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ABSTRACT

Vector autoregressive (VAR) model is widely used to model time-
varying processes, but it suffers from prohibitive growth of the pa-
rameters when the number of time series exceeds a few hundreds.
We propose a simplicial VAR model to mitigate the curse of dimen-
sionality of the VAR models when the time series are defined over
higher-order network structures such as edges, triangles, etc. The
proposed model shares parameters across the simplicial signals by
leveraging the simplicial convolutional filter and captures structure-
aware spatio-temporal dependencies of the time-varying processes.
Targetting the streaming signals from the real-world nonstationary
networks, we develop a group-lasso-based online strategy to learn
the proposed model. Using traffic and water distribution networks,
we demonstrate that the proposed model achieves competitive signal
prediction accuracy with a significantly less number of parameters
than the VAR models.

Index Terms— Simplicial convolution, simplicial vector au-
toregressive model, Hodge Laplacians.

1. INTRODUCTION

An ever-increasing number of applications involving social, biolog-
ical, financial, industrial, water, power, communication, and trans-
portation networks call for modelling the time-varying processes
generated by them [1–3]. One of the most successful and tractable
approaches is the vector autoregressive model (VAR) and variations
therein [4–10], which relies on the past realizations of the process,
and determine the future values as a linear combination of such
spatio-temporal realizations.

Despite their wide applicability, vanilla VAR models ignore any
underlying structure in the data. This leads to a high number of
VAR parameters and unaffordable computational complexity, when
the number of time series exceeds a few tens or hundreds. However,
the graph-based VAR (G-VAR) [11] models mitigate this curse of
dimensionality by considering the time series as processes over the
vertices of a graph and modelling their evolution as a sparse linear
combination of the signals in the adjacent vertices. G-VAR lever-
ages the graph and graph convolutional filters as effective inductive
biases to reduce the degrees of freedom, resulting in structure-aware
sparsity and a low number of parameters.

While the G-VAR alleviates the challenges of the vanilla VAR
models for vertex time series, network data are commonly present
also on different higher-order network structures, such as edges, tri-
angles, and so on [12,13]. For instance, the flows in a water network

The study was supported by the IKTPLUSS INDURB grant 270730/O70
and the TU Delft AI Labs programme.

can be intuitively defined as a process evolving over the edges of
a network rather than on its vertices. A recent body of literature
has developed structure-aware data processing techniques by lever-
aging simplicial complexes [12, 14–17]. A simplicial complex is a
mathematical representation of the higher-order connectivities of the
networks, and allows for mathematical tractability in a way akin to
graphs for pairwise similarities [18]. Although, the popular signal
processing concepts such as the Fourier transform, sampling the-
ory [19], and convolution filters [20] are developed recently for the
simplexes, they can be seen as solutions to process time-invariant
data, and ignore the spatio-temporal coupling present in simplicial
processes.

This paper proposes a structure-aware VAR model for time-
varying processes defined over simplices and a data-driven strategy
to learn the model. One major challenge in learning the model is that
a batch-based offline strategy requires processing the entire batch of
data, which is not suitable since real-world networks are often non-
stationary and the data is available only in a streaming manner [21].
Hence, we propose an online strategy for learning the VAR model
over the simplices. Our specific contribution is threefold:

1. We propose a simplicial VAR (S-VAR) model for time-
varying processes to capture sparse spatio-temporal depen-
dencies between the simplicial signals.

2. The S-VAR eliminates the curse of dimensionality by lever-
aging simplicial convolution filters as inductive biases, at-
tributed with locality and parameter sharing between sim-
plices. This allows the proposed methods to be implemented
efficiently with a cost that is linear in the number of simplices
and to have an order-one number of parameters.

3. We propose an online method for learning the S-VAR mod-
els using a group-lasso-based optimization framework, solved
via composite objective mirror descent.

2. PRELIMINARIES

2.1. Vector Autoregressive Models

A VAR model represents the evolution of a multivariate time-varying
process xt ∈ RN as a linear combination of its P past realizations
xt−1, . . . ,xt−P , i.e.,

xt =

P∑
p=1

Wpxt−p + εt, (1)

where Wp ∈ RN×N collects the parameters for the temporal lag p,
in which [Wp]ij captures the spatio-temporal dependency between
[xt−p]j and [xt]i. The variable εt is the model uncertainty, and is
typically considered zero-mean Gaussian.IC
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Model (1) has two major limitations: i) it involves a total of
N2P parameters, which becomes prohibitively high in real-world
networks, where the values of N are in the order of a few hundreds
or more, and ii) it ignores any underlying network structure; hence,
if a node (or edge) disappears/appears, it has to be retrained. To
mitigate this issue, we propose a simplex-based VAR model with
reduced degrees of freedom by exploiting the simplicial structure as
an inductive bias to not pay in representation power.

2.2. Simplicial Complex and Simplicial Signals

Let V = {1, . . . , N} be a set of vertices. A k−simplex Sk is a
subset of V containing k+1 distinct elements. A simplicial complex
(SC) of order K, denoted as XK, is a set of simplices such that at
least one K-simplex is an element of XK , and a simplex Sk is an
element of XK , if and only if all the subsets of Sk are also the
elements of XK [18]. An example for X 2 is provided in Fig. 1.

Adjacencies in a SC can be encapsulated using incidence
matrices and Hodge Laplacians [18]. Let Nk be the number of
k−simplices in a SC. The incidence matrix Bk ∈ RNk−1×Nk has
(k−1)−simplices as the row index, and k−simplices as the column
index, capturing the adjacencies between them. For instance, B1

is the node-to-edge incidence matrix and B2 is the edge-to-triangle
incidence matrix. These incidence matrices satisfy the so-called
boundary condition B1B2 = 0. The Hodge Laplacians represent-
ing the structure of X 2 are given by

L0 = B1B
⊤
1 ,

L1 = L1,ℓ + L1,u := B⊤
1 B1 +B2B

⊤
2 ,

L2 = B⊤
2 B2.

(2)

Here, L0 is the popular graph Laplacian [22] that expresses adjacen-
cies between vertices based on common edges. The Hodge Lapla-
cian L1 expresses adjacencies between edges based on i) the com-
mon vertices via the lower-Laplacian L1,ℓ = B⊤

1 B1, and ii) the
triangles via the upper-Laplacian L1,u = B2B

⊤
2 ; and L2 expresses

proximities between triangles via lower edge adjacencies.
Simplicial signals are defined as functions from any k−simplices

to the set of real numbers. For instance, over the edges, we have an
edge flow f = [f1, . . . , fN1 ]

⊤ ∈ RN1 with entry fe being the flow
of the edge e = (m,n) in S1. Similarly, we define the signals over
the vertex as v ∈ RN0 and the triangles as τ ∈ RN2 ; see Fig. 1.
The proximities in a SC are translated into proximities between the
signals defined over it, and the objective therefore is to exploit such
proximities to process signals [19].

2.3. Convolution in the Simplex

We can process a simplicial signal with simplicial convolutional fil-
ters, which for edge signals has the form [20, 23]

fo =

Kℓ∑
k=0

βℓ
kL

k
1,ℓ︸ ︷︷ ︸

A(L1,ℓ)

f +

Ku∑
k=1

βu
kL

k
1,u︸ ︷︷ ︸

B(L1,u)

f , (3)

where {βℓ
k}

Kℓ
k=1 and {βu

k }Ku
k=1 are respectively the filter coefficients

weighting f shifted by L1,ℓ up to Kℓ hops and L1,u up to Ku hops;
see Fig. 2. Here, βℓ

0 is the filter coefficient weighting the original
signal f , and is grouped with {βℓ

k}
Kℓ
k=1 for convenience of repre-

sentation. The total number of parameters involved in (3) is K :=
Kℓ +Ku + 1. By defining simplicial convolutional filtering matrix
H(L1) :=A(L1,ℓ)+B(L1,u), we can compactly write (3) as

fo = H(L1)f . (4)

Simplex: Examples

Fig. 1: A geometrical representation of a simplicial complex and
associated simplicial signals.

This convolutional filter shares the parameters across the differ-
ent edges, irrespective of their labelling and flow orientation. Al-
though we focus on the edge signals, all the methods developed in
the sequel can be easily extended to any simplicial level by using a
filter H(Lk) in a form similar to (4).

3. SIMPLICIAL VECTOR AUTOREGRESSIVE MODEL

We define an S-VAR model of order P for time-varying edge flow
processes ft:

ft =

P∑
p=1

Hp(L1)ft−p + εt, (5)

where {Hp(L1)}p are simplicial convolutional filters of the form
(3) defined by parameters {βℓ

p,k}
Kℓ
k=0 and {βu

p,k}Ku
k=1. Here, the filter

Hp(L1) captures the spatial dependencies of the process ft−p, and
the VAR regression captures the temporal dependencies up to a time
lag P . Model (5) uses the simplicial structure as the inductive bias by
leveraging the simplicial convolution filters. The inductive bias en-
ables the model to take advantage of the structure-aware proximities
of the network, resulting in a low number of parameters. The S-VAR
model involves only KP parameters, irrespective of the number of
the process N . This gives a clear advantage to S-VAR in real-world
networks having a few hundreds or more sensors, compared to the
vanilla VAR (1) with N2P parameters.

Let βp :=[βℓ
p,0, . . . , β

ℓ
p,Kℓ

, βu
p,1, . . . , β

u
p,Ku

] ∈ RK , and

F̃t−p:=[L
0
1,ℓft−p,L

1
1,ℓft−p, . . . ,L

Kℓ
1,ℓ ft−p,L

1
1,uft−p,. . . ,L

Ku
1,u ft−p],

where, the matrix F̃t−p ∈ RN1×K collects the shifted versions of
the edge signal ft−p. Define Ft := [F̃t−1, . . . , F̃t−P ] ∈ RN1×KP

and β := [β⊤
1 , . . . ,β

⊤
P ]

⊤ ∈ RKP , using which, the S-VAR model
(5) can be compactly written as

ft = Ftβ + εt. (6)

3.1. Batch Estimation

The S-VAR parameters can be estimated by minimizing the empiri-
cal mean square error (MSE) over T0 samples as

MSE =
1

2

T0∑
t=P+1

∥ft − Ftβ∥22 +Ω(β,L1), (7)

where Ω(β,L1) is a regularizer to avoid over fitting. The regularizer
consists of three terms: i) f̂tL1,ℓ f̂t, where f̂t = Ftβ, ii) f̂tL1,u f̂t,
and iii)

∑P
p=1 ∥βp∥2. Here, i) and ii) impose constraints based

on the simplicial structure, e.g., f̂tL1l f̂t = ∥B1 f̂t∥2 regularizes the
divergence flows (B1 f̂t), thereby enforcing the conservation of the
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Fig. 2: Simplicial shifting of an indicator flow. The directed arrows indicate an arbitrarily chosen orientation of edge flows. The blue, red,
and black colours respectively indicate high, intermediate, and low values of flows, which are further distinguished by edge thicknesses.

flows at the nodes, and f̂tL1u f̂t = ∥B⊤
2 f̂t∥2 regularizes the cyclic

flows (B⊤
2 f̂t) [12, 20]. The third one is a group-lasso regularizer,

acting along the temporal domain by imposing group sparsity on
{βp}Pp=1. The S-VAR parameters can be learned using a regularized
optimization,

β̂ = argmin
β

T0∑
t=P+1

ht(β) + λ

P∑
p=1

∥βp∥2, (8)

where

ht(β)=
1

2

[
∥ft − Ftβ∥22+(Ftβ)

⊤(µ1L1,ℓ + µ2L1,u)(Ftβ)

]
, (9)

and µ1, µ2, λ ≥ 0 are the hyperparameters associated with the reg-
ularizers. Here, ht(·) is a regularized loss function, but hereafter for
brevity, we use the term loss function.

3.2. Online Estimation

Note that (8) is an offline (batch) strategy, meaning that the entire
batch of data ft, t = 1, . . . , T0 is required to compute the solution.
When the flows are time varying and appear in an online fashion, we
are interested in an online update of the parameters as data appear;
and this will also tackle the computational challenges of the batch
estimation. Next, we develop an online strategy to learn the S-VAR.

We replace the cumulative loss
∑T0

t=P+1 ht(β) with a running
average loss using an exponential window [4]:

ℓt(β) = δ

t∑
t′=P+1

γt−t′ht′(β), (10)

where γ∈(0, 1) is the forgetting factor of the window, and δ=1− γ
is set to normalize the exponential weighting window. Note that (10)
resembles the typical loss function in a recursive least square (RLS)
problem. First, we expand (10) using (9) as

ℓt(β) =
1

2
δ

t−1∑
t′=P

γt−t′∥ft′∥22 +
1

2
β⊤Φtβ − r⊤

t β, (11)

where

Φt = δ

t∑
t′=P+1

γt−t′F⊤
t′
(
I+ µ1L1,ℓ+µ2L1,u

)
Ft′ , (12)

rt = δ

t∑
t′=P+1

γt−t′F⊤
t′ ft′ . (13)

The batch estimate of the S-VAR parameters using the exponential
window up to time t can be found by

β̂t = argmin
β

ℓt(β) + ω(β), (14)

where ω(β) = λ
∑P

p=1 ∥βp∥2. It is straightforward to verify that
ℓt(·) and ω(·) are convex functions, however, note that ℓt(·) is a dif-
ferentiable function, whereas ω(·) is not differentiable. The online
subgradient descent (OSGD) or the mirror descent (MD) methods
can be used to solve (14) online. However, these methods work by
linearizing ℓt(·) + ω(·) using a subgradient g ∈ ∂(ℓt(·) + ω(·)).

A linearized ω(·) loses its ability to induce sparsity, resulting in
non-sparse estimates. Hence, we choose an alternate optimization
technique known as composite objective mirror descent (COMID)
[4–7, 24], a modified version of the MD algorithm, in which the dif-
ferentiable part ℓt(·) is linearized, whereas ω(·) is kept intact. The
online COMID update is given by

β̂[t+ 1]=argmin
β

∇ℓt(β̂[t])
⊤β+

1

2ηt
B(β̂[t],β)+ω(β), (15)

where β̂[t] denotes the estimate of β obtained at time t, ∇ℓt(β̂[t])

is the gradient of ℓt(·) at β̂[t], computed from (11) as
∇ℓt(β̂[t]) = Φtβ̂[t]− rt, (16)

B(β̂[t],β) = ∥β̂[t] − β∥22 is the Bregman divergence chosen in
such a way that (15) has a closed-form solution, and ηt is the step
size of the updates. In an online setting, Φt and rt in (16) can be
updated recursively as

Φt = γΦt−1 + δF⊤
t (I+ µ1L1,ℓ+µ2L1,u)Ft, (17)

rt = γrt−1 + δF⊤
t ft. (18)

Using the notation g[t] = [g1[t]
⊤, . . . ,gP [t]

⊤]⊤ := ∇ℓt(β̂[t]) and
the chosen Bregman divergence, (15) can be written as

β̂[t+ 1]=argmin
β

∥β∥2

2ηt
+ β⊤(g[t]− β̂[t]

ηt

)
+ ω(β). (19)

Note that (19) is separable in p; solving for each β̂p[t+ 1] leads to

β̂p[t+ 1] = argmin
βp

∥βp∥2

2ηt
+β⊤

p

[
gp[t]−

β̂p[t]

ηt

]
+λ∥βp∥2 (20)

A closed-form solution of (20) can be obtained using the multidi-
mensional shrinkage thresholding operator [25]:

β̂p[t+ 1] =
(
β̂p[t]− ηtgp[t]

)[
1− ηtλ

∥β̂p[t]− ηtgp[t]∥2

]
+

, (21)

where [x]+ = max(x, 0). In (21), the first factor is the typical gra-
dient descent update, and the second enforces group sparsity. While
our proposed online topology estimator builds upon existing CO-
MID algorithm, it introduces novel constraints based on the simpli-
cial structure that have not been explored in existing literature.

The computational complexity of the algorithm is mainly con-
tributed by (16) and (17), and it is of order O

(
K2P 2 + N2

1KP ).
We remark that under certain assumptions, similarly as in [4], a sub-
linear dynamic regret that guarantees the convergence of (21) can be
derived, which is not reported here due to space limitations.

4. NUMERICAL RESULTS
We test the S-VAR to forecast edge flows on traffic data from Sioux
Falls transportation network [26] and water flow data from Cherry
Hills water network [27]. The performance accuracy is evaluated
using the normalized mean squared error (NMSE), defined as

NMSE(T ) =
1

N1

N1∑
e=1

∑T
t=1(fe(t)− f̂e(t))

2∑T
t=1 fe(t)

2
, (22)

where f̂e(t) denotes the predicted flow on edge e at time t. As
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Fig. 3: (a) and (b)—predictions in Sioux Falls with data generated using models (23) and (1), respectively; (c) predictions in Cherry Hills.

(a)

Tank
Reservoir
Nodes

Flow orientation

(b)

Fig. 4: (a) Sioux Falls transportation network, (b) Cherry Hills flows.

benchmarks, we consider the Topology Identification via Recur-
sive Sparse Online Optimization (TIRSO) algorithm [4]–a state-
of-the-art online algorithm to learn the vanilla VAR model– and
the Moving Average (MA) algorithm. For the S-VAR, we show
results for K ∈ {1, 3, 5, 7, 9, 11}, and in all the experiments,
we assumed Kℓ = Ku for the legibility of the presentation.
A total of 3000 data samples are generated, and the first 1000
samples are used to tune the hyperparameters of all the algo-
rithms using a grid search for the lowest NMSE, resulting in
(µ1, µ2, λ, γ) = (0.01, 0.001, 0.01, 0.98). Following the anal-
ysis in [4], we choose the step size ηt = 1/Λmax(Φt), where
Λmax(Φt) denotes the maximum eigenvalue of Φt.

4.1. Sioux Falls Transportation Network

The Sioux Falls transportation network has 24 nodes (0-simplices),
38 edges (1-simplices), and 2 triangles (2-simplices), as shown in
Fig. 4a [26]. The time-evolving edge signals are generated by as-
suming two different nonstationary VAR models.

First, we consider an inverse model as in (5), i.e.,

ft =

∑3

p=1

( 3∑
k=0

βℓ
p,kL

k
1,ℓ +

2∑
k=q

βu
p,kL

k
1,u

)−1

ft−p + εt, (23)

where εt ∼ N (0, 1). The filter coefficients βℓ
p,k and βu

p,kare ran-
domly drawn from N (0, 1); and at every 100-th time step, all the
coefficients are changed to make the setting more dynamic. Second,
we consider a pure VAR model as in (1) of order P=3, where Wp is
a random matrix with entries drawn from N (0, 1), and at every 100-
th time step, all the coefficients are also changed; and εt ∼ N (0, 1).

Table 1: Number of parameters: TIRSO vs best S-VAR
TIRSO S-VAR

Sioux Falls 38 ∗ 38 ∗ 3 = 4332 3 ∗ 3 = 9
(K = 3, P = 3, E = 38)

Cherry Hills 40 ∗ 40 ∗ 2 = 3200 7 ∗ 2 = 14
(K = 7, P = 2, E = 40)

The prediction results for both cases are plotted in Figs. 3a
and 3b with P = 3, chosen using grid search. For both cases,
S-VAR with K∈{1, 2, 3} outperforms the benchmarks with a sig-
nificant margin most of the time. The S-VAR lags behind the other
algorithms for K > 3, since the model forces spatial interaction
among the edges that are beyond the true underlying proximity.
Table 1 compares the number of parameters between the best per-
forming S-VAR (K = 3) and TIRSO, where it can be observed that
the S-VAR has three orders of magnitude fewer. This may also be
advantageous when the available data is limited.

4.2. Cherry Hills Water Network
Cherry Hills is a water network consisting of 36 nodes (0-simplices),
40 pipes (1-simplices), and 2 triangles (2-simplices) [27]. We as-
sume a reference flow direction as in Fig. 4b, and generate time-
evolving flow signals using the EPANET software with a demand-
driven model such that the water flows meet the time-varying water
demands at the nodes. The flow signals are the hourly sampled vol-
ume of water in m3/h. The prediction NMSEs of all algorithms
using a filter order P = 2 (chosen via grid search) are plotted
in Fig. 3c. S-VAR achieves very close performance to TIRSO for
K = 7, which showcases the ability of S-VAR to compete with the
vanilla VAR with a remarkably less number of parameters (see Ta-
ble 1). This is possible because of the simplicial inductive bias the
S-VAR leverages, while TIRSO does not.

5. CONCLUSION

We proposed a simplicial VAR model, capturing the spatio-temporal
dependencies among the signals defined over simplicial structures.
By leveraging the simplicial convolution filters, the proposed model
uses the simplicial structure as the inductive bias and exploits the
structure-aware proximities of the network, resulting in significantly
less number of parameters compared to the vanilla VAR model.
Considering the real-world nonstationary networks, we developed
an online learning strategy for the model based on a group-lasso
optimization framework, solved using composite objective mirror
descent. Numerical experiments with traffic and water networks
demonstrated that the proposed method with a remarkably low num-
ber of parameters is quite competitive with the vanilla VAR model.
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