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Stoichiometric model of a fully
closed bioregenerative life
support system for autonomous
long-duration space missions
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Frances Brazier1

1Systems Engineering and Simulation, Faculty of Technology, Policy and Management, Delft University
of Technology, Delft, Netherlands, 2SEADS (Space Ecologies Art and Design), Temse, Belgium

Bioregenerative life support systems (BLSS) are vital for long-duration and remote
space missions to increase mission sustainability. These systems break down
human waste materials into nutrients and CO2 for plants and other edible
organisms, which in turn provide food, fresh water, and oxygen for astronauts.
The central idea is to create a materially closed loop, which can significantly
reducemissionmass and volume by cutting down or even eliminating disposable
waste. In most BLSS studies only a fraction of the resources, such as food,
are provided by the system itself, with the rest taken on board at departure or
provided through resupply missions. However, for autonomous long-duration
space missions without any possibility of resupply, a BLSS that generates all
resources withminimal or nomaterial loss, is essential. The goal of this study is to
develop a stoichiometric model of a conceptually fully closed BLSS that provides
all the metabolic needs of the crew and organisms. The MELiSSA concept of
the European Space Agency is used as reference system, consisting of five
interconnected compartments, each inhabited by different types of organisms.
A detailed review of publicly available MELiSSA literature from 1989 to 2022
revealed that no existing stoichiometric model met the study’s requirements.
Therefore, a new stoichiometric model was developed to describe the cycling
of the elements C, H, O, and N through all five MELiSSA compartments and
one auxiliary compartment. A compact set of chemical equations with fixed
coefficients was established for this purpose. A spreadsheet model simulates the
flow of all relevant compounds for a crew of six. By balancing the dimensions of
the different compartments, a high degree of closure is attained at steady state,
with 12 out of 14 compounds exhibiting zero loss, and oxygen andCO2 displaying
only minor losses between iterations. This is the first stoichiometric model of
a MELiSSA-inspired BLSS that describes a continuous provision of 100% of the
food and oxygen needs of the crew. The stoichiometry serves as the foundation
of an agent-based model of the MELiSSA loop, as part of the Evolving Asteroid
Starships (E|A|S) research project.

KEYWORDS

space exploration, human spaceflight, bioregenerative life support, waste processing,
food production, ecosystem modeling, simulation, MELiSSA
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1 Introduction

Bioregenerative life support systems (BLSS) will be a key
component of future long-duration space exploration, as they can
reduce mission mass and volume (Imhof et al, 2017; Audas et al,
2022). A BLSS recycles human waste by feeding it to an artificial
ecosystem consisting of a range of different organisms, such as
higher plants, microalgae, and bacteria. These organisms gradually
break down thewaste and in the process provide fresh food, generate
oxygen, and clean water for the crew (Nelson et al, 2010; Escobar
and Nabity, 2017; Pannico et al, 2022). As a result, there is less
reliance on constant resupply from Earth, which greatly reduces the
material footprint needed for extended missions in space (Macelroy
and Averner, 1978; Häder, 2020; Audas et al, 2022). Because of
its constant fresh food provision, a BLSS also solves the problem
that essential nutrients in processed and prepackaged food are
deficient and degrade over time (Cooper et al, 2017; Carillo et al,
2020). Biological systems are also capable of self-repair, unlike
mechanical systems that need separate systems to be repaired.
Surviving organisms and tissues in a damaged BLSS can potentially
recover to their original size on their own, even after significant
damage (Bartsev et al, 1996).

MELiSSA is a BLSS concept developed by ESA with a
consortium of 15 international partners and the involvement of
approximately 50 organizations (MELiSSA Foundation, 2023).
It is an artificial ecosystem consisting of five interconnected
compartments inhabited by higher plants, microalgae,
microorganisms, and humans (abbreviated as C1 to C5, Figure 1;
Table 1). Each of the compartments has its own specific metabolic
function within the entire MELiSSA loop. First, all human waste
is broken down through a sequence of three bioreactor types: a
thermophilic anaerobic compartment (C1), photoheterotrophic
compartment (C2) and nitrifying compartment (C3). This results
in nutrients and CO2 for microalgae and plants (C4a and C4b)
that, in turn, provide food, oxygen, and fresh water for the
crew (C5), thus closing the loop (Hendrickx and Mergeay, 2007;
Clauwaert et al, 2017; Vermeulen et al, 2020a). The operational
pilot plant at Universitat Autònoma de Barcelona consists of a
number of connected MELiSSA compartments and demonstrates
a part of the system’s entire metabolic loop (Gòdia et al, 2004;
Garcia-Gragera et al, 2021). Mathematical models of the MELiSSA
loop have been developed and improved since the beginning
of the MELiSSA project in 1989 (MELiSSA, 1989; Dussap and
Gros, 1991). Some of these models are used for predictive
control, to be run alongside the actual physical system. The
MELiSSA models help in understanding the dynamics of mass
flow fluctuations and achieving long-term reliability of the system
(Cornet et al, 2001; Ciurans Molist et al, 2020; Poulet et al, 2020).
Such ecosystem models can also be used to simulate the impact
of unforeseen perturbations, deliberate interventions, or design
changes in the system (Volk and Rummel, 1987; Pilo Teniente, 2015;
Vermeulen et al, 2019).

To describe the material flows in an ecosystem model, the
stoichiometric relations governing these flows need to be developed
(Volk and Rummel, 1987; Begon and Townsend, 2021). Several
authors have described mass flow models of biological life support
systems (Volk and Rummel, 1987; Garland, 1989; Loader et al,
1997; Finn, 1998), but not all studies contain the underlying

chemical stoichiometric equations. The stoichiometric equations
describing mass flows in the MELiSSA BLSS have been published in
publicly-availableMELiSSA literature, both in peer-reviewed papers
and research reports disseminated by the MELiSSA Foundation
(Table 1). In less than half of the listed studies, all five MELiSSA
compartments were modeled. The other studies describe either a
smaller number of compartments, or just one. The loop is never
fully closed in any of the listed studies. There are a number of
reasons for this. First of all, it may indicate that certain compounds
are not part of the regenerative logic of the system and are not
generated within the loop, and therefore need to be fully supplied
from the outside (Dussap et al, 1993; Poughon et al, 2009). Secondly,
it may indicate an output that does not get regenerated, such as
a residual indigestible material (Fulget et al, 1999; Poughon et al,
2000). Because of the resulting accumulation of that material,
external supply is required to keep the system running. And thirdly,
it may be a deliberate system design choice that only a fraction
of a particular compound or resource is generated by the BLSS.
Several MELiSSA studies, for example, explicitly specify that only
a part of the needed food is generated by the loop (Poughon et al,
2000; Guirado and Podhajsky, 2008; Thiron, 2020). The rest is
supplied externally. One of the main motivations for such a choice
is the limited space that is available in common spacecraft and
habitat designs to integrate bioreactors and plant growth chambers
(Johnson et al, 2021; Gorce et al, 2022).

Almost three-quarters of the researched MELiSSA studies list
all the stoichiometric equations of their models. The other studies
limit themselves to a few selected equations as examples. The
stoichiometric coefficients in the chemical equations can either
be fixed beforehand, or dynamically calculated on the fly, during
the simulation run. For example, in simulating the production
of Limnospira indica in C4a, the elementary composition of its
biomass is determined by the variable light irradiation inside
the photobioreactor (Guirado and Podhajsky, 2008; Poughon et al,
2009). This then necessitates the recalculation of all subsequent
stoichiometric equations that contain this dynamic empirical
biomass formula.

Whenever creating a stoichiometry to describe mass flows in an
ecosystem, choices need to be made about which compounds will
be considered, and which level of detail will be used to describe the
ecosystem’s biochemical processes (Dubitzky et al, 2011; Begon and
Townsend, 2021).This choice is influenced by the level of knowledge
about the individual metabolism of the different species in the
ecosystem, but ultimately depends on the objective and scope of the
study. In light of this, the reviewedMELiSSA studies contain varying
assumptions concerning the role of different compounds such as
lipids, VFAs, and CO2. This is partially due to the fact that over time
the MELiSSA models became more detailed, incorporating more
processes. Early MELiSSA papers assume that all lipids consumed
by the astronauts are oxidized and no traces of lipids are found
in the feces (Dussap and Gros, 1991; Dussap et al, 1993). This is
later adjusted, and lipids become an explicit part of the feces input
in C1 (Poughon et al, 2000). The mix of VFAs that is generated as
output of C1 varies quite significantly between the different studies.
In the earliest studies only acetic acid and butyric acid are considered
(Dussap and Gros, 1991; Dussap et al, 1993), but in later studies, a
broader range of VFAs is included in the stoichiometry (Poughon,
2007b).
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FIGURE 1
Overview of the MELiSSA loop with its five main compartments and a schematic overview of the different material flows. Some of these material flows
have been adjusted in the stoichiometric model. See Section 3 Stoichiometric model assumptions for more details. Image by the MELiSSA Foundation.

The stoichiometric model presented in this paper provides the
basis for an agent-based model (ABM) of the MELiSSA loop to
study the interactions and emergent behavior of the MELiSSA
system from a theoretical perspective. MELiSSA is fundamentally a
complex system, and properties such as nonlinearity, stochasticity
and chaos may play an important role in the overall behavior of
the system, just like in any ecosystem (Bjørnstad, 2015). Because
all functions in the MELiSSA loop are tightly coupled and since
there are no large buffers in space (e.g., no large atmosphere or
water bodies), slight variations in any of the loop’s pathways can
have dramatic consequences for the entire loop (Macelroy and
Averner, 1978; Poulet et al, 2018). It is precisely such tightly coupled
systems that are potentially susceptible to irregular fluctuations
(Bjørnstad, 2015). ABMs offer a modeling approach that helps
to gain insight in such dynamics and helps to explore different
design strategies for improved system robustness. ABMs are used
to understand those aspects of the behavior of a system, that are not
easily represented in population-level differential equations, such as
variation among individuals or variation of individuals during their
life cycle (Deangelis and Grimm, 2014). Such exploratory models
of complex systems lead to insights about essential mechanisms and

principles, a use ofmodeling that is different frommodeling aimed at
making accurate predictions (Forrest andMitchell, 2016). MELiSSA
modeling studies to date focus on predictive modeling because
this is a critical step to develop a durable and reliable BLSS. The
MELiSSA modelling approach is mechanistic, allowing for better
understanding and improved predictions. With its exploratory
approach, this study can be considered as being complementary to
the existingMELiSSA modeling efforts. In order to build an ABM of
MELiSSA, a stoichiometric model is needed that describes essential
mass flows between all involved agents (bacteria, microalgae,
higher plants and humans). The key metabolic processes in all
MELiSSA compartments need to be described with enough detail
to enable studying the interactions. At the same time, they need
to remain abstracted enough to tlead to an efficient model and
retain relevance for the objectives of the ABM which are centered
around investigating the impact of heterogeneity in the system and
capturing nonlinear dynamics.

The research objective of this paper is to develop a
stoichiometric model of a hypothetical BLSS that provides
a crew with fresh food and oxygen during long-duration
space missions, without the need for any resupply. The
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envisioned stoichiometric model should conform to the following
requirements:

• The system provides 100% of all the food and oxygen needed
by the crew, and 100% of the resources needed by every other
organism in the loop.

• The stoichiometric model is fully closed. Every single output is
used as input, and no additional external supplies are needed
during steady state.

• No kinetic limitations of the stoichiometric reactions are
used. Macromolecules do not have a dynamic composition
(e.g., biomass composition does not depend on light), and all
stoichiometric coefficients are fixed. Such a static approach is
sufficient for the current goals of the ABM of MELiSSA that is
developed on top of this stoichiometry.

The current literature (listed in Table 1) has, to the authors’
knowledge, not included such a stoichiometric model of the
MELiSSA loop. As described above, the loop is always considered
to be partially open, primarily for practical reasons. The research
reported in this paper is more theoretical in nature, focusing on the
internal dynamics of hypothetically fully closed systems.

2 Materials and methods

This section describes the empirical formulas, stoichiometric
equations, and the setup of a static spreadsheet model.

2.1 Empirical formulas

Table 2 provides an overview of the empirical formulas of the
large biomolecules. More detailed descriptions of the origin of each
formula are then discussed. The empirical formulas of biomass
and feces are provided for comparative purposes only, since both
biomass and feces are represented as proportions of carbohydrates,
proteins and lipids.

2.1.1 Carbohydrates, proteins, and lipids
The formula for carbohydrates is the general formula for

polysaccharides, used in many of the MELiSSA modeling studies

(e.g., in (Dussap et al, 1993) and (Thiron, 2020)).There are, however,
a range of different general formulas used for proteins in the
MELiSSA literature (Fulget, 1996; Duatis et al, 2008; Thiron, 2020).
Our approach was to first calculate the average protein composition
of the different organisms generating biomass in our model, and
then compare this result to general protein formulas published
in multiple BLSS studies. In our stoichiometric model, the higher
plants are represented by a generalized “ideal plant”, in line
with previous MELiSSA studies (Poughon, 2007b; Guirado and
Podhajsky, 2008). It is conceived as an average of the nutritional
properties of bread wheat, durum wheat, potato and soybean. The
CHONcomposition of the protein of this ideal plant is then averaged
with that of Limnospira and Rhodobacter, all using values listed
in MELiSSA literature (Dussap et al, 1993; Duatis et al, 2008). This
results in CH1.5799O0.3134N0.2558. This composition comes very close
to CH1.5900O0.3100N0.2500 used as general protein formula in studies
of the Lunar Palace BLSS (Hu et al, 2010; Fu et al, 2016), and hence
this latter formula was selected. Palmitic acid is often used as lipid
in stoichiometries of ecosystems (Volk and Rummel, 1987; Guirado
and Podhajsky, 2008). However, vegetable oils mainly consist of
more complex triacylglycerols (Zambelli et al, 2015). Therefore in
this stoichiometric model, lipids are represented by tripalmitin,
consisting of one glycerol molecule bonded to three palmitic acid
molecules. Just like with palmitic acid, the fermentation of glycerol
also leads to VFAs, further contributing to the overall VFA output of
C1.

2.1.2 Biomass
Throughout the MELiSSA literature the empirical formulas of

the biomass of specific organisms differ to varying degrees. The
empirical formula that describes the biomass of the purple sulphur
bacteria Rhodobacter varies, for example, between (Dussap et al,
1993), (Hendrickx et al, 2006), and (Thiron, 2020). This is to be
expected since empirical formulas are always approximations.
Moreover, in several MELiSSA modeling studies, biomass
composition is dependent on environmental parameters such as
light input, and consequently the biomass composition varies
throughout the course of a simulation (Table 1). In the current
stoichiometric model, biomass is consistently represented as a
combination of carbohydrates, proteins, and lipids, and not as
one single molecule. This makes it possible to trace the levels of
each individual compound throughout the loop. To establish the

TABLE 2 Empirical formulas of all large biomolecules used in the stoichiometric model.

Compound Empirical formula References and notes

Carbohydrates CH1.6667O0.8333 General polysaccharides

Proteins CH1.5900O0.3100N0.2500 Hu et al, 2010, Fu et al, 2016

Lipids CH1,9216O0,1177 Tripalmitin

Biomass Rhodospirillum rubrum CH1.6472O0.3598N0.1788 18% carbohydrates, 72% proteins, 10% lipids, literature

Biomass Limnospira sp. CH1.6472O0.3598N0.1788 18% carbohydrates, 72% proteins, 10% lipids, literature

Biomass higher plants (edible) CH1.6889O0.6090N0.05487 70% carbohydrates, 20% proteins, 10% lipids, literature

Biomass higher plants (non-edible) CH1.6667O0.8333 100% carbohydrates, 0% proteins, 0% lipids, literature

Feces CH1.6676O0.6028N0.07715 66% carbohydrates, 28% proteins, 6% lipids, calculated
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composition of the different types of biomass, in this study an
estimate was made based on averaged values from literature. As
validation, the corresponding empirical formula was then compared
with formulas published in MELiSSA literature.

In correspondence with the MELiSSA study of (Hendrickx et al,
2006), the same biomass composition was chosen for both
Rhodospirillum rubrum and Limnospira sp. Based on literature (e.g.,
Dussap et al, 1993; Kobayashi and Kobayashi, 1995; Teuling et al,
2017), the following biomass composition was established (dry
weight, or DW): 18% carbohydrates, 72% proteins, and 10% lipids.
Both organisms contain high amounts of protein, hence their
interesting potential as food sources (Vrati, 1984; Clauwaert et al,
2017; Muys et al, 2019). Using the previously established CHON
compositions of carbohydrates, proteins and lipids, the overall
biomass composition corresponds to the empirical formula
CH1.6472O0.3598N0.1788. This is in the same range as the biomass
formulas used in theMELiSSAmodeling studies of (Hendrickx et al,
2006) and (Thiron, 2020).

Carbohydrates are typically the most abundant compound in
plants, encompassing both structural (e.g., cellulose) and non-
structural (e.g., starch and glucose) carbohydrates (Moore and
Hatfield, 1994). As explained before, an ‘ideal plant’ is used in
the current model. Four energy- and/or protein-rich crops were
selected and combined based on (Paradiso et al, 2013): bread and
durum wheat, potato and soybean. Averaging the carbohydrate,
protein and lipid fractions of these four crops (Molders et al,
2012; Stasiak et al, 2012; Page and Feller, 2013; Paradiso et al,
2013), leads to the following edible plant biomass composition
(DW): 70% carbohydrates, 20% proteins, and 10% lipids. Taking
into account the above CHON compositions of carbohydrates,
proteins and lipids, this corresponds to the empirical macroformula
CH1.6889O0.6090N0.05487. This is in line with the “food” descriptions
in other MELiSSA studies (Fulget, 1996; Thiron, 2020). The inedible
part of the plant is considered to be 100% carbohydrates, assuming
that it is only composed of cellulose.

2.1.3 Feces
Just like with biomass, feces are expressed in the model as a

combination of carbohydrates, proteins and lipids. The composition
of feces was calculated by stoichiometrically balancing the equation
for human metabolism (see 5.5). The proportions of carbohydrates,
proteins and lipids as reported in literature [review in (Rose et al,
2015)] were used as a guideline to solve the stoichiometry. The
resulting empirical formula is CH1.6676O0.6028N0.07715.

2.2 Establishing the stoichiometric
equations

As a general method to balance the equations that represent the
reactions occurring in each compartment, each one is stated as a
linear programming problem–or non-linear when the constraints
of the particular reaction so require–where the goal is to minimize
the total amount of matter used. The variables are defined as the
number of moles of each compound on either side of the equation.
The objective function is subject to the linear constraint of keeping
the number of atoms of a given element equal on both sides of

the equation. Additionally for each problem ad hoc constraints are
described e.g., to keep proportions of VFA’s produced similar to
experimental data on C2. The solving engine for these problems is
MS Excel’s built-in optimization tool. For linear problems Simplex
is used and for non-linear problems GRN non-linear, both on their
default configurations settings. In reporting throughout this paper
4 significant decimals are used, but during calculations in Excel 14
decimals were used.

This stoichiometry is a full revision of a version of that was
concisely published in two IAC conference papers (Vermeulen et al,
2018b; 2019) and presented at two MELiSSA conferences
(Vermeulen et al, 2018a; 2020b). The revisions were based on a
detailed validation session and on further literature study. The main
changes were the following:

• All biomass compositions were re-evaluated (Limnospira,
Rhodospirillum and higher plants) to more accurately represent
their carbohydrate, protein and lipid content.

• No more distinction between fecal and bacterial protein, in
line with the singular use of carbohydrates and lipids in the
stoichiometry.

• TheVFA spectrumwas extended beyond acetic acid and butyric
acid.

• Instead of representing urine as NH3, it is now represented as
urea, in order to bring carbon into the urine cycling. Hence,
a new subsystem with its own stoichiometry representing the
breakdown of urea was added.

2.3 Static spreadsheet model to test the
closure level

To calculate the steady state flow values for each stream,
each compartment’s equation is linked, thus building an equation
based model that represents the whole cycle. To solve it, the
one a priori known value is used: the consumption rate of the
crew compartment, which has been set at 3,000 kcal/day/person.
Knowing these requirements for C5, the required food outputs of
C4a and C4b are calculated. By continuing to work backwards
through the entire stoichiometry, the flow rates through the entire
loop could be established over a period of 1 day for a crew of six.

Since there is a subcycle between C1 and C2 the exchange flows
between them need to be calculated (Figure 2). Having the required
steady state flows into C1, and out of C2 (except the subcycle flows
into each other), the process of exchange between C1 and C2 can
be examined. This requires an iterative approach in which, given an
initial output of VFAs from C1 to C2, a subsequent C2 to C1 flow of
biomass is calculated. This, in turn, updates the flow from C1 to C2
again. This eventually converges into a stable exchange between C1
and C2, with complete processing of all VFAs. This then results in
cycle-wide steady state flow rates.

3 Stoichiometric model assumptions

This section describes the general assumptions behind themodel
and those per compartment.
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FIGURE 2
Diagram representing the subcycle between C1 and C2, and the process of converging to a stable exchange of VFAs and biomass between the two
compartments.

3.1 General assumptions

This stoichiometry is based on the four CHON elements; sulfur
and phosphor are not yet included. Throughout the entire loop,
food and feces are described as a proportion of carbohydrates,
proteins and lipids. The water in this stoichiometric model is what is
used in the chemical reactions. The actual water needs of a human
crew (drinking and hygiene water) have not been included. Net
biomass production only occurs in C2, C4a, and C4b because this
biomass is a material input for other compartments. For the other
compartments it is assumed there is no growth, and hence no net
biomass production occurs.This has an impact on the stoichiometric
approach for each compartment, which differs when describing a
growth metabolism vs. a maintenance metabolism without growth
(Cruvellier et al, 2016). It is further assumed that all waste materials
are fully digested in C1, and no undigestible residues are left. And
there is no limitation in terms of available space and hence the
number of bioreactors and growth chambers that can be included.

3.2 MELiSSA loop adjustments

Several adjustments have beenmade to the official concept of the
MELiSSA loop, as illustrated in Figure 1. They can be summarized
as follows (more details further down in this section):

• The Rhodospirillum biomass that is produced in C2 is not
used for human consumption, but is sent to C1 where it is
anaerobically digested, together with the other organic waste.

• C2 does not produce any net CO2.
• Urea is included as an individual waste product and is processed

by C3.
• C3 consists of two subcompartments, C3a and C3b, to

respectively process ammonia and urea.

• An auxiliary compartment has been added to burn surplus
hydrogen and generate water.

3.3 Assumptions for Compartment 1:
anaerobic fermentation

In C1, the thermophilic anaerobic bacteria can convert up to
70% of the waste under experimental conditions (Lasseur et al,
2010). This is because cellulose and hemicellulose can only be
hydrolyzed slowly, further hampered by the fact that both are
often intermeshed with lignin in lignocellulose, which is even more
difficult to break down (Liebetrau et al, 2017). In this model it
is assumed that all organic waste is fully converted in C1. In
the MELiSSA system up to 71% of the organic nitrogen in the
waste is converted into ammonium (Clauwaert et al, 2017). In our
stoichiometric model it is assumed that this is 100%. The VFA
spectrum produced by C1 consists of four VFAs: acetic acid,
propionic acid, butyric acid and valeric acid. These VFAs are
characteristically produced during acidogenesis (Jiang et al, 2013;
Khan et al, 2016).

3.4 Assumptions for Compartment 2:
Rhodospirillum culture

In the original conceptualization of MELiSSA, it was assumed
that in addition to the microalgae and crops from C4, the edible
purple sulfur bacteria from C2 would also serve as a food supply for
the crew (Lasseur et al, 1996; Albiol et al, 2000; Figure 1). However,
because of close proximity, there is always a chance that pathogens
associated with fecal matter in C1 pass through membrane filtration
and end up with the edible bacteria in C2 (Clauwaert et al, 2017).
Therefore, the produced biomass from this compartment is sent back
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TABLE 3 Assumptions about the humanmetabolism. Listed values are for one crewmember.

Parameter Value References and notes

Daily caloric intake 3,000 kcal Poughon et al, 1994; Ewert et al, 2022

Daily caloric intake from higher plants 2,700 kcal 90%

Daily caloric intake from Limnospira 300 kcal 10%

Oxygen consumption 0.84 kg/day or 52.50 mol/day Jones, 2003

CO2 production 1 kg/day or 22.72 mol/day Jones, 2003

Urea production 0.1239–0.7758 mol/day Based on Putnam, 1971; MedlinePlus, 2023.

Feces production Stoichiometrically determined —

to C1 for anaerobic degradation. This is in correspondence with
otherMELiSSA modeling studies (Poughon et al, 2000; Waters et al,
2004; Thiron, 2020). The overall diet of the crew should only
contain a limited amount of microbial single-cell protein, because
of increased nucleic acid contents and lower palatability (Tusé and
Miller, 1984; Tranquille and Emeis, 1996). The crew is already using
another microbial food source (Limnospira from C4a, Figure 1),
and this might be an additional argument to avoid consuming
the bacteria from C2. Theoretically, the assimilation of the VFAs
by purple sulfur bacteria in C2 could generate a net CO2 output
(Hendrickx and Mergeay, 2007). However, in practice, this has not
been observed yet in MELiSSA bioreactor experiments with C1
effluent as VFA source (Mastroleo et al, 2020).

3.5 Assumptions for Compartment 3:
processing ammonia and urea

Analogous to C4, this compartment also consists of two
subcompartments, C3a and C3b. C3a processes ammonia and
produces nitrate. C3b is a urine treatment unit based on C3a, and
also produces nitrate. It is assumed that all incoming ammonia and
urea are converted to nitrate.

3.6 Assumptions for Compartment 5:
human metabolism

The assumptions about the human metabolism are summarized
in Table 3. The reference caloric value of the higher plants
is estimated to be 4,000 kcal/kg dry weight (DW). This is
based on the reported caloric values of the four crops that
constitute the ideal plant (adjusted for their moisture content):
bread wheat and durum wheat (Kaleta and Górnicki, 2013;
Knowledge4 Policy, 2021; WebMD, 2021), potato (Decker and
Ferruzzi, 2013; U.S. Food & Drug Administration, 2017), and
soybean (Food Data Central, 2019b). The reference caloric value
of Limnospira (commercially available as Spirulina) is estimated to
be 3,000 kcal/kg DW (Food Data Central, 2019a). Solid output of
the humanmetabolism is described as feces and urea. All other body
wastes such as dead skin cells, sweat solids, hair, nails, etc. (Hu et al,
2010) are assumed to be part of the feces. H2O is only integrated
in the stoichiometry as a metabolite, and as such the amounts do

not represent actual water consumption. It is assumed that the
anabolism and catabolism of the crew are in dynamic equilibrium,
and that the crew neither gains or loses weight.

4 Results

This section describes the results of the stoichiometry
development, and the simulation results.

4.1 Stoichiometric equations

For each compartment a set of chemical equations with
fixed stoichiometric coefficients has been developed, making sure
that all types of output are also used as input in the loop,
thus enabling full closure. The equations are partially based
on existing equations from the MELiSSA literature, but were
tailored to serve the needs of this study based on additional
literature.

4.1.1 Compartment 1: fermentation with
thermophilic anaerobic bacteria

The first compartment of the MELiSSA loop is an anaerobic
digester with a consortium of thermophilic bacteria that receives
fecal material and other wastes, such as inedible plant material
(Michel et al, 2005; Mastroleo, 2009; Poughon et al, 2013).
Anaerobic digestion is a natural process that typically consists of
four subsequent stages: hydrolysis, acidogenesis, acetogenesis and
methanogenesis. Volatile fatty acids are intermediate products in
this process, while methane is the main end product (Hendrickx
and Mergeay, 2007; Khan et al, 2016). In the MELiSSA system a
partial anaerobic transformation is used with a maximal yield of
volatile fatty acids (VFAs), all while avoiding the production of
methane. The VFAs are useful biomolecules that can be utilized as
nutrients for other microorganisms downstream in the MELiSSA
loop. Such partial anaerobic digestion is achieved by operating
the bioreactor under slightly acidified conditions (pH 5.3) which
inhibits methanogenic activity (Mastroleo, 2009; Clauwaert et al,
2017).

Organic waste typically consists of polymers (carbohydrates
and proteins), as well as fats (Liebetrau et al, 2017). These cannot
be taken up by the microbial cells and have to be broken
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down into smaller compounds first. During hydrolysis, bacteria
excrete hydrolytic enzymes which split these substances into
sugars, amino acids, fatty acids, and glycerol. These water-soluble
hydrolysis products are then converted into volatile fatty acids,
CO2 and hydrogen during anaerobic fermentation (or acidogenesis)
(Lauwers et al, 2013; Liebetrau et al, 2017). C1 receives input
from three different sources: feces from the crew, inedible plant
material, and biomass from C2. The next paragraphs describe the
stoichiometries of the fermentation of, respectively, carbohydrates,
proteins, and lipids.

4.1.1.1 Carbohydrate fermentation
Carbohydrate fermentation in the MELiSSA loop has been

described in multiple studies, and results in the production of
VFAs, CO2 and hydrogen. In Hendrickx et al (2006) only one
generic formula representing all VFAs is used, while in all the
other consulted MELiSSA studies just two VFAs are produced
(e.g., Dussap et al, 1993; Poughon et al, 2009). In some studies
this is complemented with the production of bacterial biomass
(Guirado & Podhajsky, 2008; Thiron, 2020). As stated above, in
the current stoichiometry, four VFAs are used and no biomass
production is needed in the equation of this compartment. As a
consequence, a new stoichiometry had to be calculated. Proportions
of acetic acid, propionic acid, butyric acid and valeric acid were
used from (Yin et al, 2016), describing the anaerobic fermentation
of glucose as model carbohydrate at pH 6. In below equation,
the proportions of these four VFAs were used since the MELiSSA
C1 bioreactor also operates at a low pH of 5.3 (Clauwaert et al,
2017). CO2 and hydrogen are produced in equal proportions, in line
with other published balanced carbohydrate fermentation reactions
(Dussap et al, 1993; Yin et al, 2016).

CH1.6667O0.8333 + 0.1666H2O → 0.04651 C2H4O2
aceticacid

+ 0.0711 C3H6O2
propionicacid

+ 0.09535 C4H8O2
butyricacid

+ 0.006313 C5H10O2
valericacid

+ 0.2807CO2 + 0.2807H2 (1)

4.1.1.2 Protein fermentation
Just like with carbohydrates, there are several stoichiometric

descriptions of the fermentation of proteins in the MELiSSA
literature. Older studies use acetic acid and butyric acid as VFA
output (e.g., Dussap & Gros, 1991), subsequent studies use up to 5
VFAs (e.g., Guirado & Podhajsky, 2008;Thiron, 2020). In these latter
studies, microbial biomass is also included as an output. As biomass
output is not necessary in this part of our stoichiometric model,
and as a slightly differing empirical formula for protein is used,
a new stoichiometric balance needs to be calculated. Proteins are
polymers consisting of amino acids. During anaerobic fermentation,
proteins are first broken down into their individual amino acids.
The subsequent fermentation of these amino acids can be described
using a single reaction step, and results in the production of VFAs,
CO2, hydrogen and ammonia (Ramsay and Pullammanappallil,
2001; Poughon et al, 2009). In stoichiometric equations, CO2,
hydrogen and ammonia are generally being produced in a similar
order of magnitude (Poughon, 2007b; Thiron, 2020). Tepari (2019)
investigated protein fermentation during anaerobic wastewater
treatment, and used bovine serum albumin (BSA) as model protein.

At pH 5, only acetic acid (37.4%), propionic acid (13.7%) and butyric
acid (48.9%) were produced, and no valeric acid. These proportions
were used to calculate the following stoichiometric equation:

CH1.59O0.31N0.25 + 0.4962H2O → 0.1056 C2H4O2
aceticacid
+ 0.03867 C3H6O2

propionicacid

+ 0.138 C4H8O2
butyricacid

+ 0.1209CO2

+ 0.037H2 + 0.25NH3 (2)

4.1.1.3 Lipid fermentation
As described above, tripalmitin is used as model lipid in this

model. Since in previous MELiSSA modeling studies, palmitic acid
is used, a new stoichiometric equation has to be calculated. When
lipids such as triacylglycerols are anaerobically digested, they are
first hydrolyzed to glycerol and long-chain fatty acids (LCFAs)
(Mackie et al, 1991; Li et al, 2002; Cirne et al, 2007). Subsequently,
the glycerol is degraded into VFAs, while the LCFAs are broken
down into acetic acid and hydrogen through beta-oxidation (Weng
and Jeris, 1976; Ceron-Chafla et al, 2021; Holohan et al, 2022).
Firstly, the glycerol and LCFA fermentations will be individually
described, after which they will be integrated into one equation.

The hydrolysis of tripalmitin can be written as follows:

C51H98O6
tripalmitin

+ 3H2O → C3H8O3
glycerol
+3C16H32O2

palmiticacid
(3)

In experiments byYin et al, 2016, glycerolwas subjected to (non-
strict) anaerobic fermentation at pH 6. The study presents three
individual stoichiometric reactions, each describing the degradation
of glycerol into acetic acid, propionic acid, and butyric acid.
The experiment resulted in a production of 32% acetic acid,
52% propionic acid, and 16% butyric acid. Integrating the three
individual stoichiometric reactions, taking into account the above
mentioned proportion, leads to the following single equation:

C3H8O3
glycerol
+ 0.2727H2O → 0.2727 C2H4O2

aceticacid
+ 0.4481 C3H6O2

propionicacid

+ 0.1396 C4H8O2
butyricacid

+ 0.5519CO2

+ 1.3766H2 + 0.4481H2O (4)

The stoichiometric equation for palmitic beta-oxidation is
described by Li et al (2018):

C16H32O2
palmiticacid

+ 14H2O → 8 C2H4O2
aceticacid

+ 14H2 (5)

Integrating Eqs 3–5 leads to:

CH1.9216O0.1177 + 0.8789H2O → 0.4759 C2H4O2
aceticacid
+ 0.008786 C3H6O2

propionicacid

+ 0.002737 C4H8O2
butyricacid

+ 0.01082CO2 + 0.8505H2 (6)

4.1.2 Compartment 2: VFA processing by
photoheterotrophic bacteria

The purpose of MELiSSA C2 is to recycle the VFAs produced in
C1. The purple non-sulphur phototrophic bacteria Rhodospirillum
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rubrum is utilized for this. Under anaerobic conditions, it uses
light as an energy source to convert VFAs into biomass (Mastroleo,
2009; De Meur et al, 2020). Because we use a custom composition
of Rhodospirillum biomass in this model, a new stoichiometry had
to be calculated. Anaerobic digestion of organic matter may lead
to fluctuating proportions of different VFAs (Alloul et al, 2018).
Because of the variable VFA spectrum coming out of C1, it
was decided to develop a individual equation for each VFA. The
assimilation process consumes CO2 and NH3, and for acetic acid
also hydrogen (Dussap et al, 1993; Fulget, 1996; Thiron, 2020). As
explained above, no net CO2 production occurs in the following
equations.

C2H4O2
acetic acid

+H2 + 0.2774CO2 + 0.4073NH3

→[0.3327 CH1.6667O0.8333
carbohydrates

+ 1.6291 CH1.5900O0.3100N0.2500
proteins

+0.3155 CH1,9216O0,1177
lipids

]
Rhodospirillum

+ 1.7353H2O (7)

0.8556 C3H6O2
propionicacid

+ 0.1611CO2 + 0.4879NH3

→[0.3986 CH1.6667O0.8333
carbohydrates

+ 1.9515 CH1.5900O0.3100
proteins

N0.2500

+ 0.3780 CH1,9216O0,1177
lipids

]
Rhodospirillum

+ 1.052H2O (8)

0.5563 C4H8O2
butyricacid

+ 0.3086CO2 + 0.4532NH3

→[0.3702 CH1.6667O0.8333
carbohydrates

1.8127 CH1.5900O0.3100
proteins

N0.2500

+ 0.3511 CH1,9216O0,1177
lipids

]
Rhodospirillum

+ 0.8182H2O (9)

0.4084 C5H10O2
valericacid

+ 0.3762CO2 + 0.4325NH3

→[0.3533 CH1.6667O0.8333
carbohydrates

+ 1.7299 CH1.5900O0.3100N0.2500
proteins

+ 0.335 CH1,9216O0,1177
lipids

]
Rhodospirillum

+ 0.6991H2O (10)

4.1.3 Compartment 3: nitrification of ammonia
and ureolysis

In some cases, ammonia and urea can be taken up directly by
plants or microorganisms grown for food production. However, in a
BLSS it is desirable to convert ammonia and urea to nitrate because
it is a less volatile and less reactive molecule (Clauwaert et al, 2017;
De Paepe et al, 2018; Sachdeva et al, 2021). MELiSSA C3 receives
ammonia from C2 and urine from C5, and transforms both into
nitrate for the plants and microalgae in C4 (Duatis and Moreno,
2009; 2010). Ammonia is processed in a nitrifying bioreactor, while
urine is processed separately in a modified version of the nitrifying
bioreactor, the so-called Urine Treatment Unit (UTU) (Guirado and
Podhajsky, 2008). As both bioreactors process different compounds,
two separate compartments are defined in the stoichiometric model:
3a and 3b.

4.1.3.1 Compartment 3a: nitrification of ammonia by nitrifying
bacteria

The nitrifying bioreactor as defined in the MELiSSA project is a
cylindrical packed-bed bioreactor with polystyrene beads that are
colonized by a biofilm of Nitrosomonas europaea and Nitrobacter
winogradsky (Cruvellier et al, 2016; Garcia-Gragera et al, 2021).
The nitrification of ammonia happens in two steps, each step
carried out by one of the bacterial species (Cruvellier et al,
2016):

2NH3 + 3O2 → 2HNO2 + 2H2O
Nitrosomonas

(11)

2HNO2 +O2 → 2HNO3
Nitrobacter

(12)

Taken together this results in:

NH3 + 2O2 → HNO3 +H2O (13)

4.1.3.2 Compartment 3b: breakdown of urea by ureolytic
heterotrophic bacteria

In a recent MELiSSA study of a UTU concept (Christiaens et al,
2019), showed how human urine can be nitrified with the use of a
synthetic microbial community of ureolytic heterotrophic bacteria
and nitrifying bacteria cultivated in a continuous stirred tank
reactor. First, during ammonification, the ureolytic heterotrophic
bacteria break down urea into ammonia and CO2, a process
catalyzed by the enzyme urease (Nicolau et al, 2010; De Paepe et al,
2018). Subsequently, the ammonia is further converted into nitrate
by the nitrifying bacteria as described above. The stoichiometric
equation describing the ammonification of urea can be found in
(Guirado and Podhajsky, 2008):

CO(NH2)2
urea
+H2O → 2NH3 +CO2 (14)

Taken together with (13), this results in:

CO(NH2)2
urea
+ 4O2 → 2HNO3 +H2O+CO2 (15)

4.1.4 Compartment 4: food production
4.1.4.1 Compartment 4a: photoautotrophic cyanobacteria
growth

The edible microalgae Limnospira platensis and indica
(previously Arthrospira platensis and indica) are cyanobacteria
that consume nitrate and CO2 that are produced in other
compartments of the loop, and generate oxygen and food for the
crew (Clauwaert et al, 2017; Alemany et al, 2019; Sachdeva et al,
2021). Limnospira is grown inside a gas lift photobioreactor with
illumination and a gas injection system (Garcia-Gragera et al, 2021;
Poughon et al, 2021). Since a custom biomass composition is used
in our model, a new stoichiometric balance had to be calculated
(generated biomass is dry mass):

CO2 + 0.1788HNO3 + 0.7342H2O

→ [0.1461 CH1.6667O0.8333
carbohydrates

+ 0.7154 CH1.5900O0.3100N0.2500
proteins

+ 0.1385 CH1,9216O0,1177
lipids

]
Limnospira

+ 1.4554O2 (16)
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4.1.4.2 Compartment 4b: higher plant growth
Edible crops are grown in C4b of the MELiSSA loop

(Pannico et al, 2022). The goal of this compartment is in line with
that of C4a: recycling nitrate and CO2, and producing oxygen and
food (Lasseur et al, 2010; Peiro et al, 2020). In the current model,
a harvest index of 50% is used, which means that half of the plant
biomass is edible, while the other half is not. The non-edible part
is considered as waste and is used as feed for the thermophilic
anaerobic bacteria in C1. This can be summarized in the general
equation:

CO2 +H2O+HNO3 → [biomass]higherplantsedible
+ 0.8965 [biomass]higherplantsnon−edible +O2

(17)

This corresponds to the following stoichiometric equation
(generated biomass is dry mass):

2.9101CO2 + 0.0842HNO3 + 2.4H2O

→ [0.9629 CH1.6667O0.8333
carbohydrates

+ 0.3368 CH1.5900O0.3100N0.2500
proteins

+ 0.2348 CH1,9216O0,1177
lipids

]
higherplantsedible

+[1.3756 CH1.6667O0.8333
carbohydrates

]
higherplantsnon−edible

+ 3.1961O2

(18)

4.1.5 Compartment 5: human metabolism
The general equation for the human metabolism can be

summarized as follows (Guirado and Podhajsky, 2008):

[biomass]higherplantsedible + [biomass]Limnospira +O2

→ [feces] +CO(NH2)2 +H2O+CO2 (19)

To determine the final stoichiometric equation, a few
preparatory calculations are needed. Firstly, the right proportion
between edible higher plant biomass and Limnospira biomass
needs to be established. In the model, 90% of the caloric content
of the food comes from the higher plants, and 10% comes from
Limnospira. Higher plants and Limnospira are considered to have a
caloric content of respectively 4,000 and 3000 kcal/kg. This amounts
to a target daily food intake of 675 g DW (27.86 mol) of higher
plant biomass and 100 g DW (4.56 mol) of Limnospira biomass per
crew member. Using the biomass compositions, this can then be
translated into corresponding values for carbohydrates, proteins,
and lipids. For oxygen, CO2, and urea, reported daily values were
transformed into moles (Table 2), and this was then used for
calculating a stoichiometry with realistic proportions between these
compounds and biomass uptake. The amount of feces is calculated
by solving the stoichiometric equation. Below equation describes
the metabolism of one crew member:

[17.6580 CH1.6667O0.8333
carbohydrates

+ 6.1760 CH1.5900O0.3100N0.2500
proteins

+ 4.3059 CH1,9216O0,1177
lipids

]
higherplantsedible

+[0.6594 CH1.6667O0.8333
carbohydrates

+ 3.2286 CH1.5900O0.3100N0.2500
proteins

+0.6253 CH1,9216O0,1177
lipids

]
Limnospira

+ 24.2893O2 → [6.1661 CH1.6667O0.8333
carbohydrates

+ 3.1982 CH1.5900O0.3100N0.2500
proteins

+ 0.9989 CH1,9216O0,1177
lipids

]
feces

+ 0.7758 CO(NH2)2
urea
+ 17.2869H2O+ 21.5142CO2 (20)

4.1.6 Auxiliary processes
4.1.6.1 Excess hydrogen burn-off

One auxiliary process has been added to the loop with the
function to burn any excess hydrogen. This is in correspondence
with other MELiSSA modeling studies such as (Poughon et al,
2000).

2H2 +O2 → 2H2O

4.2 Simulation results

The results of the stoichiometric spreadsheet model running
in steady state conditions can be found in Table 4. The overall
input and output values of all compounds in the loop are listed,
for a crew of six over a period of 1 day (the time unit used
in the ABM for which this stoichiometry was developed). All
different stoichiometric equations were successfully balanced with
each other, which resulted in a very high closure level with 12 out
of 14 values reaching full closure, with no material loss. Oxygen
displays an almost neglectable loss of 0.00021%, and CO2 0.00001%.
This is assumed to be caused by the numerical limitations of the
software tools (e.g., number of decimals and rounding). The values
correspond to respectively 2.13 mg O2 and 1.47 mg CO2 material
loss per person per day. Over the course of a year, this would
amount to 4.67 g O2 and 3.21 g CO2 for the entire crew. The VFA
spectrum (weight-based) at steady state consists of 57.20% acetic
acid, 12.59% propionic acid, 29.98% butyric acid and 0.23% valeric
acid.

5 Discussion

This study presents a stoichiometric model of the MELiSSA
BLSS, which describes the main metabolic processes in all
compartments using a series of static chemical equations. In steady
state, 100% of the necessary food and oxygen for the crew, as well
as 100% of the compounds required for all other organisms in the
loop, are generated. Using the assumption that all waste compounds
in the loop can be broken down again, full closure was achieved in
the static model by balancing the size of each compartment relative
to all the other compartments. This is the first time a fully closed
static MELiSSA model is described that can provide all the food
and oxygen for astronauts. The model is a useful tool for theoretical
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TABLE 4 Input and output values of the different compounds, after reaching steady state. Values for a crew of six, over a period of 1 day.

Compound Input (mol) Output (mol) Material loss(mol) Material loss(%)

Carbohydrates 1832.2836 1832.2836 0.0000 0.00000%

Protein 7587.0675 7587.0675 0.0000 0.00000%

Lipids 1490.3754 1490.3754 0.0000 0.00000%

Acetic acid 1570.2506 1570.2506 0.0000 0.00000%

Propionic acid 426.4730 426.4730 0.0000 0.00000%

Butyric acid 1207.5497 1207.5497 0.0000 0.00000%

Valeric acid 10.8735 10.8735 0.0000 0.00000%

Urea 4.6548 4.6548 0.0000 0.00000%

NH3 1882.6600 1882.6601 0.0001 0.00000%

HNO3 14.1068 14.1068 0.0000 0.00000%

H2O 5591.1996 5591.1994 -0.0001 0.00000%

H2 2004.4967 2004.4967 0.0000 0.00000%

O2 391.0724 391.0716 -0.0008 -0.00021%

CO2 1543.0613 1543.0611 -0.0002 -0.00001%

research on autonomous BLSSs for long-duration space exploration,
allowing tracing of the elements over the entire cycle.

However, in practice, no system can be 100% closed. There
are always potential outfluxes from the system, for example,
through a buildup of recalcitrant organic matter (Hendrickx
and Mergeay, 2007; Lasseur et al, 2010; Zhang et al, 2018) or
the accumulation of different precipitates such as carbonates
and phosphates (De Paepe et al, 2018; Christiaens et al, 2019).
Recalcitrant organic matter consists mainly of plant fibers that
do not rapidly biodegrade. Plant cell walls are composed of
cellulose, hemicellulose, pectin, and lignin and are among the
least degradable polymers in a BLSS (Hendrickx and Mergeay,
2007; Zhang et al, 2018). As a result, up to about 70% of the
organic waste could be digested in MELiSSA lab experiments
(Farges et al, 2008; Lasseur et al, 2010). The MELiSSA community
has investigated additional methods to break down the remaining
recalcitrant matter using hydrothermal and chemical oxidation,
and anaerobic and hyperthermophilic cellulose-degrading bacteria
(Hendrickx & Mergeay, 2007; Lasseur et al, 2010).Themost efficient
resultswere obtained by using supercritical water oxidation (SCWO)
in which up to 98% of all organic matter could be broken
down (Hendrickx and Mergeay, 2007; Zhang et al, 2018). Hydrogen
peroxide was used as an oxidizer in these tests, which is a compound
that can be generated within a BLSS loop (Tikhomirov et al, 2011;
Vijapur et al, 2017; Nelson et al, 2020). Nevertheless, it is safe to
assume that, in reality, there will always be some level of material
loss in any BLSS loop. It would therefore be interesting to investigate
what accumulates over a long period of time and then calculate the
dimensions of the reserve storage required to mitigate the resulting
material shortages.

The interaction between compartments C1 and C2 represents a
subcycle in this model. The Rhodospirillum biomass generated in C2
is fed back into C1 as organic waste. The goal of this subcycle is to
produce a surplus of CO2, H2, and NH3 that is needed in the other
compartments of the MELiSSA loop. Steady state of this subcycle is

reached gradually until enough biomass from C2 is sent back to C1
to ensure that the exact amount of VFAs is produced to sustain a
stable Rhodospirillum culture. If too few VFAs are provided, C2 will
underperform due to a lack of Rhodospirillum growth. If too many
VFAs are provided, the Rhodospirillum culture will not be able to
process all of them, leading to accumulation and negative impacts
on the mass flows and efficiency of the entire loop. At steady state,
this subcycle generates the following surplus (per day, for a crew of
six): 213 mol CO2, 434 mol H2, and 126 mol NH3.The subcycle also
explains the dominant amount of protein present in the loop, despite
the foodprovided to the crew containingmuch less protein (Table 4).
Due to the need for a significant mass of Rhodospirillum to process
the VFAs and their high protein content (72%), a lot of protein is
present in the loop in general. Bio-electrochemical oxidation is a
potentially more efficient approach to convert the VFAs into CO2.
In a study by Luther et al, 2018, using bio-electrochemical oxidation
within a microbial electrolysis cell, 80%–100% of the VFAs in the
effluent of MELiSSA’s C1 were converted into CO2 in 7 days. With
further process development and optimization, bio-electrochemical
oxidation can potentially entirely replace the use of Rhodospirillum
in C2.

(Jiang et al, 2013) conducted a series of experiments on
anaerobic digestion of food waste. At a pH of 5.0, the resulting
VFA spectrum consisted of 60.40% acetic acid, 8.32% propionic
acid, 31.13% butyric acid, and 0.15% valeric acid, which falls
within the same range as the results achieved in our model
at steady state. Another study by Lim et al, 2008 also involved
anaerobic digestion of food waste. At a pH of 5.5, the resulting
VFA spectrum had a more variable composition, but acetic acid
was generally the dominant VFA. These reported results are
consistent with the results of our static model, which suggests
that the theoretical VFA outcome is a potentially realistic scenario.
However, it must be noted that VFA spectra generated during
anaerobic fermentation are highly variable and depend on various
factors such as substrate composition and inoculum (Poughon et al,
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2013; Khan et al, 2016), pH and temperature (Shin et al, 2004;
Jiang et al, 2013; Khan et al, 2016), and bioreactor design and
operation (Lim et al, 2008; Bharathiraja et al, 2016). For instance,
in experiments using food waste by Shin et al (2004), and in
MELiSSA experiments using a synthetically composed organic
waste (Luther et al, 2018; Zhang et al, 2019), both acetic acid
and butyric acid were the main VFAs, with butyric acid being
dominant.

Growing enough plants to meet the food requirements of a
human crew typically results in the production of more oxygen than
the crew needs.This is because the harvest index of the crops is often
less than 100%, meaning that only a portion of the grown biomass
is used for food (Jones, 2003). However, the unused biomass still
generates oxygen. In a closed loop system, this could lead to an
accumulation of excess oxygen (as e.g., observed in Poughon et al,
2000; Gros et al, 2003) and, eventually, the collapse of the system.
In our model, the excess oxygen is used to hydrolyze solid waste
in C1, in the form of H2O. The hydrogen-burning auxiliary helps
to transform any remaining oxygen gas into H2O. Since oxygen
originates from splitting H2O during photosynthesis, the amount
of surplus oxygen matches the amount of surplus hydrogen in the
system.

In our model, the human crew consumes 21.51 mol/person/day
of CO2, which is very close to the target value of
22.72 mol/person/day used for calculating the stoichiometry.
However, the human crew only uses 24.29 mol/person/day of
oxygen, much lower than the target value of 52.50 mol/person/day.
The proportion between consumed oxygen and produced CO2
should be 2.31, but in our model, this proportion is 1.13, precisely
because of the lower oxygen consumption. Remarkably, other BLSS
modeling studies show the same tendency. In MELiSSA studies, the
proportion is 1.20 (Fulget, 1996; Thiron, 2020) and in Lunar Palace
studies, it ranges from 1.13 to 1.38 (Hu et al, 2010; Fu et al, 2016).
This suggests that the description of the O2 consumption in all of
these studies is not entirely complete. This could be due to the fact
that in reality, more compounds are oxidized than represented in the
simplified stoichiometric equation for human metabolism. The total
mass of consumed food per person per day corresponds to 781 g
DW/day. This is slightly higher than the range of baseline values
used in MELiSSA studies and reference documents. Adjusted to a
daily food intake of 3,000 kcal/person, the values in these studies
and documents range from 509 to 748 g DW/day (e.g. (Dussap et al,
1993; Poughon et al, 2000; Thiron, 2020)).

The composition of feces was calculated by solving the
stoichiometric equation for human metabolism, using the general
characterization of feces reported in the literature as a starting point
(Rose et al, 2015). After solving the equation for humanmetabolism,
the resulting feces composition was found to be 66% carbohydrates,
28% proteins, and 6% lipids, corresponding to the empirical formula
CH1.6676O0.6028N0.07715. This formula is similar to the one used
in BLSS studies by Hu et al, 2010 and Fu et al, 2016, which is
CH1.70O0.60N0.05. Because the MELiSSA diet is a vegan diet, it is
expected that there is a high fiber intake and a resulting high amount
of fiber in the feces (Brodribb et al, 1980; Kay, 1982; Forsum et al,
1990). As a result, the overall carbohydrate fraction could be quite
significant. It should be noted that the fraction of protein in the
feces could be an underestimation, as bacteria can compose up to
half of the fecal solids and may have a significant protein content

(Cummings, 2001; Rose et al, 2015). Intestinal bacterial growth is
not included in the human stoichiometry, which is justifiable as
it means more digestion is done by the same groups of microbes
in C1. The amount of feces produced is 253 g DW/person/day.
Jenkins et al, 2001 measured 160 ± 24 g DW/person/day for a
vegetarian diet. It should be noted that no other solid body wastes
have been included in the stoichiometry, and as such the ‘feces’ in
the equation represent a more general representation of all wastes
combined.

Further development of the stoichiometric model could focus
on increasing its granularity. This could involve expanding the
model to include more elements beyond CHON, incorporating a
greater diversity of crops, and using a more detailed description
of human metabolism. Nitrogen, phosphorus, and potassium are
the three major macro-elements for plants (Usherwood and Segars,
2001; Kanazawa et al, 2008). Therefore, including the latter two
elements in the next version of the model seems like a logical step.
Fertilizers typically contain these three elements, but it is crucial
that they are applied in the correct ratio (Usherwood and Segars,
2001; Chun et al, 2017), which must also be factored into the model.
Diverse plant crops could be used instead of the concept of an ‘ideal
plant’, allowing for a more detailed description of the crew’s daily
diet. Integrating water usage beyond it's role as a metabolite will
result in a more accurate description of the entire water budget. For
example, water transpiration, water excretion, and free water inside
the plant could be factored in. By integrating solid body wastes other
than feces, the stoichiometry of human metabolism could also be
further refined.
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