fault
will persist during the check). Furthermore, it does not have any false alarms. The de-
tector can be considered as an ANN-aware redundancy that is costly in terms of per-
formance (when implemented as a software implementation) and resources (when im-
plemented as a hardware implementation). The reason is that for each inference, the
∆-detector should conduct an additional inference and check the results. In some cases,
such a cost would be unacceptable, such as in automated driving with a constant stream
of images.

The second strategy (i.e., Σ-detector) does not require any costly operation during
deployment time. Therefore, it is suitable to be used continuously. However, as with any
statistical method, it is inevitably prone to missing some fault attacks or may even gen-
erate false alarms. As such, either strategy can be chosen depending on the high security
versus efficiency needs. Moreover, a combination of the two strategies is also possible.
Namely, if the aim is to eliminate all false fault alarms while allowing some faults, the

5.3. EXPERIMENTATION FOR SENSITIVE CIRCUIT-BASED SMART SENSORS

5

75

check of the ∆-detector can be initiated as soon as the continuously running Σ-detector
detects a fault. The presence of a fault attack can be guaranteed when both detectors
raise the fault signal. Using this approach, the overhead caused by the ∆-detector re-
mains low as it only needs to be executed when the Σ-detector raises a fault alarm (true
or false positive). Another strategy is to mainly rely on the Σ-detector for detecting tran-
sient faults (e.g., that affect the registers), while using the ∆-detector for periodic self-
checks to detect more persistent faults, such as the ones that affect the main memory.

5.3. EXPERIMENTATION FOR SENSITIVE CIRCUIT-BASED SMART

SENSORS
This section presents the experimentation we conduct to measure the voltage and clock-
based fault injection attack detection performance of our RO PUF-based smart sensor.
First, Section 5.3.1 describes the experimental setup. Next, Section 5.3.2 describes the
performed experiments. Finally, Section 5.3.3 presents their results.

5.3.1. EXPERIMENTAL SETUP

We evaluate the fault detection performance of RO PUF-based sensor by running exper-
iments on the Chipwhisperer CW305 Artix FPGA Target [137]. We complemented the
CW305 board with a CW1173 [138] that acts as a manager, i.e., it initiates the operation,
controls the glitching, and collects the results.

The FPGA is programmed with a bitstream that contains the design in Figure 5.3. It
runs the AES-128 as a hardware accelerator. The PUF contains a single specific challenge
with an 8-bit response using eight ROs consisting of three inverting gates (note that some
ROs are used in multiple responses). During encryption, the detector collects four PUF
responses. The following describes our clock/voltage glitching and voltage underfeeding
experiments and their results.

5.3.2. PERFORMED EXPERIMENTS

This subsection describes the experiments that achieve the following three goals: mea-
suring the sensor-based detector performance against (i) clock glitches, (ii) voltage un-
derfeeding, and (iii) voltage glitching. Each of these goals is accomplished with a sepa-
rate experiment, which are described next. As this experimentation is carried out with
actual hardware and fault injection techniques, fault modeling does not exist and eval-
uation methods here are the modified versions of the evaluation for fault detection in
Section 3.4.

Experiment 1 - Clock Glitching: In this experiment, we investigate the detector’s fault
detection performance during different clock glitching configurations, where 50 AES en-
cryption runs are evaluated per scenario. A scenario is specified by the glitch type. In
terms of clock glitches, this is characterized by a glitch width (between -50% and 50% of
the clock period) and offset (between -50% and 50%), as illustrated in Figure 5.9.

In this experimentation, we used a small part of the glitching range to reduce the
number of crashes and make the detection conditions less favorable, while still being

5

76 SMART SENSOR-BASED FAULT ATTACK DETECTION

System clock signal
(32 MHz)

Glitch signal

width

offset

Figure 5.9: Clock Glitching

Vdd

width

voltage

repeat

Figure 5.10: Voltage Glitching

able to create effective glitches. For each scenario, we investigate the attack effective-
ness (i.e., the ratio of the cases that create a faulty output) and report the corresponding
detector effectiveness (i.e., the ratio of the attacks detected). This is a modified version
of our evaluation for fault detection.

Experiment 2 - Voltage Underfeeding: In this experiment, we assume an attacker that
supplies a voltage outside the nominal range to the device, where 1V is the nominal value
and the voltage range 0.9V - 1.1V is considered to be the optimal operating condition.
The evaluation method is the same as Experiment 1.

Experiment 3 - Voltage Glitching: The voltage glitches are characterized by the glitch
width (in percentage) and how often they are repeated, as illustrated in Figure 5.10. Each
time a glitch occurs, the Vdd is shorted towards 0V. The evaluation method is the same
as the previous experiments.

5.3.3. RESULTS
This subsection presents the results of the experiments described in Section 5.3.2, as well
as it provides further analysis and the hardware overhead of the sensor.

Experiment 1: Table 5.1 presents the results for the clock glitching experiment. The
first two columns specify the configuration of the clock glitch, the third column the at-
tack efficiency (i.e, how many encryptions lead to a corrupt output), and the last column
the number of times the detector raised the attack detection flag in percentage. Note
that the attack effectiveness does not only consider successful attacks, i.e., attacks that
reveal (parts of) the key, but also consider any faulty output. The reason for this is that

5.3. EXPERIMENTATION FOR SENSITIVE CIRCUIT-BASED SMART SENSORS

5

77

Clock Glitch Attack Detector
Width Offset Effectiveness Effectiveness

1.95 -5 100% 70%
2.73 -5 0% 0%
3.5 -5 0% 0%
4.5 -5 0% 0%

1.95 -3 0% 0%
2.73 -3 0% 0%
3.5 -3 0% 0%
4.5 -3 94% 30%

1.95 1 0% 0%
2.73 1 100% 40%
3.5 1 8% 100%
4.5 1 0% 100%

1.95 3 6% 80%
2.73 3 0% 60%
3.5 3 0% 0%
4.5 3 0% 0%

1.95 5 4% 80%
2.73 5 0% 90%
3.5 5 0% 70%
4.5 5 0% 0%

Table 5.1: Results of Experiment 1 - Clock Glitching

we want to detect how good the detector in general is when an attacker tries to perform
fault injection, as the detector can be applied in any sensitive operation.

As can be observed from the table, our detector is effective in correctly labeling clock
glitching scenarios. In only some of the glitch configurations, the AES output became
faulty. In all these cases, our detector was able to partially or fully detect these glitches.
The detector was even able to detect some cases where the attacks were ineffective. The
average detection rate for effective attack scenarios is around 70%. The lowest detection
rate is 30%, which is indeed far from preventing most of the attacks for that scenario. We
further discuss how to remove such singular points of failure in further analysis.

Experiment 2: Table 5.2 presents the results for different voltage underfeeding values.
The table is constructed in a similar manner as Table 5.1.

The first important discussion from the table is related to the voltage values 1.1, 1.0,
and 0.85V. As mentioned before, the first two voltages fall in the optimal condition range
and the last one under normal conditions. When supply voltages of 1V and 0.85V are
applied, we observe that our detector does not raise any false alarms. The detector does
raise alarms when a 1.1V supply voltage is used. However, note that we configured our
detector solely on the nominal voltage (i.e., 1V) and hence, the detector is able to detect
this voltage setting. Therefore, it is not straightforward to label 1.1V cases as false alarms.

5

78 SMART SENSOR-BASED FAULT ATTACK DETECTION

Voltage Underfeeding Attack Effectiveness Detector Effectiveness
1.1 0% 100%

1.0 (nominal) 0% 0%
0.85 0% 0%
0.75 0% 0%
0.7 100% 100%

0.65 100% 100%

Table 5.2: Results of Experiment 2 - Voltage Underfeeding

Voltage Glitch Attack Detector
Voltage Width Repeat Effectiveness Effectiveness

1.0 3.5 1 0% 0%
0.85 3.5 1 0% 0%
0.75 3.5 1 0% 0%
1.0 3.5 4 0% 0%

0.85 3.5 4 100% 60%
0.75 3.5 4 100% 100%
1.0 3.5 10 100% 0%

0.85 3.5 10 100% 100%
0.75 3.5 10 100% 100%
1.0 45 1 0% 0%

0.85 45 1 0% 0%
0.75 45 1 0% 0%
1.0 45 4 0% 0%

0.85 45 4 100% 50%
0.75 45 4 100% 100%
1.0 45 10 100% 0%

0.85 45 10 100% 100%
0.75 45 10 100% 100%

Table 5.3: Results of Experiment 3 - Voltage Glitching

In order to prevent them, the detector should be characterized and verified based on
this voltage setting as well (i.e., change of reference value, see Section 5.1.2). Second, our
detector perfectly detects the successful glitches in the cases where voltage underfeeding
took place. Note that both the attack and detector effectiveness are 100% for these cases.

Experiment 3: Table 5.3 presents the results in a similar manner as the previous ta-
bles. In the table, the voltage column represents the operating voltage. Only the voltages
where the attack effectiveness is 0% in Table 5.2 have been considered, as the detector
can detect all the other supply voltages with 100% effectiveness.

The table shows that the detector performs well in many scenarios. Overall, the de-
tection effectiveness for effective attacks is again around 70%. However, in 2 cases some

5.3. EXPERIMENTATION FOR SENSITIVE CIRCUIT-BASED SMART SENSORS

5

79

Figure 5.11: Unique PUF Responses for (a) Clock Glitching, (b) Voltage Underfeeding, and (c) Voltage Glitching

effective attacks are not detected by the detector. These occur only at nominal supply
voltage.

Further Analysis: For a more in-depth analysis, we analyzed the PUF responses in
each of the experiments. In this analysis, we observed that a wrong response for a sce-
nario randomly alternates between a specific set of values. Figure 5.11 presents the plot
of obtained PUF responses for all three experiments: clock glitching, voltage underfeed-
ing, and voltage glitching. The fault-free reference response (rr e f) is 44, indicated by the
white bars in the figure.

The plot shows that some responses are close to the reference value of 44, while some
are very distant. The larger the difference with the reference value, the more likely that
the attack causes bit-flips in the design. It can be observed that the cases with a larger
difference are in greater proportions in clock glitching and voltage underfeeding attacks.
For the voltage glitching case, there is a greater number of faulty responses closer to the
reference. As noted previously, some effective voltage attack scenarios indeed managed
to escape our detection.

The undetected cases can be an issue, especially when attackers are able to perform
various glitching experiments to discover these voltage glitch values [139] (i.e., voltage,
glitch width, and repeat values - see Table 5.3). However, this can be improved in several
ways. First, instead of looking at the bitwise majority voting of responses, each individual
PUF response can be analyzed and compared to the reference. Second, aperiodic chang-
ing of the inverter chain length (as shown in Figure 5.12) can alter the PUF sensitivity at
run-time; this increases the detection probability of currently undetected cases.

We made further experimentation to validate these two proposed improvements.
Our experiments indicate that the individual PUF responses show much more variance
when glitches occur (mean µ=63.27, standard deviation σ=83.81) as compared to the
case when no fault injection takes place (µ=33.77, σ=61.06). Second, when we used

5

80 SMART SENSOR-BASED FAULT ATTACK DETECTION

Figure 5.12: Variable Inverter Chain Length via Switches

five inverters instead of three, we observed a different distribution (i.e., with glitching
µ=35.02 and σ=60.42 and without glitching µ=17.33 and σ=36.31), which indeed im-
pacts the PUF sensitivity. This however must be used carefully, as it might comprise the
reliability/reproducibility of the PUF function when used as a security primitive.

Hardware Overhead: As mentioned in Section 5.3.1, we implemented our PUF-based
detector on Chipwhisperer CW305 board. The RO PUF and detector require 53 LUTs
and 16 registers, compared to 2506 LUTs and 980 registers required for the interface,
hardware AES core, and a couple of 8-bit registers to save the PUF responses. The im-
plementation does not include the response comparison as it can be carried out by the
software. But still, by using XORs, the added hardware overhead is minimal.

This shows a very low overhead, especially when the PUF would be reused for au-
thentication purposes. In that particular case, a single challenge can be used in the reli-
ability mode (see Section 5.1.2). Moreover, the cost of saving the responses can also be
further reduced by comparing them on the fly as they are produced. Lastly, this design
satisfies all timing constraints.

5.4. EXPERIMENTATION FOR OPERATION-BASED SMART SEN-
SORS

This section presents the experiments we conduct to measure the fault attack detection
performances of our smart sensor-based detectors in ANNs. Section 5.4.1 presents the
experimental setup, while Section 5.4.2 describes the performed experiments. Finally,
Section 5.4.3 presents the results.

5.4.1. EXPERIMENTAL SETUP
To prove the generality of our detectors, we use three widely employed ANN architec-
tures: AlexNet [5], VGG (CNN S) [140], and GoogleNet [141]. All ANNs are DCNN ar-
chitectures that were trained on the ImageNet Large Scale Visual Recognition Challenge
2012 [142]. We use the validation repository of this dataset, which consists of 50,000
images in total. Table 5.4 shows the size of the output of each relevant layer of these net-
works. As can be observed, VGG uses slightly different parameters than AlexNet, while
GoogleNet is a very deep architecture.

We conducted all the experiments using the Python language together with the Caffe
toolbox [143]. This toolbox provides slight variations of all three networks. They were all
pre-trained to achieve 80%, 87%, and 90% accuracy on the validation repository.

5.4. EXPERIMENTATION FOR OPERATION-BASED SMART SENSORS

5

81

layer size
convolution (1) 55×55×96
convolution (2) 27×27×256
convolution (3) 13×13×384
convolution (4) 13×13×384
convolution (5) 13×13×256
dense (1) 1×1×4096
dense (2) 1×1×4096
dense (3) 1×1×1000

layer size
convolution (1) 109×109×96
convolution (2) 33×33×256
convolution (3) 17×17×512
convolution (4) 17×17×512
convolution (5) 17×17×512
dense (1) 1×1×4096
dense (2) 1×1×4096
dense (3) 1×1×1000

layer size
convolution (1) 112×112×64
convolution (2) 56×56×64
convolution (3) 56×56×192
.
inception (13) 14×14×192
.
inception (54) 7×7×128
dense (1) 1×1×1000

(a) (b) (c)

Table 5.4: Used ANN Structures: (a) AlexNet, (b) VGG, and (c) GoogleNet

To identify suitable parameters and evaluate both detectors, we created three datasets
(per AlexNet, VGG, and GoogleNet). The first dataset is called calibration set. This set
contains the first 1000 images from the aforementioned ImageNet validation repository
and it is used to understand the faulty and non-faulty behavior, and hence, to define
the parameters of the detectors. In the ∆-detector, the parameters are the output label
values. In the Σ-detector, the parameters are the mean and standard deviation of acti-
vations for each layer. Next, the second dataset, which we label as the verification set, is
used to validate the chosen parameters. It contains images from 1001 to 2000 from the
repository. The last dataset, i.e., the evaluation set, contains images from 2001 to 3000
and it is used to evaluate the effectiveness of the detectors under practical attack sce-
narios. Note that the evaluation set is completely independent of the first two sets, and
they constitute unseen images for our detectors. Hence, the detection results on this set
provide the generalized effectiveness.

Finally, we evaluate the detector overhead for the selected ANNs both in software
(i.e., desktop or server) and in hardware (i.e., GPU or FPGA-based platforms). Our soft-
ware implementation runs on a server with a 2.1GHz processor and 96GB memory. We
make the hardware overhead comparisons with a synthesized ANN accelerator [144] for
the Virtex-7 VC707 FPGA board [145]. Note that both hardware and software ANN im-
plementations are relevant in the context of self-driving cars and hence, their operation
is vital for the safety [146, 147].

5.4.2. PERFORMED EXPERIMENTS
This subsection describes the experiments we performed, which achieve the following
goals: measuring the fault detection and protection performance of (i) the ∆-detector
and (ii) the Σ-detector. Sub-steps constitute both experiments, which are presented
next. The presentation also describes which fault models and evaluation methods we
use.

Experiment 1 - ∆-Detector Experiments: This experimentation contains the steps of
detector calibration and performance analysis.

During the detector calibration, which can be considered a preliminary step, we used
some images from the calibration set to validate the functionality. As such, we started

5

82 SMART SENSOR-BASED FAULT ATTACK DETECTION

Figure 5.13: Neuron Activation Rates for Fault Injection into the Convolution 4 (c4) Layer of AlexNet

our test by conducting inference with an image without any faults and saving the output
labels. Thereafter, we conducted inference with faulty and non-faulty instances of the
same image. The output label comparison of the ∆-detector yielded correct results (i.e.,
no false alarm in the correct case, and fault detection in the faulty case). This proved the
validity of the ∆-detector and we can continue with larger-scale verification.

In the performance analysis step, we use the evaluation set images. For each of the
1000 images, we test the ∆-detector by comparing the output labels of correct versions
to versions where we inject 0, 1, 5, and 10 faults randomly, using the Fault Models Set 3
(Section 3.3). We consequently use our evaluation for ANN protection (Section 3.4.4).

Experiment 2 - Σ-Detector Experiments: This experimentation contains the steps of
evaluation of the neuron activation rate, detector calibration, and performance analysis.

In the evaluation of the neuron activation rate, which can likewise be considered
as a preliminary step, we performed a detailed fault analysis on the calibration set. For
each image, we conducted a fault injection campaign into AlexNet by injecting {0,1,5,10}
faults on each of the considered layers (convolution (1), (2), (3), (4), (5); dense (1), (2), (3))
randomly. Each time, we considered faults in a single layer only, using the Fault Models
Set 3 (Section 3.3). For each fault campaign, we evaluated 1000 images. As an example,
the results of injecting faults to convolution layer 4 are illustrated in Figure 5.13. In the
figure, the center points indicate the mean of the activation rate for that particular layer,
while the arrow lengths indicate the standard deviation.

There are a couple of observations from this graph. First, we observe that the faults
injected in a layer (convolution 4 in the figure) indeed disrupt the expected activation
behavior in the proceeding layers (convolution 5 and dense 1, 2, 3). The propagation of
the fault through many connections into later layers results in much worse behavior at
these later layers. Consequently, this also implies that faults injected into the last lay-
ers are harder to detect. Second, the level of disruption increases with the number of
injected faults. Results for other layers are omitted here due to similarity.

After the initial investigation, in the detector calibration (another preliminary step),

5.4. EXPERIMENTATION FOR OPERATION-BASED SMART SENSORS

5

83

accuracy d w ar n layers

AlexNet
s1 0.563 3 1 last half
s2 0.561 3 1 all

VGG
s1 0.549 3 1 all
s2 0.549 dmax 1 all

GoogleNet
s1 0.588 dmax 1 last half
s2 0.587 dmax 1 all

Table 5.5: Two Best Parameter Selections for Σ-Detector Calibration

we calibrated our Σ-detector data from the calibration set without injecting faults. We
calculated µ, σ, and dmax (the highest distance of a non-faulty activation rate from the
mean in terms of standard deviations) for each layer of the ANNs.

To calculate the parameters of d and w ar n, as well as which layers to consider in the
detector, we conducted another campaign by injecting {0,1,5,10} faults again using the
Fault Models Set 3, when images of the verification set were considered. However, this
time faults were randomly injected into any layer during a run. Hence, this created 4 sets
of activation rates, each consisting of 1000 images.

For the optimal detector settings, we tried the following values: d ∈ {1,2,3,dmax },
w ar n ∈ {1,2,3,4} (for AlexNet and VGG) and w ar n ∈ {1,5,10,25} (for GoogleNet), con-
sidered layers ∈ {all, last half, only convolutional, only dense} (for all ANNs, which results
in a different number of layers for GoogleNet). A set of parameters were selected based
on the accurate labeling of 4000 images, where we adjusted the classification impact of
non-faulty instances for a fair comparison. Table 5.5 shows the parameters for the two
best selections s1 and s2 for the three ANNs. As can be observed from GoogleNet, finding
the optimal values scales well for larger neural networks as the detector parameters are
layer-independent.

The performance analysis step of this detector is similar to the previously described
∆-detector. We first evaluate our correct labeling for non-faulty and faulty instances,
where faults are injected using the Fault Models Set 3. For faulty instances, we analyze
the results using our evaluation for ANN protection. In conducting this evaluation, we
use the evaluation set to create four sets of activations in an identical manner used in the
Σ-detector calibration.

5.4.3. RESULTS
This subsection presents the results for the experiments described in the previous Sec-
tion 5.4.2, as well as software/hardware overheads.

Experiment 1: Table 5.6 shows the results for the performance analysis step of Experi-
ment 1. The table also includes the false alarm rate for 0 faults, as well as the percentage
of faults that affect the topk inference as misc. (misclassification) for reference.

It can be observed from the table that the ∆-detector indeed does not raise any false
alarms and also has full coverage except for one case (GoogleNet 1 fault) for decision-
affecting faults. The investigation of that case showed that it is a very rare computational
overflow error, that even prevailed when no faults were present to make the classification

5

84 SMART SENSOR-BASED FAULT ATTACK DETECTION

AlexNet
0 faults 0%

Detection Top5 Coverage / misc. Top1 Coverage / misc.
1 fault 66% 100% / 3.8% 100% / 2.8%
5 faults 99.4% 100% / 12.7% 100% / 9.5%
10 faults 100% 100% / 19.6% 100% / 13.8%

VGG
0 faults 0%

Detection Top5 Coverage / misc. Top1 Coverage / misc.
1 fault 64.3% 100% / 2.8% 100% / 2.1%
5 faults 98.6% 100% / 11.7% 100% / 9.5%
10 faults 99.9% 100% / 18.9% 100% / 13.7%

GoogleNet
0 faults 0%

Detection Top5 Coverage / misc. Top1 Coverage / misc.
1 fault 83.5% 99.9% / 3.6% 99.9% / 3.4%
5 faults 100% 100% / 17.2% 100% / 13.9%
10 faults 100% 100% / 30.7% 100% / 24.7%

Table 5.6: Results of Experiment 1 - Performance Analysis of the ∆-Detector

wrong, to begin with. Overall, the ∆-detector accounts for detecting up to 31% for some
cases (i.e., 10 faults in GoogleNet top5 coverage) for faults that lead to misclassifications.

On the other hand, the overall detection rate is lower, especially when 1 fault is in-
jected in AlexNet (66%) and VGG (64%). As the detection rate is much higher for more
faults and also for 1 fault case in GoogleNet, we can re-verify that the undetected faults
are indeed the ineffective ones. To elaborate, these faults are likely the ones that dis-
appear in the ANN, e.g., filtered out by the negative inputs of the ReLU activation. As
GoogleNet is a much larger network, a single fault has more chance to create exponen-
tial changes that affect the inference result. Thus, our detector detected more of them.
In conclusion, the ∆-detector is very effective in covering dangerous faults, given the
assumption that the fault persists during the check.

Experiment 2: Table 5.7 shows the results for the performance analysis step of Experi-
ment 2, for the best two-parameter set configurations s1 and s2.

The results show that all ANNs and both s1 and s2 have similar results. Typically, the
best parameter (s1) attains a false positive rate smaller than 4%. We can detect very few
of the 1 fault cases (> 3%), significantly more of the 5 fault cases (> 14%), and yet more
of the 10 fault cases (> 19%). However, the coverage for top5 and top1 affecting faults
for all cases are quite high (> 96%), where top1 coverage is a bit higher than top5. This
means that faults injected into the neural network are detected with a probability greater
than 96% when it affects the ANN inference result. This can be explained as follows: we
observed that only ∼ 2% of 1 fault cases cause a misclassification in top5 and top1, which
explains the low detection rate. This ratio increases to ∼ 12% for 5 fault cases and ∼ 20%

5.4. EXPERIMENTATION FOR OPERATION-BASED SMART SENSORS

5

85

AlexNet
s1 / s2

0 faults 1.6% / 3%
Detection Top5 Coverage Top1 Coverage

s1 / s2 s1 / s2 / misc. s1 / s2 / misc.
1 fault 3.6% / 5.2% 99.1% / 99.3% / 2.8% 99.2% / 99.3% / 1.7%
5 faults 14.2% / 15.8% 98.3% / 98.7% / 12.6% 98.4% / 98.9% / 9.9%
10 faults 19.8% / 22% 97% / 97.9% / 18.3% 96.9% / 97.6% / 14%

VGG
s1 / s2

0 faults 3.8% / 0.7%
Detection Top5 Coverage Top1 Coverage

s1 / s2 s1 / s2 / misc. s1 / s2 / misc.
1 fault 6% / 2.9% 99.3% / 99.2% / 2.5% 99.2% / 99.1% / 2.2%
5 faults 14.4% / 11.2% 96.8% / 96.5% / 13.3% 96.9% / 96.8% / 10.8%
10 faults 23.3% / 20.2% 96.6% / 96% / 20.7% 96.9% / 96.4% / 16.4%

GoogleNet
s1 / s2

0 faults 1.9% / 4.4%
Detection Top5 Coverage Top1 Coverage

s1 / s2 s1 / s2 / misc. s1 / s2 / misc.
1 fault 5.4% / 7.8% 99.9% / 99.9% / 3.4% 99.7% / 99.7% / 3%
5 faults 21.2% / 23.2% 98.6% / 98.7% / 18.6% 98.7% / 98.8% / 15.4%
10 faults 33.8% / 35.6% 98.2% / 98.3% / 30.1% 98.5% / 98.5% / 23.8%

Table 5.7: Results of Experiment 2 - Performance Analysis of the Σ-Detector

for 10 fault cases.

Overhead (The ∆-Detector): This part presents the overhead of the ∆-detector, for
both software and hardware implementations. In software, the detector includes an ad-
ditional inference operation plus a check, for each of the inference operations. To see
the added latency, we recorded the total elapsed time over 1000 image inferences, sepa-
rately for the original and the ∆-detector operations. We used the process time function
of Python, which discards sleep time. The results, as expected, show that the detec-
tor creates 99-100% latency to conduct the additional inference and check for all of the
ANNs.

In hardware, the∆-detector consists of a dedicated memory to store the reference in-
put and output labels and a checker. Our synthesis resulted in 4kB of embedded memory
and less than 1% of logic for detector control and comparison. Note that the reference
values can also be stored in the system memory (with reduced security) to avoid memory
overhead.

5

86 SMART SENSOR-BASED FAULT ATTACK DETECTION

Overhead (The Σ-Detector): Both software and hardware implementations for the Σ-
detector must comply with some constraints. In software, it is important for the Σ-
detector to produce a result quickly after the ANN produces a decision: any extra time
will lead to an inaction latency. To determine the timing that our detector requires, we
collected both ANN inference time and detector processing time over 1000 images. Ac-
cordingly, the ANN requires < 2% extra time to extract activation ratios, and a very in-
significant < 2e−4% extra time for fault detection.

To evaluate the hardware overhead, we designed the detector for AlexNet’s convo-
lution (1) layer, which has the most amount of activations in AlexNet. We omit designs
for VGG and GoogleNet, as our detector is reused for all layers, so the number of layers
is not a source for overhead (see Section 5.2.2). Our synthesis resulted in an area re-
quirement of 60,528 LUTs and 4 registers. Additionally, our detector met all timing con-
straints, meaning that it can produce a single warning signal per cycle. We also evaluated
a second implementation, where the adder (see Figure 5.8) is replaced by a ROM-based
decoder. In this scenario, the area utilization reduced significantly to only 870 LUTs, 4
registers, and 290kb of ROM. When we compare these implementations to the reference
CNN hardware accelerator [144], our detector results in 32.49% overhead for LUT-only,
and 0.46% for ROM-based version.

5.5. DISCUSSION
This chapter presented two ways to implement smart sensors: one based on sensitive
circuits (i.e., RO PUF) and the other on the operation (i.e., ANN inference). This sec-
tion consequently discusses these solutions in terms of strengths and limitations; as well
as compares them with the state of the art and presents future directions. First, Sec-
tion 5.5.1 discusses the sensitive circuit-based sensor and then, Section 5.5.2 discusses
the operation-based one.

5.5.1. DISCUSSION OF THE SENSITIVE CIRCUIT-BASED SENSOR
The following presents the points of discussion for our RO PUF-based fault injection
detector.

• Security: Experimental results show that our low-cost detector is effective against
many cases of clock and voltage-based attacks. Furthermore, it accounts for chang-
ing environmental conditions and aging; and provides resistance to a single point
of vulnerability.

• Generality: As RO PUFs are sensitive to temperature, EM, and lasers [148, 149,
150], our method has the potential to be used against these attacks as well. Al-
though we only tested our detector with a hardware AES, our method is general
and can be used with any security-sensitive operation.

• Robustness: One remaining point of interest is the attacks against our detector
itself. Our detector is generally robust against them, i.e., any such attack would
destabilize the PUF response, resulting in unexpected behavior. A weakness here,
however, is the reference response. If an attacker is able to change this value, the

5.5. DISCUSSION

5

87

system will start raising a lot of false alarms. This is not directly a security prob-
lem, but an attacker can deny the operation of the device in this manner. Hence,
selective hardening of the reference response should be considered in cases where
denial of service must be avoided.

• Comparison: To avoid using multiple clock [151] and voltage [152] sensors at once,
there are works that considered using RO or PUF-based sensors. However, they (i)
consider very limited attack cases [153, 154, 155], (ii) do not take environmental
changes into consideration [153], (iii) do not reuse already installed resources so
create significant overhead [153, 148, 156], (iv) generate false alarms [148], and (v)
use rare or broken PUFs [154, 155]. Specifically, a sensor that even attains 99.9%
protection cannot be considered secure, as an attacker that has infinite time can
find a point of vulnerability. Our solution addresses these.

• Weaknesses: In contrast, there are clear limitations of our solution. Detector ef-
fectiveness for certain clock and voltage glitches is indeed not very high. Thus,
this detector must be considered as one of the early designs where built-in PUFs
are re-purposed against various fault injection attacks.

5.5.2. DISCUSSION OF THE OPERATION-BASED SENSOR
Like the previous subsection, the following presents the points of discussion for our ANN
inference operation-based sensors: the ∆ and Σ-detectors.

• Security: The experimental results show that it is possible to cover the far major-
ity of faults that lead to wrong decisions. To eliminate the false alarms, we also
proposed a combined strategy that involves both detectors.

• Functionality: Both our detectors do not require any modifications (e.g., changing
weights or network architecture) on the employed network. This is important, as
these networks are commonly used off-the-shelf and are often already trained.

• Generality: This chapter presented both detectors’ detection results on three dif-
ferent and commonly used ANNs (i.e., AlexNet, VGG, GoogleNet). Both detectors
can be used for a wide range of most commonly used ANNs. However, there are
some points of interest. First, if the designer uses dedicated memory to the ref-
erence values of the hardware ∆-detector, this memory should be large enough
to account for different ANNs with varying output sizes. Second, the Σ-detector
can be used with any ANN that has layers with activating neurons. This covers the
majority of ANNs in use, however, modifications are required for networks such as
Hopfield.

• Robustness: One point of discussion is an attack against the detector itself. There
are a couple of valid attack strategies against our detector: (i) inserting faults any-
where during the calculation or (ii) changing the reference or stored values (e.g.,
numw ar n , di , or σi).

The first attack (i) might be successful, if a fault simultaneously affects the ANN,
while another affects the detector calculation in such a way that it misses to detect

5

88 SMART SENSOR-BASED FAULT ATTACK DETECTION

an unexpected value. In software, accomplishing this attack might be easier, with
an instruction skip. However, this attack is mostly impractical due to the need for
synchronized faults and it is far more likely that such an attack will start causing
the detector to raise random fault signals. The second attack (ii) on the other hand
can provide more success, especially for the Σ-detector: for instance, an attack
that makes the value of numw ar n larger. Although such an attack will still require
a high level of granularity, a numw ar n value larger than the number of layers will
render our protection obsolete. Thus, more safety can be attained by storing the
detector parameters in hardened memory locations.

• Comparison: Compared to the protection scheme in [136], which tries to detect
adversarial inputs on AlexNet with a detector, our Σ-detector performs quite well.
That study obtains a high detection rate (approximately 90%), but at the expense
of a high false alarm rate (approximately 17%). Still, our 4% false alarm rate is a
significant value. As such, our combined solutions can be considered as a corol-
lary, which would obtain 0% false alarm rate while retaining the detection rates
of the Σ-detector, given that the fault persists during both detectors’ checks (see
Section 5.2.3). Note that we did do not perform any experiments for the combined
solution, as conclusions can be straightforwardly derived from their individual ex-
periments.

Another protection scheme, which proposes to modify the activation functions,
attains 95.3% top1 coverage when the faults reduce the top1 classification accu-
racy by 21.6% in AlexNet [157]. The closest AlexNet scenario is our 10 faults case
(with 14% misclassification), for which we provide 96.9% top1 coverage. However,
that study experiments with a different dataset and only injects bit faults to test
fault tolerance. Hence, a direct comparison is not possible.

• Weaknesses: We only demonstrated the validity of our detectors in three ANNs us-
ing a single dataset. This can raise the question of applicability for different inputs.
This point can be considered as future work, although the ImageNet dataset that
we experimented on is sufficiently broad, and the real-time object classification
scenario that we consider (in automated driving for instance) is one of the most
relevant for such protection.

6
VERIFICATION-BASED FAULT

ATTACK DETECTION

6.1 PROTECTION THROUGH MEMORY VERIFICATION

6.2 PROTECTION THROUGH SMART REDUNDANCY

6.3 EXPERIMENTATION FOR MEMORY VERIFICATION-BASED PROTECTION

6.4 EXPERIMENTATION FOR SMART REDUNDANCY-BASED PROTECTION

6.5 DISCUSSION

Up to this point, this thesis focused on preventing fault attacks by detecting injected faults.
This is not the only way of protection, however. A more counter-intuitive way to achieve
security is to verify the operation, thus, detecting faults indirectly.

This chapter presents how we use verification to indirectly detect faults and ensure a cor-
rect operation. First, it presents how to use a hardware module to verify memory contents.
Second, it presents how to use smart redundancy to ensure operation correctness without
creating a large overhead. Thereafter, it presents the experimentation and the results of
these methods. Finally, it concludes by discussing various points from the results.

This chapter is based on the following publications: [158], [98]

89

6

90 VERIFICATION-BASED FAULT ATTACK DETECTION

6.1. PROTECTION THROUGH MEMORY VERIFICATION
This section describes how we create a hardware module that verifies the memory con-
tent before relating them to the processor. Our goals with using such a module are as fol-
lows: (i) ensuring confidentiality, integrity, and authenticity of external memory content;
and (ii) being lightweight, so that it can be used in resource-constrained IoT devices.

Like previously, this section presents this idea in several steps. First, Section 6.1.1
provides background on lightweight block ciphers and hash/MAC functions, which we
select one from each to use in the module. Second, Section 6.1.2 describes the overall
concept. Next, Section 6.1.3 presents the design of the module. Finally, Section 6.1.4
presents the different variants of the module.

6.1.1. BACKGROUND ON LIGHTWEIGHT BLOCK CIPHERS AND HASH/MAC
FUNCTIONS

The following describes the block ciphers and MAC functions we considered. Then, it
indicates our selections and their reasons.

Lightweight Block Ciphers: A block cipher is an encryption/decryption algorithm that
processes the input in blocks/rounds. A lightweight block cipher is a cipher that typically
requires fewer resources; hence having a small area, low latency, low power consump-
tion, etc. A typical first choice for encryption in security applications is the AES. How-
ever, having a lightweight hardware implementation was not a design criterion during
its development in the 1990s. Therefore, the area and power requirements generally do
not meet IoT criteria. As a corollary, new block ciphers were developed as lightweight
alternatives. The following lightweight ciphers are the ones we considered:

• mCrypton is a lightweight block cipher based on an SPN. It uses 64, 96, or 128-bit
keys to encrypt 64-bit data blocks in 25 rounds [159].

• PRESENT is one of the first lightweight block ciphers. It is also based on an SPN,
which takes 31 rounds to process 64-bit data blocks using 80-bit or 128-bit keys [160].

• Piccolo is based on a generalized Feistel network and aims to create low over-
head and energy consumption. It processes 64-bit data blocks in 25/31 rounds
for 80/128-bit keys [161].

• PRINCE is designed to provide high throughput and low latency. It is also based
on an SPN, which processes 64-bit data blocks in 12 rounds by using a 128-bit key.
However, unlike other ciphers, it processes a data block in a single cycle [162].

• RECTANGLE is a recent cipher based on an SPN. It processes 64-bit data blocks in
25 rounds, using 80 or 128-bit keys. It is specially developed for RFID tags, sensor
nodes, and smart cards [163].

Table 6.1 compares the lightweight ciphers (and an AES implementation for refer-
ence). The data is taken from [164]. The ciphers are presented in the first column. The
letter (D) signifies integrated decryption capabilities (i.e., the same component can en-
crypt and decrypt; hence, no extra component with the inverse operation is needed).

6.1. PROTECTION THROUGH MEMORY VERIFICATION

6

91

Cipher Key Block Cycles/block Throughput Area (GE) Efficiency (kbps/KGE)
AES 128 128 226 48 11031 4.35
mCrypton (D) 128 64 13 492.3 4108 119.83
PRESENT 80 64 31 206 2195 93.84
Piccolo (D) 128 64 33 193.8 1362 142.32
PRINCE 128 64 12 533.3 2953 180.59
RECTANGLE 128 64 26 246 1787 137.66

Table 6.1: Comparison of Lightweight Ciphers

The green-colored cells show the best values among the ciphers for the criteria and area
measures are in GE. According to the results, PRINCE is the most efficient cipher for
throughput per area. An important point is that only mCrypton and Piccolo have in-
cluded decryption capabilities in the cipher. But still, PRINCE can basically use the same
hardware for decryption. As a result, we select PRINCE as the block cipher.

Lightweight Hash/MAC Functions: A hash function maps an input to a fixed-length
value, which is typically used for integrity checking. A MAC is a hash function that uses
a key, and thus, can also verify the authenticity of the data as well. As it is the case for
block ciphers, lightweight hash and MAC functions require limited resources. A well-
known standardized hash function is SHA-3. It is faster than its predecessors SHA-1 and
SHA-2, but has a considerably large hardware overhead. The area-optimized variants of
SHA-3 still suffer from a large delay. Hence, new lightweight functions were developed
to address these issues. The ones that we consider are described next.

• ARMADILLO is a general-purpose cryptographic function, which can also be used
as a hash. It is especially aimed at RFID tags [165].

• PHOTON is a hash function designed for devices with considerable hardware con-
straints. It is efficient in hashing short messages and comes with low area require-
ments [166].

• SPONGENT also targets RFID tags. Its construction is based on the PRESENT block
cipher [167]. Among ARMADILLO and PHOTON, SPONGENT has the lowest area
requirement.

• GLUON also targets RFID tags, as well as embedded sensor networks [168]. In
most studies, it is compared with PHOTON. Although PHOTON is considered to
be more efficient, GLUON is still relevant for practical use.

• SipHash is a dedicated MAC function optimized for short inputs while aiming to
be time efficient in software and area efficient in hardware [169]. It was originally
created to protect servers against hash collision attacks, but is currently also used
in other applications as it is much more efficient than the popular HMAC [170].

• Chaskey is developed as a MAC algorithm [171]. It is designed to provide fast re-
sults for software implementations that run on microcontrollers.

6

92 VERIFICATION-BASED FAULT ATTACK DETECTION

Name Tag size (bits) Block Cycles/block Area (GE)
SHA-3 [172] 256 1600 6750 >6500
ARMADILLO [165] 80 48 44 4030
PHOTON [166] 80 16 132 1168
SPONGENT [167] 88 8 45 1127
GLUON [168] 128 8 66 2071
SipHash [169] 64 64 12 3700
Chaskey [171] 128 128 NA NA

Table 6.2: Comparison of Lightweight Hash Functions

System on Chip

Processor
+

Cache

Address

Data

E
M

S
 M

od
ul

e

Address

Data M
em

or
y

in
te

rfa
ce Address

Data

External
Memory

Figure 6.1: The EMS Concept

Table 6.2 compares these hash functions (with SHA-3 as the reference implemen-
tation [172]). The data in the table is collected from the references provided next to
the lightweight hash functions. Note that only tag sizes smaller or equal to 128-bit are
considered. The green-colored cells indicate the optimal selections and NA indicates
unavailable data. From the table, PHOTON and SPONGENT have the smallest area re-
quirements, mainly due to their small block size. GLUON and SipHash both support
64-bit digests (i.e., tags). On the other hand, SipHash has the fastest implementation. As
a result, we select to use SipHash as the MAC function.

6.1.2. CONCEPT
To protect the confidentiality and integrity of a resource-constrained IoT node, we pro-
pose an EMS module. Figure 6.1 illustrates the idea, where the location of the proposed
module is highlighted with green. It is located between the processor (and caches) and
the memory interface to secure data flow. In their perspectives, the module acts as a
transparent buffer. It gets the incoming data from processor/memory, processes them,
and relates them to memory/processor.

The module ensures data confidentiality, integrity, and authenticity (i.e., prevents
running tampered code or code from another device). The module encrypts data and
stores MAC tags to guarantee the correctness of data, while the processor (and the inter-
nal caches) work on unencrypted data, whose integrity was verified by the module.

6.1.3. DESIGN
Figure 6.2 presents an in-depth look into the module and its blocks. The following ex-
ample provides an illustration of its functionality.

6.1. PROTECTION THROUGH MEMORY VERIFICATION

6

93

CONTROL
(FINITE STATE MACHINE)

Input buffer Data
From Mem

=

Controls
From/To
Mem

Controls
From/To
Caches

Dec

MAC check

Data
To
Caches

Data
From
Caches

Data
To Mem

MAC Function

UNIQUE KEY

Enc

EMS

Flash

DRAM

…

Flash

DRAM

…

MEM PORTS

Flash

DRAM

…

Output buffer

Figure 6.2: The EMS Architecture

When the system powers up, the processor starts requesting data from the external
memory. In some cases, the first execution code comes from an internal memory, known
as the boot memory, which is responsible for providing initialization instructions. When
this finishes, the processor is ready to load the OS from the non-volatile memory (e.g.,
flash) and store it in the main memory (e.g., DRAM). Any memory request from the pro-
cessor first goes through the cache hierarchy. After the power-up, this hierarchy is empty
and therefore, any data requests result in a cache miss and an access to the external
memory. In a system with our EMS module, the requests from the LLC go first through
the EMS, which then translates these requests to the respective memory controller (e.g,
flash or DRAM). When the data from the memory arrives, it is first processed by the EMS
module, where the MAC of this data is calculated. In parallel, EMS requests the MAC
value of the data from the memory, where the tags are stored in a specific location. When
the calculated and received MACs become available, the integrity and authenticity of the
data are validated; and the data can proceed to the caches/processor.

EMS also provides the option to encrypt and decrypt data. This option should be
enabled if the data on the external memories have to be encrypted to provide confiden-
tiality. When enabled, EMS decrypts the incoming data from the memory after MAC veri-
fication. Likewise, EMS encrypts the data that comes from the processor/LLC, calculates
its MAC, and sends these to the external memories. Note that these cryptographic oper-
ations (i.e., MAC calculation and encryption/decryption) use a unique key. This key can
be created in a number of ways, such as through e-fuses (i.e., the owner burns a unique
identification during the manufacturing process) or by using the PUF technology [173].

It is important to mention that adding these functionalities (i.e., MAC calculation and
encryption/decryption) introduces an impact on the device performance. EMS aims to
minimize this impact by considering lightweight approaches. To be precise, it takes only
one cycle to encrypt or decrypt 128 bits of data, while it takes about 12 cycles to gen-
erate a 64-bit MAC from the same 128-bit data. We also consider that different devices

6

94 VERIFICATION-BASED FAULT ATTACK DETECTION

have different security requirements, and hence, the following subsection presents EMS
variants with different features.

6.1.4. VARIANTS
We construct six variants of EMS. They are described next.

• Unprotected: This variant is the EMS module without the MAC or encryption/decryption
capabilities. Effectively, this variant does not provide data confidentiality and in-
tegrity, as the module is effectively reduced to a bypass module. We use this variant
to create a baseline for security and performance comparisons.

• Cipher: This variant only ensures data confidentiality by just including the en-
cryption/decryption operations, although it also offers some integrity protection.
As there is no MAC calculation, there are no explicit integrity checks of the data
residing on external memories.

• MAC-I: Similarly, this variant ensures data integrity and authenticity by just in-
cluding MAC verification. As there is no encryption or decryption, the data in the
memory can be observed by an unauthorized third party.

Furthermore, this is a naïve implementation. For each word (memory width) stored
in the memory, a MAC is generated and stored in the memory as well at a differ-
ent location. We assume that the external memory consists of 128 bits per word.
As our module (SipHash) generates a 64-bit MAC, it must attach a dummy 64-bit
value to it when storing in the memory. As a result, this process requires doubling
the memory capacity to store the MACs.

• MAC-II: This is a memory-optimized version of the MAC-I variant; it reduces the
memory overhead by 33.3%. Rather than storing one MAC (with padding) per
memory location, this variant stores two MACs in the same memory line. There-
fore, when it wants to save a MAC calculation, it is first necessary to read the MAC
value of the other word in order to not lose information. As a result, there is a
penalty of an extra read operation when performing a writing operation.

• Cipher&MAC-I: This variant ensures data integrity and confidentiality, by includ-
ing both encryption/decryption and MAC calculations. The MAC operation is
done as in MAC-I.

• Cipher&MAC-II: This variant uses the memory-optimized MAC operation of MAC-
II. This is the only difference with Cipher&MAC-I.

6.2. PROTECTION THROUGH SMART REDUNDANCY
This section presents our idea of using smart redundancy, i.e., selective redundancy that
provides maximal protection while reducing the overhead. We again use ANNs as a case
study, as they are now being widely used in security-sensitive operations, such as au-
tonomous driving. Namely, we propose two redundancy schemes for ANNs, where both
use the informative gradient descent algorithm to determine the vulnerable parts with

6.2. PROTECTION THROUGH SMART REDUNDANCY

6

95

different granularities: layer, neuron, and weight. This is a more efficient way of protect-
ing the ANN than DMR.

The remainder of this section is as follows. First, Section 6.2.1 presents the concept
of our two redundancy schemes. Then, Section 6.2.2 describes how this concept can be
applied to ANNs. Finally, Section 6.2.3 discusses the software and hardware implemen-
tations of this protection.

6.2.1. CONCEPT
Our assumptions in the threat model (see Section 3.2.2) dictate that a successful fault
attack occurs when a normally correct classification becomes faulty during inference.
Accordingly, we want to minimize the attacker’s success rate. This can be achieved by
identifying and protecting the most vulnerable elements of the ANN. We propose to use
the gradient descent algorithm to identify these parts. The remainder of this subsection
elaborates on why and how this can be performed.

ANNs map a given input (e.g., images) to a target output (e.g., labels). To achieve that,
ANNs are trained with a set of input-output pairs. If the actual ANN output is different
than the target, its weights are updated with a predetermined learning rule. The general
update rule is defined in Equation 6.1; where w represents a weight, t the target output,
and o the actual output. The end result ŵ is the new or updated value of the weight.

ŵ = w + f(t −o). (6.1)

The essence of Equation 6.1 is to calculate the weight update as a function of the dif-
ference between t and o, which basically specifies the error. To determine the function
f, the gradient descent algorithm is commonly used. It suggests that f should steer the
update in the negative gradient of the error, i.e.,

ŵ = w +α∂(t −o)

∂w
. (6.2)

In this equation,α is a scalar between 0 and 1 called the learning rate; and also the equa-
tion is simplified without a loss of generality (i.e., the error is generally defined as a func-
tion of (t −o) such as 0.5(t −o)2).

Our method, the gradient descent-based impact analysis, depends on the second ad-
ditive operand of Equation 6.2. We suggest processing the updates per weight over a
set of images after training is completed. To elaborate, in this method, we assign the
impact of weights based on (i) the absolute summation of the updates, or (ii) the vari-
ance of the updates. The first scheme assumes that the most impactful weight is the one
that requires the largest update (i.e., this weight contributes the most), while the second
scheme assumes that it is the one with the most variation (i.e., this weight needs to be
updated with conflicting values for different inputs and hence, may have a larger impact
on the classification). We refer to these protection schemes as summation and variation.
Algorithms 6 and 7 show in more detail how the weight impacts can be obtained for both
schemes, respectively.

Both algorithms are separated into three operational steps. Step 1 initializes the im-
pact matrix i mp (that holds all the weight impact values) with zeros. Step 2 calculates
the inference output with the forward pass. Next, it calculates the weight updates with

6

96 VERIFICATION-BASED FAULT ATTACK DETECTION

Algorithm 6 Pseudo-Code of the Summation Scheme

Input: Input set i nput , target output set per input t , ANN ann
Output: Impact value per weight i mp

1: for each i mp j ,k,l in i mp do ▷ step 1: begin
2: i mp j ,k,l ← 0
3: end for ▷ step1: end
4: for each i nputi in i nput do
5: o ← forwardPass(ann, i nputi) ▷ step2: begin
6: up ← backwardPass(ann,o, ti) ▷ step2: end
7: for each i mp j ,k,l in i mp do ▷ step3: begin
8: i mp j ,k,l ← i mp j ,k,l +abs(up j ,k,l)
9: end for ▷ step3: end

10: end for

Algorithm 7 Pseudo-Code of the Variance Scheme

Input: Input set i nput , target output set per input t , ANN ann
Output: Impact value per weight i mp

1: for each i mp j ,k,l in i mp do ▷ step 1: begin
2: i mp j ,k,l ← 0
3: end for ▷ step1: end
4: for each i nputi in i nput do
5: o ← forwardPass(ann, i nputi) ▷ step2: begin
6: up ← backwardPass(ann,o, ti) ▷ step2: end
7: for each i mp j ,k,l in i mp do ▷ step3: begin
8: if i = 0 then
9: m j ,k,l ← up j ,k,l

10: else
11: mnew ← m j ,k,l + (up j ,k,l −m j ,k,l)/i
12: i mp j ,k,l ← i mp j ,k,l + (up j ,k,l −m j ,k,l)× (up j ,k,l −mnew)
13: m j ,k,l ← mnew

14: end if
15: end for ▷ step3: end
16: end for

the backward pass. These operations are performed for each input and are identical
in both schemes. Finally, step 3 of the summation scheme updates the impact matrix
elements by adding the absolute values of the newly calculated updates. Step 3 of the
variance scheme on the other hand uses Welford’s algorithm for calculating the running
mean and variance, which removes the need to store all input samples [174]. In the end,
each position of the impact matrix holds a certain multiple (equal to the number of pro-
cessed images) of the variance of the corresponding weight updates. We omit to divide
all elements by this multiple, as we are interested in ordering rather than exact calcula-
tions.

6.3. EXPERIMENTATION FOR MEMORY VERIFICATION-BASED PROTECTION

6

97

6.2.2. APPLICATION

The previous subsection provided two ways to determine the impact of weights (or equally
their vulnerability against faults) in an ANN using the gradient descent algorithm. In a
computational system, however, it can also be beneficial to add redundancy at the neu-
ron level or even for an entire layer. Equation 6.3 shows how we determine a neuron’s
impact (i.e., neuron k̂ in layer ĵ), based on the impacts of the weights that the neuron
consists of. Similarly, Equation 6.4 shows this for an entire layer (i.e., layer ĵ).

i mp ĵ ,k̂ =
L∑

l=1
i mp ĵ ,k̂,l , (6.3)

i mp ĵ =
K∑

k=1
i mp ĵ ,k =

K∑
k=1

L∑
l=1

i mp ĵ ,k,l . (6.4)

In Equations 6.3 and 6.4, K represents the total number of neurons in layer ĵ and L the
total number of weights (and bias) in neuron k̂ in layer ĵ .

For each of the two proposed variants, it is possible to protect a portion of layers,
neurons, or weights in an ANN. First, a subset of the dataset is used to create an im-
pact/vulnerability analysis of each of the elements: layers, neurons, and weights. This
is done in software for a trained ANN, before the deployment of the device. Next, we
select which type and the number of elements to protect (with a redundancy ratio as
0 < r atr ed ≤ 1). In the ANN, the redundancy is only applied to the most vulnerable ele-
ments.

6.2.3. IMPLEMENTATION

Safety critical ANNs can either be deployed in software or in hardware [175]. Hence, it is
important to consider both cases. In software, our method should be employed in time,
i.e., the selected operations (e.g., for weights, neurons, or layers) for protection should
be repeated in time. When the device to be protected is an ANN accelerator in hardware,
the redundancy is achieved by hardware duplication, i.e., based on the selected redun-
dancy level, either determined weights, neurons, or entire layers should be duplicated in
hardware.

Estimating the approximate overhead for both cases is also straightforward: in soft-
ware, the expected delay is r atr ed × normal operation and in hardware, the expected
area/resource utilization overhead is r atr ed ×normal utilization. Note that r atr ed rep-
resents the ratio of redundancy that is applied.

6.3. EXPERIMENTATION FOR MEMORY VERIFICATION-BASED PRO-
TECTION

This section describes the experimentation we conduct to measure various metrics of
the EMS. First, Section 6.3.1 describes the experimental setup. Next, Section 6.3.2 presents
the experimentation we conduct. Finally, Section 6.3.3 provides the results of the per-
formed experiments, as well as the hardware overhead.

6

98 VERIFICATION-BASED FAULT ATTACK DETECTION

6.3.1. EXPERIMENTAL SETUP
We implement all variants of EMS in hardware using Verilog HDL and integrate them
in our SoC using the CV32E40P core (formerly RI5CY) [176] as the main processor. Our
SoC contains UART serial interface, timers, and a parametrizable set-associative cache
(L1), all interconnected through an AMBA AHB bus. For the experiments, we consider
different cache sizes: 4-way set-associative of 2, 4, 8, and 16kB. Additionally, we imple-
ment a main memory using BRAMs with a latency of 100 clock cycles to imitate typical
external DRAM behavior [177]. A single address in the main memory stores 128 bits of
data, which also corresponds to a single cache line in our platform.

For implementation and simulations, we use Xilinx Vivado 2019.2. We synthesize the
designs and emulate them on the PYNQ-Z1 board [178]. We perform simulations to eval-
uate the security using three attack cases: i) fault/code/data injection, ii) rogue memory,
and iii) replay attack. We emulate to measure the performance by running the SoC with
our EMS module on the FPGA while measuring execution times with an internal timer.
In these measurements, we use different applications from a public repository of RISC-V
benchmarks [179]. They are listed and described below.

• Median applies a one-dimensional median filter over a 400-element input array.
Then it compares the result with another input array for validation. If they do not
match, an error is signaled.

• Multiply performs an element-wise multiplication between two arrays with a size
of 100 elements. Each multiplication is implemented with a shift-and-add algo-
rithm. Like Median, it compares the result with a provided input result array and
returns an error if the arrays do not match.

• Qsort implements the quicksort algorithm on a 2048-element input array where
the sorting is performed in ascending order [180]. Finally, it compares the result
with a validation array and returns the result. This benchmark features the most
computationally intensive operation over the ones that we consider.

• Towers is a computationally intensive algorithm without inputs. It calculates the
moves required to solve the Towers of Hanoi puzzle with 10 rings [181].

• Vvadd is similar to Multiply, except it accomplishes element-wise addition over a
300-element input array. As such, it is not a computationally intensive benchmark.

6.3.2. PERFORMED EXPERIMENTS
This subsection details the experiments we performed. These experiments (i) evaluate
the EMS security against common attacks and (ii) analyze the performance penalty that
EMS incurs. We conduct a separate experiment for each goal.

Instead of using our fault models (Section 3.3) in this experimentation, we focus
on well-known and applicable attacks. The resulting evaluation of these attacks is also
straightforward. These are described next.

Experiment 1 - Security Evaluation: The security evaluation tests the effectiveness
of the EMS module against attacks. For this, we test our module under three different

6.3. EXPERIMENTATION FOR MEMORY VERIFICATION-BASED PROTECTION

6

99

common attack scenarios. In all scenarios, we assume an attacker targeting the exter-
nal memory in order to tamper with the running software. We do not cover attacks
against the processor or its caches, so we consider the processor as trusted. We fur-
ther assume that our target IoT environment implements all known security measures
to prevent network-based attacks.

1. Fault/Code/Data injection. Our main concern is an attacker that is able to run ma-
licious code in an IoT device. The attacker can achieve this with either fault, code,
or data injection.

All these can be simulated by injecting faults or data in the memory, especially by
targeting the parts used for storing instructions. Therefore, we flip random bits in
10 instruction memory locations, during a run of the Median benchmark (see Sec-
tion 6.3.1). The attack is investigated on three EMS variants: unprotected, cipher,
and MAC-I (see Section 6.1.4). This is because MAC-II and cipher&MAC-II are area
optimizations without any effect on security (this is also the case for the other at-
tack scenarios). The cipher&MAC-I is not investigated either against this attack, as
the security results for that variant can be derived from cipher and MAC-I.

2. Rogue memory. A rogue memory attack refers to changing the contents of a mem-
ory or even swapping the memory chip with another one. This can result in the
execution of malicious applications in an unprotected system. This attack is dis-
cussed with a sample application.

3. Replay attacks. In this attack, the attacker manipulates the same memory by re-
verting it to an earlier (possibly vulnerable) state. Thus, the attacker has access to
a collection of valid MACs, which makes the detection harder. However, this attack
is also more complicated and limits the attacker in executing custom instructions.
Here, the MAC-II variant is also included, as different memory usage creates a dif-
ference in security with MAC-I.

Experiment 2 - Performance Penalty Analysis: We evaluate the performance penalty
of our EMS module based on the execution time metric. This is the total elapsed time of
a benchmark application, from start to finish. As the elapsed time value for a benchmark
is data-dependent, we provide the same inputs to all variants and take the average of 10
runs. We also investigate different cache sizes.

6.3.3. RESULTS
The following presents the results of the described experiments in the previous subsec-
tion.

Experiment 1: Figure 6.3 shows results of the fault/code/data injection attack on three
EMS module variants.

In (a) - unprotected, the time frame surrounded by a box with the number 1 indicates
where a glitch took place. The processor deviates from the intended behavior some cy-
cles later, as shown by the signals in the box with the number 2. In this time window, the
processor seemingly reads and writes random data, and does not perform the correct

6

100 VERIFICATION-BASED FAULT ATTACK DETECTION

(a)

(b)

(c)

Figure 6.3: Evaluation Results of Fault/Code/Data Injection Attacks on EMS Variants: (a) Unprotected, (b)
Cipher, and (c) MAC-I

behavior. In (b) - cipher, after the alteration of the memory line during the time win-
dow denoted by box 1, the decryption of the following encrypted instruction from the
instruction memory leads to an illegal instruction. This results later in a crash and con-
sequently, any further operations are halted (as observed in the time frame surrounded
by box 3). In (c) - MAC-I, which includes the MAC-based memory integrity check, the
glitched memory (in time frame 1) is immediately detected during time frame 2 and the
processor stops executing this application in a controlled manner. The glitch is detected
as the calculated and read (from memory) MAC values do not match.

The rogue memory attack against the unprotected variant is trivial and works every
time. In this case, the processor executes the tampered program without any crashes
or halts. For the cipher case, this attack is not possible as the attacker does not possess
the encryption/decryption key of the EMS module. Thus, the result is the same as the
fault attack case, where the processor encounters invalid instructions due to incorrect
decryption (see Figure 6.3 (b)). Lastly, this attack also does not work for the MAC-I case,
as the attacker does not possess the MAC key. Hence, operations loaded from the rogue
memory will not be validated by the MAC block. Consequently, the results for this case
are identical to the fault attack case (see Figure 6.3 (c)).

Figure 6.4 shows the evaluation results of four variants under a replay attack. On the
figure, the attack always occurs at the time frame denoted by box 1. The attack modi-
fies the contents of one particular memory address. The unprotected variant continues
the execution as usual, as indicated by the box in time window 2. In cipher case (b),
the swapped memory content still leads to a valid instruction. Hence, the signals dur-

6.3. EXPERIMENTATION FOR MEMORY VERIFICATION-BASED PROTECTION

6

101

(a)

(b)

(c)

(d)

Figure 6.4: Evaluation Results of Replay Attacks on EMS Variants: (a) Unprotected, (b) Cipher, (c) MAC-I, (d)
MAC-II

ing the window surrounded by box 2 show identical behavior to the unprotected variant.
The only difference from the unprotected case is that address and data signals from the
memory are different. This slight difference is caused by the influence of EMS. In the
MAC-I case (c) however, the hash block recognizes the mismatch between the MAC val-
ues and halts the operation. Here, a special case occurs for the MAC-II case (d). If the
attacker is able to replace both the data and the corresponding hash in the memory, the
attack succeeds and the processor continues the execution as normal. This last case can
only be avoided if EMS also adds timestamps to the MAC values: a feature that does
not exist in our current EMS version. Note that it is not very practical to perform replay
attacks on encrypted content, as the attacker should know what the encrypted content
represents in order to effectively reuse it.

6

102 VERIFICATION-BASED FAULT ATTACK DETECTION

Unprotected Cipher
2kB 4kB 8kB 16kB 2kB 4kB 8kB 16kB

Median 678 401 277 277 709 (4.6%) 412 (2.7%) 279 (0.7%) 279 (0.7%)
Multiply 751 751 751 751 752 (0.1%) 752 (0.1%) 752 (0.1%) 752 (0.1%)
Qsort 10965 9606 7588 6625 11345 (3.5%) 9891 (2.9%) 7731 (1.9%) 6701 (1.1%)
Towers 2811 2811 2811 2811 2812 (0.1%) 2812 (0.1%) 2812 (0.1%) 2812 (0.1%)
Vvadd 564 308 172 172 593 (5.1%) 320 (3.9%) 174 (1.2%) 174 (1.2%)

MAC-I MAC-II
2kB 4kB 8kB 16kB 2kB 4kB 8kB 16kB

Median 1250 (84.3%) 606 (51.1%) 319 (15.2%) 319 (15.2%) 1355 (99.8%) 638 (59.1%) 319 (15.6%) 319 (15.6%)
Multiply 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%)
Qsort 17998 (64.1%) 14874 (54.8%) 10229 (34.8%) 8028 (21.2%) 20000 (82.4%) 16265 (69.3%) 10786 (42.1%) 8038 (21.3%)
Towers 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%)
Vvadd 1112 (97.1%) 527 (71.1%) 214 (24.4%) 214 (24.4%) 1189 (110.8%) 554 (79.9%) 214 (24.4%) 214 (24.4%)

Cipher&MAC-I Cipher&MAC-II
2kB 4kB 8kB 16kB 2kB 4kB 8kB 16kB

Median 1268 (87.0%) 612 (52.6%) 320 (15.0%) 320 (15.0%) 1372 (102.3%) 644 (60.6%) 320 (15.5%) 320 (15.5%)
Multiply 768 (2.3%) 768 (2.3%) 768 (2.3%) 768 (2.3%) 768 (2.2%) 768 (2.2%) 768 (2.2%) 768 (2.2%)
Qsort 18215 (66.1%) 15036 (56.3%) 10310 (35.9%) 8071 (21.8%) 20217 (84.3%) 16428 (71.0%) 10867 (43.2%) 8081 (21.9%)
Towers 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%)
Vvadd 1129 (100.1%) 533 (73.1%) 215 (25.0%) 215 (25.0%) 1206 (113.8%) 560 (81.8%) 215 (25.0%) 215 (25.0%)

Table 6.3: Results of Experiment 2 - Performance Penalty

Experiment 2: Table 6.3 shows benchmark execution times (in µs) for the EMS vari-
ants, where the additional time percentage is included for variations other than the un-
protected. In the table, kB represents the cache size and NA unavailable data.

As observable from the table, the full protection schemes (cipher&MAC-I and II) in-
troduce a delay in the execution time; especially for Median, Qsort, and Vvadd. However,
this delay reduces when the cache size increases. Furthermore, variants of cipher, MAC-I
and II introduce considerably less delay.

The size of the cache that is needed for a program to reduce the miss rate and hence
the execution time depends on the amount of data that needs to be processed and in
which order data is accessed. Based on the execution time of the unprotected case, it is
reasonable to assume that a system running these applications would come with an 8kB
cache, as the execution times do not improve much for higher cache sizes. For this par-
ticular cache size configuration, the overhead introduced by the full functionality EMS
(cipher&MAC-I) is between 0.3% and 35%.

Hardware Overhead: In order to determine the hardware area and timing require-
ments, we synthesized all EMS variants, along with the processor (CV32E40P core [176])
in a PYNQ-Z1 FPGA [178] (see Section 6.3.1).

Table 6.4 shows the results for all EMS variants except for the unprotected case, as
well as a cost breakdown. The platform is with 2kB and 16-way caches. In the table, the
additional overhead is included as a percentage.
As expected, the full protection variant creates the most overhead. However, it is limited,
as none of our EMS variations have an area overhead of more than 14%.

To further verify that our solution is lightweight, we compare the overhead of the full
protection cipher&MAC-II with state-of-the-art solutions. Table 6.5 shows the results.
They indicate that while EMS uses slightly more LUTs, it requires fewer registers. Our
module also does not require any block RAM usage. Overall, the usage is very similar to
the state-of-the-art solutions, if not less. This is because the table only shows the syn-
thesis results of the core elements of the state-of-the-art solutions. These do not include

6.4. EXPERIMENTATION FOR SMART REDUNDANCY-BASED PROTECTION

6

103

Slice LUTs Slice Registers EMS @ 25MHz RAM capacity
lost to MAC

Cipher
Full platform 35176, +9.7% 45025, +2.6% 4.30ns 0.0%
EMS module (x2) 2090 560
Prince core 1905 130
MAC-I
Full platform 34003, +6.1% 46056, +4.9% 3.88ns 50.0%
EMS module (x2) 1505 1084
SipHash core 863 467
MAC-II
Full platform 34197, +6.7% 46461, +5.9% 4.38ns 33.3%
EMS module (x2) 1596 1277
SipHash core 851 467
Cipher&MAC-I
Full platform 36126, +12.6% 46589, +6.2% 4.21ns 50.0%
EMS module (x2) 2563 1346
Prince core 1526 130
SipHash core 762 467
Cipher&MAC-II
Full platform 36427, +13.6% 46983, +7.1% 1.75ns 33.3%
EMS module (x2) 2713 1539
Prince core 1590 130
SipHash core 847 467

Table 6.4: Hardware Overhead of EMS Variations

Slice LUTs Slice Registers BRAM
Cipher&MAC-II 2713 (100%) 1539 (100%) 0
Prince core 1590 130 0
SipHash core 847 467 0
GCM-AES [182] 2670 (98%) 1568 (102%) 5
SHA-256 [183] 2027 (75%) 1830 (119%) 0

Table 6.5: Overhead Comparison of EMS with the State of the Art

control and internal buffers.

6.4. EXPERIMENTATION FOR SMART REDUNDANCY-BASED PRO-
TECTION

This section describes the experiments we conduct to measure the protection of our
smart redundancy schemes. First, Section 6.4.1 describes the experimental setup. Next,
Section 6.4.2 describes the experiments we perform. Finally, Section 6.4.3 presents the
results of these experiments.

6

104 VERIFICATION-BASED FAULT ATTACK DETECTION

6.4.1. EXPERIMENTAL SETUP
The setup for testing our smart redundancy for ANNs is very similar to our ANN inference-
based detectors (see Section 5.4.1). We again use AlexNet, VGG (CNN S), and GoogleNet;
all pre-trained on ImageNet. As the dataset, we again use the validation repository of the
ImageNet challenge.

We similarly conduct all the experimentation in Python, using the Caffe toolbox.
AlexNet consists of 8 layers and 11k neurons; and contains 61 million parameters (weights
+ biases). VGG consists of 8 layers, 11k neurons, and contains 103 million parameters.
GoogleNet consists of 58 layers, 8k neurons, and contains 7 million parameters.

Finally, for parameter identification and evaluation purposes, we created two datasets
from the aforementioned validation repository of ImageNet. The first set is called the
calibration set. This set consists of images 1 to 1000 from the repository and is used to
determine which elements of the ANN to protect. The second set, verification set, con-
sists of images from 1001 to 2000 from the repository. We use the verification set to verify
the effectiveness and efficiency of the two schemes.

6.4.2. PERFORMED EXPERIMENTS
This subsection details the experiments we performed to measure the protection of our
smart redundancy schemes. This experimentation aims to achieve the following goals:
(i) validate that our gradient descent-based impact analysis for determining parameter
vulnerabilities is a valid method, (ii) our schemes that are based on this method are in-
deed effective and efficient, and (iii) our schemes compare well against the state of the
art.

In these experiments, we use our Fault Models Set 3 (Section 3.3). Here, we assume
that when a fault affects a protected element, the ANN is able to detect it and optionally
correct it. For example, if redundancy is applied to a certain weight, a fault changing that
weight’s value is considered to be detected. In case redundancy is applied at the neuron
level, a fault affecting any of the input weights or bias of that neuron can be detected. In
case redundancy is applied to a layer, a fault affecting any of the neurons within the layer
can be detected. For evaluation, we use our evaluation for ANN protection (Section 3.4.4)
and report undetected misclassifications for top5 and top1 classifications. These exper-
iments are described next.

Experiment 1 - Comparison with Random Protection: The aim of this experiment is
to show that our method outperforms applying redundancy in a random manner. For
this task, first, we use the calibration set without injecting any faults to calculate the
vulnerable elements, for both summation and variance protection schemes. Next, we
use the verification set while injecting 1, 5, or 10 random faults per image in order to
compare our redundancy schemes with random redundancy at equal cost.

Experiment 2 - Comparison with DMR: The second step is to analyze the performance
of our cost-efficient method against DMR. In our notation, DMR is the case when every
element is protected and naturally it has perfect top1 and top5 protection.

In this experiment, we use our verification set to analyze the average amount of un-
detected faults (out of a total of 3000 - 1000 per 1, 5, and 10 random faults) that cause

6.4. EXPERIMENTATION FOR SMART REDUNDANCY-BASED PROTECTION

6

105

top5 and top1 misclassifications.

Experiment 3 - Comparison with State-of-the-Art Methods: To highlight the com-
petitive performance of our method, we make comparisons with two state-of-the-art
redundancy-based approaches. The first approach duplicates the neurons in the last
hidden layer and divides the weights that connect to the output layer by half. In this way,
they accomplish the same calculation with twice as many last hidden layer neurons, in-
creasing the attack surface [184]. We implemented this method on AlexNet and VGG
(we did not consider GoogleNet in this comparison, as it does not feature a conventional
hidden dense layer). It caused a neuron increase of 39% in AlexNet and 37% in VGG. We
use the verification set images to conduct new fault injection campaigns on them.

The second approach determines the importance of a neuron (i.e., neuron value)
based on the absolute summation of the weights that leave this neuron [185]. This nat-
urally means that neurons in the output layer are of the least importance. On top of this
variant (denoted as [185]-1), they further proposed a second variant where the weight
values are adjusted based on the neuron values they are connected to (denoted as [185]-
2). The authors also provide different methods to construct the redundant network
topology. However, this is out of scope for the current comparison.

6.4.3. RESULTS
This section presents the results of the experiments described in Section 6.4.2.

Experiment 1: Tables 6.6 and 6.7 show the results of both protection schemes for dif-
ferent amounts of protection levels, in terms of undetected faults that affect top5 and
top1 inference results. They are organized as follows: each cell contains two average
values taken from 3000 images (i.e., 1000 per fault scenario); they present the number
of undetected faults that cause a wrong top5 and top1 classification. For each fault
scenario (i.e., 1, 5, or 10 random faults), the same 1000 pictures are used. The results
are further grouped based on the used ANN (i.e., AlexNet, VGG, or GoogleNet), the el-
ements that are protected (i.e., layer, neuron, or weight), and the ratio of redundancy
r atr ed = {0.1,0.3,0.5}. The cells where the proposed schemes are outperformed (i.e.,
have a larger number of undetected faults that caused a misclassification) by the ran-
dom redundancy are indicated in red.

From the tables, it can be observed that our schemes outperform random redun-
dancy in the majority of cases. This is slightly more apparent in the variance scheme. In
the instances where the random scheme provides better coverage against faults, similar
results have been obtained for our schemes. For example, the variance scheme missed
approximately 44 top5 inference-affecting faults when 10% of the layers were replicated
in VGG (8 layers×0.1 = 0.8 ≈ 1). The random variant only outperforms this by 3.3 fewer
faults on average. However, especially for a larger redundancy ratio r atr ed , our schemes
provide a significant improvement, reducing the number of missed faults that cause mis-
classifications by multiple factors.

Experiment 2: The previous experiment showed that our schemes generally outper-
form random redundancy at the same cost. In this experiment, we use neuron-based re-

6

106 VERIFICATION-BASED FAULT ATTACK DETECTION

network r atr ed = 0.1
random summation

layer neuron weight layer neuron weight
AlexNet 43.3/31.0 60.3/43.3 57.0/43.7 42.0/29.7 6.3/5.0 8.0/7.3
VGG 43.7/34.7 53.3/41.7 50.3/35.7 47.0/37.3 12.0/8.7 7.0/4.7
GoogleNet 73.7/58.0 79.0/66.7 81.7/61.7 77.0/63.3 79.0/62.7 47.7/37.0

r atr ed = 0.3
random summation

layer neuron weight layer neuron weight
AlexNet 13.7/10.3 15.7/10.3 17.0/12.3 11.3/8.3 4.0/2.7 2.7/2.7
VGG 9.3/6.3 20.7/16.7 19.7/16.0 9.7/6.3 4.3/4.0 4.7/4.0
GoogleNet 23.7/17.0 25.0/19.7 25.3/21.0 17.7/14.7 17.0/12.7 22.3/18.3

r atr ed = 0.5
random summation

layer neuron weight layer neuron weight
AlexNet 9.3/7.0 11.3/8.7 9.7/7.3 6.7/4.3 2.0/1.3 2.0/1.3
VGG 11.7/7.7 11.0/8.0 11.3/8.3 6.3/4.0 1.7/1.0 1.3/1.7
GoogleNet 15.7/14.3 15.0/13.0 11.7/9.7 10.0/8.7 7.0/6.0 10.7/7.7

Table 6.6: Results of Experiment 1 - Random versus Summation Scheme Comparison (Undetected Misclassifi-
cations - Top5/Top1)

network r atr ed = 0.1
random variance

layer neuron weight layer neuron weight
AlexNet 43.0/27.7 49.3/39.0 52.0/41.3 40.7/27.7 7.7/4.0 12.7/9.0
VGG 41.0/31.3 54.0/41.3 53.3/44.3 44.3/33.3 8.0/5.3 11.0/10.3
GoogleNet 78.3/65.0 86.3/68.0 74.7/56.0 87.7/71.7 77.3/62.0 60.0/46.0

r atr ed = 0.3
random variance

layer neuron weight layer neuron weight
AlexNet 12.3/8.7 21.7/15.3 16.7/12.3 11.3/7.3 3.0/2.3 10.3/8.3
VGG 12.0/8.0 16.3/12.7 18.3/14.0 8.7/5.3 1.3/0.7 6.7/5.7
GoogleNet 24.0/19.0 22.0/17.3 25.0/21.0 22.0/16.7 13.7/10.7 19.7/14.3

r atr ed = 0.5
random variance

layer neuron weight layer neuron weight
AlexNet 11.0/7.7 13.3/9.7 9.7/5.7 9.3/6.0 2.0/1.0 6.0/4.3
VGG 11.3/7.3 14.3/11.3 10.7/7.7 6.7/4.3 2.3/2.3 5.3/3.7
GoogleNet 10.7/9.3 11.7/10.3 16.3/12.7 7.7/5.7 2.0/1.7 16.3/12.3

Table 6.7: Results of Experiment 1 - Random versus Variance Scheme Comparison (Undetected Misclassifica-
tions - Top5/Top1)

6.4. EXPERIMENTATION FOR SMART REDUNDANCY-BASED PROTECTION

6

107

89% 88% 93% 93% 97% 97% 97% 97%

0.1 0.3 0.5 0.8

Figure 6.5: Results of Experiment 2 - Undetected Misclassifications for Unprotected, Random, and Variance
Schemes

dundancy for three configurations: unprotected, random, and our summation scheme
(as the variation scheme performs similarly). Figure 6.5 presents the results only for
AlexNet (without loss of generality), which are grouped as r atr et = {0.1,0.3,0.5,0.8}. Note
that DMR has r atr et = 1 and 0 undetected misclassifications.

There are two important findings from this plot. The first one is related to the ef-
fect of redundancy in protecting ANN. Even for r atr ed = 0.1 and random redundancy,
the protection is able to prevent nearly half of the cases that resulted in misclassifica-
tions. The percentages above the variance scheme (white bars) indicate how many faulty
misclassifications can be detected. For example, for top5 r atr et = {0.1} this equals to
(114.7−6.3)/114.7 ≈ 89%. Overall, we achieve a high detection rate (between 89% and
97% depending on the r atr et). Second, the cost efficiency of our scheme is much better.
Even when r atr ed is small, it prevents the vast majority of misclassifications and per-
forms very similarly to DMR for larger values. Note that protecting 50% of the neurons
almost gives the same protection rate as protecting all neurons.

Experiment 3: Table 6.8 presents the undetected misclassifications using redundancy
at neuron level for r atr ed = 0.3 when 1, 5, and 10 faults are injected; each cell presents
the results for 1000 images. The red cells indicate the cases that the state of the art out-
performs both our schemes. The method [184] has a 37 - 39% overhead. To further
understand the effect of not protecting the output layer in [185], we also include cases
where faults only target the last layer (denoted by l.l.).

From Table 6.8, it is clear that our summation and variance schemes outperform [184]
significantly. The increase in performance becomes more apparent as the number of
injected faults increases. Note also that we use fewer redundant neurons to obtain a
better performance. This however, does not immediately mean that we ensure better
performance with less overhead: our method requires a per neuron checking mecha-
nism while [184] does not. Another concern with [184] is that adjusting weights after
training can become a minor issue, as dividing and multiplying with the same number
can lead to rounding errors, which can affect the ANN inference accuracy. As we only
report undetected misclassifications, we do not take this issue into consideration.

6

108 VERIFICATION-BASED FAULT ATTACK DETECTION

r atr ed 0.37 - 0.39 0.3
network #faults [184] [185]-1 [185]-2 sum. var.

AlexNet

1 23/19 13/13 8/5 12/8 9/7
1 (l.l.) 26/18 16/10 15/14 18/18 9/6

5 113/88 0/1 0/0 0/0 0/0
5 (l.l.) 44/36 33/26 33/25 36/30 5/6

10 213/155 0/0 0/0 0/0 0/0
10 (l.l.) 36/34 32/28 30/24 31/28 0/0

VGG

1 37/31 4/3 7/7 13/12 4/2
1 (l.l.) 19/17 16/14 26/27 21/17 11/9

5 121/88 0/0 0/0 0/0 0/0
5 (l.l.) 36/34 29/22 33/25 31/28 5/5

10 220/163 0/0 0/0 0/0 0/0
10 (l.l.) 43/35 35/34 33/30 37/28 0/0

GoogleNet

1 24/21 17/15 25/19 17/10
1 (l.l.) 22/20 24/25 29/27 18/13

5 16/15 7/6 21/14 18/17
5 (l.l.) 55/51 57/50 47/36 10/7

10 6/4 0/0 5/5 6/5
10 (l.l.) 47/38 50/49 54/48 1/1

Table 6.8: Results of Experiment 3 - State of the Art Versus Our Schemes (Undetected Misclassifications)

The improvement is less significant when compared to [185]-1 and [185]-2, but very
significant for the variance scheme when faults are injected to the last layer. Such an
injection is possible: it is either a time or location adjustment for the attacker. Thus, this
is an important improvement over [185]-1/2. Here, it is important to highlight that our
summation scheme performed very poorly when faults are injected into the last layer.

6.5. DISCUSSION
This chapter presented two methods of verification to prevent fault injection attacks:
one based on an interface module and the other on redundancy. The following subsec-
tions describe each method; including strengths, limitations, comparison with the state
of the art, and future work.

6.5.1. DISCUSSION OF THE EMS-BASED MEMORY VERIFICATION
This chapter presented the EMS module that provides data confidentiality, authenticity,
and integrity in IoT node devices. We accomplished this by introducing data encryp-
tion/decryption and MAC calculation blocks between the processor/cache and external
memory. Furthermore, we conducted experiments to show that it is indeed effective
against well-known attacks, while being lightweight. The following highlights the ad-
vantages and limitations of EMS:

• Customization: A strong point of our detector is its customization ability. A spe-
cific variant of our EMS module can be selected based on various factors; such as

6.5. DISCUSSION

6

109

security/privacy requirements, available processing power, used cache sizes, etc.

• Additional hardware security: An effect of storing data encrypted in the exter-
nal memory is that it prevents observability from outside. This makes conducting
side-channel attacks considerably harder if not impossible, as well as some kinds
of fault injection attacks.

• Boot memory optimization: As our module provides security to the external mem-
ory, the boot software can also be placed there and the size of the boot loader can
be significantly reduced if not completely removed. This simplifies the internal
SoC structure and reduces area.

• Applicability: Our module relies on a secure network implementation and as-
sumes that updates do not contain malicious code. This is feasible in IoT, where
secure network and cloud communication can be expected. However, in other dig-
ital device networks, additional protections other than EMS are required to ensure
software integrity.

• Comparison: Throughout the years, several memory protection schemes have
been proposed. They can be classified into three groups: TE environments, remote
attestation, and usage of cryptographic primitives/functions to validate integrity.

An example of a TE environment is ARM TrustZone [186]. A TE uses physical barri-
ers to create two physical zones in a chip: a secure and an insecure zone. Applica-
tions running in the secure zone can access all resources (including those residing
in the insecure zone), but not vice versa. As such, unauthorized data access by in-
secure applications are prevented. However, this kind of countermeasure is simply
ineffective against any kind of hardware tampering.

In the second group, remote attestation is used to verify the integrity of the nodes
by a trusted party. Memory verification can be made with the help of a TPM, which
compares the received data with an already stored and sealed version [187]. This
method however requires a significant amount of bandwidth for regular data ex-
change, which introduces more processing power requirements in the nodes [188].
Furthermore, they are proven to be vulnerable against TOCTTOU attacks, where
an attacker modifies the code between the period of code verification and code
execution [189].

The third group uses cryptographic functions such as encryption to obfuscate mem-
ory contents, as well as secure hash functions to verify the integrity of the data after
decryption. For example in a study, the authors used AES to encrypt memory con-
tents. Additionally, they used a SHA-1-based [190] hash-tree for verification [191].
Another study developed a protection module that encrypts stored memory data
and augments it with random tags (that are also stored in the memory), a random
key (different per application), and AES. The verification is done by comparing
the tag field in the decrypted memory content [192]. Another study used AES in
Galois/counter mode for encryption. To provide additional protection, it stores
the timestamps of every memory address on chip. These timestamps are used to

6

110 VERIFICATION-BASED FAULT ATTACK DETECTION

prevent instruction reuse: a common practice in replay attacks [193]. Such protec-
tions indeed offer protection against hardware tampering. However, as these tech-
niques rely on software encryption and decryption, they introduce a large perfor-
mance overhead. In addition, storing these timestamps on chip for each memory
address creates a storage overhead. Thus, these solutions are not as applicable to
IoT as our EMS.

6.5.2. DISCUSSION OF THE SMART REDUNDANCY-BASED ANN INFERENCE

VERIFICATION
In this chapter, we presented two novel schemes based on the gradient descent algo-
rithm, in order to protect ANNs. The following constitute the points of importance of
our smart redundancy method.

• Security: Experimental results on three different networks show that our method
works significantly better than the case where random protection is applied, is
cost-effective when compared to DMR, and improves upon the state of the art.

• Applicability and Generality: The method can be applied to all ANNs, without
costly retraining or altering the network architecture. Furthermore, designers can
apply the same methodology using a different algorithm to identify the vulnerable
parts.

• Comparison: A number of solutions have been presented for the protection of
ANNs against faults. Some ANNs have inherent protection against faults, such as
a Hopfield network with its feedback mechanism [109], and ANNs that are trained
in a fault aware manner [194, 195, 196, 197, 198]. Some schemes select the most fa-
vorable trained weights by assessing ANNs on their fault tolerance [199, 200, 201].
In all these schemes, it is hard to protect the vulnerable parts of the ANN by design.
In contrast, when redundancy schemes are used, designers can pinpoint the parts
they want to protect (e.g., neurons, hidden layers, etc.).

Redundancy can be used in two ways to protect ANNs against faults. In a first way,
redundant elements are added to the network. In some studies, the authors dupli-
cate the number of neurons in the hidden layer of a network after training and ad-
justed the weights to preserve the input-output mapping of the hidden layer [184,
202]. Another replicates both hidden and output layer neurons several times, and
uses them for redundant calculations [203]. There are a number of limitations to
these methods. First, they do not provide overall protection to the whole network.
Second, they are more tailored to the layer structure of MLP, rather than the vari-
ant layers of DNNs. Third, they require customization on the original network,
which is not convenient. Our method addresses all these limitations.

A second and a more thorough way to attain redundancy is to treat ANNs as part
of a system and apply DMR [204] or TMR [205]. Experimental results show that we
can attain similar protection with much less overhead.

• Limitations: Experimental results show that for some configurations, our schemes
perform similarly to random redundancy and state-of-the-art schemes. Further-

6.5. DISCUSSION

6

111

more, our schemes are based on a heuristic, they are not based on theory to at-
tain maximal fault tolerance. Such a derivation and devising protection schemes
based on this understanding would be very beneficial. Furthermore, investigating
neuron correlations and protecting the neurons with the least overall correlation,
which is a method often used in pruning, is another idea with potential.

7
CONCLUSION

7.1 SUMMARY

7.2 FUTURE DIRECTIONS

This dissertation showed many examples where machine learning and smart systems can
be used in fault attack detection, often integrated into hardware. Many of these exam-
ples are first or early studies. The strengths, limitations, and other ideas related to these
methods presented in this thesis show that there is still great potential in this field.

This chapter finalizes the thesis by first summarizing previous chapters. Then, it presents
general future directions.

113

7

114 CONCLUSION

7.1. SUMMARY
This section provides a short summary of each chapter.

7.1.1. INTRODUCTION

This chapter presents the reason why we need novel methods to prevent fault attacks.
First, it describes what these fault attacks are. Then, it highlights what kind of threats
faults attacks pose and how to realize them (i.e., inject faults in hardware). Thereafter,
it presents an overview of what exists in fault attack detection. This chapter is finalized
with the methods this dissertation introduces to prevent fault attacks.

7.1.2. BACKGROUND

This chapter provides the necessary background information to follow the discussion in
the subsequent chapters. First, it describes cryptosystems in general; and RSA and AES,
which we focused on in this dissertation. Next, it provides an overview of the RISC-V
ISA, which we used in many of our experiments. Finally, it gives an overview of machine
learning and the algorithms that we use.

7.1.3. FAULT ATTACK MODELLING AND EVALUATION METHODOLOGY

This chapter is the first contribution of this dissertation. As there is no well-defined fault
modeling and evaluation methodology, this chapter presents our proposal for different
cases. These include fault modeling strategies from threat models (e.g., fault attacks to
RSA implementations or ANNs) and evaluation strategies to measure different perfor-
mance metrics (e.g., fault detection or correction effectiveness).

7.1.4. INSTRUCTION FLOW-BASED FAULT ATTACK DETECTION

This chapter presents our idea that the machine instruction sequences of an application
can be learned as patterns, which enables the detection of instruction faults. Then, it
provides different ways to attain this: by using RNN, CAM, and BF. Furthermore, it shows
how we further correct instructions using Hopfield networks.

7.1.5. SMART SENSOR-BASED FAULT ATTACK DETECTION

This chapter describes how to design smart sensors to detect fault injections of different
types (e.g., voltage or clock glitch). First, it presents the first way to attain it: how we
use RO PUFs as sensitive circuits to various changes indicating fault attacks. Next, it
describes how we designed an operation-based smart sensor, which detects fault attacks
through monitoring outputs or activation rates of ANN layers.

7.1.6. VERIFICATION-BASED FAULT ATTACK DETECTION

This chapter presents the opposite idea of the previous chapters: not attempting to di-
rectly detect faults. Instead, the operation is verified and found inconsistencies indicate
faults. First, it describes our idea of how to use an EMS module to verify the data coming
from external memory. Then, it shows how we can verify an ANN operation by applying
efficient yet effective redundancy, using ANN-based information.

7.2. FUTURE DIRECTIONS

7

115

7.2. FUTURE DIRECTIONS
In this thesis, each chapter that introduced a novel idea includes a discussion section.
They present limitations as well as ways to address them. This section highlights the
recurrent ones and presents them as future research directions.

Inside Processor Fault Injection Detection: All the detection methods this disserta-
tion introduces protect data until the processor. They cannot directly detect faults in-
jected into the processor. However, this can be possible if a similar module considers
intermediate processor signals and validates them. Such a module would require higher
intrusion into the processor and potentially need different (machine learning) methods
to learn their patterns.

Achieving (Theoretically) Maximal ANN Fault Tolerance: Our gradient-based schemes,
as well as state of the art do not provide a formulation to select ANN parameters in a way
to achieve maximal fault attack tolerance in theory. The natural extension of our work is
to make such a derivation. Thereafter, a gradient descent-like algorithm can be used to
iteratively achieve the maximum possible fault tolerance.

Deeper Understanding of ANNs in terms of Fault Tolerance: It is known that ANNs
provide some fault tolerance inherently (e.g., activation functions like ReLU nullifying
faulty results). However, we need a deeper understanding now, as ANNs are being em-
ployed as the key parts of many security-sensitive systems, such as autonomous cars.
Understanding the behavior better would improve fault attack detectors and redundancy
schemes.

Employing More Complex Machine Learning Algorithms in Hardware: One of the
main challenges in this dissertation was to employ machine learning algorithms in hard-
ware modules. Thus, we used simplified versions and avoided complex architectures
like CNNs altogether. However, deep learning showed us that these deeper and com-
plex ANNs can achieve harder tasks. Thus, any new method that helps to employ com-
plex ANNs in hardware (either optimizations, simplifications, or hardware capability en-
hancement) would increase the effectiveness of the methods described in this disserta-
tion.

BIBLIOGRAPHY

[1] Hagai Bar-El et al. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In: Proceed-
ings of the IEEE 94.2 (2006), pp. 370–382.

[2] Andrei Costin. “IoT/Embedded vs. Security: Learn from the Past, Apply to the
Present, Prepare for the Future”. In: Proceedings of Conference of Open Innova-
tions Association FRUCT. FRUCT Oy. 2018.

[3] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and
Tree Search”. In: Nature 529.7587 (2016), pp. 484–489.

[4] Yaniv Leviathan and Yossi Matias. “Google Duplex: an AI System for Accomplish-
ing Real-World Tasks over the Phone”. In: (2018).

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet Classification
with Deep Convolutional Neural Networks”. In: CACM (2017).

[6] Tom Brown et al. “Language Models Are Few-Shot Learners”. In: Advances in Neu-
ral Information Processing Systems 33 (2020), pp. 1877–1901.

[7] Aditya Ramesh et al. “Zero-shot text-to-image generation”. In: International Con-
ference on Machine Learning (ICML). PMLR. 2021, pp. 8821–8831.

[8] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. “Breaking Cryp-
tographic Implementations Using Deep Learning Techniques”. In: International
Conference on Security, Privacy, and Applied Cryptography Engineering. Springer.
2016, pp. 3–26.

[9] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional Neural Net-
works with Data Augmentation against Jitter-based Countermeasures”. In: Inter-
national Conference on Cryptographic Hardware and Embedded Systems. Springer.
2017, pp. 45–68.

[10] Stjepan Picek et al. “Profiled Side-Channel Analysis in the Efficient Attacker Frame-
work”. In: International Conference on Smart Card Research and Advanced Appli-
cations. Springer. 2021, pp. 44–63.

[11] Anders Lyhne Christensen et al. “Fault Detection in Autonomous Robots Based
on Fault Injection and Learning”. In: Autonomous Robots 24.1 (2008), pp. 49–67.

[12] Demetris Stavrou et al. “Fault Detection for Service Mobile Robots Using Model-
based Method”. In: Autonomous Robots 40.2 (2016), pp. 383–394.

[13] In-flight upset - Airbus A330-303, VH-QPA, 154 km West of Learmonth, WA, 7 Oc-
tober 2008. Oct. 2008. URL: https : / / www . atsb . gov . au / publications /
investigation_reports/2008/aair/ao-2008-070.aspx.

117

https://www.atsb.gov.au/publications/investigation_reports/2008/aair/ao-2008-070.aspx
https://www.atsb.gov.au/publications/investigation_reports/2008/aair/ao-2008-070.aspx

118 BIBLIOGRAPHY

[14] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryptosys-
tems”. In: Annual international cryptology conference. Springer. 1997, pp. 513–
525.

[15] Dan Boneh, Richard A DeMillo, and Richard J Lipton. “On the Importance of
Checking Cryptographic Protocols for Faults”. In: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 1997, pp. 37–51.

[16] Feng Bao et al. “Breaking Public Key Cryptosystems on Tamper Resistant Devices
in the Presence of Transient Faults”. In: International Workshop on Security Pro-
tocols. Springer. 1997, pp. 115–124.

[17] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. “Differential Fault Analysis
on AES”. In: International Conference on Applied Cryptography and Network Se-
curity. Springer. 2003, pp. 293–306.

[18] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD”. In: Inter-
national workshop on cryptographic hardware and embedded systems. Springer.
2003, pp. 77–88.

[19] Christophe Giraud. “DFA on AES”. In: International Conference on Advanced En-
cryption Standard. Springer. 2004, pp. 27–41.

[20] David Peacham and Byron Thomas. “DFA against AES Key Expansion”. In: CHES.
2006.

[21] Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. “Differential Fault
Analysis of AES Using a Single Multiple-Byte Fault”. In: Cryptology ePrint Archive
(2010).

[22] Arjen K Lenstra. Memo on RSA Signature Generation in the Presence of Faults.
Tech. rep. 1996.

[23] Johannes Blömer and Jean-Pierre Seifert. “Fault based Cryptanalysis of the Ad-
vanced Encryption Standard (AES)”. In: International Conference on Financial
Cryptography. Springer. 2003, pp. 162–181.

[24] Nahid Farhady Ghalaty et al. “Differential Fault Intensity Analysis”. In: 2014 Work-
shop on Fault Diagnosis and Tolerance in Cryptography. IEEE. 2014, pp. 49–58.

[25] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. “Practical Setup Time Vi-
olation Attacks on AES”. In: 2008 Seventh European Dependable Computing Con-
ference. IEEE. 2008, pp. 91–96.

[26] Alessandro Barenghi et al. “Low Voltage Fault Attacks on the RSA Cryptosystem”.
In: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
IEEE. 2009, pp. 23–31.

[27] Alessandro Barenghi et al. “Low Voltage Fault Attacks to AES”. In: 2010 IEEE In-
ternational Symposium on Hardware-Oriented Security and Trust (HOST). IEEE.
2010, pp. 7–12.

BIBLIOGRAPHY 119

[28] Alessandro Barenghi et al. “Exploring the Feasibility of Low Cost Fault Injection
Attacks on Sub-Threshold Devices through an Example of a 65nm AES Imple-
mentation”. In: International Workshop on Radio Frequency Identification: Secu-
rity and Privacy Issues. Springer. 2011, pp. 48–60.

[29] Michael Hutter, Jorn-Marc Schmidt, and Thomas Plos. “Contact-based Fault In-
jections and Power Analysis on RFID Tags”. In: 2009 European Conference on Cir-
cuit Theory and Design. IEEE. 2009, pp. 409–412.

[30] Frederic Amiel, Christophe Clavier, and Michael Tunstall. “Fault Analysis of DPA-
resistant Algorithms”. In: International Workshop on Fault Diagnosis and Toler-
ance in Cryptography. Springer. 2006, pp. 223–236.

[31] Sudhakar Govindavajhala and Andrew W Appel. “Using Memory Errors to Attack
a Virtual Machine”. In: 2003 Symposium on Security and Privacy, 2003. IEEE. 2003,
pp. 154–165.

[32] Simon Parkinson et al. “Cyber Threats Facing Autonomous and Connected Ve-
hicles: Future challenges”. In: IEEE transactions on intelligent transportation sys-
tems 18.11 (2017), pp. 2898–2915.

[33] An Zhiyuan and Liu Haiyan. “Realization of Buffer Overflow”. In: 2010 Interna-
tional Forum on Information Technology and Applications. Vol. 1. IEEE. 2010,
pp. 347–349.

[34] Yoongu Kim et al. “Flipping Bits in Memory without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors”. In: ACM SIGARCH Computer Archi-
tecture News 42.3 (2014), pp. 361–372.

[35] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. “CLKSCREW: Expos-
ing the Perils of Security-Oblivious Energy Management”. In: USENIX Security
Symposium. Vol. 2. 2017, pp. 1057–1074.

[36] Sergei P Skorobogatov and Ross J Anderson. “Optical Fault Induction Attacks”.
In: International Workshop on Cryptographic Hardware and Embedded Systems.
Springer. 2002, pp. 2–12.

[37] Jörn-Marc Schmidt, Michael Hutter, and Thomas Plos. “Optical Fault Attacks on
AES: A Threat in Violet”. In: 2009 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). IEEE. 2009, pp. 13–22.

[38] Jörn-Marc Schmidt and Michael Hutter. Optical and EM Fault-attacks on CRT-
based RSA: Concrete Results. 2007.

[39] Donald H Habing. “The Use of Lasers to Simulate Radiation-Induced Transients
in Semiconductor Devices and Circuits”. In: IEEE Transactions on Nuclear Science
12.5 (1965), pp. 91–100.

[40] Michel Agoyan et al. “How to Flip a Bit?” In: 2010 IEEE 16th International On-Line
Testing Symposium. IEEE. 2010, pp. 235–239.

[41] Dmytro Petryk et al. “Evaluation of the Sensitivity of RRAM Cells to Optical Fault
Injection Attacks”. In: 2020 23rd Euromicro Conference on Digital System Design
(DSD). IEEE. 2020, pp. 238–245.

120 BIBLIOGRAPHY

[42] Peter Laackmann and Hans Taddiken. Apparatus for Protecting an Integrated Cir-
cuit Formed in a Substrate and Method for Protecting the Circuit against Reverse
Engineering. US Patent 6,798,234. Sept. 2004.

[43] Xuan Thuy Ngo et al. “Cryptographically Secure Shield for Security IPs Protec-
tion”. In: IEEE Transactions on Computers 66.2 (2016), pp. 354–360.

[44] Ruan De Clercq and Ingrid Verbauwhede. “A Survey of Hardware-based Control
Flow Integrity (CFI)”. In: arXiv preprint arXiv:1706.07257 (2017).

[45] Ruan De Clercq et al. “SOFIA: Software and Control Flow Integrity Architecture”.
In: Computers & Security 68 (2017), pp. 16–35.

[46] Mario Werner et al. “Sponge-based Control-Flow Protection for IoT Devices”. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2018,
pp. 214–226.

[47] Olivier Savry, Mustapha El-Majihi, and Thomas Hiscock. “Confidaent: Control
FLow Protection with Instruction and Data Authenticated Encryption”. In: 2020
23rd Euromicro Conference on Digital System Design (DSD). IEEE. 2020, pp. 246–
253.

[48] Jean-Luc Danger et al. “CCFI-Cache: A Transparent and Flexible Hardware Pro-
tection for Code and Control-Flow Integrity”. In: 2018 21st Euromicro Conference
on Digital System Design (DSD). IEEE. 2018, pp. 529–536.

[49] Alessandro Barenghi et al. “Countermeasures against Fault Attacks on Software
Implemented AES: Effectiveness and Cost”. In: Proceedings of the 5th Workshop
on Embedded Systems Security. 2010, pp. 1–10.

[50] Azadeh Mokhtarpour, Amir Mahdi Hosseini Monazzah, and Hamed Farbeh. “PB-
IFMC: A Selective Soft Error Protection Method based on Instruction Fault Mask-
ing Capability”. In: 2020 25th International Computer Conference, Computer So-
ciety of Iran (CSICC). IEEE. 2020, pp. 1–9.

[51] Marc Joye, Pascal Paillier, and Sung-Ming Yen. “Secure Evaluation of Modular
Functions”. In: 2001 International Workshop on Cryptology and Network Secu-
rity. Citeseer. 2001, pp. 227–229.

[52] Mathieu Ciet and Marc Joye. “Practical Fault Countermeasures for Chinese Re-
maindering based RSA”. In: Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC). Vol. 5. Citeseer. 2005, pp. 124–132.

[53] Arnaud Boscher, Helena Handschuh, and Elena Trichina. “Fault Resistant RSA
Signatures: Chinese Remaindering in Both Directions”. In: Cryptology ePrint Archive
(2010).

[54] Sukrat Gupta et al. “SHAKTI-F: A Fault Tolerant Microprocessor Architecture”. In:
2015 IEEE 24th Asian Test Symposium (ATS). IEEE. 2015, pp. 163–168.

[55] Yi-Ju Ke, Yi-Chieh Ghen, and Jng-Jer Huang. “An Integrated Design Environment
of Fault Tolerant Processors with Flexible HW/SW Solutions for Versatile Perfor-
mance/Cost/Coverage Tradeoffs”. In: 2017 International Test Conference in Asia
(ITC-Asia). IEEE. 2017, pp. 162–167.

BIBLIOGRAPHY 121

[56] Lawrence T Clark et al. “A Dual Mode Redundant Approach for Microproces-
sor Soft Error Hardness”. In: IEEE Transactions on Nuclear Science 58.6 (2011),
pp. 3018–3025.

[57] Alireza Rohani and Hans G Kerkhoff. “An On-Line Soft Error Mitigation Tech-
nique for Control Logic of VLIW Processors”. In: 2012 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).
IEEE. 2012, pp. 85–91.

[58] Troya Çağıl Köylü et al. “Deterministic and Statistical Strategies to Protect ANNs
against Fault Injection Attacks”. In: 2021 18th International Conference on Pri-
vacy, Security and Trust (PST). IEEE. 2021, pp. 1–10.

[59] Troya Çağıl Köylü et al. “Instruction Flow-based Detectors against Fault Injection
Attacks”. In: Microprocessors and Microsystems (2022), p. 104638.

[60] Troya Çağil Köylü et al. “Using Hopfield Networks to Correct Instruction Faults”.
In: IEEE 31st Asian Test Symposium (ATS). IEEE. 2022, pp. 102–107.

[61] Troya Çağıl Köylü et al. “A Survey on Machine Learning in Hardware Security”.
In: ACM Journal on Emerging Technologies in Computing Systems (JETC) (2023).

[62] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students
and Practitioners. Springer Science & Business Media, 2009.

[63] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Vol. 2. Springer, 2002.

[64] Christoforus Juan Benvenuto. “Galois Field in Cryptography”. In: University of
Washington 1.1 (2012), pp. 1–11.

[65] Lynn Hathaway. “National Policy on the Use of the Advanced Encryption Stan-
dard (AES) to Protect National Security Systems and National Security Informa-
tion”. In: National Security Agency 23 (2003).

[66] Eric W Weisstein. “Euclidean Algorithm”. In: (2002).

[67] Daniel J Bernstein et al. “Post-Quantum RSA”. In: Post-Quantum Cryptography:
8th International Workshop (PQCrypto). Springer. Utrecht, the Netherlands, 2017,
pp. 311–329.

[68] Computer Security Division Information Technology Laboratory. Post-Quantum
Cryptography Standardization. Jan. 2017. URL: https : / / csrc . nist . gov /
Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization.

[69] Krste Asanović and David A Patterson. “Instruction Sets Should be Free: The case
for RISC-V”. In: EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146 (2014).

[70] PicoRV32 - A Size-Optimized RISC-V CPU. URL: https://github.com/YosysHQ/
picorv32.

[71] Markku-Juhani O Saarinen. “A Lightweight ISA Extension for AES and SM4”. In:
arXiv preprint arXiv:2002.07041 (2020).

[72] Andrew Waterman and Krste Asanovic. “The RISC-V Instruction Set Manual - Vol-
ume I: User-Level ISA Document Version 2.2”. In: RISC-V Foundation (2017).

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32

122 BIBLIOGRAPHY

[73] Yajie Miao, Mohammad Gowayyed, and Florian Metze. “EESEN: End-to-End Speech
Recognition Using Deep RNN Models and WFST-based Decoding”. In: IEEE Work-
shop on Automatic Speech Recognition and Understanding (ASRU). IEEE. 2015,
pp. 167–174.

[74] Junfei Qiu et al. “A Survey of Machine Learning for Big Data Processing”. In:
EURASIP Journal on Advances in Signal Processing 2016.1 (2016), pp. 1–16.

[75] Mohammed Al-Qizwini et al. “Deep Learning Algorithm for Autonomous Driv-
ing Using Googlenet”. In: IEEE Intelligent Vehicles Symposium (IV). IEEE. 2017,
pp. 89–96.

[76] Tom M Mitchell et al. Machine learning. McGraw-Hill Boston, MA: 1997.

[77] Michael I Jordan and David E Rumelhart. “Forward Models: Supervised Learning
with a Distal Teacher”. In: Cognitive Science 16.3 (1992), pp. 307–354.

[78] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Unsupervised Learn-
ing”. In: The Elements of Statistical Learning. Springer, 2009, pp. 485–585.

[79] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforcement
Learning: A Survey”. In: Journal of Artificial Intelligence Research 4 (1996), pp. 237–
285.

[80] Warren S McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Imma-
nent in Nervous Activity”. In: The Bulletin of Mathematical Biophysics 5.4 (1943),
pp. 115–133.

[81] Jun Han and Claudio Moraga. “The Influence of the Sigmoid Function Parame-
ters on the Speed of Backpropagation Learning”. In: International Workshop on
Artificial Neural Networks (IWANN). Springer. 1995, pp. 195–201.

[82] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation Functions in
Neural Networks”. In: Towards Data Science 6.12 (2017), pp. 310–316.

[83] Bing Xu et al. “Empirical Evaluation of Rectified Activations in Convolutional Net-
work”. In: arXiv preprint arXiv:1505.00853 (2015).

[84] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning Repre-
sentations by Back-Propagating Errors”. In: Cognitive Modeling 5.3 (1988), p. 1.

[85] CS231n: Convolutional Neural Networks for Visual Recognition. URL: http://
cs231n.stanford.edu/.

[86] Hong Hui Tan and King Hann Lim. “Vanishing Gradient Mitigation with Deep
Learning Neural Network optimization”. In: 2019 7th International Conference
on Smart Computing & Communications (ICSCC). IEEE. 2019, pp. 1–4.

[87] Yann LeCun et al. “Object Recognition with Gradient-based Learning”. In: Shape,
Contour and Grouping in Computer Vision. Springer, 1999, pp. 319–345.

[88] Jacek M Zurada. Introduction to Artificial Neural Systems. Vol. 8. West Publishing
Company St. Paul, 1992.

[89] Christopher Olah. Understanding LSTM Networks. Aug. 2015. URL: http://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

BIBLIOGRAPHY 123

[90] Sepp Hochreiter et al. Gradient Flow in Recurrent Nets: The Difficulty of Learning
Long-Term Dependencies. 2001.

[91] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neu-
ral Computation 9.8 (1997), pp. 1735–1780.

[92] John J Hopfield. “Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities”. In: PNAS 79.8 (1982), pp. 2554–2558.

[93] Mete Demircigil et al. “On a Model of Associative Memory with Huge Storage Ca-
pacity”. In: Journal of Statistical Physics 168.2 (2017), pp. 288–299.

[94] Hubert Ramsauer et al. “Hopfield Networks is All You Need”. In: arXiv preprint
arXiv:2008.02217 (2020).

[95] Dmitry Krotov and John J Hopfield. “Dense Associative Memory for Pattern Recog-
nition”. In: Advances in Neural Information Processing Systems 29 (2016).

[96] Troya Çağıl Köylü et al. “RNN-based Detection of Fault Attacks on RSA”. In: IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE. 2020, pp. 1–5.

[97] Troya Köylü et al. “Exploiting PUF Variation to Detect Fault Injection Attacks”.
In: 2022 25th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS). IEEE. 2022, pp. 74–79.

[98] Troya Çağıl Köylü, Said Hamdioui, and Mottaqiallah Taouil. “Smart Redundancy
Schemes for ANNs Against Fault Attacks”. In: 2022 IEEE European Test Sympo-
sium (ETS). IEEE. 2022, pp. 1–2.

[99] Mark White. Microelectronics Reliability: Physics-of-Failure based Modeling and
Lifetime Evaluation. Tech. rep. Pasadena, CA: Jet Propulsion Laboratory, National
Aeronautics and Space . . ., 2008.

[100] Michael Bushnell and Vishwani Agrawal. Essentials of Electronic Testing for Digi-
tal, Memory and Mixed-Signal VLSI Circuits. Vol. 17. Springer Science & Business
Media, 2004.

[101] Moritz Fieback. “Testing RRAM and Computation-in-Memory Devices: Defects,
Fault Models, and Test Solutions”. In: (2022).

[102] Xuanle Ren et al. “IC Protection against JTAG-based Attacks”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 38.1 (2018),
pp. 149–162.

[103] Giorgio Di Natale and Osnat Keren. “Nonlinear Codes for Control Flow Check-
ing”. In: IEEE European Test Symposium (ETS). IEEE. 2020, pp. 1–6.

[104] Jakub Breier et al. “SNIFF: Reverse Engineering of Neural Networks with Fault
Attacks”. In: IEEE Transactions on Reliability (2021).

[105] Nicolas Papernot et al. “Crafting Adversarial Input Sequences for Recurrent Neu-
ral Networks”. In: IEEE Military Communications Conference (MILCOM). IEEE.
2016, pp. 49–54.

[106] Yannan Liu et al. “Fault Injection Attack on Deep Neural Network”. In: IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE. 2017, pp. 131–
138.

124 BIBLIOGRAPHY

[107] Jakub Breier et al. “Practical Fault Attack on Deep Neural Networks”. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications Security.
2018, pp. 2204–2206.

[108] Guanpeng Li et al. “Understanding Error Propagation in Deep Learning Neu-
ral Network (DNN) Accelerators and Applications”. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 2017, pp. 1–12.

[109] George Bolt. “Investigating Fault Tolerance in Artificial Neural Networks”. In: (1991).

[110] Alberto Bosio et al. “A Reliability Analysis of a Deep Neural Network”. In: 2019
IEEE Latin American Test Symposium (LATS). IEEE. 2019, pp. 1–6.

[111] The RISC-V Embedded GCC. July 2017. URL: https : / / gnu - mcu - eclipse .
github.io/toolchain/riscv/.

[112] Questa Advanced Simulator. URL: https://www.mentor.com/products/fv/
questa/.

[113] Incisive Enterprise Simulator. URL: https://www.cadence.com/en_US/home/
tools/system-design-and-verification/simulation-and-testbench-
verification/incisive-enterprise-simulator.html.

[114] Ramtilak Vemu and Jacob A Abraham. “CEDA: Control-Flow Error Detection through
Assertions”. In: 12th IEEE International On-Line Testing Symposium (IOLTS). IEEE.
2006, 6–pp.

[115] Jose Rodrigo Azambuja et al. “HETA: Hybrid Error-Detection Technique Using
Assertions”. In: IEEE Transactions on Nuclear Science 60.4 (2013), pp. 2805–2812.

[116] Eduardo Chielle et al. “S-SETA: Selective Software-Only Error-Detection Tech-
nique Using Assertions”. In: IEEE Transactions on Nuclear Science 62.6 (2015),
pp. 3088–3095.

[117] Giorgio Di Natale and Osnat Keren. “Nonlinear Codes for Control Flow Check-
ing”. In: IEEE European Test Symposium (ETS). IEEE. 2020, pp. 1–6.

[118] Azzam Moustapha and Rastko Selmic. “Wireless Sensor Network Modeling Using
Modified Recurrent Neural Networks: Application to Fault Detection”. In: IEEE
Transactions on Instrumentation and Measurement 57.5 (2008), pp. 981–988.

[119] Leandro D Medus et al. “A Novel Systolic Parallel Hardware Architecture for the
FPGA Acceleration of Feedforward Neural Networks”. In: IEEE Access 7 (2019),
pp. 76084–76103.

[120] Kostas Pagiamtzis and Ali Sheikholeslami. “Content-Addressable Memory (CAM)
Circuits and Architectures: A Tutorial and Survey”. In: IEEE journal of solid-state
circuits 41.3 (2006), pp. 712–727.

[121] Andrei Broder and Michael Mitzenmacher. “Network Applications of Bloom Fil-
ters: A Survey”. In: Internet Mathematics 1.4 (2004), pp. 485–509. DOI: 10.1080/
15427951.2004.10129096.

[122] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

https://gnu-mcu-eclipse.github.io/toolchain/riscv/
https://gnu-mcu-eclipse.github.io/toolchain/riscv/
https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096

BIBLIOGRAPHY 125

[123] Glenn Fowler et al. “The FNV Non-Cryptographic Hash Algorithm”. In: IETF-draft
(2011).

[124] Austin Appleby. Murmurhash 2.0. 2008.

[125] Intel Arria 10 FPGAs. URL: https://www.intel.com/content/www/us/en/
products/%20programmable/fpga/arria-10.html.

[126] 7 Series FPGAs Data Sheet: Overview. Sept. 2020. URL: https://www.xilinx.
com/content/dam/xilinx/support/documents/data_sheets/ds180_
7Series_Overview.pdf.

[127] RI5CY: User Manual. Apr. 2019. URL: https://www.pulp- platform.org/
docs/ri5cy_user_manual.pdf.

[128] Abhishek Rhisheekesan, Reiley Jeyapaul, and Aviral Shrivastava. “Control Flow
Checking or Not?(for Soft Errors)”. In: TECS 18.1 (2019), pp. 1–25.

[129] Honorio Martin et al. “Enhancing PUF-based Challenge-Response Sets by Ex-
ploiting Various Background Noise Configurations”. In: Electronics 8.2 (2019).

[130] Stephen Docking and Manoj Sachdev. “A Method to Derive an Equation for the
Oscillation Frequency of a Ring Oscillator”. In: IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 50.2 (2003), pp. 259–264.

[131] Meng-Day Yu and Srinivas Devadas. “Secure and Robust Error Correction for
Physical Unclonable Functions”. In: IEEE Design & Test of Computers 27.1 (2010).

[132] Yansong Gao et al. “PUF Sensor: Exploiting PUF Unreliability for Secure Wire-
less Sensing”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 64.9
(2017).

[133] Chin-Chen Chang et al. “Signature Gateway: Offloading Signature Generation to
IoT Gateway Accelerated by GPU”. In: IEEE Internet of Things Journal 6.3 (2018).

[134] Alric Althoff et al. “Hiding Intermittent Information Leakage with Architectural
Support for Blinking”. In: ISCA. IEEE. 2018.

[135] Roel Maes and Vincent Van Der Leest. “Countering the Effects of Silicon Aging on
SRAM PUFs”. In: HOST. IEEE. 2014.

[136] Si Wang, Wenye Liu, and Chip-Hong Chang. “Fired Neuron Rate Based Decision
Tree for Detection of Adversarial Examples in DNNs”. In: IEEE International Sym-
posium on Circuits and Systems (ISCAS). IEEE. 2020, pp. 1–5.

[137] CW305 Artix FPGA Target. 2016. URL: https://rtfm.newae.com/Targets/
CW305%5C%20Artix%5C%20FPGA/.

[138] CW1173 ChipWhisperer-Lite. 2015. URL: https://rtfm.newae.com/Capture/
ChipWhisperer-Lite/.

[139] Niek Timmers, Albert Spruyt, and Marc Witteman. “Controlling PC on ARM Using
Fault Injection”. In: FDTC. IEEE. 2016.

[140] Ken Chatfield et al. “Return of the Devil in the Details: Delving Deep into Convo-
lutional Nets”. In: arXiv preprint arXiv:1405.3531 (2014).

https://www.intel.com/content/www/us/en/products/%20programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/%20programmable/fpga/arria-10.html
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds180_7Series_Overview.pdf
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://rtfm.newae.com/Targets/CW305%5C%20Artix%5C%20FPGA/
https://rtfm.newae.com/Targets/CW305%5C%20Artix%5C%20FPGA/
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/

126 BIBLIOGRAPHY

[141] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 1–9.

[142] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI:
10.1007/s11263-015-0816-y.

[143] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embed-
ding”. In: arXiv preprint arXiv:1408.5093 (2014).

[144] Chen Zhang et al. “Optimizing FPGA-based Accelerator Design for Deep Con-
volutional Neural Networks”. In: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2015.

[145] Xilinx Virtex-7 FPGA VC707 Evaluation Kit. Xilinx. 2021.

[146] Mariusz Bojarski et al. “End-to-End Learning for Self-Driving Cars”. In: arXiv
preprint arXiv:1604.07316 (2016).

[147] Rohini Jaychandre Gillela. “Design of Hardware CNN Accelerators for Audio and
Image Classification”. In: (2020).

[148] Shahin Tajik et al. “PUFMON: Security Monitoring of FPGAs Using Physically Un-
clonable Functions”. In: International Symposium on On-Line Testing and Robust
System Design (IOLTS). IEEE. 2017.

[149] Wei He et al. “Ring Oscillator Under Laser: Potential of PLL-based Countermea-
sure against Laser Fault Injection”. In: Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC). IEEE. 2016.

[150] Wei He, Jakub Breier, and Shivam Bhasin. “Cheap and Cheerful: A Low-Cost Dig-
ital Sensor for Detecting Laser Fault Injection Attacks”. In: International Confer-
ence on Security, Privacy, and Applied Cryptography Engineering. Springer. 2016.

[151] Kun Sun, Peng Ning, and Cliff Wang. “Fault-Tolerant Cluster-wise Clock Synchro-
nization for Wireless Sensor Networks”. In: IEEE Transactions on Dependable and
Secure Computing 2.3 (2005).

[152] Kenneth M Zick et al. “Sensing Nanosecond-Scale Voltage Attacks and Natural
Transients in FPGAs”. In: Proceedings of the ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays. 2013.

[153] Chinmay Deshpande et al. “A Configurable and Lightweight Timing Monitor for
Fault Attack Detection”. In: IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE. 2016.

[154] Koichi Shimizu, Takeshi Sugawara, and Daisuke Suzuki. “PUF as a Sensor”. In:
Global Conference on Consumer Electronics (GCCE). IEEE. 2015.

[155] Ghaith Hammouri, Kahraman Akdemir, and Berk Sunar. “Novel PUF-based Er-
ror Detection Methods in Finite State Machines”. In: International Conference on
Information Security and Cryptology. Springer. 2008.

[156] Yuan Yao et al. “Programmable RO (PRO): A Multipurpose Countermeasure against
Side-Channel and Fault Injection Attack”. In: arXiv preprint arXiv:2106.13784 (2021).

https://doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY 127

[157] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. “FT-ClipAct:
Resilience Analysis of Deep Neural Networks and Improving Their Fault Toler-
ance Using Clipped Activation”. In: Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE. 2020, pp. 1241–1246.

[158] Troya Çağıl Köylü et al. “Protecting IoT Devices through a Hardware-driven Mem-
ory Verification”. In: 24th Euromicro Conference on Digital System Design (DSD).
IEEE. 2021, pp. 115–122.

[159] Chae Hoon Lim and Tymur Korkishko. “mCrypton – A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors”. In: International Workshop on
Information Security Applications. Springer. 2005, pp. 243–258.

[160] Andrey Bogdanov et al. “PRESENT: An Ultra-Lightweight Block Cipher”. In: Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES).
Springer. 2007, pp. 450–466.

[161] Kyoji Shibutani et al. “Piccolo: An Ultra-Lightweight Blockcipher”. In: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems (CHES). Springer.
2011, pp. 342–357.

[162] Julia Borghoff et al. “PRINCE – A Low-Latency Block Cipher for Pervasive Com-
puting Applications”. In: International Conference on the Theory and Application
of Cryptology and Information Security. Springer. 2012, pp. 208–225.

[163] Wentao Zhang et al. “RECTANGLE: A Bit-Slice Lightweight Block Cipher Suit-
able for Multiple Platforms”. In: Science China Information Sciences 58.12 (2015),
pp. 1–15.

[164] George Hatzivasilis et al. “A Review of Lightweight Block Ciphers”. In: Journal of
Cryptographic Engineering 8.2 (2018), pp. 141–184.

[165] Stéphane Badel et al. “ARMADILLO: A Multi-Purpose Cryptographic Primitive
Dedicated to Hardware”. In: International Workshop on Cryptographic Hardware
and Embedded Systems (CHES). Springer. 2010, pp. 398–412.

[166] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON Family of Lightweight
Hash Functions”. In: Annual Cryptology Conference. Springer. 2011, pp. 222–239.

[167] Andrey Bogdanov et al. “SPONGENT: A Lightweight Hash Function”. In: Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES).
Springer. 2011, pp. 312–325.

[168] Thierry P Berger et al. “The GLUON Family: A Lightweight Hash Function Family
based on FCSRs”. In: International Conference on Cryptology in Africa. Springer.
2012, pp. 306–323.

[169] Jean-Philippe Aumasson and Daniel J Bernstein. “SipHash: A Fast Short-Input
PRF”. In: International Conference on Cryptology in India. Springer. 2012, pp. 489–
508.

[170] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Mes-
sage Authentication. Tech. rep. 1997.

128 BIBLIOGRAPHY

[171] Nicky Mouha et al. “Chaskey: An Efficient MAC Algorithm for 32-bit Microcon-
trollers”. In: International Conference on Selected Areas in Cryptography. Springer.
2014, pp. 306–323.

[172] Guido Bertoni et al. “Keccak sponge function family main document”. In: Sub-
mission to NIST (Round 2) 3.30 (2009), pp. 320–337.

[173] Ulrich Rührmair and Daniel E Holcomb. “PUFs at a Glance”. In: Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE. 2014, pp. 1–6.

[174] Donald E Knuth. Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley Professional, 2014.

[175] Sorin Grigorescu et al. “A Survey of Deep Learning Techniques for Autonomous
Driving”. In: Journal of Field Robotics (2020).

[176] RI5CY: User Manual. Rev. 4. OpenHW Group. Apr. 2019. URL: https://www.
pulp-platform.org/docs/ri5cy_user_manual.pdf.

[177] Bruce Jacob, David Wang, and Spencer Ng. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, 2010.

[178] PYNQ-Z1 Board Reference Manual. Digilent. Apr. 2017. URL: https://reference.
digilentinc.com/reference/programmable-logic/pynq-z1/reference-
manual.

[179] RISCV-Tests Benchmark Repository. URL: https://github.com/riscv/riscv-
tests.

[180] Charles Antony Richard Hoare. “Algorithm 64: Quicksort”. In: Communications
of the ACM 4.7 (1961), p. 321.

[181] Douglas R Hofstadter. Metamagical Themas: Questing for the Essence of Mind and
Pattern. Basic Books, 2008.

[182] T. Ahmad. GCM-AES Verilog Implementation. URL: https://opencores.org/
projects/gcm-aes.

[183] J. Strömbergson. SHA256 Verilog Implementation. URL: https://github.com/
secworks/sha256.

[184] Martin D Emmerson and Robert I Damper. “Determining and Improving the
Fault Tolerance of Multilayer Perceptrons in a Pattern-Recognition Application”.
In: IEEE Transactions on Neural Networks (1993).

[185] Yu Li et al. “D2NN: A Fine-Grained Dual Modular Redundancy Framework for
Deep Neural Networks”. In: ACSAC. 2019.

[186] Bernard Ngabonziza et al. “Trustzone Explained: Architectural Features and Use
Cases”. In: 2nd International Conference on Collaboration and Internet Comput-
ing (CIC). IEEE. 2016, pp. 445–451.

[187] Sarita Agrawal et al. “Program Integrity Verification for Detecting Node Capture
Attack in Wireless Sensor Network”. In: International Conference on Information
Systems Security (ICISS). Springer. 2015, pp. 419–440.

https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://opencores.org/projects/gcm-aes
https://opencores.org/projects/gcm-aes
https://github.com/secworks/sha256
https://github.com/secworks/sha256

BIBLIOGRAPHY 129

[188] Mauro Conti et al. “Remote Attestation as a Service for IoT”. In: 6th International
Conference on Internet of Things: Systems, Management and Security (IOTSMS).
IEEE. 2019, pp. 320–325.

[189] Arvind Seshadri et al. “SCUBA: Secure Code Update by Attestation in Sensor Net-
works”. In: Workshop on Wireless Security (WiSe). 2006.

[190] Gaëtan Leurent and Thomas Peyrin. “SHA-1 is a Shambles”. In: (2020). URL: https:
//shambles.github.io.

[191] G Edward Suh et al. “Efficient Memory Integrity Verification and Encryption for
Secure Processors”. In: Proceedings 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture(MICRO). IEEE. 2003, pp. 339–350.

[192] Reouven Elbaz et al. “A Parallelized Way to Provide Data Encryption and Integrity
Checking on a Processor-Memory Bus”. In: Proceedings of the 43rd Annual Design
Automation Conference (DAC). 2006, pp. 506–509.

[193] Jérémie Crenne et al. “Configurable Memory Security in Embedded Systems”. In:
ACM Transactions on Embedded Computing Systems (TECS) 12.3 (2013), pp. 1–23.

[194] Takehiro Ito and Itsuo Takanami. “On Fault Injection Approaches for Fault Toler-
ance of Feedforward Neural Networks”. In: Proceedings 6th Asian Test Symposium
(ATS). IEEE. 1997, pp. 88–93.

[195] Feng Su et al. “The Superior Fault Tolerance of Artificial Neural Network Training
with a Fault/Noise Injection-based Genetic Algorithm”. In: Protein & Cell 7.10
(2016), pp. 735–748.

[196] Salvatore Cavalieri and Orazio Mirabella. “A Novel Learning Algorithm which Im-
proves the Partial Fault Tolerance of Multilayer Neural Networks”. In: Neural Net-
works 12.1 (1999), pp. 91–106.

[197] Shue Kwan Mak, Pui-Fai Sum, and Chi-Sing Leung. “Regularizers for Fault Toler-
ant Multilayer Feedforward Networks”. In: Neurocomputing 74.11 (2011), pp. 2028–
2040.

[198] Yasuo Tan and Takashi Nanya. “A Fault-Tolerant Multilayer Neural Network Model
and its Properties”. In: Systems and Computers in Japan 25.2 (1994), pp. 33–43.

[199] Chalapathy Neti, Michael H Schneider, and Eric D Young. “Maximally Fault Tol-
erant Neural Networks”. In: IEEE Transactions on Neural Networks 3.1 (1992),
pp. 14–23.

[200] Brandon Reagen et al. “ARES: A Framework for Quantifying the Resilience of Deep
Neural Networks”. In: 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE. 2018, pp. 1–6.

[201] John Sum and Andrew Chi-Sing Leung. “Prediction Error of a Fault Tolerant Neu-
ral Network”. In: Neurocomputing 72.1-3 (2008), pp. 653–658.

[202] Dhananjay S Phatak and Israel Koren. “Complete and Partial Fault Tolerance of
Feedforward Neural Nets”. In: IEEE Transactions on Neural Networks 6.2 (1995),
pp. 446–456.

https://shambles.github.io
https://shambles.github.io

130 BIBLIOGRAPHY

[203] David A Medler and Michael RW Dawson. “Training Redundant Artificial Neu-
ral Networks: Imposing Biology on Technology”. In: Psychological Research 57.1
(1994), pp. 54–62.

[204] Luis Alberto Aranda, Pedro Reviriego, and Juan Antonio Maestro. “A Compari-
son of Dual Modular Redundancy and Concurrent Error Detection in Finite Im-
pulse Response Filters Implemented in SRAM-based FPGAs through Fault Injec-
tion”. In: IEEE Transactions on Circuits and Systems II: Express Briefs 65.3 (2017),
pp. 376–380.

[205] Sharon Hudson, RS Shyama Sundar, and Srinivas Koppu. “Fault Control Using
Triple Modular Redundancy (TMR)”. In: Progress in Computing, Analytics and
Networking. Springer, 2018, pp. 471–480.

CURRICULUM VITÆ

Troya Çağıl KÖYLÜ

06-06-1992 Born in Çanakkale, Turkey.

EDUCATION
2010–2015 B.Sc. degree in Electrical and Electronics Engineering

Bilkent University, Ankara, Turkey

2015–2017 M.Sc. degree in Computer Engineering
Bilkent University, Ankara, Turkey
Thesis: Deep Learning-based Unsupervised Tissue Segmen-

tation in Histopathological Images
Supervisor: Prof. dr. Ç. Gündüz Demir

2018–2023 Ph.D. degree in Computer Engineering
Delft University of Technology, Delft, the Netherlands
Thesis: Countermeasures against Fault Injection Attacks in

Neural Networks and Processors
Promotor: Prof. dr. ir. S. Hamdioui

AWARDS AND HONORS
2015 B.Sc. Graduation with Honor Status

2015 Bilkent University Undergraduate Merit Scholarship

2015 Bilkent University High Honor Student

2014 Bilkent University Honor Student

2014 Bilkent University High Honor Student

2012 Bilkent University Honor Student

131

LIST OF PUBLICATIONS

8. Troya Çağıl Köylü, Cezar Rodolfo Wedig Reinbrecht, Anteneh Gebregiorgis, Said Hamdioui,
Mottaqiallah Taouil, "A Survey on Machine Learning in Hardware Security", ACM Journal on
Emerging Technologies in Computing Systems (JETC), Volume 19, May 2023.

7. Troya Çağıl Köylü, Moritz Christiaan Reiner Fieback, Said Hamdioui, Mottaqiallah Taouil,
"Using Hopfield Networks to Correct Instruction Faults", 2022 IEEE 31st Asian Test Sympo-
sium (ATS).

6. Troya Çağıl Köylü, Cezar Rodolfo Wedig Reinbrecht, Marcelo Brandalero, Said Hamdioui,
Mottaqiallah Taouil, "Instruction Flow-based Detectors against Fault Injection Attacks", El-
sevier Microprocessors and Microsystems Journal (MICPRO), Volume 94, October 2022.

5. Troya Çağıl Köylü, Said Hamdioui, Mottaqiallah Taouil, "Smart Redundancy Schemes for
ANNs against Fault Attacks", 2022 IEEE 27th European Test Symposium (ETS).

4. Troya Çağıl Köylü, Luíza Caetano Garaffa, Cezar Rodolfo Wedig Reinbrecht, Mahdi Zahedi,
Said Hamdioui, Mottaqiallah Taouil, "Exploiting PUF Variation to Detect Fault Injection At-
tacks", 2022 IEEE 25th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS).

3. Troya Çağıl Köylü, Cezar Rodolfo Wedig Reinbrecht, Said Hamdioui, Mottaqiallah Taouil,
"Deterministic and Statistical Strategies to Protect ANNs against Fault Injection Attacks",
2021 IEEE 18th International Conference on Privacy, Security and Trust (PST).

2. Troya Çağıl Köylü, Hans Okkerman, Cezar Rodolfo Wedig Reinbrecht, Said Hamdioui, Mot-
taqiallah Taouil, "Protecting IoT Devices through a Hardware-driven Memory Verification",
2021 IEEE 24th Euromicro Conference on Digital System Design (DSD).

1. Troya Çağıl Köylü, Cezar Rodolfo Wedig Reinbrecht, Said Hamdioui, Mottaqiallah Taouil,
"RNN-based Detection of Fault Attacks on RSA", 2020 IEEE International Symposium on
Circuits and Systems (ISCAS).

133

https://doi.org/10.1145/3589506
https://doi.org/10.1145/3589506
https://doi.org/10.1109/ATS56056.2022.00030
https://doi.org/10.1109/ATS56056.2022.00030
https://doi.org/10.1016/j.micpro.2022.104638
https://doi.org/10.1016/j.micpro.2022.104638
https://doi.org/10.1109/ETS54262.2022.9810380
https://doi.org/10.1109/DDECS54261.2022.9770154
https://doi.org/10.1109/DDECS54261.2022.9770154
https://doi.org/10.1109/PST52912.2021.9647763
https://doi.org/10.1109/DSD53832.2021.00027
https://doi.org/10.1109/ISCAS45731.2020.9180708
https://doi.org/10.1109/ISCAS45731.2020.9180708

	Acknowledgements
	Summary
	Samenvatting
	List of Figures
	List of Tables
	Introduction
	Motivation
	Fault Injection Attacks
	Fault Threat
	Fault Injection

	State of the Art Countermeasures
	Prevention-based Countermeasures
	Detection-based Countermeasures
	Redundancy-based Countermeasures

	Research Topics
	Instruction Flow-based Fault Attack Detection
	Smart Sensor-based Fault Attack Detection
	Verification-based Fault Attack Detection

	Contributions of the Thesis
	Thesis Organization

	Background
	Cryptosystems: aes and rsa
	Overview
	aes
	rsa

	The RISC-V isa
	anns: cnns, rnns, and Hopfield Networks
	Overview
	cnns
	rnns
	Hopfield Networks

	Fault Attack Modeling and Evaluation Methodology
	Overview
	Fault Modeling and Evaluation for Reliability
	Fault Modeling and Evaluation for Security

	Threat Model
	Threat Model for rsa
	Threat Model for anns

	Fault Modeling
	Evaluation Method
	Evaluation for Vulnerable Region Identification
	Evaluation for Fault Detection
	Evaluation for Fault Correction
	Evaluation for ann Protection

	Instruction Flow-based Fault Attack Detection
	Concept
	Design Phase
	Evaluation Phase

	Instruction Sequence Analysis
	rnn-based Fault Detection
	Using rnns for Detecting Faults in Instruction Sequences
	Hardware Implementation of the rnn-based Module

	cam-based Fault Detection
	Using cams for Detecting Faults in Instruction Sequences
	Hardware Implementation of the cam-based Module

	bf-based Fault Detection
	Using bfs for Detecting Faults in Instruction Sequences
	Hardware Implementation of the bf-based Module

	Hopfield Network-based Fault Detection and Correction
	Using Hopfield Networks for Detecting and Correcting Faults in Instructions
	Hardware Implementation of the Hopfield Network-based Module

	Experimentation for Fault Detection Performance
	Experimental Setup
	Performed Experiments
	Results

	Experimentation for Fault Correction Performance
	Experimental Setup
	Performed Experiments
	Results

	Discussion
	Discussion of the Fault Detection Performance
	Discussion of the Fault Correction Performance

	Smart Sensor-based Fault Attack Detection
	Designing Sensitive Circuits as Smart Sensors
	Using ro pufs as a Multi-Sensor
	ro puf-based Fault Attack Detector Design
	Hardware Implementation of the ro puf-based Detector

	Designing Operation-based Smart Sensors
	Deterministic Strategy - The -Detector
	Statistical Strategy - The -Detector
	Combining Both Strategies

	Experimentation for Sensitive Circuit-based Smart Sensors
	Experimental Setup
	Performed Experiments
	Results

	Experimentation for Operation-based Smart Sensors
	Experimental Setup
	Performed Experiments
	Results

	Discussion
	Discussion of the Sensitive Circuit-based Sensor
	Discussion of the Operation-based Sensor

	Verification-based Fault Attack Detection
	Protection through Memory Verification
	Background on Lightweight Block Ciphers and Hash/mac Functions
	Concept
	Design
	Variants

	Protection through Smart Redundancy
	Concept
	Application
	Implementation

	Experimentation for Memory Verification-based Protection
	Experimental Setup
	Performed Experiments
	Results

	Experimentation for Smart Redundancy-based Protection
	Experimental Setup
	Performed Experiments
	Results

	Discussion
	Discussion of the ems-based Memory Verification
	Discussion of the Smart Redundancy-based ann Inference Verification

	Conclusion
	Summary
	Introduction
	Background
	Fault Attack Modelling and Evaluation Methodology
	Instruction Flow-based Fault Attack Detection
	Smart Sensor-based Fault Attack Detection
	Verification-based Fault Attack Detection

	Future Directions

	Bibliography
	Curriculum Vitæ
	List of Publications

