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BLIND POLYNOMIAL REGRESSION

Alberto Natali and Geert Leus

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, Delft, The Netherlands

ABSTRACT

Fitting a polynomial to observed data is an ubiquitous task in many
signal processing and machine learning tasks, such as interpolation
and prediction. In that context, input and output pairs are available
and the goal is to find the coefficients of the polynomial. However, in
many applications, the input may be partially known or not known at
all, rendering conventional regression approaches not applicable. In
this paper, we formally state the (potentially partial) blind regression
problem, illustrate some of its theoretical properties, and propose an
algorithmic approach to solve it. As a case-study, we apply our meth-
ods to a jitter-correction problem and corroborate its performance.

Index Terms— polynomial regression, interpolation, Vander-
monde, matrix factorization, MUSIC

1. INTRODUCTION
Parameter estimation is a classical task in signal processing [1],
where the objective is to estimate the parameters of a hypothesized
model that best explains the relationship between observed input-
output data pairs. When the input is not directly observable, standard
estimation approaches such as the ordinary least squares, cannot be
directly applied, and new estimation techniques are required.

Motivated by a recent problem arising in graph signal process-
ing [2] in the context of graph learning [3], in this work we consider
a polynomial regression model, i.e., where the output variable is ex-
pressed as the linear combination of powers of the input variable,
with possible additive noise. As we will see, even though the prob-
lem can be approached through the lens of matrix factorization [4]
with a Vandermonde factor, a rather natural interpretation is given by
that of sampling multiple unknown polynomials at the same unknown
locations. Specifically, we assume to observe a certain number of
sampled polynomials, whose coefficients and sample locations are
unknown or noisy, and the goal is to jointly recover them from the
available observations.

With reference to prior work, one of the earliest works in the
context of sampling at unknown locations is that of [5], which con-
siders discrete time bandlimited signals where only a subset of its
values are known in correspondence to an ordered unknown subset
of the index set. The resulting combinatorial optimization problem is
then approached with an exhaustive search and two heuristics meth-
ods. The work in [6] considers the continuous case, and proposes an
alternating least squares method that converges to a local minimum.
More similar to our work is that of [7], which considers sampled
polynomials (and bandlimited functions), and gives the conditions
for the unique identifiability of the sampled polynomial. Specifically,
it is shown that unique identifiability is achieved by constraining the
sampling locations to be described by rational functions.

This work is part of the GraSPA project (project 19497 within the TTW
OTP programme), which is financed by the Netherlands Organization for Sci-
entific Research (NWO). E-mails: {a.natali; g.j.t.leus}@tudelft.nl;

Our work can be considered complementary to that of [7] with
some distinctions; first, we do not constrain the sample locations,
and assume to observe different sampled polynomials all sampled
at the same unknown locations. This implicitly restricts the feasible
sample locations. Then, we study which are the model ambiguities,
representing an equivalence class and show that for some problems,
namely the one in [3], every element of this class (which is a solution
for the problem) is a good solution. Finally, we propose a subspace-
based method to solve the problem. Numerical simulations in the
context of sampling-jitter corroborate our theory.

2. PROBLEM DEFINITION
Consider a simple polynomial regression model [8] of the form:

y = w0 + w1x+ . . .+ wK−1x
K−1 + e (1)

= w⊤v(x) + e, (2)

where y is the independent variable (observation), x is the depen-
dent variable (regressor), w := [w0, . . . , wK−1]

⊤ are the coeffi-
cients associated to the different polynomial degrees and v(x) :=
[1, x, . . . , xK−1]⊤ is the Vandermonde vector with parameter x ∈
R; e ∼ N (0, σ2) is a noise term.
Although polynomial regression fits a non linear model to the (avail-
able) data, from an estimation point of view it is linear, meaning
that for a fixed input variable x, the dependence of the output vari-
able y on the weights in w is linear. This data-availability sce-
nario is often encountered in signal processing in the context (for
instance) of signal interpolation and prediction, where input-output
pairs {(xi, yi)}N−1

i=0 are available by sampling an unknown function
in N distinct points, and the goal is to estimate the coefficient vector
w which, for a specified K, best represents the unknown polynomial
relationship between x and y.

Expressing (1) for all the input-output pairs leads to the matrix-
vector form1:

y = V(x)w (3)

where x := [x0, . . . , xN−1]
⊤ is the vector of inputs, y =

[y0, . . . , yN−1]
⊤ is the vector of outputs, and where V(x) is the

N ×K Vandermonde matrix, defined as:

V(x) :=


1 x0 · · · xK−1

0

1 x1 · · · xK−1
1

...
... · · ·

...
1 xN−1 · · · xK−1

N−1

 (4)

The unique solution of (3), guaranteed when all xi’s are different
and N > K, can be found as ŵ = (V⊤V)−1V⊤y. As a short-
hand notation, we will use V to refer to the Vandermonde matrix

1We will neglect the error term in the rest of the exposition.IC
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Fig. 1: Illustration of the problem: a number of functions (L = 3)
are sampled (filled points) in N = 8 locations (gray dotted line).
The problem is to recover the sampling locations and the polynomial
coefficients with the only knowledge of the function values (shown
in the right in the figure).

with parameter x in (4); when convenient for clarity of exposition,
we will explicitly write V(x).

However, it is often the case that variable x is not perfectly known
or not known at all. For instance, in analog-to-discrete conversion
of signals, undesired jitter on the clock signal leads to a clock drift
with respect to the reference clock and a re-synchronization scheme
is necessary. For this reason, in this work we consider the scenario
in which not only the linear weights w are unknown, but also the
vector x. In order to overcome unique identifiability and solvability
issues, we assume to obtain L ≥ K observation vectors {yi}L−1

i=0

of (3) associated to different unknown coefficient vectors {wi}L−1
i=0

yet having the same unknown vector x, that is,:

Y = V(x)W (5)

where Y := [y0, . . . ,yL−1] and W := [w0, . . . ,wL−1]. Such a
model can be motivated by the fact that the L observation channels
are controlled by the same clock and hence have the same potential
clock jitter. Based on (5), the problem statement can be formalized
as follows:

Problem Statement. Given the matrix Y ∈ RN×L, recover the
input vector x ∈ RN and the coefficient matrix W ∈ RK×L such
that (5) holds.

Although the problem can be approached from a pure algebraic point
of view as a structured matrix factorization, a pleasing geometrical
interpretation of (5) is given in Fig. 1. Each vector y0, . . . ,yL−1

can be interpreted as function values obtained by sampling L dis-
tinct polynomials y0(x), . . . , yL−1(x), all with degree K − 1, in
the same N unknown locations x0, . . . , xN−1. The goal is to re-
cover the original locations (and polynomial coefficients) from the
available sampled function values (filled points on the right of the
figure).

Remark 1. At first glance, model (5) shares similarities with fun-
damental array signal processing models encountered for instance in
direction of arrival (DoA) estimation [9]. However, the geometry of
our problem is different (transposed) and complicates its analysis in
that ready-to-use algorithms, such as MUSIC [10], are not directly
applicable; see also Remark 2.

3. PROPOSED PROBLEM SOLUTIONS
Before delving into the algorithmic framework, we ask ourselves
which are the solution pairs (x,W) that can be considered a “valid
solution” for problem (5). Indeed notice how (5) is not free of model

ambiguities, and different pairs (x,W) may lead to the same ob-
servations matrix Y. Due to its theoretical relevance (with practi-
cal consequences), this will be the subject of study of this section.
Subsequently, we will propose two different approaches to solve the
problem: the first based on a selection sampling scheme, the second
based on subspace fitting.

Ambiguities. If V and W are the true matrix factors satisfying (5),
then for any K ×K invertible matrix T, it holds:

Y = VTT−1W = V′W′. (6)

However, V′ needs to be Vandermonde in order for (6) to be con-
sistent with the model structure in (5). For this reason, we now in-
vestigate which class of matrices maps a Vandermonde matrix to
another Vandermonde matrix, and is thus responsible for the ambi-
guities in (5).

To study the possible ambiguities of the system V1T = V2, with
V1 and V2 Vandermonde matrices, means to study which linear
transformation T transforms a Vandermonde vector with parameter
x ∈ R to another Vandermonde vector with parameter y (indepen-
dent of the specific parameter instantiation), i.e.,:

[1, y, y2, . . . , yK−1]︸ ︷︷ ︸
v(y)⊤

= [1, x, x2, . . . , xK−1]︸ ︷︷ ︸
v(x)⊤

T (7)

for some y ∈ R. We show how matrix T needs to be an upper
(generalized) Pascal matrix [11] with parameters (t0, t1), denoted as
T(t0,t1); that is, a matrix of the form2:

T(t0,t1) :=


1 t0 t20 t30
0 t1 2t0t1 3t20t1
0 0 t21 3t0t

2
1

0 0 0 t31

 (8)

Theorem 1. The equality v(y)⊤ = v(x)⊤T [cf. (7)] holds for
generic x, y if and only if T ∈ RK×K is a Pascal matrix with pa-
rameters (t0, t1).

Proof. ⇐=) If T(t0,t1) is Pascal with parameters t0 and t1, then it
directly follows that v(x)⊤T(t0,t1) = v(t0 + t1x) = v(y)⊤.

=⇒) Consider T(:, 1) = [t0, t1, . . . , tK−1]
⊤ so that y = t0+ t1x+

t2x
2+. . .+tK−1x

K−1, which models the second column of v(y)⊤

as a polynomial of order K−1 with coefficients given by the second
column of T. The last element of v(y)⊤ is then given by:

yK−1 = (t0 + t1x+ t2x
2 + . . .+ tK−1x

K−1)K−1 (9)

whose highest order term of is tK−1
K−1x

(K−1)2 . Since x(K−1)2 is
not present in v(x)⊤, tK−1 necessarily needs to be equal to zero.
Next, all the coefficients associated to the monomial xj , with j >
(K − 2)(K − 1), include tK−1, which is thus also equal to zero.
The next monomial which includes terms with a coefficient differ-
ent from zero is x(K−2)(K−1), for which the only non-zero term is
tK−2. However, since such monomial is not present in v(x)⊤, we
conclude tK−2 = 0. With the same logic one can show that only
t0 and t1, associated to the zeroth- and first-order monomial, can be
different from zero. In other words, the entry (i, j) of T represents
the coefficient associated to xi when the binomial y(x) = t0 + t1x
is raised to the power j, with i, j starting from zero.

Identifiability and solvability. One of the consequences of Theo-
rem 1 is that, without additional constraints, every shifted and scaled

2We show K = 4 to ease the visualization.
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version of the groundtruth parameter x (for an appropriate W), per-
fectly fits the observation model [cf. (6)]. Thus the model is identifi-
able up to this ambiguity, which is sufficient in many contexts. For
instance, in the context of (eigenvalues) graph learning [3], a shift
and scale of the graph eigenvalues maintains the same topological
structure of the original graph (removing the self loops caused by
the shift). As we will see, identifiability alone (which is mainly a
theoretical property) does not provide us a guarantee of solvability
(meaning, global convergence).

3.1. Subspace Fitting
In a subspace fitting approach [12], we start by considering the fol-
lowing optimization problem to estimate x and W:

min
x,W

1

2
∥Y −V(x)W∥2F , (10)

which can be solved, for instance, with an alternating minimization
approach, without guarantee of convergence to a global optimum.

To improve the conditioning of the problem and to reduce the estima-
tion effort when L ≫ K, we consider the economy-size SVD of ma-
trix Y, i.e., Y = UΣZ⊤, where U ∈ RN×K and Z ∈ RL×K are
the left and right singular vectors, respectively, and Σ ∈ RK×K is
the diagonal matrix of singular values. Since both V(x) and U rep-
resent a basis for the column space of Y, there exists a non-singular
matrix S ∈ RK×K such that V = US. The subspace fitting prob-
lem reads then as:

min
x,S

1

2
∥V(x)−US∥2F , (11)

which, upon substituting the pseudoinverse solution Ŝ = U†V
into (11), can be casted as the following equivalent problem:

min
x

{f(x) := 1

2
∥PV(x)∥2F }, (12)

with P := IN − UU† the orthogonal projection matrix onto the
orthogonal complement of U. In other words, problem (12) aims to
find a vector x such that the Vandermonde matrix V(x) is orthogo-
nal to the subspace spanned by the orthogonal complement of U.

Problem (11) is not convex in x due to the polynomial degree K
(unless K − 1 = 1, i.e., the model in (3) is linear). To tackle the
non-convexity of the problem, we resort to sequential convex pro-
gramming (SCP) [13], a local optimization method that leverages
convex optimization, where the non-convex portion of the problem
is modeled by convex functions that are (at least locally) accurate.
As in any non-convex problem, the initial starting point plays a big
role; thus, if no prior information on the variable is given, a multi-
starting point approach is advisable.

Remark 2. As mentioned in Remark 1, the nature of the problem
and the formulation (12) share similarities with the MUSIC algo-
rithm [10]. However, while in MUSIC every column of matrix V(x)
(containing the steering vectors of the array manifold) depends solely
on one scalar parameter and N independent 1-dimensional searches
can be carried out, here each column contains all the N variables.
An N -dimensional search is thus needed, which makes a “scanning”
of the vector variable x infeasible, unless N is very small.

SCP. The general idea of SCP is to maintain, at each iteration r, an
estimate xr and a respective convex trust region T r ⊆ RN over
which we trust our solution to reside. The next solution xr+1 is then
obtained by minimizing, over the defined trust region T r , a convex
approximation f̂(·) of f(·) around the previous estimate xr . In our

case, we define as trust region the set:

T r := {x | ∥x− xr∥2p ≤ ρ(r)} (13)

where ρ : Z+ → R++ is an iteration-dependent mapping indicating
the maximum admissible length of the convex p-norm ball in (13).

Next, a feasible intermediate iterate is found by:

x̂ = argmin
x∈T [r]

f(xr) +∇xf(x
r)⊤(x− xr) (14)

i.e., by minimizing the (convex) first-order Taylor approximation of
f(·) around xr , with ∇xf(·) ∈ RN the gradient of function f(·);
see Appendix A for the explicit gradient computation. Notice that
due to the non-convexity of f(·) [cf. (12)], its value f(x̂) at the new
feasible estimate x̂ is not guaranteed to be lower than the value at xr .
Thus, to find the optimal solution at iteration (r + 1), we pick the
best convex combination of xr and x̂ achieving the lowest function
value, i.e.,:

α⋆
r = argmin

αr

f(αrx
r + (1− αr)x̂), α ∈ (0, 1) (15)

xr+1 = α⋆
rx

r + (1− α⋆
r)x̂. (16)

We stress that a zero fitting error of the cost function can be achieved
only by the true unknown parameter and its model ambiguities,
which as such represent global minima of the function and solutions
of the problem.

4. NUMERICAL RESULTS
We now perform numerical simulations to assess the validity of
the subspace approach, with focus on a practical case-study: clock-
synchronization after sampling jitter.

Scenario. In the context of signal sampling, jitter is an undesirable
effect caused by, for instance, interference of the clock signal, and
consisting of a deviation from the true sampling pattern which we
consider here to be periodic. When the time between samples varies
an instantaneous signal error arises and a jitter-correction (clock-
recovery) is desirable. To this extent, consider the time-interval
[u0, u1, . . . , uN−1] of uniformly sampled locations (timings) with
period T , i.e., such that un − un−1 = T for n = 1, . . . , N − 1.
Because of jitter, the actual sampling locations are given by xn =
un + jn, with jn ∼ N (0, (δT/2)2) a Gaussian distribution trun-
cated at one standard deviation. The parameter δ specifies whether
an overlap among adjacent samples xn is possible (δ ≥ 1) or not
(δ < 1). Associated to each xn is a signal value yn corresponding
to the sampling of an unknown function f(xn).

Metrics. To assess the validity of the proposed approach, recall that
we can recover the solution of problem (12) up to a shift and scaling
of the true positions [cf. Section 3]. Thus, we use the normalized
error modulo Pascal (PNE) as performance metric, defined as:

PNE(x̂,x) = min
t0,t1

∥x− (t01+ t1x̂)∥2
NT

(17)

which measures how far the true locations are from a linear transfor-
mation of the recovered estimates. Clearly (17) is zero whenever x̂
is a solution for (12).

Results. For a fixed number N = 30 of locations, we run the algo-
rithm 1000 times to randomize the coefficient matrix W used to gen-
erate the polynomials, for different values of the polynomial order
K = {3, 4}, number of polynomials L = {3, 4}, L ≥ K, and pa-
rameter δ ∈ (1, 140). We focus our attention on quadratic (K = 3)
and cubic (K = 4) polynomials because for higher degrees the poly-
nomials are almost flat in the domain of interest and they tend to be
highly sensitive to round-off due to the very ill-conditioning of the
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Fig. 2: For K = L = 3: (left) Average and median PNE in dB over 1000 runs of the algorithm; (middle) True locations (green circles),
inferred locations (red asterisks) and uniform locations (blue diamonds); the latter is used as the starting point for the algorithm; (right)
Original polynomials (solid lines) with associated function samples (◦) in correspondence of the original uniform locations, and inferred
polynomials (black dotted lines) with associated function samples (∗) in correspondence of the inferred locations.

Vandermonde matrix. As function domain we consider [−3, 3], and
discretize it with a sampling period of T = 6/(N−1). We initialize
the starting point of the algorithm with the uniform sampled domain,
i.e., x0 = [u0, . . . , uN−1]

⊤.

In Fig. 2 (left) is shown (in dB) the average and median PNE over
1000 simulations for K = L = 3 and δ ranging from 1 to 140.
The first remarkable result is that the algorithm is able to perfectly
recover the solution (up to a shift and scaling) without ending in a
local minimum for very high values of δ, resulting in big overlaps
among the samples. In particular, both the mean and the median
are zero up to δ = 30, which is the setting for which one sample
can overlap with 15 of its nearby samples. The median, which is
more robust than the mean in terms of sensitivity to outliers, is ba-
sically zero up to δ = 60, i.e., the setting for which a sample can
overlap with all the others, rendering it almost a random configura-
tion of points. Nonetheless, also for the extreme case of δ = 140,
the median still achieves an error of 1/100th of a sampling period,
which is an acceptable error. To enjoy the algorithm’s performance,
in Fig. 2 (middle) we show for K = L = 3 and δ = 60, the esti-
mated locations (red, after ambiguity correction), together with the
true locations (green) and the initial starting point of the algorithm
(blue). Correspondingly, in Fig. 2 (right) we show the original and
inferred polynomials, constructed as Ŷ = V(x̂)V(x̂)†Y.

5. CONCLUSION

In this work, we studied the problem of polynomial regression when
the coefficients and the regressor are both unknown. We have shown
how the model is identifiable up to a generalized Pascal transforma-
tion, responsible to scale and shift the input parameter, which is suf-
ficient in many recovery problems. We then proposed an algorithmic
routine to tackle the problem based on a subspace fitting approach.
Finally, we performed numerical simulations in the context of sam-
pling jitter and show the effectiveness of the proposed approach to
recover the original sample locations. Interesting future research di-
rections include: i) studying the influence of input perturbation (δ)
and polynomial order (K) on the reconstruction error for jitter sce-
narios; ii) understanding the recoverability property in case of noise
in the output; iii) studying the problem under a purely (structured)
matrix factorization approach with a Vandermonde factor.

A. GRADIENT COMPUTATION

Consider the function f(x) = ∥PV(x)∥2F and define the composite
matrix function M(V(x)) = PV(x). We use the chain rule and
to compute the gradient of f(·) w.r.t. x, i.e., ∂f(·)/∂x. We have
f(M) = 1

2
tr(M⊤M) = 1

2
M : M. The differential of f(·) is

df(M, dM) = M : dM = M : PdV(x). For the differential
dV(x, dx) notice that, by selecting one column, e.g., x3, we have
(x+ dx)3 = x3 + 3x2dx+O(dx2), and more generally:

dV(x) = [0 1 . . . (K − 1)xK−2]⊙ [dx dx . . . dx] (18)

= (V(x)Dk)⊙ (dx1⊤) = Diag(dx)(V(x)Dk) (19)

where Dk = SupDiag(1, . . . ,K − 1) ∈ RK×K is the differen-
tiation matrix for polynomials and ⊙ is the element-wise product.
By plugging this differential into the previous expression for df we
obtain:

df(M, dM) = M : PdV(x) = M : PDiag(dx)(V(x)Dk)

= P⊤M(V(x)Dk)
⊤ : Diag(dx) = diag(P⊤M(V(x)Dk)

⊤) : dx

We conclude ∂f(x)/∂x = diag(P⊤PV(x)D⊤
k V(x)⊤).

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2023 at 07:54:55 UTC from IEEE Xplore.  Restrictions apply. 



B. REFERENCES

[1] Steven M Kay, Fundamentals of statistical signal processing:
estimation theory, Prentice-Hall, Inc., 1993.

[2] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Or-
tega, and Pierre Vandergheynst, “The emerging field of signal
processing on graphs: Extending high-dimensional data anal-
ysis to networks and other irregular domains,” IEEE signal
processing magazine, vol. 30, no. 3, pp. 83–98, 2013.

[3] Alberto Natali and Geert Leus, “A general convolution theorem
for graph data,” in 2022 55th Asilomar Conference on Signals,
Systems, and Computers. IEEE, p. To appear.

[4] Xiao Fu, Kejun Huang, Nicholas D Sidiropoulos, and Wing-
Kin Ma, “Nonnegative matrix factorization for signal and data
analytics: Identifiability, algorithms, and applications.,” IEEE
Signal Process. Mag., vol. 36, no. 2, pp. 59–80, 2019.

[5] Pina Marziliano and Martin Vetterli, “Reconstruction of irregu-
larly sampled discrete-time bandlimited signals with unknown
sampling locations,” IEEE Transactions on Signal Processing,
vol. 48, no. 12, pp. 3462–3471, 2000.

[6] John Browning, “Approximating signals from nonuniform con-
tinuous time samples at unknown locations,” IEEE transac-
tions on signal processing, vol. 55, no. 4, pp. 1549–1554, 2007.

[7] Golnoosh Elhami, Michalina Pacholska, Benjamín Béjar Haro,
Martin Vetterli, and Adam Scholefield, “Sampling at unknown
locations: Uniqueness and reconstruction under constraints,”
IEEE Transactions on Signal Processing, vol. 66, no. 22, pp.
5862–5874, 2018.

[8] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and
Jerome H Friedman, The elements of statistical learning: data
mining, inference, and prediction, vol. 2, Springer, 2009.

[9] Pei-Jung Chung, Mats Viberg, and Jia Yu, “Doa estimation
methods and algorithms,” in Academic Press Library in Signal
Processing, vol. 3, pp. 599–650. Elsevier, 2014.

[10] Ralph Schmidt, “Multiple emitter location and signal parame-
ter estimation,” IEEE transactions on antennas and propaga-
tion, vol. 34, no. 3, pp. 276–280, 1986.

[11] Gregory S. Call and Daniel J. Velleman, “Pascal’s matrices,”
The American Mathematical Monthly, vol. 100, no. 4, pp. 372–
376, 1993.

[12] Mats Viberg and Bjorn Ottersten, “Sensor array processing
based on subspace fitting,” IEEE Transactions on signal pro-
cessing, vol. 39, no. 5, pp. 1110–1121, 1991.

[13] Stephen Boyd, “Sequential convex programming,” Lecture
Notes, Stanford University, 2008.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2023 at 07:54:55 UTC from IEEE Xplore.  Restrictions apply. 


	taverne-page
	Blind_Polynomial_Regression

