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ABSTRACT

In this paper, we aim to design an automatic camera pose
estimation pipeline for clinical spaces such as catheterization
laboratories. Our proposed pipeline exploits Scaled-YOLOv4
to detect fixed objects. We adopt the self-supervised key-point
detector SuperPoint in combination with SuperGlue, a key-
point matching technique based on graph neural networks.
Thus, we match key-points on input images with annotated
reference points. Reference points are chosen on fixed objects
in the scene, such as corners of door posts or windows. The
point-correspondences between the image coordinates and the
3D coordinates are applied to the Perspective-n-Point algo-
rithm to estimate the pose of each camera. Compared with
other camera pose estimation methods, the proposed pipeline
does not require the construction of 3D point-cloud model of
the scene or placing a polyhedron object in the scene before
each required calibration. Using videos from real procedures,
we show that the pipeline can estimate the camera pose with
high accuracy.

Index Terms— Camera calibration, camera pose estima-
tion, Perspective-n-Point, 3D geometry

1. INTRODUCTION

The operating room (OR) is constantly evolving with the in-
troduction of new technologies and surgical procedures. One
of the key areas of the improvement is surgical workflow anal-
ysis [1, 2], which affects patient safety, working conditions,
and hospital efficiency. The 3D position & poses of personnel
are descriptive of the surgical workflow, while camera extrin-
sics calibration is necessary to extract 3D information from
2D footages [3, 4, 5]. However, in dynamic environments like
catheterization laboratories, camera poses can be affected by
personnel and equipment movement, resulting in inaccurate
localization. It is thus crucial to calibrate the camera regu-
larly to ensure reliable results.

Our study focuses on camera pose estimation (a.k.a. ex-
trinsic calibration of the camera), which involves estimating

the orientation and position of the camera. Traditional meth-
ods use 3D-2D correspondences between 3D points and im-
age pixels [6, 7, 8], while deep learning-based methods of-
ten use convolutional neural networks (CNNs) to regress the
camera pose [9, 10, 11, 12]. However, traditional methods re-
quire calibration patterns to be placed in the scene, while deep
learning-based methods need a large dataset of annotated im-
ages and poses, which can require a labor-intensive process.

Therefore, we aim to automate camera pose estimation
for clinical spaces like ORs and catheterization laboratories.
In Fig. 1, we propose an automatic camera pose estimation
pipeline. We combine the object detection model Scaled-
YOLOv4 [13], a neural-network based key-point detector
SuperPoint [14] and key-point matcher SuperGlue [15] to
obtain the 3D-2D correspondences between the corners of
the fixed objects in the scene and image pixels for each view
individually. Next we apply EPnP [6] algorithm to solve the
Perspective-n-Point problem [8], resulting in the extrinsic
parameters of the camera. The proposed pipeline achieves
the lowest 5.79 pixel reprojection error and the lowest 3.28
cm Euclidean distance error averaged on 27 key-points. In
summary, our proposed pipeline has two main contributions.
Firstly, it employs advanced neural networks to achieve high
accuracy and efficiency. It eliminates the need for con-
structing a 3D point-cloud of the scene or manually placing
calibration patterns, significantly reducing the required time
and resources. Secondly, it can be easily deployed to other
catheterization laboratories and other indoor localization ap-
plications.

2. BACKGROUND

Camera calibration is the estimation of camera parameters in-
cluding intrinsics, extrinsics and distortion coefficients [8].
Intrinsic- or internal parameters mainly represent the inher-
ent properties of the camera including the focal length, the
optical center, and the skew parameter. Extrinsic- or external
parameters represent the camera rotation and translation. The
camera projection matrix P maps a point X ∈ R3 in worldIC
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Fig. 1: Automatic camera pose estimation pipeline

coordinates to a point x ∈ R2 in image coordinates. This
mapping and the projection matrix are written as x = PX,
P = K[R|t], where the matrix K is the camera projection
matrix, also known as the intrinsics, and R and t represent
the camera rotation and translation. K is expressed as:

K =

fx s cx
0 fy cy
0 0 1

 , (1)

where the focal length is (fx, fy), the optical center (cx, cy)
and the skew coefficient s. [R|t] represents the rigid transfor-
mation from the world coordinate to the camera coordinate.
The transformation is done with a rotation matrix R ∈ R3×3

and a translation vector translation vector t ∈ R3×1. To-
gether, they form the extrinsic matrix [R|t] ∈ R3×4.

The camera distortion is usually represented as radial
distortion and tangential distortion. Radial distortion oc-
curs when the light ray bends more at the edges of the lens
than in the center, which causes straight lines near the edge
of the image to appear curved. This can be modelled as:
(xdistorted, ydistorted) = (x(1 + k1r

2 + k2r
4 + k3r

6), y(1 +
k1r

2 + k2r
4 + k3r

6)), where x, y represent the undistorted
pixel coordinates. x and y are (normalized) pixel coordinates.
r2 = x2+y2. k1, k2, and k3 are radial distortion coefficients.

Tangential distortion occurs when the lens and the image
plane are not aligned. It is modelled as: (xdistorted, ydistorted) =
(x + [2p1xy + p2(r

2 + 2x2)], y(1 + k1r
2 + k2r

4 + k3r
6)),

where p1, p2 are tangential distortion coefficients.
In our study, we have retrieved the intrinsic parameters

and distortion coefficients (k1, k2, p1, p2, k3) by a chess-
board calibration pattern after installation of the cameras [16].
This paper is about estimating the extrinsics [R|t] in an auto-
mated manner from reference objects in the visual scene.

3. METHODS

The proposed pipeline mainly relies on obtaining 3D-2D cor-
respondences between the reference points of fixed objects in
the scene and the image pixel coordinates. The fixed objects
include windows, doors, patslide, working bench, lights, and
the monitor screen. As shown in Fig. 1, the proposed pipeline
starts with the detection of the fixed objects in the scene. We
create a image database consisting of the annotated key-points

Fig. 2: The steps of key-point detection and matching with the ref-
erence points stored in the image database.

and 3D measurements of the key-points on the reference ob-
jects. Then we apply a key-point detection and matching tech-
nique to extract the 3D-2D correspondences between 2D im-
age key-points and 3D coordinates annotated in the database
images. After filtering the key-point matches, we apply the
EPnP algorithm [6] to the resulting 3D-2D correspondences
to solve Perspective-n-Point problem and obtain the orienta-
tion and position of the camera. In the following, we explain
each of those steps.

3.1. Fixed Object Detection

Object detectors seek to recognize instances of a series of
predefined object classes from given images or videos, and
estimate the 2D positions of each detected object with a
bounding box. We adopt the one-stage object detector Scaled-
YOLOv4 [13], known for its fast speed and high accuracy.
In [13], it is shown that Scaled-YOLOv4 outperforms other
state-of-the-art object detectors in both speed and accuracy.
In our scenario, we need a high-accuracy object detector and
Scaled-YOLOv4 suits our application.

3.2. Key-Point Detection & Matching

To obtain the 3D-2D correspondence pairs, we implement the
following steps (see in Fig. 2): (1) Create an image database
that contains the annotated key-point coordinates with the
corresponding measured 3D coordinates; (2) Detect key-
points on input images by SuperPoint [14], a self-supervised
framework specializing in tackling multiple-view geometry
problems in 3D computer vision field; (3) Match the anno-
tated key-points in database images with the input images by
SuperGlue [15], a key-point matcher that learns priors over
geometric transformations and 3D world regularities through
end-to-end training from picture pairs; (4) Obtain 3D-2D
correspondences between the measured 3D coordinates on
database images and the 2D key-points on input images.

The image database consists of images taken from multi-
ple angles. Each database image contain at least one fixed-
object. Object key-points—the 3D positions of which are
known—are annotated in the 2D images. We annotate in
CVAT [17] the corners or vertices of fixed objects as the key-
points, because their 3D coordinates are easy to measure.
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3.3. Filtering

The obtained key-point matches can be wrong due to the com-
plicated scene settings and the wrong inferences by Super-
Point or SuperGlue. Therefore, we integrate the bounding
boxes inferred by Scaled-YOLOv4 as our first filter block to
remove wrongly matched key-points. If the coordinate of
the key-point is not inside of a bounding box with a corre-
sponding label, we remove the key-point. Since one input
image will be matched to multiple database images, the sin-
gle label on the input image is likely to be matched to mul-
tiple slightly different coordinates. Thus, we choose either
of the following two filtering algorithms as the second fil-
ter block: Nearest Centroid Distance (NCD) and Reprojec-
tion Error Minimization (RPEM). If matched key-points of
one label suggest different 3D coordinates, NCD calculates
the centroid of the resulting set of 3D coordinates, next se-
lects the key-point that has the shortest Euclidean distance
to this centroid and removes the others. Given M coordi-
nates matched to the same key-point label, we denote the co-
ordinates as v1, v2, ..., vM , vn = (xn, yn). NCD finds and
selects the key-point vselected which is closest to the centroid
vselected = argmin ∥vi −

∑M
i=1 vi/M∥2, i = 1, 2, ...,M .

RPEM is designed to minimize the reprojection error (see
Section 3.6). Although multiple key-points can be matched
with the same label, we initialize with 4 key-points that have
the highest confidence scores. Based on the rank of confi-
dence scores, we add another key-point correspondence pair
at a time and calculate the reprojection error. Consequently,
we find the suboptimal combination of key-points that gener-
ates the minimized reprojection error.

At last, we apply the EPnP algorithm on the filtered 3D-
2D correspondences to estimate the camera pose.

3.4. Camera Pose Estimation

The Perspective-n-Point (PnP) refers to estimating the orien-
tation and position of a camera, given n correspondences be-
tween 3D world coordinates and projected 2D image points
[8]. Popular algorithms to solve the PnP problem include
Direct Linear Transform (DLT) [8], P3P [7], EPnP [6], and
Bundle Adjustment (BA) [8]. We adopt EPnP because of its
robustness and better performance during our testing. Filtered
3D-2D correspondence sets serve as the input for the PnP al-
gorithm to estimate the pose of each camera.

3.5. Experimental Setup

Five cameras are installed at different locations in the catheter-
ization laboratory at the Reinier de Graaf Gasthuis, Delft, NL.
The installed cameras are named after their positions in the
room: CornerNW (northwestern corner), CornerSW (south-
western corner), CornerSE (southeastern corner), WallS
(southern wall) and WallW (western wall). The image frame
size is 1920×1080 pixels for all cameras.

Fig. 3: The cube wireframe is placed on the operating table (view of
CornerNW camera).

We use two recorded sessions for training and testing
Scaled-YOLOv4. The two recorded sessions include one
session for camera intrinsics calibration and the other session
for a complete surgery procedure. We name them: calibration
session and surgery session. Each recorded session has five
videos for the five views. In a total of 10 video clips, we anno-
tate 12 classes on 995 image frames and 3195 image frames.
We use CVAT [17] for manual bounding box annotation.

A cube wireframe with 27 vertices is placed near the cen-
ter of each view to evaluate the estimated pose (see Fig. 3).
The length of each edge, and therefore the 3D coordinates
of each vertex, are known. These positions are used as the
ground truth in the evaluation.

3.6. Evaluation

In object detection, the Intersection over Union (IoU) de-
scribes the extent of overlap between the predicted and the an-
notated bounding box. IoU serves as a threshold to determine
whether the prediction is a true positive. Average Precision
(AP) is defined as the area under the precision-recall curve
(PR-curve), and is calculated separately per class. Mean Av-
erage Precision (mAP) is defined as the AP values averaged
over all classes. We use mAP@.5 and mAP@[.5:.95] specifi-
cally to evaluate the model performance: mAP@.5 represents
the mean average precision by setting the IoU threshold to
50%, and mAP@[.5:.95] represents the mAP averaged over
different IoU thresholds from 50% to 95% with a step of 5%.

To evaluate the estimated camera pose, we adopt two eval-
uation metrics: reprojection error (RPE) and Euclidean dis-
tance error (EDE). RPE refers to the error obtained by com-
paring the estimated key-point pixel coordinates (observed
projection locations) to the locations obtained by projecting
the 3D points according to the currently estimated camera
pose [8]. For a 3D world coordinate Xi, x̃i represents the
projection of Xi on the image. RPE for Xi can be expressed
as RPEi = ∥x̃i − xi∥2. The RPE can be averaged over the N
3D-2D correspondences used for the estimation of the cam-
era pose, i.e., RPE =

∑N
i=1 ∥x̃i − xi∥2/N . EDE refers to

the error between the ground truth 3D coordinates and the tri-
angulated 3D coordinates. In our case, EDE represents the
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Table 1: The average precision results of Scaled-YOLOv4 tested on
two recorded sessions: calibration session and surgery session.

Calibration Session Surgery Session
Class Targets mAP@.5 mAP@.5:.95 Targets mAP@.5 mAP@.5:.95

all 991 0.995 0.953 2760 0.995 0.992
door1 35 0.995 0.894 244 0.995 0.993
door2 115 0.995 0.993 269 0.995 0.995

window2 114 0.995 0.99 381 0.995 0.995
working bench 164 0.995 0.929 520 0.995 0.995

switch 61 0.994 0.921 269 0.995 0.99
wall screen 87 0.995 0.988 126 0.995 0.995

patslide 148 0.995 0.956 217 0.995 0.995
charging stand 40 0.995 0.995 137 0.995 0.994

window1 73 0.995 0.993 244 0.995 0.995
light3 35 0.995 0.894 119 0.995 0.992
light2 35 0.995 0.995 119 0.995 0.985
light1 35 0.995 0.889 119 0.995 0.978

Euclidean distance differences averaged over 27 3D points
on the cube wireframe (see Fig. 3). Since the triangulation
relies on the estimated camera pose, EDE reflects the perfor-
mance of our pose estimation directly. EDE can be written
as EDE = 1

N

∑N
i=1 ∥Xi − Xi

triangulated∥2, where Xi
triangulated

represents the i-th 3D point triangulated by 5 cameras.

4. RESULTS

4.1. Object Detection

For the calibration session, we use 796 frames for training
and 199 frames for testing. For the surgery session, there are
2556 frames for training and 639 frames for testing. We start
with a pre-trained YOLOv4-P5 (one of the Scaled-YOLOv4
architectures). The number of epochs and batch size are set
to 50 and 32 respectively.

The average precision result for two recorded sessions is
shown in Table 1. For the calibration session, the mean av-
erage precision (mAP@.5) averaged over all classes is 0.995,
while mAP@.5:.95 is 0.939. AP@.5 for all the detected ob-
jects is above 0.99. In the surgery session compared to the
calibration session, the result shows the same pattern. While
mAP@.5 over all classes is 0.995 and mAP@.5:.95 is 0.992,
AP@.5 for each detected object is all around 0.995.

4.2. Camera Pose Estimation

For our benchmark, we manually annotate the 2D key-points
that are visible in the input images and manually match them
with the corresponding 3D coordinate measurements. We ap-
ply the same EPnP algorithm to retrieve the camera pose.

We compare the RPE and EDE in different configurations,
including the benchmark (mannual key-point annotation),
with/without Scaled-YOLOv4 detection, and with/without
the NCD filter or the RPEM filter. The RPEM filter yields
the lowest reprojection error of 5.79 pixels, since the RPEM
is designed to minimize RPE. Except for the benchmark
where key-points were annotated and matched manually, the
NCD filter with Scaled-YOLOv4 detection shows the lowest

Table 2: The results of camera pose estimation, the metrics include
reprojection error and Euclidean distance error.

RPE (pixel) EDE (cm)
CornerNW CornerSE CornerSW WallW WallS Average Average

Benchmark 6.91 20.18 17.21 11.20 15.35 14.16 2.73
NO YOLO Detection NCD Filter 4.58 36.00 9.13 152.61 19.96 56.83 8.77

With YOLO Detection NCD Filter 4.58 38.89 9.56 30.48 16.27 19.95 3.28
NO YOLO Detection RPEM Filter 1.45 5.67 4.74 6.86 10.94 5.93 5.26

With YOLO Detection RPEM Filter 1.45 5.67 5.24 6.86 9.74 5.79 4.97

(a) Benchmark (b) YOLO + NCD (c) Only NCD Filter

(d) YOLO + REPM (e) Only REPM Filter

Fig. 4: Euclidean Distance Error (cm). The orange dots represent
the ground truth cube vertices, while the blue dots represent the tri-
angulated 3D points. ”YOLO” in the subplots refers to the bounding
box filtering inferred by Scaled-YOLOv4.

EDE of 3.28 cm. However, if Scaled-YOLOv4 detection is
removed, the NCD filter shows the worst performance.

5. DISCUSSION

In our study, there could be overfitting in the object detec-
tion due to fixed camera angles and the fixed positions of ob-
jects. The most effective approach to address the overfitting
could be introducing other image datasets in similar scene
setups such as catheterization laboratories at other hospitals.
Secondly, the proposed approach still requires one session of
manual measurements and annotations when the cameras are
installed for the first time. Indeed key-points on reference ob-
jects need to be measured and stored in a database. However,
once such database of key-points has been created, no further
measurements are required and the camera pose estimation
can be conducted automatically.

6. CONCLUSION

In this paper, an automatic pipeline for camera pose estima-
tion is proposed and implemented. The proposed pipeline
shows the ability for automating the camera pose estimation
without any calibration patterns in a catheterization labora-
tory. This approach might also be applied to indoor localiza-
tion in other contexts.
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