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ABSTRACT

Sensor selection is a useful method to help reduce data throughput,
as well as computational, power, and hardware requirements, while
still maintaining acceptable performance. Although minimizing the
Cramér-Rao bound has been adopted previously for sparse sensing,
it did not consider multiple targets and unknown source models. In
this work, we propose to tackle the sensor selection problem for an-
gle of arrival estimation using the worst-case Cramér-Rao bound of
two uncorrelated sources. To do so, we cast the problem as a convex
semi-definite program and retrieve the binary selection by random-
ized rounding. Through numerical examples related to a linear array,
we illustrate the proposed method and show that it leads to the nat-
ural selection of elements at the edges plus the center of the linear
array. This contrasts with the typical solutions obtained from mini-
mizing the single-target Cramér-Rao bound.

Index Terms— sparse sensing, cramér-rao bound, multi-target
estimation, array processing, sensor selection

1. INTRODUCTION

Among the main functions of a radar system is angle of arrival (AoA)
estimation. In modern radar, antenna arrays are used to realize the
acquisition of spatial data and the application of beamforming. The
aperture of the array is the primary contributor to the angular res-
olution of the array, while the density of the array allows further
suppression outside the main beam and prevention of spatial alias-
ing.

So naturally, a large aperture, densely packed array should be
desirable, but it should come as no surprise that this carries a cost.
The need for more hardware (both antennas and their processing)
leads to a higher cost, but it also leads to a large amount of data.
Not only would we need the computing power to process all the
data, we also need the throughput to actually get all the data to the
processor. Further, the additional hardware and processing also incur
an additional power cost.

Since the ratio of targets to obtained sensors is usually low, com-
pressed sensing (CS) has been shown to be effective at reducing the
required data processing while maintaining performance [1, 2, 3].
However, even though CS can be implemented using analog process-
ing with low-complexity receiver chains, the entire array still need
to be available. To mitigate the hardware costs, we need to design
arrays that are sparse, i.e., perform sensor selection.

The work is part of a project funded by the Netherlands Organisation for
Applied Scientific Research (TNO) and the Netherlands Defence Academy
(NLDA).

Sensor selection is the problem of choosing a subset of sen-
sors from a full set of candidate sensors, e.g., a uniform linear array
(ULA). It can be performed both offline, in the design of the array,
or online, by switching between the available elements of the array.
Offline sensor selection carries the biggest cost savings, clearly, but
there is no option to adapt the sensor selection to a specific task or
scenario. Online sensor selection has the ability to adapt to different
tasks and scenarios, but requires all candidate sensors to be available
as well as a switching mechanism, both of which directly lead to in-
creased costs. In this work, we will focus on offline sensor selection
through convex optimization, though in Section 6 we will discuss
some possible extensions to online sensor selection.

Convex optimization has previously been used successfully in
sensor selection, such as by relaxing a non-convex program [4, 5, 6]
to a convex one. Casting the problem as a convex optimization prob-
lem has the obvious benefits of guarantees regarding the optimum,
and efficient and well-studied optimization methods. We will see
that our proposed model and metric allow for an equivalent mixed-
integer convex program to solve the sensor selection problem.

To perform the sensor selection, a metric to evaluate the quality
of selection is required. The Cramér-Rao bound (CRB) is a natural
choice, especially for offline sensor selection, since it can be used
to quantify estimation performance independent of the estimation
method used. The CRB has previously been used successfully for
sensor selection in [7, 8, 9]. Previous work has not yet considered
the case of multiple unknown sources however, which is what we
propose in this work.

In Section 2 we present the signal model, its associated multi-
target CRB and discuss the specific selection that we would like to
find using our method. The proposed method is presented in Sec-
tion 4, where we also show the derivations to obtain the final convex
semidefinite program. We present the results of our simulations as
verification of our proposed method in Section 5 and we conclude in
Section 6 with some discussion.

2. SIGNAL MODEL

Let the received data for a K-target, N -element array over T tem-
poral samples be given by

X = A(ω)ST + E ∈ CN×T , (1)

where A(ω) =
[
a(ω1) · · · a(ωK)

]
∈ CN×K is a matrix con-

taining the array response of each target as its columns, ω ∈ RK
is the vector containing the target AoAs, and E is additive noise.
S =

[
s1 · · · sK

]
∈ CT×K is a matrix containing the target

signals. The columns of S consist of the, potentially different, trans-
mit waveform(s) reflected by a number of targets, where every targetIC
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can be characterized by a different delay, radial velocity and reflec-
tion coefficient. We further assume the noise captured in E to be
zero-mean complex Gaussian distributed, and spatially and tempo-
rally uncorrelated with variance σ2

e .
For the above model, the CRB for ω, assuming S is a determin-

istic nuisance, is given by [10]

CRB(ω) =
σ2
e

2T

(
Re
{
DHD ◦RT

−DHA
(
AHA

)−1

AHD ◦RT
})−1

, (2)

where “◦” indicates the Hadamard product, R = 1
T
STS takes the

cross-correlation between the different source signals and can be
viewed as a sample covariance matrix, and

D =
[
d(ω1) · · · d(ωK)

]
=
[
∂a(ω1)
∂ω1

· · · ∂a(ωK)
∂ωK

]
∈ CN×K .

In the single-target case, this simplifies to

CRB1 =
σ2
e

2Tσ2
s

(
Re

{
dH

(
I − a

(
aHa

)−1

aH

)
d

})−1

, (3)

where σ2
s = 1

T
sTs. Conveniently, this expression can be shown

to be independent of the variable ω1. In (2), we do not get this
independence unfortunately, due to the different sources acting as
nuisances influencing each other. However, the primary reason to
optimize the antenna positions using the multi-target CRB as op-
posed to the single-target CRB in (3), is that in the single-target case
additional constraints are needed to suppress sidelobes in the beam-
pattern response to an acceptable level for multi-target operation [8].
By optimizing a multi-target objective, the need for such additional
constraints should be alleviated.

In many AoA problems, the columns of S can be considered
uncorrelated. For instance in passive radar, we may assume that the
targets reflect unrelated and hence uncorrelated signals. Addition-
ally, we expect changes in the target reflectors due to movement,
making the reflected signals uncorrelated. If we further assume for
the sake of simplicity and clarity that T is large and the sources have
the same unit power, then we obtain R = I . Although such an as-
sumption may seem restrictive, extensions to sources with different
powers or other correlation patterns are possible as we will discuss
briefly in Section 6.

3. PROBLEM FORMULATION

Although the antenna positions could be directly optimized from the
CRB (i.e. [11]), we follow a sensor selection approach here. To for-
malize this, we assume that the data model in (1) is based on a uni-
form linear array (ULA) ofN antennas from which we selectM an-
tennas through a selection vector p ∈ {0, 1}N , where a one indicates
that the related antenna is selected, and a zero means it is not. Since
M antennas need to be selected we have 1Tp = M . The sample se-
lection can be written as y = Φ(p)x where Φ(p) ∈ {0, 1}M×N is
a binary selection matrix constructed by removing the all-zero rows
from P = diag(p), so Φ(p)ΦT(p) = IM and ΦT(p)Φ(p) = P .

The task of our sensor selection approach for AoA estimation
now aims to find a selection vector p, which performs better in multi-
target AoA estimation than any other selection of M out of N an-
tennas, i.e.,

min
p∈{0,1}N

f(p) s.t. 1Tp = M , (4)

where f(p) is the chosen metric as function of the selection vector.
To tackle this problem, we propose to quantify the performance of
the selection vector using the multi-target CRB [cf. (2)] yet of the
subarray consisting of the selected sensors. This CRB can be ob-
tained by replacing in (2), A and D respectively by Φ(p)A and
Φ(p)D. Finally, setting R = I as discussed earlier, we obtain

CRB(ω,p) =
σ2

2T

(
Re
{
DHPD ◦ I (5)

−DHPA
(
AHPA

)−1

AHPD ◦ I
})−1

.

Thus expression (5), which is a 2 × 2 diagonal matrix, can be used
to evaluate the quality of the selection, tackling the sensor selection
problem. The primary challenges that remain are the binary selec-
tion vector p, the dependency of the cost on the unknown parame-
ters in ω, the matrix form of the cost, and the relative complexity.
To alleviate part of this complexity, we propose to optimize for the
worst-case two-target CRB. By fixing the number of targets to two
and optimizing for the worst-case over the two targets and over a
range of ω = [ω1, ω2]T values, we should obtain an antenna design
that is also useful in the multi-target regime. With this, we can for-
mulate our problem of finding an optimal p by combining (4) and (5)
into

min
p∈{0,1}N

max
k∈{1,2},ω∈R2

[CRB(ω,p)]k,k s.t. 1Tp = M . (6)

4. TWO-SOURCE CRAMÉR-RAO BOUND SENSOR
SELECTION

As we discussed in the previous section, the optimization problem
(6) is based on an underlying uniform linear array (ULA). As a re-
sult, we have

a(ωk) =
[
1 ejωk ej2ωk · · · ej(N−1)ωk

]T
,

d(ωk) =
[
0 jejωk · · · j(N − 1)ej(N−1)ωk

]T
.

To solve (6) we will first do some derivations to simplify the
cost function, then we propose a method to handle the worst-case
and finally we discuss a convex relaxation of the problem. Before
we derive the cost function for each target, let us introduce some
notation for convenience:

z =
∑N−1

n=0
pn , z(∆ω) =

∑N−1

n=0
pnejn∆ω , (7)

z̄ =
∑N−1

n=0
pnn , z̄(∆ω) =

∑N−1

n=0
pnnejn∆ω , (8)

¯̄z =
∑N−1

n=0
pnn

2 , Z(∆ω) =

[
z z(∆ω)

z∗(∆ω) z

]
, (9)

z̄1(∆ω) =

[
z̄

z̄∗(∆ω)

]
, z̄2(∆ω) =

[
z̄(∆ω)
z̄

]
, (10)

where ∆ω = ω2 − ω1. Note that all these parameters are linear in
p. We now define the following cost functions, which are inversely
proportional to the diagonal elements of the CRB in (5) in case of
two targets:

fk = dH(ωk)Pd(ωk)− dH(ωk)PA
(
AHPA

)−1

AHPd(ωk)

= ¯̄z − z̄H
k (∆ω)Z−1(∆ω)z̄k(∆ω) . (11)
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We observe that the cost functions in (11) only depend on ∆ω
and no longer on the individual parameters. Furthermore, the cost
functions share symmetry:

f1(∆ω) = f1(−∆ω) = f2(∆ω) = f2(−∆ω) .

This symmetry follows from the equalities z̄k(∆ω) = z̄∗k(−∆ω),
Z(∆ω) = Z∗(−∆ω), z̄1(∆ω) = Qz̄∗2(∆ω) and Z(∆ω) =
QTZ∗(∆ω)Q, where Q is a 2×2 permutation matrix. Because of
the symmetry in the cost functions, we only need to optimize for one
of the two and only for positive ∆ω values. To handle the worst-case
optimization, we propose to grid the possible values of ∆ω into a
set D+. This gridding should depend on the possible resolution of
the array, which is given by its maximal aperture.

We can now significantly simplify the problem in (6). Using the
proposed gridding, ∆ω ∈ D+, we can optimize the worst-case by
applying the following lower bound on the cost in (11):

min
p,c

c

s.t. 1Tp = M , p ∈ {0, 1}N

¯̄z − z̄H
1 (∆ω)Z−1(∆ω)z̄1(∆ω) ≥ c−1 , ∀∆ω ∈ D+ .

To obtain the final convex optimization problem, we start by apply-
ing another bound on the terms that depend on ∆ω. This leads to

min
p,c,g

c

s.t. 1Tp = M , p ∈ {0, 1}N , ¯̄z − g ≥ c−1

z̄H
1 (∆ω)Z−1(∆ω)z̄1(∆ω) ≤ g , ∀∆ω ∈ D+ .

Now we can use the Schur complement on both inequality con-
straints to obtain two linear matrix inequalities [12], i.e.,

min
p,c,g

c

s.t. 1Tp = M , p ∈ {0, 1}N[
¯̄z − g 1

1 c

]
� 0[

g z̄H
1 (∆ω)

z̄1(∆ω) Z(∆ω)

]
� 0 , ∀∆ω ∈ D+ .

The above problem, except for the binary vector p, is a convex
semidefinite program. To obtain the final convex optimization prob-
lem, we propose to relax the constraint on p with a box constraint,
i.e.,

min
p̃,c,g

c

s.t. 1Tp̃ = M , 0 ≤ p̃n ≤ 1 , ∀n ∈ NN[
¯̄z − g 1

1 c

]
� 0[

g z̄H
1 (∆ω)

z̄1(∆ω) Z(∆ω)

]
� 0 , ∀∆ω ∈ D+ ,

(12)

and use a rounding procedure in addition to the optimization to ob-
tain the optimal binary values of p from the new continuous vector
p̃. For this rounding procedure a randomized rounding scheme [5]
can be used to obtain p from p̃. We observe that in many of our
simulations the continuous vector p̃ was already very close to being
binary and as such, selecting the M largest values of p̃ was often
optimal.

Table 1. Matched filter output sidelobe levels, relative to the main-
lobe level.

Average
sidelobe level

Worst-case
sidelobe level

K = 2 −5.39 dB −0.53 dB
K = 1 −6.07 dB −0.13 dB

5. SIMULATION RESULTS

To show the effectiveness of our proposed sensor selection method,
we present the following simulation results. We compare our method
to the single-source method and randomized selection. We set D+

to be 128 equally spaced numbers between the first null angle and
180°. The first null angle is approximated by 1.772N−1, the half-
power beamwidth at broadside of a λ

2
-spaced ULA. The single target

optimization is given by

min
p̃

¯̄z − z̄2

M
s.t. 1Tp̃ = M , 0 ≤ p̃n ≤ 1 , ∀n ∈ NN ,

which will select the M elements closest to the edges of the array.
First, we show some examples of resulting selections, the best

selection after 100 rounding attempts. The grids in Fig. 1 each rep-
resent a comparison between the single-target and two-target opti-
mization for different values of N and M . The first row of each grid
represents the single-target optimization result while the second row
represents the two-target optimization. We see in Fig. 1 that using
the two-target CRBs in the design, we obtain array selections with
a mix of edge and center elements. Using the single-target CRB on
the other hand results in just edge elements being selected. We have
also run simulations with alternative grids D+. In Fig. 2, we show a
selection whenD+ includes fewer small values of ∆ω, resulting in a
selection that is closer to the single-target optimization result. In this
case, p̃ has more values further from zero and one and thus, to pro-
vide a quality example, we have increased the number of rounding
attempts to 1000. When excluding larger values of ∆ω from D+,
no notable changes are observed. This suggests that the worst-cases
occur for small values of ∆ω, which makes intuitive sense.

Second, in Fig. 3 we show an example resulting beampattern.
While this is not necessarily a fair assessment of the sensor selec-
tion, it nevertheless gives insight into the sidelobe pattern and multi-
target behavior. In the beampattern design using the two-target CRB
we see that there are less sidelobes close to the looking direction
compared to the single-target design. Further from the looking direc-
tion we see some sidelobes that are larger, but overall it seems there
all less lobes in the two-target design, with lobe amplitudes that are
more similar to each other compared to the single-target design. To
confirm, we have quantified the sidelobe levels of the beampattern in
Table 1. As expected, the peak sidelobe for the two-target design is
lower than the peak sidelobe of the single-target design, in exchange
for slightly higher sidelobes on average. It should be stressed again
though, that this is purely for the purpose of a simple illustration,
as the matched filter, which is used to generate the beampattern, is
known not to reach the multi-target CRB. One may expect more im-
provement when employing methods that are more appropriate to
the multi-target scenario.

Finally, we compare the resulting CRBs for different array sizes
withM = 1

4
N in Fig. 4a and different selection sizes in Fig. 4b. We

use here randomized rounding, and the error bands in Fig. 4 indicate
the best and worst results of the rounding procedure, while the curves
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Fig. 1. Array selection results for the single-target and two-target optimizations. From left-to-right then top-to-bottom, (N,M) equals
(128, 32), (64, 16), (32, 8), (16, 4), and (8, 4), respectively.

Fig. 2. Array selection result for (N,M) = (64, 16), when D+ is
128 equally spaced points in [π/18, π].
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Fig. 3. An example beampattern when aiming at broadside for
single-target and two-target designs, where (N,M) = (24, 6).

indicate the average. To solve the proposed optimization problem
(12) for p̃, we have used the open-source projects CVXPY [13] and
CVXOPT [14].1

6. DISCUSSION

We have presented a method of finding a sensor selection which is
optimal in the worst-case two-target CRB. The method is a convex
semidefinite program followed by a randomized rounding step and
can therefore be efficiently solved [15]. We have shown that using
the two-target CRB in the sensor selection problem leads to side-
lobe control, without the need for explicit sidelobe suppression con-
straints in the optimization problem. By adapting the notations in (7)
to (10), the method can be applied to non-ULAs.

Through simulation, we have shown that the method outper-
forms random selection and the sensor selection using the single-
target CRB, in terms of the two-target CRB. Finally, the examples
of sensor selections that we have shown in Fig. 1 suggest that for the
generic ULA, equal power sources scenario, the sensor selection can
be optimally done without the need for an explicit optimization.

For future work, we identify a number of interesting avenues.
First of all, we currently optimize for the worst-case two-target
CRB. Investigating performance when considering instead the av-
erage two-target CRB over D+ may lead to better performance
on average, at the risk of occasional performance drops. Second,
while a small adjustment to the method overall, quantifying the
performance in the non-equal power sources scenario remains to be

1A notebook implementing the simulations can be found at https://
doi.org/10.5281/zenodo.7716679.
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(a) Varying array sizes, M = 1
4
N .
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(b) Varying selection sizes, N = 128.

Fig. 4. Worst-case two-target CRBs for three different selection
methods. Lines indicate the average and bands the minimum and
maximum values over 100 trials. In these figures σ2

e/(2T ) = 1.

investigated. We suspect another gridding, similar to D+, of the un-
known relative power difference between the sources, within some
bounds, will be helpful in this regard. They can also be considered
in a worst-case or average optimization. Third, we could develop the
method further to be able to handle correlated sources. We expect
the correlated sources scenario to be of particular interest in track-
ing applications and scenarios with coherent processing intervals
that are large enough to allow for prior knowledge on reflectors
to be used in the sensor selection problem. This would make the
method more applicable to the online sensor selection problem. It
should be noted however that the two-target CRB with uncorrelated
sources still provides a loose lower bound on the performance in
the correlated sources case and may still provide useful results. The
investigation into the differences in performance between these two
bounds (assuming correlated and uncorrelated sources) remains as
well.
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