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SUMMARY 
 

In the water sector, issues concerning the aquatic environment have been extensively 
discussed due to climate change. In particular, water quality problems such as harmful 
cyanobacterial blooms (CyanoHABs) in rivers have arisen in South Korea since 2012. 
The Korean government constructed 16 weirs in the rivers during the Four Major Rivers 
Restoration Project. These weirs were built to more effectively use water resources in the 
rivers. Many environmental activists, however, have claimed that the weirs have caused 
water quality problems of CyanoHABs in the rivers. These CyanoHABs can be threats to 
the water environment while harming human health and aquatic ecosystems since 
CyanoHABs produce toxic substances such as microcystins. 

To address the problems of these CyanoHABs, many researchers have conducted studies 
on predictive models for CyanoHABs. A predictive model using a data-driven approach 
can be useful in exploring the main factors affecting CyanoHABs at a specific location. 
However, these studies have not focused on preventing the occurrence of CyanoHABs 
but only on predicting their occurrence. If these studies are designed to link with a 
practical method for reducing the frequency of CyanoHABs, viable strategies can be 
proposed to effectively control CyanoHABs. Therefore, detailed considerations are 
required concerning the prevention or mitigation of CyanoHABs. 

Reservoir operation can be a solution for reducing the problem of CyanoHABs in a 
downstream river. For example, discharging more water from upstream reservoirs can 
flush CyanoHABs downstream. However, the risk of water shortage can be increased in 
a reservoir if it is operated for improving water quality downstream. This is because 
reservoirs were typically designed for management of water quantity such as water supply. 
To use limited water resources in a reservoir to reduce the frequency of CyanoHABs 
downstream, optimal reservoir operations are necessary that simultaneously consider both 
the quantity and the quality of water. 

This study focused on establishing a practical framework for the optimal operation of 
upstream reservoirs to address the problem of CyanoHABs in a downstream river. 
Furthermore, the applicability of this framework was demonstrated using observational 
data related to the quantity and quality of the upstream reservoirs in the study area, the 
Nakdong River basin of South Korea. The framework was established by incorporating 
three models: a machine learning model, a river water quality model, and an optimization 
model for reservoir operation. 

The first step of the framework applies the machine learning model to predict the 
occurrence or the nonoccurrence of CyanoHABs at the location of the Chilgok Weir, 
using input data from that same location. Chilgok Weir is a target downstream location 
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on the Nakdong River, about 135 km downstream of an upstream boundary where 
conditions are controlled by the operation of two upstream reservoirs (Andong and Imha). 
In the event of a prediction of the occurrence of CyanoHABs, the optimization model 
simulates the decision variables regarding the quantity and quality of water released from 
the upstream reservoirs. This optimization process is aimed at reducing the incidence of 
CyanoHABs at Chilgok Weir. The next step employs the river water quality model to 
simulate the dynamics of a water quality parameter which is a main factor of CyanoHABs 
by using the optimization results as upstream boundary conditions. The final step is a 
process for confirming whether CyanoHABs would not occur at Chilgok Weir based on 
the simulation results of the river water quality model using the machine learning model. 

The machine learning model for the first step of this research was developed by using 
four classification algorithms: k-Nearest Neighbor (k-NN), Decision Tree (DT), Logistic 
Regression (LR), and Support Vector Machine (SVM). To build the predictive model for 
CyanoHABs with high accuracy, input features were first selected by applying ANOVA 
(Analysis of Variance) and solving a multi-collinearity problem. Next, an oversampling 
method was adopted to overcome the problem of having an imbalanced dataset on 
CyanoHABs. Consequently, a model applying the k-NN algorithm ensured high accuracy 
of more than 80% in predicting the occurrence or nonoccurrence of CyanoHABs at 
Chilgok Weir. This model was developed by using average air temperature and nitrate 
nitrogen (NO3-N) as input features. 

The river water quality model using HEC-RAS was built to simulate the dynamics of 
NO3-N, a parameter that emerged from the first step as one of the main factors for the 
occurrence of CyanoHABs at Chilgok Weir. By applying this river water quality model, 
the fate and transport of NO3-N were analyzed under different scenarios based on 
variations in the quantity and quality of water at the upstream boundary. The simulation 
results showed how different aspects of the NO3-N dynamics downstream can be 
influenced and controlled, depending on flow rate and NO3-N concentration upstream. 
Thus, to formulate a strategy for reducing the incidence of CyanoHABs based on the 
control of NO3-N, a quantitative analysis for the NO3-N dynamics downstream should be 
performed in advance by using the river water quality model. 

The optimization model for reservoir operation produced the simulation results used as 
the upstream boundary conditions of the river water quality model. The objective 
functions for the optimization process were formulated in terms of both the quantity and 
quality of water released from the upstream reservoirs (Andong and Imha). The decision 
variables for water quantity were constrained based on the optimal joint operation of the 
two reservoirs. The decision variable for water quality was the NO3-N concentration 
which is the main factor for the occurrence of CyanoHABs at Chilgok Weir by 
considering the use of a selective withdrawal facility of the Imha Reservoir. 



 

xi 

 

The applicability of the framework was demonstrated by the simulation results using 
observational data for the study area. The simulation results based on the framework 
confirmed that the frequency of CyanoHABs would be decreased compared to the number 
of days when CyanoHABs were actually observed at Chilgok Weir. Hence, this 
framework can support the decision-making of reservoir operation in practice to create a 
favorable aquatic environment in a downstream river by reducing the frequency of 
CyanoHABs downstream. In particular, the framework is a novelty in terms of efficiency 
since it can be a part of a solution to the problem of CyanoHABs without using an 
additional amount of water from an upstream reservoir. 
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SAMENVATTING 
In de watersector zijn kwesties met betrekking tot het aquatisch milieu als gevolg van 
klimaatverandering uitgebreid besproken. Met name problemen met de waterkwaliteit, 
zoals schadelijke cyanobacteriële bloei in rivieren, doen zich sinds 2012 voor in Zuid-
Korea. De Koreaanse regering heeft 16 stuwen in de rivieren aangelegd tijdens het Four 
Major Rivers Restoration Project. Deze stuwen zijn gebouwd om de watervoorraden in 
de rivieren effectiever te gebruiken. Veel milieuactivisten hebben echter beweerd dat de 
stuwen waterkwaliteitsproblemen hebben veroorzaakt door schadelijke cyanobacteriële 
bloei in de rivieren. Deze schadelijke cyanobacteriële bloei kan een bedreiging vormen 
voor het watermilieu en tegelijkertijd schadelijk zijn voor de menselijke gezondheid en 
aquatische ecosystemen, aangezien schadelijke cyanobacteriële bloei giftige stoffen zoals 
microcystines produceert. 

Om de problemen van deze schadelijke cyanobacteriële bloei aan te pakken, hebben veel 
onderzoekers studies uitgevoerd naar voorspellende modellen voor schadelijke 
cyanobacteriële bloei. Een voorspellend model met een datagestuurde benadering kan 
nuttig zijn bij het onderzoeken van de belangrijkste factoren die schadelijke 
cyanobacteriële bloei op een specifieke locatie beïnvloeden. Deze onderzoeken waren 
echter niet gericht op het voorkomen van schadelijke cyanobacteriële bloei, maar alleen 
op het voorspellen van het optreden ervan. Als deze onderzoeken zijn ontworpen om te 
koppelen aan een praktische methode om de frequentie van schadelijke cyanobacteriële 
bloei te verminderen, kunnen levensvatbare strategieën worden voorgesteld om 
schadelijke cyanobacteriële bloei effectief te bestrijden. Daarom zijn gedetailleerde 
overwegingen vereist met betrekking tot het voorkomen of verminderen van schadelijke 
cyanobacteriële bloei. 

Reservoirbeheer kan een oplossing zijn om het probleem van schadelijke cyanobacteriële 
bloei in een stroomafwaarts gelegen rivier te verminderen. Door bijvoorbeeld meer water 
uit stroomopwaartse reservoirs te lozen, kunnen schadelijke cyanobacteriële bloei 
stroomafwaarts worden weggespoeld. Het risico op watertekort kan echter worden 
vergroot in een reservoir als het wordt gebruikt om de waterkwaliteit stroomafwaarts te 
verbeteren. Dit komt omdat reservoirs doorgaans zijn ontworpen voor het beheer van de 
waterkwantiteit, zoals de watervoorziening. Om beperkte waterbronnen in een reservoir 
te gebruiken om de frequentie van schadelijke cyanobacteriële bloei stroomafwaarts te 
verminderen, zijn optimale reservoiroperaties nodig die tegelijkertijd rekening houden 
met zowel de kwantiteit als de kwaliteit van het water. 

Deze studie was gericht op het opzetten van een praktisch raamwerk voor de optimale 
werking van stroomopwaartse reservoirs om het probleem van schadelijke 
cyanobacteriële bloei in een stroomafwaartse rivier aan te pakken. Bovendien werd de 
toepasbaarheid van dit raamwerk aangetoond met behulp van observatiegegevens met 
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betrekking tot de kwantiteit en kwaliteit van de stroomopwaartse reservoirs in het 
studiegebied, het stroomgebied van de Nakdong-rivier in Zuid-Korea. Het raamwerk is 
tot stand gekomen door drie modellen op te nemen: een machine learning-model, een 
rivierwaterkwaliteitsmodel en een optimalisatiemodel voor de werking van reservoirs. 

De eerste stap van het raamwerk past het machine learning-model toe om het al dan niet 
optreden van schadelijke cyanobacteriële bloei op de locatie van de Chilgok-stuw te 
voorspellen, met behulp van invoergegevens van diezelfde locatie. Chilgok Weir is een 
beoogde stroomafwaartse locatie aan de Nakdong-rivier, ongeveer 135 km 
stroomafwaarts van een stroomopwaartse grens waar de omstandigheden worden 
beheerst door de werking van twee stroomopwaartse reservoirs (Andong en Imha). Bij 
een voorspelling van het optreden van schadelijke cyanobacteriële bloei simuleert het 
optimalisatiemodel de beslissingsvariabelen met betrekking tot de kwantiteit en kwaliteit 
van vrijkomend water uit de bovenstroomse reservoirs. Dit optimalisatieproces is gericht 
op het verminderen van de incidentie van schadelijke cyanobacteriële bloei bij Chilgok 
Weir. De volgende stap maakt gebruik van het rivierwaterkwaliteitsmodel om de 
dynamiek van een waterkwaliteitsparameter te simuleren die een hoofdfactor is van 
schadelijke cyanobacteriële bloei door de optimalisatieresultaten te gebruiken als 
stroomopwaartse randvoorwaarden. De laatste stap is een proces om te bevestigen of er 
geen schadelijke cyanobacteriële bloei zou optreden bij Chilgok Weir op basis van de 
simulatieresultaten van het rivierwaterkwaliteitsmodel met behulp van het machine 
learning-model. 

Het machine learning-model voor de eerste stap van dit onderzoek is ontwikkeld met 
behulp van vier classificatie-algoritmen: k-Nearest Neighbor (k-NN), Decision Tree (DT), 
Logistic Regression (LR) en Support Vector Machine (SVM). Om het voorspellende 
model voor schadelijke cyanobacteriële bloei met hoge nauwkeurigheid te bouwen, 
werden eerst invoerkenmerken geselecteerd door ANOVA (Analysis of Variance) toe te 
passen en een multi-collineariteitsprobleem op te lossen. Vervolgens werd een 
oversampling-methode toegepast om het probleem van een onevenwichtige dataset over 
schadelijke cyanobacteriële bloei op te lossen. Bijgevolg zorgde een model dat het k-NN-
algoritme toepast voor een hoge nauwkeurigheid van meer dan 80% bij het voorspellen 
van het al dan niet optreden van schadelijke cyanobacteriële bloei bij Chilgok Weir. Dit 
model is ontwikkeld door de gemiddelde luchttemperatuur en nitraatstikstof (NO3-N) als 
invoerkenmerken te gebruiken. 

Het rivierwaterkwaliteitsmodel met behulp van HEC-RAS is gebouwd om de dynamiek 
van NO3-N te simuleren, een parameter die uit de eerste stap naar voren kwam als een 
van de belangrijkste factoren voor het optreden van schadelijke cyanobacteriële bloei bij 
Chilgok Weir. Door dit rivierwaterkwaliteitsmodel toe te passen, werden het lot en het 
transport van NO3-N geanalyseerd onder verschillende scenario's op basis van variaties 
in de kwantiteit en kwaliteit van het water aan de stroomopwaartse grens. De 
simulatieresultaten lieten zien hoe verschillende aspecten van de NO3-N-dynamiek 
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stroomafwaarts kunnen worden beïnvloed en geregeld, afhankelijk van het debiet en de 
NO3-N-concentratie stroomopwaarts. Om een strategie te formuleren voor het 
verminderen van de incidentie van schadelijke cyanobacteriële bloei op basis van de 
beheersing van NO3-N, zou dus vooraf een kwantitatieve analyse van de NO3-N-
dynamiek stroomafwaarts moeten worden uitgevoerd met behulp van het 
rivierwaterkwaliteitsmodel. 

Het optimalisatiemodel voor de werking van het reservoir leverde de simulatieresultaten 
op die werden gebruikt als de stroomopwaartse randvoorwaarden van het 
rivierwaterkwaliteitsmodel. De doelfuncties voor het optimalisatieproces zijn 
geformuleerd in termen van zowel de kwantiteit als de kwaliteit van het vrijkomende 
water uit de bovenstroomse reservoirs (Andong en Imha). De beslissingsvariabelen voor 
waterkwantiteit waren beperkt op basis van de optimale gezamenlijke werking van de 
twee reservoirs. De beslissingsvariabele voor de waterkwaliteit was de NO3-N-
concentratie, die de belangrijkste factor is voor het optreden van schadelijke 
cyanobacteriële bloei bij Chilgok Weir door het gebruik van een selectieve 
onttrekkingsfaciliteit van het Imha-reservoir te overwegen. 

De toepasbaarheid van het raamwerk werd aangetoond door de simulatieresultaten met 
behulp van observatiegegevens voor het studiegebied. De simulatieresultaten op basis van 
het raamwerk bevestigden dat de frequentie van schadelijke cyanobacteriële bloei zou 
afnemen in vergelijking met het aantal dagen dat schadelijke cyanobacteriële bloei 
daadwerkelijk werd waargenomen bij Chilgok Weir. Daarom kan dit raamwerk de 
besluitvorming over reservoirbeheer in de praktijk ondersteunen om een gunstig 
aquatisch milieu in een stroomafwaartse rivier te creëren door de frequentie van 
schadelijke cyanobacteriële bloei stroomafwaarts te verminderen. Het raamwerk is met 
name nieuw in termen van efficiëntie, omdat het een deel van een oplossing kan zijn voor 
het probleem van schadelijke cyanobacteriële bloei zonder een extra hoeveelheid water 
uit een stroomopwaarts reservoir te gebruiken. 

 

 

 

 

  



 

 

xvi 

 

  



xvii 

 

CONTENTS 
 

Acknowledgements ....................................................................................................... vii 

Summary ........................................................................................................................ ix 

Samenvatting ................................................................................................................ xiii 

Contents ....................................................................................................................... xvii 

1 Introduction .............................................................................................................. 1 

1.1 Motivation .......................................................................................................... 2 

1.2 Research Gaps .................................................................................................... 3 

1.2.1 Prediction of occurrence of harmful cyanobacterial blooms ...................... 3 

1.2.2 Optimal reservoir operation considering the quantity and quality of water ..... 4 

1.3 Research Objective and Questions .................................................................... 4 

1.4 Research Methodology ...................................................................................... 5 

1.5 Outline ............................................................................................................... 6 

2 Description of the Study Area ................................................................................. 9 

2.1 Introduction ...................................................................................................... 10 

2.2 Study Area ....................................................................................................... 10 

2.3 Data Availability for the Study Area ............................................................... 13 

3 A Machine Learning Approach to the Prediction of Cyanobacterial Blooms ........ 15 

3.1 Introduction ...................................................................................................... 16 

3.2 Materials .......................................................................................................... 19 

3.2.1 Data collection .......................................................................................... 19 

3.2.2 Data preprocessing ................................................................................... 21 

3.3 Methods ........................................................................................................... 25 

3.3.1 Analysis of variance (ANOVA) for feature selection .............................. 25 

3.3.2 Multi-collinearity ...................................................................................... 25 

3.3.3 Classification algorithms of machine learning ......................................... 25 

3.3.4 Oversampling using SMOTE (Synthetic Minority Oversampling Technique) .... 26 

3.3.5 Training, cross-validation, and test for the dataset ................................... 26 



 

 

xviii 

 

3.3.6 Model evaluation ...................................................................................... 27 

3.3.7 Summary of the modelling procedure ...................................................... 28 

3.4 Results .............................................................................................................. 29 

3.4.1 Determination of the modelling cases ...................................................... 29 

3.4.2 Accuracy of the models ............................................................................ 34 

3.4.3 Summary of the modelling results ............................................................ 37 

3.5 Discussion and Conclusions ............................................................................ 38 

4 River Water Quality Modelling for Nitrate Nitrogen Control Using HEC-RAS ... 41 

4.1 Introduction ...................................................................................................... 42 

4.2 Materials and Methods ..................................................................................... 45 

4.2.1 Model description ..................................................................................... 45 

4.2.2 Data for HEC-RAS model ........................................................................ 46 

4.2.3 Data preparation ....................................................................................... 49 

4.2.4 Experimental setup ................................................................................... 51 

4.3 Results .............................................................................................................. 54 

4.3.1 Calibration and validation for unsteady flow ........................................... 54 

4.3.2 Calibration and validation for NO3-N dynamics ...................................... 57 

4.3.3 NO3-N dynamics according to variation in water quantity ...................... 63 

4.3.4 NO3-N dynamics according to variation in water quality ........................ 68 

4.3.5 Guidelines for design of strategies to control NO3-N downstream .......... 70 

4.4 Discussion ........................................................................................................ 72 

4.5 Conclusions ...................................................................................................... 74 

5 Optimal Reservoir Operation to Mitigate Cyanobacterial Blooms Downstream .. 75 

5.1 Introduction ...................................................................................................... 76 

5.2 Modelling Methods .......................................................................................... 78 

5.2.1 Data preparation ....................................................................................... 78 

5.2.2 Machine learning model ........................................................................... 79 

5.2.3 Optimization model .................................................................................. 79 

5.2.4 River water quality model ........................................................................ 81 

5.3 Experimental Setup .......................................................................................... 82 



 

xix 

 

5.3.1 Procedure .................................................................................................. 82 

5.3.2 Experimental cases for optimization ........................................................ 84 

5.4 Results and Discussion .................................................................................... 87 

5.4.1 Simulation test .......................................................................................... 87 

5.4.2 Optimization results .................................................................................. 88 

5.4.3 NO3-N dynamics at Chilgok Weir ............................................................ 97 

5.4.4 Prediction of the occurrence of CyanoHABs at Chilgok Weir .............. 100 

5.5 Conclusions .................................................................................................... 102 

6 Conclusions ........................................................................................................... 105 

6.1 Reflections on Research Questions ................................................................ 106 

6.2 Research Outcomes ........................................................................................ 107 

6.2.1 Scientific perspective .............................................................................. 108 

6.2.2 Environmental and social impact ........................................................... 108 

6.3 Limitations and Recommendations ............................................................... 109 

6.3.1 Research Limitations .............................................................................. 109 

6.3.2 Recommendations for further studies ..................................................... 110 

References.................................................................................................................... 113 

List of Acronyms ......................................................................................................... 129 

List of Tables ............................................................................................................... 135 

List of Figures ............................................................................................................. 137 

About the author ......................................................................................................... 141 

 

 

 

  



 

 

xx 

 

 

 

  



 

 

1 
1 INTRODUCTION 

 

 

This chapter introduces the motivation for this dissertation, the gaps shown in previous 
studies, the objective of this research considering the research gaps, the research 
methodology, and the outline of this dissertation. 
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1.1 MOTIVATION 

According to a recent report by United Nations Water (UN-Water), problems of water 
quality will continue to occur due to climate change in the coming decades. (UNESCO 
and UN-Water, 2020). This is because climate change can cause an increase in water 
temperatures, a decrease in dissolved oxygen levels, and a reduction in the efficiency of 
natural purification processes (UNESCO and UN-Water, 2020). Water quality 
management is of paramount importance since water quality is directly related to the 
aquatic environment and public health. Thus, environmental authorities in many countries 
have focused on how to address problems with water quality such as harmful algal blooms 
(or cyanobacterial blooms). 

Harmful cyanobacterial blooms (CyanoHABs) are known to be threats to the aquatic 
environment (Paerl and Otten, 2013) and human health (Carmichael and Boyer, 2016; 
Falconer and Humpage, 2005; Falconer, 2005). CyanoHABs can decrease the amount of 
oxygen in water, which can harm fish and other organisms living in an aquatic 
environment (Gobler, 2020). Additionally, these CyanoHABs produce toxic substances 
such as microcystins (Carmichael and Boyer, 2016; Falconer and Humpage, 2005; 
Falconer, 2005) making the water unfit for human consumption. CyanoHABs appear 
when phytoplankton exponentially increase in lentic water bodies with low flow 
velocities such as lakes and reservoirs due to eutrophication (Jankowiak et al., 2019; Park 
et al., 2021a; Xu et al., 2015; Zhao et al., 2019), a condition in which the concentration 
of nutrients in the water is higher than that in the natural state. 

In particular, South Korea has been faced with the problem of CyanoHABs in rivers since 
2012. In 2012, the Korean government carried out the Four Major Rivers Restoration 
Project during which 16 weirs were constructed in the middle of rivers (Song and Lynch, 
2018). Environmental activists have claimed that the weirs have resulted in low water 
quality and the frequent occurrence of CyanoHABs in the rivers because the weirs have 
caused low flow velocity. On the other hand, those who have supported the project have 
argued that these weirs have not been the cause of CyanoHABs and the water quality of 
the river has rather improved after the construction of the weirs. These arguments among 
stakeholders have led to some social conflicts in South Korea. 

Reservoir operation can be a solution for alleviating the problem of CyanoHABs in a 
downstream river. For instance, discharging more water from upstream reservoirs can 
flush CyanoHABs downstream (Kim et al., 2022c; Lee and Baek, 2022). However, the 
reservoir operation considering the improvement of water quality downstream may 
increase the risk of water shortage since reservoirs were generally designed for the 
management of water quantity such as water supply. To reduce the problem of 
CyanoHABs downstream without the risk of water shortage, reservoirs should be 
optimally operated considering both the quantity and quality of water at the same time. 
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As water resources in reservoirs are limited, available water resources must be efficiently 
used from the different perspectives of stakeholders. Agencies for reservoir operation 
usually exploit water resources in reservoirs considering the factor of water quantity. On 
the contrary, environmental organizations can insist that reservoirs should be operated 
toward preventing the occurrence of CyanoHABs to support sustainable development in 
terms of the aquatic environment and public health. To cope with these conflicting 
interests, a framework for optimal reservoir operation should be established and applied 
to improve the water environment by reducing the frequency of occurrence of 
CyanoHABs downstream without disrupting the water supply. 

1.2 RESEARCH GAPS 

1.2.1 Prediction of occurrence of harmful cyanobacterial blooms 
As part of the solution to problems of water quality, many researchers in the water sector 
have been conducting studies on CyanoHABs (Rousso et al., 2020). Particularly, research 
studies in South Korea have attempted to accurately predict the occurrence of 
CyanoHABs in the rivers since the Four Major Rivers Restoration Project  (Yi et al., 2018; 
Pyo et al., 2021; Park et al., 2021b; Ahn et al., 2021; Kim et al., 2020). However, the 
processes of occurrence of CyanoHABs are complex because the occurrence of 
CyanoHABs cannot be explained only with mathematical equations or chemical reactions. 
Specifically, since CyanoHABs appear due to not only external factors such as flow 
characteristics, climate conditions, and water quality parameters but also internal factors 
such as chemical and biological processes, accurate prediction of their occurrence is a 
challenging task (Kim et al., 2017; Rousso et al., 2020). 

According to Rousso et al. (2020), forecasting and predictive models for CyanoHABs 
were developed in various forms depending on modelling techniques. Previous studies 
focused on not only process-based models such as DYRESM-CAEDYM, ELCOM-
CAEDYM, and WASP but also data-driven models based on techniques such as artificial 
neural networks, decision trees, and Bayesian networks (Rousso et al., 2020). While 
process-based models provide mechanisms of CyanoHABs for accurate predictions, these 
models require inputs for multiple parameters (Rousso et al., 2020) and spend 
considerable computing time (Yang et al., 2021). On the other hand, data-driven models 
produce output with some main predictors (Rousso et al., 2020) and less computing power 
(Yang et al., 2021). In this respect, the data-driven models can be more effective and 
efficient for decision-makers who pursue clear strategies for addressing the problems 
confronted. 

A predictive model adopting a data-driven approach can be used to understand the main 
factors for the occurrence of CyanoHABs at a specific location. Thus, accurate prediction 
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of CyanoHABs is an essential precondition for devising viable strategies to effectively 
control CyanoHABs. Nonetheless, the previous studies were mostly aimed at not 
preventing the occurrence of CyanoHABs but predicting their occurrence. Ultimately, the 
predictive model for CyanoHABs needs to be linked with a practical method for reducing 
the frequency of CyanoHABs. 

1.2.2 Optimal reservoir operation considering the quantity and 
quality of water 

Reservoir operations have been conventionally performed to use the water resources in a 
reservoir considering quantitative needs, such as water supply. As problems with water 
quality have become increasingly serious due to climate change, researchers have been 
exploring ways to improve the water quality downstream using limited water resources 
in reservoirs away from conventional approaches to reservoir operation. For example, 
two recent studies (Saadatpour et al., 2021; Saadatpour et al., 2020) suggested optimal 
strategies for reservoir operation in consideration of temperature or dissolved oxygen 
(DO) downstream as well as water quantities. In addition, Yosefipoor et al. (2022) 
proposed the optimal operation of a reservoir without a failure of the water supply to 
minimize the violations of phosphate (PO4) and Iron (Fe) concentrations in a downstream 
river. 

However, there have been few studies on reservoir operation that has considered 
biological parameters of water quality (Omer, 2020) such as CyanoHABs in a 
downstream river. Previous studies have not focused on CyanoHABs but on physical or 
chemical parameters (Omer, 2020) such as temperature, DO, and PO4. This can be 
because simulating biological parameters of water quality is more complex compared to 
physical or chemical parameters. 

1.3 RESEARCH OBJECTIVE AND QUESTIONS 

To link reservoir operation with CyanoHABs downstream, the complicated process of the 
occurrence of CyanoHABs should be considered in advance when making a decision on 
the reservoir operation. Hence, a systematic framework will offer an intimate connection 
between the optimal operation of upstream reservoirs to reduce the frequency of 
CyanoHABs and the prediction of the occurrence of CyanoHABs in a downstream river. 

The main objective of this dissertation is to establish a practical framework for the optimal 
operation of upstream reservoirs for addressing the problem of CyanoHABs in a 
downstream river and to demonstrate the applicability of the framework. To achieve this 
aim, the following questions are addressed: 
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i. What is an effective and efficient way to predict the occurrence of CyanoHABs at 
a specific location downstream in terms of linking with the operation of upstream 
reservoirs? 

ii. How can a river water quality model be developed to simulate the fate and 
transport of water quality parameters involved in CyanoHABs to cover a river 
reach between upstream reservoirs and a specific location downstream? 

iii. What optimization process for the operation of upstream reservoirs should be set 
up, for simultaneously considering both the quantity and quality of water 
downstream? 

iv. How can the optimal operation of upstream reservoirs be coupled to a predictive 
model for CyanoHABs and a river water quality model? 

1.4 RESEARCH METHODOLOGY 

A general framework should be first established for an optimal operation of upstream 
reservoirs to reduce the incidence of CyanoHABs at a specific location downstream, as 
shown in Figure 1.1. The framework is comprised of six steps as follows: 

i. Step 1 applies a data-driven model to predict the occurrence or nonoccurrence of 
CyanoHABs at a specific location using observational data, which are input 
features associated with CyanoHABs. 

ii. In the event of a prediction of the occurrence of CyanoHABs (Step 1), the depth 
distribution of water quality in the upstream reservoirs is simulated in Step 2. The 
water quality parameters of this simulation are consistent with the input features 
of the data-driven model of Step 1. 

iii. Step 3 involves an optimization process in which the decision variables include 
the quantity and quality of water released from the upstream reservoirs. The 
objective functions and constraints of this optimization are aimed at decreasing 
the frequency of CyanoHABs at the specific location and satisfying the water 
demand downstream. 

iv. In Step 4, the water quality at the specific location downstream is simulated using 
a river water quality model by incorporating the optimization results from Step 3 
as upstream boundary conditions. 

v. Step 5 is a process for confirming whether CyanoHABs would not occur at the 
specific location downstream based on the water quality simulated in Step 4 by 
applying the data-driven model of Step 1. 
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vi. If the prediction result from Step 5 indicates that CyanoHABs would not occur at 
the specific location downstream, the upstream reservoirs will be finally operated 
using the optimization results from Step 3. 

 

 

Figure 1.1. Framework for optimal reservoir operation to reduce the frequency of 
CyanoHABs at a specific location downstream 

This dissertation focuses on developing and applying a data-driven model in Steps 1 and 
5, an optimization model in Step 3, and a river water quality model in Step 4. Although 
the simulation of the water quality of reservoirs in Step 2 is not included in this 
dissertation, the applicability of this framework is demonstrated using observational data 
related to the quantity and quality of the upstream reservoirs in the study area. This 
dissertation covers the study area of the upper reach of the Nakdong River in South Korea, 
including two upstream reservoirs (Andong and Imha reservoirs) and the Chilgok Weir 
downstream. 

1.5 OUTLINE 

This dissertation consists of seven chapters. Chapter 2 explains the study area and data 
availability for this dissertation. Chapters 3 to 6 present the research methodologies 
developed and the results employing the methodologies, as shown in Figure 1.2. 
Specifically, Chapter 3 introduces a data-driven model developed by adopting a machine 
learning technique for predicting the occurrence of CyanoHABs at Chilgok Weir. In 
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Chapter 4, a river water quality model is developed to simulate the dynamics of a water 
quality parameter which is a main factor significantly influencing the occurrence of 
CyanoHABs at Chilgok Weir. Chapter 5 specifies an optimization process to decide the 
quantity and quality of water released from two upstream reservoirs (Andong and Imha) 
in terms of reducing the frequency of CyanoHABs at Chilgok Weir. The applicability of 
the framework shown in Figure 1.1 is also demonstrated in Chapter 5 by using 
observational data and linking the data-driven model in Chapter 3, the river water quality 
model in Chapter 4, and the optimization model. Finally, Chapter 6 draws conclusions 
incorporating the limitations of this dissertation and the recommendations for further 
studies. 

 

 

Figure 1.2. Outline of Chapters 3 to 5 

 

 

 

 

 

 

 





 

 

2 
2 DESCRIPTION OF THE STUDY 

AREA 
This chapter describes the study area (the upper reach of the Nakdong River) including 
the principal reasons for the selection of the study area and the data availability for the 
study area. 

   

                                                 
Parts of this chapter are based on the following research papers: 

Kim, J., Jonoski, A., Solomatine, D. P., and Goethals, P. L. M.: Water quality modelling for nitrate nitrogen control 
using HEC-RAS: Case study of Nakdong River in South Korea, Water, 15, doi:10.3390/w15020247, 2023. 

Kim, J., Jonoski, A., Solomatine, D. P., and Goethals, P. L. M.: Decision support framework for optimal reservoir 
operation to mitigate cyanobacterial blooms in rivers, submitted to Sustainability in 2023 (under review). 
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2.1 INTRODUCTION 

In South Korea, the average annual precipitation over the past 52 years (1967–2018) is 
1252mm, of which 55.4% is concentrated in summer. In addition, since 63% of the land 
area is mountainous, rainwater fast flows into the sea due to the steep slopes (Korean 
Government, 2021). In these unfavorable conditions of water resources management, 
South Korea has been faced with problems with water quality such as CyanoHABs in 
rivers, in particular since 2012 after the Four Major Rivers Restoration Project (Song and 
Lynch, 2018). Thus, the Korean government has been trying to implement policies on 
water resources management, in particular for improving water quality. 

By introducing the Framework Act on Water Management in 2019, the importance of 
water quality management in South Korea has been asserted more than before. This Act 
enabled the implementation of a policy on integrated water resources management 
concerning both the stability of water supply and the improvement of water quality. 
Before the Act was brought in, the Ministry of Land, Infrastructure, and Transport and 
the Ministry of Environment were responsible for the quantity and quality of water, 
respectively. Under the Act, the Ministry of Environment became a government agency 
to manage water resources in terms of both the quantity and quality of water in South 
Korea (Lee, 2019). 

In consideration of the importance of water quality management in South Korea, this 
dissertation can propose a practical measure for improving the water environment in a 
river. By connecting modelling and optimization tools, this measure is aimed at efficiently 
using limited water resources in reservoirs and effectively reducing the incidence of 
CyanoHABs. The applicability of this measure can be demonstrated using observation 
data for a study area. In South Korea, the Nakdong River is applicable as the study area 
because it has the largest number of large reservoirs and weirs compared with other major 
rivers. Furthermore, the Nakdong River has confronted the problem of CyanoHABs. 

2.2 STUDY AREA 

The Nakdong River is the longest in South Korea, with a length of 510 km. The water 
quality of the Nakdong River has been a matter of concern to environmental authorities 
since the Nakdong River has been used as a major source of drinking water in adjacent 
cities (Lee et al., 2018). The special importance of water quality management in the 
Nakdong River has arisen from the phenol spill accident that happened in 1991 (Kim et 
al., 1994). Moreover, research studies have investigated quantitative changes in the water 
quality of the Nakdong River since 2012 after the Four Major Rivers Restoration Project 
(Jo et al., 2022; Lee et al., 2018; Park et al., 2018b). 
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In the Nakdong River basin, there are ten multipurpose dams and eight weirs as shown in 
Figure 2.1. The upper reach of the Nakdong River was selected as a study area, covering 
the Andong Reservoir, the Imha Reservoir, and the Chilgok Weir. The Andong Reservoir 
is situated furthest upstream, while the Imha Reservoir is located in the Banbyeoncheon 
River, a tributary of the Nakdong River. The Chilgok Weir is located approximately 140 
km downstream from the Andong Dam. 

 

 

Figure 2.1. Location and schematization of the study area 

The Andong Reservoir and the Imha Reservoir are connected by a water transfer tunnel 
for joint operation in terms of water supply, flood control, and water quality management 
(Jeong et al., 2020; Park et al., 2017a). The Imha Reservoir in particular has a Selective 
Withdrawal Facility (SWF), so the water quality can be controlled when the water in the 
reservoir is released downstream (Lee et al., 2007). Figure 2.2 shows the water transfer 
tunnel and the SWF. Table 2.1 shows the details of the Andong and Imha reservoirs (Park 
and Chung, 2014). 
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Figure 2.2. Water transfer tunnel and Selective Withdrawal Facility (SWF) 

 

Table 2.1. Details about Andong and Imha reservoirs 

Reservoir Andong Imha 

Area of catchment (km2) 1584 1361 

Height of dam (m) 83.0 73.0 

Length of dam (m) 612.0 515.0 

Normal high water level (mamsl) 160.0 163.0 

Effective storage volume (106 m3) 1000.0 424.0 
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There are four weirs in the study area, including the Sangju Weir, the Nakdan Weir, the 
Gumi Weir, and the Chilgok Weir. Given that the intake facilities for drinking water are 
located between two cross sections of the Gumi Weir and the Chilgok Weir (Lee et al., 
2014), the water quality for this district should be managed properly. Table 2.2 shows the 
details of the four weirs (Bae and Seo, 2021; Jo et al., 2022). The water level of each weir 
is usually maintained at each water level specified for management (Kim and Shin, 2021) 
through the operation of the gates. 

Table 2.2. Details about Sangju, Nakdan, Gumi, and Chilgok weirs 

Weir Sangju Nakdan Gumi Chilgok 

Area of catchment (km2) 7407 9221 9557 11040 

Height (m) 11.0 11.5 11.0 11.8 

Length (m) 335.0 286.0 374.3 400.0 

Water level for management (mamsl) 47.0 40.0 32.5 25.5 

Storage volume (106 m3) 27.4 34.7 52.7 75.3 

There are three principal reasons for the selection of this study area. First, a joint operation 
can be conducted for the two reservoirs. This joint operation makes the amount of the 
water supply from each reservoir flexible in conditions of meeting the sum of water 
demand of both reservoirs. Secondly, the Imha Reservoir is equipped with an SWF (Lee 
et al., 2007; Kim et al., 2022b), which enables the control of the quality of water released 
to the downstream river. This SWF is one of the important factors in this study in terms 
of improving the aquatic environment downstream. Finally, the Chilgok Weir is close to 
the intake facilities for drinking water (Lee et al., 2014), making the management of water 
quality at Chilgok Weir a critical issue. A monitoring station for water quality data, 
including cyanobacterial cell density, is located 500 m upstream of the Chilgok Weir 
(Park et al., 2021a). 

2.3 DATA AVAILABILITY FOR THE STUDY AREA 

For the studies of this dissertation, data related to water quantity, water quality, and 
climate of the study area are necessary. These data can be collected from the Water 
Resources Management Information System, the Water Environment Information System, 
and the Open MET Data Portal of South Korea (Kim et al., 2021). The Act on the 
Investigation, Planning, and Management of Water Resources states that the institutions 



2. Description of the Study Area 

 

14 

 

dedicated to hydrological investigations have to operate information systems to 
efficiently manage data for water resources. The Ministry of Environment forms a 
national network to periodically monitor water quality and manages water quality data 
through an information system under the Water Environment Conservation Act. The 
Korea Meteorological Administration runs an information system for meteorological data 
and provides the data to citizens under the Weather Act. All data are publicly available 
from the information systems operated under these Acts. 

Korea Water Resources Corporation (K-water) has operated multi-purpose reservoirs and 
large weirs. To effectively operate the reservoirs and the weirs, K-water acquires and 
manages the data such as water level, inflow, outflow, and rainfall at 10-minute, hourly, 
and daily intervals for the reservoirs and the weirs. All observational data are open to the 
public on the website of K-water and shared with the Water Resources Management 
Information System. 

Obtaining water quality data is more difficult than collecting data on water quantity 
because most water quality data are generally collected in situ and obtained in laboratory 
experiments. In South Korea, the National Institute of Environmental Research (NIER) 
monitors the conditions of water quality and aquatic ecosystems in public water bodies. 
In addition, these data are available from the Water Environment Information System. 

While hydrological or hydraulic data and meteorological data can be collected on a daily 
basis, water quality data are available on a weekly (48 or 36 times a year) or monthly 
basis (Kim et al., 2021). To resolve the problem of difference in the time interval between 
data, weekly data can be interpolated to convert them into daily data by using an 
interpolation method such as a step function (James, 2016; Mcintyre and Wheater, 2004). 

 



 

 

 

3 
3 A MACHINE LEARNING APPROACH 

TO THE PREDICTION OF 
CYANOBACTERIAL BLOOMS 

 

This chapter presents how to develop machine learning models with high performance 
using two input features for predicting the occurrence of cyanobacterial blooms at 
Chilgok Weir of the Nakdong River, South Korea. 

  

  

                                                 
This chapter is extracted from Kim, J., Jonoski, A., and Solomatine, D. P.: A classification-based machine learning 
approach to the prediction of cyanobacterial blooms in Chilgok Weir, South Korea, Water, 14, 
doi:10.3390/w14040542, 2022. 
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ABSTRACT 

Cyanobacterial blooms appear by complex causes such as water quality, climate, and 
hydrological factors. This study aims to present machine learning models to effectively 
and efficiently predict occurrences of these complicated cyanobacterial blooms. The 
dataset was classified into two, three, or four classes based on cyanobacterial cell density 
after a week, which was used as the target variable. We developed 96 machine learning 
models for the Chilgok Weir using four classification algorithms: k-Nearest Neighbor, 
Decision Tree, Logistic Regression, and Support Vector Machine. In the modelling 
methodology, we first selected input features by applying ANOVA (Analysis of Variance) 
and solving a multi-collinearity problem as a process of feature selection, which is a 
method for removing features irrelevant to a target variable. Next, we adopted an 
oversampling method to resolve the problem of having an imbalanced dataset. 
Consequently, the best performance was achieved for models using datasets divided into 
two classes, with an accuracy of 80% or more. Comparatively, we confirmed low 
accuracy of approximately 60% for models using datasets divided into three classes. 
Moreover, while we produced models with overall high accuracy when using logCyano 
(logarithm of cyanobacterial cell density) as a feature, several models in combination with 
air temperature and NO3-N (nitrate nitrogen) using two classes also demonstrated more 
than 80% accuracy. We concluded that accurate classification-based machine learning 
models could be developed with two input features related to cyanobacterial blooms. This 
proved that we could make effective and efficient models with a low number of inputs. 

3.1 INTRODUCTION 

Harmful Algal Blooms (HABs) have appeared due to pollution of aquatic environments, 
and increasingly due to climate change, which has been a cause for the increase in water 
temperature (Tong et al., 2021; Park et al., 2021a). There are increasing concerns that the 
combined environmental factors of uncontrolled pollution and climate change 
(particularly higher temperatures) may lead to more frequent and more severe HABs 
(Kosten et al., 2012; Paerl and Huisman, 2009; Paerl and Scott, 2010). HABs have been 
negatively affecting not only the aquatic environment but also human health because they 
produce toxic substances (Smith and Daniels, 2018) such as microcystin (Plaas and Paerl, 
2021; Ho and Goethals, 2020). The serious problems of HABs can be recognized through 
studies that showed that algal blooms (or cyanobacterial blooms) caused fish death (Kim 
et al., 2020; Song and Lynch, 2018) and human liver disease (Lee et al., 2019). The 
challenges for water management in preventing or minimizing HABs are linked to the 
complexity of the HAB processes (including identification of main conditioning factors), 
their site-specificity, and associated difficulties in their prediction (Paerl, 2017; 
Wurtsbaugh et al., 2019). 
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Cyanobacterial blooms appear when phytoplankton proliferates massively in lentic water 
such as lakes, reservoirs, or ponds, owing to eutrophication and stratification (Park et al., 
2021a; Ahn et al., 2021). In other words, an increase in the nutrients and a rise in the 
water temperature of stagnant water bodies can bring about cyanobacterial blooms (Park 
et al., 2017b). In this regard, many people in South Korea have argued that the weirs, 
which were built during the Four Major Rivers Restoration Project from 2009 to 2012, 
have decreased the flow velocity in the rivers (Park et al., 2021a), causing the appearance 
of cyanobacterial blooms (Park et al., 2017b) and the environmental problems such as 
water pollution and ecological disturbance (Song and Lynch, 2018). 

As part of the solution to the HABs problem, various studies were carried out on 
identifying the cause of cyanobacterial blooms and predicting their occurrence (Rousso 
et al., 2020). Many previous studies revealed that water quality factors (e.g., water 
temperature, suspended solids, dissolved oxygen, nutrients such as nitrogen compounds, 
phosphorus, etc.), climatic conditions (e.g., air temperature, rainfall, etc.), and 
hydrological factors (e.g., discharge, water level, etc.) were significant causes of the 
cyanobacterial blooms (Park et al., 2017b; Rousso et al., 2020). However, finding only 
one or two specific causes of cyanobacterial blooms is not easy because they appear by 
complicated biological processes in addition to external factors (Kim et al., 2017; Park et 
al., 2017b). In order to predict the occurrence of these cyanobacterial blooms, many 
previous studies have applied data-driven models, using Artificial Neural Networks 
(ANN), Decision Tree (DT), etc., as well as process-based models such as 
DYRESM/ELCOM-CAEDYM (Rousso et al., 2020). 

Numerous earlier studies attempted to predict cyanobacterial blooms accurately by 
developing process-based models that mathematically provide the mechanism of the 
blooms (Rousso et al., 2020). Nevertheless, the process-based models require 
considerable input (Rousso et al., 2020) and computing time (Yang et al., 2021) as they 
all involve related factors such as water quality, climate, and flow rate. On the other hand, 
data-driven models using machine learning or deep learning produce output by taking less 
running time (Yang et al., 2021)  and only some main factors (Rousso et al., 2020). Some 
research proved that the data-driven models employing techniques such as Random 
Forest (RF) (Zeng et al., 2017; Yajima and Derot, 2018), Support Vector Machine (SVM) 
(Zeng et al., 2017), ANN (Zeng et al., 2017), and Extreme Learning Machine (ELM) (Yi 
et al., 2018) ensured high accuracy in predicting the real-valued output such as 
cyanobacterial cell density (Yajima and Derot, 2018) or Chlorophyll-a concentration 
(Chl-a), which is a proxy index for the cyanobacterial blooms (Kim et al., 2017; Yajima 
and Derot, 2018; Yi et al., 2018). Additionally, recent studies were conducted on the 
machine learning models that forecast the cyanobacterial blooms in the type of the binary 
(Kim et al., 2020) (e.g., occurrence/non-occurrence) or the ordinal data (Mellios et al., 
2020; Park et al., 2021b) (e.g., low/medium/high) using classification methods. 
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However, for those classification-based machine learning models, we need to consider at 
least two prerequisites, which were often overlooked in earlier studies. The first one is to 
pre-select input features of the model based on the theoretical knowledge regarding 
cyanobacterial blooms. By going through the process of this feature selection, we can 
improve the efficiency and accuracy of the model (Yajima and Derot, 2018; Gnana et al., 
2016). Nonetheless, feature selection that is not derived from the physical or biological 
processes related to target variables may give poor performances to the models (Jiang et 
al., 2020; Moreido et al., 2021; Rousso et al., 2020). Moreover, the pre-selection of 
features without considering the statistical characteristics such as multi-collinearity can 
be an obstacle to developing a robust model (Al-Abadi et al., 2020; Yoo and Cho, 2019). 

The other prerequisite is a balanced dataset, which is essential for high performances of 
the classification models (Shin et al., 2017) using nominal or ordinal data (Raschka and 
Mirjalili, 2017). The balanced dataset ensures the even distribution of two or more 
classification data without being biased toward one classification. In the raw dataset of 
cyanobacterial blooms, non-occurrence data generally outweigh the occurrence data (Kim 
et al., 2020; Shin et al., 2017; Choi et al., 2019). Therefore, the performance of the models 
tends to become low if the imbalanced dataset of the cyanobacterial blooms is used as it 
is (Shin et al., 2017). We need to correct the imbalance of the dataset with an 
oversampling technique (Choi et al., 2019). 

The main objective of this study is to develop optimal classification-based machine 
learning models for effectively and efficiently predicting occurrences of cyanobacterial 
blooms through the process of feature selection and the oversampling of datasets. 
Specifically, we (i) derive significant input features using the datasets of a specific point 
called Chilgok Weir in South Korea, (ii) present which processes need to take place to 
reduce the number of input features as much as possible, which is required to develop 
machine learning models efficiently, (iii) identify how the target variables should be 
classified to improve model performance, and (iv) find out the optimal combinations of 
input features and four classification algorithms such as k-Nearest Neighbor (k-NN), DT, 
Logistic Regression (LR), and SVM. The concrete results from this research will 
introduce some novelty for decision-makers, who need intuitive and effective strategies 
for dealing with this problem, using models that can predict cyanobacterial blooms as 
accurately as possible with a few features. For example, decision-makers in charge of 
reservoir operations will be able to release more and cleaner water from an upstream 
reservoir if our model suggests that cyanobacterial blooms will appear in a downstream 
river a week later. 
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3.2 MATERIALS 

3.2.1 Data collection 
We selected the Chilgok Weir, completed in June 2012, as the target location for this 
study (see Figure 2.1). There are two reasons for the selection of this Chilgok Weir. The 
first reason is the availability of the datasets related to the cyanobacterial blooms of the 
Chilgok Weir. The Algae Alert System in South Korea (Park et al., 2021a), based on 
cyanobacterial cell density as shown in Table 3.1 (Park et al., 2021b; Park et al., 2021a; 
Kim et al., 2020), has been operated by the National Institute of Environmental Research 
(NIER) to ensure the safety of drinking water (Park et al., 2021b). One of the observation 
stations is at the upstream point about 500 m away from the Chilgok Weir (Park et al., 
2021a). The second is the location of the observation station. The station of the Chilgok 
Weir is located furthest upstream among three stations involved in the Algae Alert System 
on the mainstream of the Nakdong River. The location of the station enables us to 
consider as few factors as possible influencing the cyanobacterial blooms. In general, 
there are more factors in the downstream points affecting the occurrence of cyanobacterial 
blooms, such as the inflow of pollutants from tributaries or sewage treatment plants (Yi 
et al., 2018; Park et al., 2021a). 

Table 3.1. Criteria for algae alert in South Korea 

Stage Cyanobacterial Cell Density (cells mL–1) 

Caution ≥1000 

Warning ≥10,000 

Outbreak ≥1,000,000 

For the Chilgok Weir point, we acquired datasets including water quality factors, climatic 
conditions, and hydrological factors known as the causes (or influencing factors) of the 
cyanobacterial blooms. Cyanobacteria-related water quality data, meteorological data, 
and hydrological data are open to the public by NIER, Korea Meteorological 
Administration (KMA), and Korea Water Resources Corporation (K-water), respectively 
(Kim et al., 2020; Park et al., 2021a; Park et al., 2017b; Yi et al., 2018; Park et al., 2021b; 
Shin et al., 2017; Kim et al., 2019a; Ahn et al., 2021). Table 3.2 shows the feature, the 
frequency, and the source of each dataset. Regarding the cyanobacteria-related water 
quality, the harmful cyanobacteria include four genera: Microcystis, Aphanizomenon, 
Anabaena, and Oscillatoria spp. (Park et al., 2021a; Kim et al., 2020; Park et al., 2021b). 
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Table 3.2. List of features 

Data/Frequency 
/Source 

Feature Description Unit 

Water quality 
data/Weekly 

/NIER 

Cyano Cyanobacterial cell density cells mL–1 

WT Water temperature °C 

pH Hydrogen ion concentration - 
DO Dissolved oxygen mg L–1 

Chl-a Chlorophyll a mg m–3 
BOD Biochemical oxygen demand mg L–1 
COD Chemical oxygen demand mg L–1 
SS Suspended solids mg L–1 
TN Total nitrogen mg L–1 
TP Total phosphorus mg L–1 
N/P TN/TP ratio - 
TOC Total organic carbon mg L–1 

EC Electrical conductivity μS cm–1 

TotalColiform Total coliforms 100 mL–1 
TDN Total dissolved nitrogen mg L–1 

NH3-N Ammonia nitrogen mg L–1 
NO3-N Nitrate nitrogen mg L–1 
TDP Total dissolved phosphorus mg L–1 

PO4-P Phosphate phosphorus mg L–1 
FecalColiform Fecal coliforms - 

Meteorological 
data/Daily 

/KMA 

AT Average air temperature °C 

LT Lowest air temperature °C 

HT Highest air temperature °C 

MaxSolarRad Maximum amount of solar 
radiation for one hour MJ m–2 

DaySolarRad Total amount of solar radiation MJ m–2 

Hydrological 
data/Daily 
/K-water 

WeirLevel Water level of weir mamsl 
StorageVolume Storage volume of weir 106 m3 

Rainfall Rainfall in weir catchment area mm 
Inflow Weir inflow m3 s–1 

Outflow Weir outflow m3 s–1 
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3.2.2 Data preprocessing 
Across a range of regions, there were previous studies in which the forecast horizons were 
set from real-time to as long as one month or more depending on the objective of 
developing the models and the frequency of the used datasets (Rousso et al., 2020). In 
this study, we used a week as the forecast horizon because the frequency of the 
cyanobacteria-related water quality dataset is on a weekly basis as shown in Table 3.2. 
The raw dataset consisted of 378 instances with the cyanobacterial cell density after a 
week (Cyano(t+1)) as a target variable and 30 input features including the current cell 
density (Cyano(t)) as shown in Table 3.3. The period for the used data was from August 
2012 to December 2020. 

Table 3.3. Nine-year mean, minimum, median, and maximum values for each feature in 
the raw dataset (378 instances) 

Category Feature Mean Minimum Median Maximum 

Input features 

Cyano(t) 2976 0 165 112,735 
WT 16.8 0.7 17.5 33.6 

pH 8.1 6.5 8.1 9.6 
DO 10.4 1.6 10.1 16.4 

Chl-a 20.1 2.3 15.45 87.2 
BOD 1.9 0.4 1.8 5.0 

COD 5.9 3.5 5.8 10.5 
SS 7.6 1.5 6.3 44.9 
TN 2.674 1.089 2.686 4.396 

TP 0.043 0.011 0.034 0.198 
N/P 81.5 12.7 76.6 255.5 

TOC 4.1 2.6 4.0 7.9 
EC 288 124 286 596 

TotalColiform 8219 2 264 340,000 

TDN 2.513 1.078 2.532 4.125 
NH3-N 0.113 0.003 0.091 0.790 

NO3-N 1.971 0.530 1.996 3.330 
TDP 0.024 0.003 0.018 0.125 

PO4-P 0.011 0.000 0.004 0.105 
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Table 3.3. Cont. 

Category Feature Mean Minimum Median Maximum 

Input features 

FecalColiform 428 0 12 21,750 

AT 15.5 –4.8 15.8 32.5 
LT 10.8 –8.9 10.8 27.6 
HT 21.0 –1.0 21.9 38.0 

MaxSolarRad 2.39 0.19 2.54 3.74 
DaySolarRad 15.56 0.69 15.465 31.02 

WeirLevel 25.52 25.02 25.56 25.86 
StorageVolume 75.321 68.181 75.930 79.005 

Rainfall 2.290 0.000 0.023 57.263 
Inflow 112.867 3.604 67.733 1147.669 

Outflow 113.379 8.098 69.004 1140.136 

Target variable 
(Output feature) Cyano(t+1) 2903 0 165 112,735 

 

The machine learning models applying classification algorithms require a nominal or an 
ordinal data type for target variables (Raschka and Mirjalili, 2017). In order to compare 
the performance of each model depending on the number of classes, we made three groups 
by classifying the target variable (Cyano(t+1)) based on the Algae Alert System, as 
presented in Table 3.1. For the first group, the dataset was classified into four classes 
(Normal, Caution, Warning, and Outbreak), which was the same as the Algae Alert 
System, and it was named Group1. It had an imbalanced dataset as it comprised 269 
Normals, 83 Cautions, 26 Warnings, and zero Outbreaks. We made the other two groups 
(Group2 and Group3) by dividing the dataset into two classes (e.g., (Kim et al., 2020)) 
(Normal/Occurrence) for Group2 and three classes (e.g., (Mellios et al., 2020; Park et al., 
2021b)) (None/Normal/Occurrence) for Group3. As a result, Group1, Group2, and 
Group3 consisted of four, two, and three classes, respectively. We used these three groups 
to ensure which classification of the cyanobacterial cell density provided us with a better 
model with reference to performance. Table 3.4 shows how each group was specified in 
terms of cyanobacterial cell density. 

 

https://www.mdpi.com/2073-4441/14/4/542#table_body_display_water-14-00542-t004
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Table 3.4. Classification framework for each group 

Group Class Cyano(t+1) Number 

Group1 

Normal <1000 269 

Caution ≥1000 83 

Warning ≥10,000 26 

Outbreak ≥1,000,000 0 

Group2 
Normal <1000 269 

Occurrence ≥1000 109 

Group3 

None 0 136 

Normal <1000 133 

Occurrence ≥1000 109 

 

In addition, the logarithmic transformation of base 10 was applied to Cyano(t) to convert 
the skewed distribution of the raw dataset into normal distribution as much as possible 
(Choi et al., 2019). Consequently, it was named as logCyano. Here, when Cyano(t) was 
zero, logCyano was also given zero. Furthermore, we applied standardization to 30 input 
features according to Equation (3.1). It is one of the feature scaling methods, which is an 
important preprocessing task in machine learning modelling (Vien et al., 2021; Raschka 
and Mirjalili, 2017). 

 𝑥𝑥′ =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

 (3.1) 

where 𝑥𝑥′ is a standardized value, 𝑥𝑥 is an observation data for a specific feature from the 
raw dataset, 𝜇𝜇 is the mean of the whole observation data for the feature, 𝜎𝜎 is its standard 
deviation. 

Table 3.5 shows the values of the input features after preprocessing using the logarithmic 
transformation and the standardization of input features, together with the classified target 
variable. 
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Table 3.5. Input features (including the mean, minimum, median, and maximum values 
for each feature) after preprocessing the dataset using logarithmic transformation and 

standardization, together with the classified target variable 

Category Feature Mean Minimum Median Maximum 

Input features 

logCyano 

0.000 

–1.200 0.224 2.046 
WT –1.974 0.085 2.071 
pH –3.340 0.032 3.193 
DO –3.115 –0.077 2.144 

Chl-a –1.194 –0.310 4.514 
BOD –2.066 –0.148 4.237 
COD –2.316 –0.100 4.430 
SS –1.240 –0.280 7.533 
TN –2.451 0.018 2.661 
TP –1.219 –0.329 6.019 
N/P –1.602 –0.114 4.048 
TOC –1.784 –0.133 4.468 
EC –2.312 –0.041 4.324 

TotalColiform –0.308 –0.299 12.455 
TDN –2.357 0.031 2.646 

NH3-N –1.213 –0.243 7.458 
NO3-N –2.425 0.042 2.288 
TDP –1.045 –0.307 4.957 

PO4-P –0.570 –0.355 5.068 
FecalColiform –0.252 –0.245 12.520 

AT –2.286 0.024 1.907 
LT –2.182 0.000 1.861 
HT –2.372 0.088 1.826 

MaxSolarRad –2.567 0.171 1.569 
DaySolarRad –2.103 –0.014 2.186 

WeirLevel –3.042 0.219 2.030 
StorageVolume –3.250 0.277 1.677 

Rainfall –0.349 –0.346 8.381 
Inflow –0.751 –0.310 7.111 

Outflow –0.723 –0.305 7.054 

Target variable Each class of three groups (Group1, Group2, and Group3) 
based on Cyano(t+1) 
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3.3 METHODS 

3.3.1 Analysis of variance (ANOVA) for feature selection 
To build robust learning models, we need feature selection, leading to the elimination of 
redundant and irrelevant features (Gnana et al., 2016). This helps prevent overfitting, 
enhance model performance, and increase the running speed of a model (Gnana et al., 
2016). The filter approach, one of the feature selection methods (Gnana et al., 2016), uses 
techniques such as ANOVA, which is widely used in statistical studies. One-way 
ANOVA determines whether differences between two or more classes are statistically 
significant through a comparison of variances between classes (Gradilla-Hernandez et al., 
2020). Through one-way ANOVA, we can judge that the difference is significant when 
the F value is large enough and the p-value is less than 0.05 (Gradilla-Hernandez et al., 
2020; Peng et al., 2020). In this study, features with valid F and p values (F value > 50, p-
value < 0.05) by one-way ANOVA were selected to develop the machine learning models 
for three groups formed by using the categorical variables (Wu et al., 2021). This is 
because significant F and p values mean the features have a high correlation with the 
categorical target variable. 

3.3.2 Multi-collinearity 
Multi-collinearity arises when the inter-correlation between input features is strong (Yoo 
and Cho, 2019; Al-Abadi et al., 2020). It can be a problem in statistical analysis such as 
regression as it distorts the prediction results of the model (Yoo and Cho, 2019; Al-Abadi 
et al., 2020). For classification-based machine learning, the multi-collinearity problem 
can be addressed as part of feature selection (e.g., (Al-Abadi et al., 2020; Xu et al., 2021; 
Zhou et al., 2021; Nagawa et al., 2021)). In this study, features with weak inter-correlation 
are candidates to be selected. To be specific, the features with high inter-correlation are 
removed after correlation analysis using all the features selected through one-way 
ANOVA. As a result, we could achieve the purpose of feature selection, such as warding 
off the overfitting of the model, by having only the minimum number of features (Tousi 
et al., 2021). 

3.3.3 Classification algorithms of machine learning 
For this study, we applied four classification-based machine learning algorithms, k-NN, 
DT, LR, and SVM, which are widely used (Kim and Oh, 2021). The k-NN is a distance-
based classification algorithm that finds the ‘k’ neighbors, which are closest to the data 
to be classified. The target data are allocated the same label as the closest neighbors 
(Mellios et al., 2020). The DT is a technique of classifying data based on the impurity of 
training data, such as the Gini index (Shin et al., 2017) and the entropy (Uma and 
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Balamurugan, 2020). The LR is a classification method that uses logit functions to predict 
the probability that data fall into a category between zero and one (Bourel and Segura, 
2018). Multinomial logistic regression, an extended form of LR, allows multiple classes 
to be applied (Bourel and Segura, 2018). The SVM is a machine learning algorithm that 
determines the optimal hyperplane to maximize the distance between the categories. The 
class of new data is determined by the hyperplane (Mellios et al., 2020). These four 
machine learning techniques can be implemented using scikit-learn, one of Python’s 
machine learning libraries (Raschka and Mirjalili, 2017). 

3.3.4 Oversampling using SMOTE (Synthetic Minority 
Oversampling Technique) 

As shown in Table 3.4 regarding the classification frameworks of three groups (Group1, 
Group2, and Group3), the dataset to be used in this study had an imbalance by class in all 
three groups. While the application of machine learning using such an imbalanced dataset 
gives rise to overfitting by excessively increasing prediction accuracy for the majority 
class (Ahmed et al., 2021), it may make an inaccurate prediction for the minority class 
(Shin et al., 2017). To overcome the problem of an imbalanced dataset, oversampling can 
be applied, leading to improved prediction accuracy for minority classes. It is a process 
of producing new data of minority classes equal to the number of data belonging to a 
majority class (Choi et al., 2019). 

One of the widely used oversampling techniques is SMOTE (Fernandez et al., 2018). It 
is a method of synthesizing the interpolated points on a line connecting the adjacent 
groups of a minority class in a training set and labeling them as new samples of the 
minority class (Fernandez et al., 2018; Choi et al., 2019; Shin et al., 2017). Shin et al. 
(2017) and Choi et al. (2019) suggested that the cyanobacterial-related models to which 
SMOTE was applied outperformed those without oversampling. In this study, SMOTE 
was employed by using a Python library, imblearn (Raschka and Mirjalili, 2017). 

3.3.5 Training, cross-validation, and test for the dataset 
The dataset should be split into a training set for learning and a test set for verification of 
the model (Raschka and Mirjalili, 2017). In this study, the split ratio between the training 
set and the test set was 80%:20%. Additionally, four-fold cross-validation was performed 
on the training set to prevent the overfitting of the model (Arabgol et al., 2016). At the 
same time, the optimal parameters for each classification algorithm were found through 
grid search that could improve the model performance (Arabgol et al., 2016; Raschka and 
Mirjalili, 2017). Finally, the models built through four-fold cross-validation were 
evaluated using the test set. The parameters which were optimized in this study are shown 
in Table 3.6 (Raschka and Mirjalili, 2017). 
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Table 3.6. Parameters to be optimized in this study for four algorithms 

Algorithm Parameter Description 

k-NN n_neighbors Number of neighbors 

DT max_depth Maximum depth of the tree 

LR C Regularization parameter 

SVM 
C Regularization parameter 

kernel 
The kernel type to be used in the algorithm 
such as ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, etc. 

 

3.3.6 Model evaluation 
The metrics that evaluate the performance of the classification model include Accuracy 
(ACC), Precision (PRE), Recall (REC), and F1-score (F1) (Raschka and Mirjalili, 2017; 
Ahmed et al., 2021; Mulyani et al., 2019). As shown in Figure 3.1 (Raschka and Mirjalili, 
2017), we can describe each metric through a confusion matrix schematizing binary 
classification using True Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN). Accuracy is obtained by dividing the sum of correct predictions 
(TP + TN) by the total number of data. Precision represents the ratio of TP to the total 
number of samples predicted to be positive (TP + FP). Recall indicates the ratio of TP to 
the total number of samples belonging to the actual positive class (TP + FN). F1-score is 
expressed as a harmonic mean of Precision and Recall (Mulyani et al., 2019). Precision, 
Recall, and F1-score are known as the more reliable metrics for an imbalanced dataset 
than Accuracy (Mulyani et al., 2019). We, however, used Accuracy as a performance 
evaluation metric in this study. The reasons are that we developed the models using a 
balanced dataset through SMOTE and we needed to see their accuracy for both Negatives 
and Positives of the predicted classes. The four metrics are formulated as follows 
(Raschka and Mirjalili, 2017; Ahmed et al., 2021; Mulyani et al., 2019). 

 

 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3.2) 

 𝑇𝑇𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3.3) 
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 𝑃𝑃𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3.4) 

 𝐹𝐹1 = 2 
𝑇𝑇𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝐴𝐴
𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴

 (3.5) 

 

 

Figure 3.1. Confusion matrix 

3.3.7 Summary of the modelling procedure 
We summarized the modelling procedure as follows in Figure 3.2, based on the above 
subsections 

 

Figure 3.2. Summary of the modelling procedure 
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i. One-way ANOVA was carried out using 30 features including logCyano of a 
standardized dataset with 378 instances for three groups (Group1, Group2, and 
Group3). For the purpose of selecting the features having a strong correlation with 
the target variable, F values of more than 50 and p-values of less than 0.05 (Peng 
et al., 2020; Gradilla-Hernandez et al., 2020) were applied. Here, the target 
variable was a class based on Cyano(t+1) for each group; Normal/Caution/ 
Warning/Outbreak for Group1 (which was actually divided into three classes 
because the number of Outbreak elements was zero), Normal/Occurrence for 
Group2, and None/Normal/Occurrence for Group3. 

ii. To address the multi-collinearity problem, a correlation analysis was performed 
among the features selected in the first step. As the final process for the feature 
selection, the paired features with low inter-correlation coefficients (0.4 or less 
(Patil et al., 2020; Zhang et al., 2021)) were selected. Here, Pearson’s correlation 
analysis was performed with only 241 instances by excluding the zero values of 
Cyano(t) in 378 instances, as the zero values were able to distort the analysis result. 

iii. The dataset consisting of the input features selected in the second step and the 
target variable was split into a training set and a test set by 80% and 20%. 
Therefore, 302 and 76 out of 378 instances were used as the training set and the 
test set, respectively. After that, oversampling for the training set was performed 
(Choi et al., 2019) by applying SMOTE. As a result of the oversampling, the 
number of instances by class became the same. 

iv. Using the balanced datasets of three groups acquired in the third step, four 
classification-based machine learning algorithms including k-NN, DT, LR, and 
SVM, were applied. The models with optimal parameters for each machine 
learning method were constructed through four-fold cross-validation and grid 
search using the training set. 

v. The optimal combination of input features and machine learning algorithms for 
predicting the categorical target variable was presented by evaluating the 
performance (Accuracy) from the test set using the models developed in the fourth 
step. 

3.4 RESULTS 

3.4.1 Determination of the modelling cases 
We could determine the modelling cases based on the result of feature selection. Through 
one-way ANOVA, as shown in Table 3.7, nine features such as logCyano, WT, DO, TN, 
TDN, NO3-N, AT, LT, and HT had significant F and p values (F value > 50, p-value < 
0.05 (Peng et al., 2020; Gradilla-Hernandez et al., 2020)) for the categorical target 
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variable in all three groups. Figure 3.3 shows the box plots having the data distribution 
for each group for the selected nine features, which helps intuitively notice the differences 
between classes. As shown in Figure 3.3, the distinctions between classes in Group2 and 
Group3 are clear for the nine features, as in the results of Table 3.7. On the other hand, in 
Group1, the distinction between Normal and Caution is clear, but it is somewhat unclear 
between Caution and Warning. Nonetheless, we used Group1 to compare with the 
modelling results for the other two groups. This is because we applied the same 
classification as the Algae Alert System in Table 3.1 to Group1 and the F and p values 
for its three classes were significant as shown in Table 3.7. 

 

 

(a) Group1 

 

(b) Group2 

Figure 3.3. Cont. 
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(c) Group3 

Figure 3.3. Box plots to show the data distribution between classes for the nine features 
selected by ANOVA 

 

Table 3.7. F and p values of 30 features 

(The nine features with the bold font have significant F and p values.) 

Feature 
Group1 Group2 Group3 

F value p-value F value p-value F value p-value 

logCyano 132.367 <0.001 256.089 <0.001 270.917 <0.001 

WT 71.613 <0.001 143.214 <0.001 142.227 <0.001 

pH 0.545 0.580 0.313 0.576 6.180 0.002 

DO 74.182 <0.001 145.698 <0.001 131.458 <0.001 

Chl-a 7.137 0.001 14.118 <0.001 7.637 0.001 

BOD 1.463 0.233 2.917 0.088 5.022 0.007 

COD 2.599 0.076 5.186 0.023 18.898 <0.001 

SS 5.244 0.006 3.924 0.048 4.928 0.008 

TN 63.964 <0.001 123.352 <0.001 108.115 <0.001 

TP 4.222 0.015 0.951 0.330 6.432 0.002 

N/P 19.436 <0.001 38.336 <0.001 40.293 <0.001 

TOC 1.499 0.225 1.456 0.228 18.843 <0.001 



3. A Machine Learning Approach to the Prediction of Cyanobacterial Blooms 

 

32 

 

Table 3.7. Cont. 

Feature 
Group1 Group2 Group3 

F value p-value F value p-value F value p-value 

EC 6.176 0.002 0.170 0.680 8.701 <0.001 

TotalColiform 4.703 0.010 6.984 0.009 7.137 0.001 

TDN 66.039 <0.001 128.394 <0.001 103.655 <0.001 

NH3-N 5.961 0.003 11.281 0.001 6.176 0.002 

NO3-N 85.820 <0.001 163.285 <0.001 126.452 <0.001 

TDP 3.874 0.022 2.428 0.120 12.020 <0.001 

PO4-P 2.922 0.055 0.594 0.441 8.241 <0.001 

FecalColiform 1.754 0.175 3.176 0.076 5.414 0.005 

AT 63.407 <0.001 126.277 <0.001 98.519 <0.001 

LT 66.861 <0.001 133.669 <0.001 103.961 <0.001 

HT 53.737 <0.001 106.578 <0.001 83.166 <0.001 

MaxSolarRad 5.712 0.004 9.368 0.002 6.774 0.001 

DaySolarRad 4.996 0.007 7.154 0.008 5.754 0.003 

WeirLevel 3.047 0.049 4.768 0.030 9.661 <0.001 

StorageVolume 2.737 0.066 4.370 0.037 9.695 <0.001 

Rainfall 2.256 0.106 0.370 0.543 0.327 0.721 

Inflow 3.843 0.022 0.244 0.622 6.501 0.002 

Outflow 3.649 0.027 0.148 0.701 6.543 0.002 

 

Although those nine features were highly correlated with the target variable, two features 
among them had a multi-collinearity problem. This could be solved by eventually 
selecting the features with low inter-correlation coefficients (0.4 or less (Patil et al., 2020; 
Zhang et al., 2021)). As shown in Figure 3.4, we could recognize that WT and DO should 
be eliminated because they were highly correlated with the other features. Accordingly, 
we were able to make eight modelling cases, which consisted of two features as shown 
in Table 3.8. 
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Figure 3.4. Pearson correlation coefficients (absolute values) among nine features 
selected by ANOVA 

(The red circles indicate the correlation coefficients of 0.4 or less.) 

Table 3.8. Modelling cases with a combination of input features 

Modelling Case Input Features 
Case1 logCyano, HT 
Case2 TN, AT 
Case3 TN, LT 
Case4 TN, HT 
Case5 TDN, HT 
Case6 NO3-N, AT 
Case7 NO3-N, LT 
Case8 NO3-N, HT 
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3.4.2 Accuracy of the models 
For eight modelling cases, the machine learning models were developed using four 
classification algorithms: k-NN, DT, LR, and SVM. Prior to applying those algorithms, 
oversampling for the training sets was implemented for the eight cases by a group as 
shown in Figure 3.5. As a result, a total of 96 models were built with the balanced datasets 
of the three groups for the eight cases using four machine learning techniques. Table 
3.9 shows the parameters optimized by four-fold cross-validation and grid search of each 
model using the training sets. One thing we need to note in this table is that the parameter 
max_depth of the Case1 model using Group2 and the DT algorithm (DT-Group2-Case1) 
is one. Since this means that only one of the two input features was used to build the 
model, the need for caution is considered when using this model. 

 

      

(a) Group1                                                        (b) Group2 

 

(c) Group3 

Figure 3.5. Bar graphs to show oversampling for train sets of three groups 
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Table 3.9. Optimized parameters of four classification algorithms 

Algorithm 
(Parameter) 

Group Case1 Case2 Case3 Case4 

k-NN 
(n_neighbors) 

Group1 3 11 12 6 

Group2 3 16 13 13 

Group3 19 16 19 17 

DT 
(max_depth) 

Group1 15 11 10 9 

Group2 1 3 4 14 

Group3 3 4 3 3 

LR 
(C) 

Group1 0.01 1 0.001 0.1 

Group2 1 1 100 1 

Group3 1 10 100 100 

SVM 
(C/kernel) 

Group1 1000/rbf 1000/rbf 1000/rbf 1000/rbf 

Group2 10/linear 1/rbf 1/rbf 0.1/rbf 

Group3 10/rbf 100/rbf 10/linear 1/linear 

Algorithm 
(Parameter) 

Group Case5 Case6 Case7 Case8 

k-NN 
(n_neighbors) 

Group1 6 7 3 5 

Group2 9 5 5 3 

Group3 16 10 14 14 

DT 
(max_depth) 

Group1 15 9 12 14 

Group2 14 10 8 6 

Group3 3 4 3 2 

LR 
(C) 

Group1 1 0.01 0.01 0.001 

Group2 0.1 10 1 1 

Group3 0.1 10 1 1 

SVM 
(C/kernel) 

Group1 1000/rbf 1000/rbf 1000/rbf 1000/rbf 

Group2 1/rbf 1/rbf 100/rbf 100/rbf 

Group3 0.1/rbf 0.1/rbf 1/linear 0.1/rbf 
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We could verify which model was more accurate using the test sets as shown in Figure 
3.6. The combination of SVM-Group2-Case1 using logCyano and HT as input features 
provided us with the most accurate model for predicting the cyanobacterial blooms at 
Chilgok Weir, which ensured the highest accuracy of 92% among the 96 models. On the 
other hand, the model accuracy of DT-Group3-Case3 and DT-Group3-Case5 was the 
lowest at 54%. 

 

   

(a) k-NN                                                                (b) DT 

   

(c) LR                                                                 (d) SVM 

Figure 3.6. Bar graphs to show models’ accuracy for test sets of three groups 

Of the 96 models, 25 models with an accuracy of 80% or more came from Group2, but 
all 10 models with less than 60% were from Group3. The accuracy of all the models using 
Group2 with two classes was higher than the other groups with three classes. Moreover, 
when evaluating performance based on the used features, we could confirm the highest 
accuracy of the models using logCyano as a feature. Among the models without using 
logCyano, the ones with NO3-N ensured the highest accuracy except the DT algorithm. 
To be specific, we obtained the highest accuracy of 88% in the models of k-NN-Group2-
Case6 except for four models using logCyano. Figure 3.7 shows the confusion matrices 
for the two models, each with the highest accuracy when using logCyano (SVM-Group2-
Case1) and when not using it (kNN-Group2-Case6). We could see that both models 
provided results that were not biased overall towards non-occurrence or occurrence. 
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         (a) SVM-Group2-Case1                                  (b) k-NN-Group2-Case6 

Figure 3.7. Confusion matrices 

 

3.4.3 Summary of the modelling results 
The results of the modelling study can be summarized as follows: 

i. We had nine input features including logCyano, WT, DO, TN, TDN, NO3-N, AT, 
LT, and HT from 30 input features by applying one-way ANOVA. 

ii. Seven input features except for WT and DO were available finally for model 
construction due to the multi-collinearity problem. 

iii. By using only two input features, we could build a model with a prediction 
accuracy of more than 80%. 

iv. The models using Group2 with two classes surpassed the other models using 
Group1 and Group3 which were divided into three classes in terms of model 
performance. 

v. The optimal combination, developing the most accurate model was SVM-Group2-
Case1, whose accuracy was the highest at 92%. 

vi. All the models with the highest accuracy for each of the four machine learning 
algorithms (k-NN, DT, LR, and SVM) included logCyano as a feature. 

vii. Among the models that did not use logCyano as a feature, the ones in combination 
with air temperature (AT, LT, or HT) and NO3-N enabled high predictive 
accuracy of more than 80%. 

These results will enable the concerned decision-makers to understand how to build 
classification-based machine learning models for effectively and efficiently predicting the 
occurrences of cyanobacterial blooms (HABs). They also indicate that monitoring the 
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cyanobacterial cell density closely is very important for predicting HABs. For further 
prevention or minimization of HABs, actions could be considered controlling pollutants 
(e.g., NO3-N) or water temperature in a river (e.g., by selective releases from upstream 
reservoirs, which do exist in the case study area considered). It should be noted, however, 
that the primary goal of this analysis is the effective and efficient prediction of HABs, 
while actions for their prevention may be quite diverse and case-study specific. 

3.5 DISCUSSION AND CONCLUSIONS 

We developed and evaluated the classification-based machine learning models to predict 
the cyanobacterial blooms after a week for the Chilgok Weir in South Korea. In order to 
build accurate models, we went through important processes such as feature selection, 
oversampling for the imbalanced dataset, and application of classification algorithms. 

Through the feature selection, we could not retain features such as water temperature, 
total phosphorus, solar radiation, discharge, etc., which are theoretically known to affect 
the occurrence of cyanobacterial blooms (Park et al., 2017b; Rousso et al., 2020). 
However, it is noted that this was the result of the targeted data reduction, namely 
applying ANOVA and solving the multi-collinearity problem. At the same time, the more 
important thing is that we collected data on 30 features based on the theories of 
cyanobacterial blooms. It would be possible to develop a more accurate and efficient 
model when we would combine an understanding of the physical or biological processes 
for the target variable and a rational approach to data analysis simultaneously (Jiang et 
al., 2020; Moreido et al., 2021; Rousso et al., 2020). 

We were able to develop classification-based machine learning models to predict 
cyanobacterial blooms with more than 80% accuracy using only two features. That is to 
say, an effective and efficient model development methodology that could increase 
prediction accuracy with a few features was devised. In this methodology, it was essential 
to select features that were involved in the target variable statistically through feature 
selection methods such as one-way ANOVA. Furthermore, the problems of multi-
collinearity and an imbalanced dataset needed to be addressed. 

We confirmed that the accuracy of the models using two classes of Group2 was overall 
higher than the other groups with three classes. In other words, we needed to classify the 
cyanobacterial density into simple two classes rather than three classes to improve the 
model performance. Similar to the result of this study, most multi-class classification 
problems are more challenging than binary ones (Chou et al., 2021). Although we 
concluded that the models using Group2 outperformed the others, we have to consider 
how to improve the performance of the models using Group1 or Group3, which can fit 
the real Algae Alert System through further research. 
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The models using algorithms other than SVM, which accuracy was highest at 92%, also 
made very slight differences by achieving an accuracy of 91% for DT or 89% for k-NN 
and LR. On the other hand, except for the highest accuracy, the algorithms’ performances 
were different for different groups (Group1, Group2, and Group3) or the input features. 
Hence, we need to decide which machine learning algorithm should be employed by 
considering the application purpose of a model and the available datasets. This 
consideration is necessary because it would assist in determining how to encode the target 
variable (as binary, or as multi-class), and which input features should be used. 

In predicting the cyanobacterial blooms, we could recognize that the current 
cyanobacterial density (Cyano(t)) had high auto-correlation with ones after a week 
(Cyano(t+1)). Even if this auto-correlation was not considered, it could be seen that some 
models using NO3-N or TN as input features along with air temperature were also very 
accurate. From these results, we could assume that nitrogen compounds were directly or 
indirectly involved in cyanobacterial blooms (Park et al., 2021b; Zhao et al., 2017). 
Therefore, further research could identify if the control of nitrogen compounds flowing 
into rivers or reservoirs according to the air temperature is possible to make the 
cyanobacterial blooms produce or fade. 

A limitation of this study relates to the fact that we did not separate the four harmful 
cyanobacteria genera when applying the cyanobacterial cell density (Kim et al., 2020). 
Referring to the previous studies (Kim et al., 2020; Mellios et al., 2020; Park et al., 2021b; 
Shin et al., 2017), this was our decision for acquiring a sufficient number of instances for 
the dataset to carry out this research. Further study will be aimed at developing models 
involving the cyanobacteria species by reflecting a wider spectrum of their characteristics.  





 

 

4 
4 RIVER WATER QUALITY 
MODELLING FOR NITRATE 

NITROGEN CONTROL USING HEC-
RAS 

This chapter focuses on developing a river water quality model and simulating the 
dynamics of nitrate nitrogen (NO3-N) proven to be one of the main factors for the 
occurrence of CyanoHABs at Chilgok Weir of the Nakdong River, South Korea in 
Chapter 3. 

   

                                                 
This chapter is extracted from Kim, J., Jonoski, A., Solomatine, D. P., and Goethals, P. L. M.: Water quality 
modelling for nitrate nitrogen control using HEC-RAS: Case study of Nakdong River in South Korea, Water, 15, 247, 
doi:10.3390/w15020247, 2023. 
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ABSTRACT 

The World Health Organization (WHO) and the U.S. Environmental Protection Agency 
(EPA) provide guidelines on the maximum levels of nitrate nitrogen (NO3-N) contained 
in drinking water since excess nitrate ingestion may harm human health. Thus, monitoring 
and controlling the NO3-N concentration is of paramount importance, particularly in 
sources of drinking water such as the Nakdong River in South Korea. This study addresses 
NO3-N pollution in the Nakdong River in South Korea, where such pollution mostly 
comes from diffuse sources in the catchment due to the agricultural use of fertilizers. The 
objective of this study is to suggest guidelines for designing strategies to control NO3-N 
in this river using a process-based model developed with HEC-RAS. The model was built 
based on water quality parameters (water temperature, dissolved oxygen, ammonia 
nitrogen, etc.) related to NO3-N dynamics incorporating hydraulic and meteorological 
data. This model simulated NO3-N dynamics downstream under 55 scenarios while 
focusing on a section near locations of drinking water intakes. The scenarios were 
constructed based on variations in water quantity and quality upstream. The simulation 
results showed that the peak concentration of NO3-N downstream could be directly 
controlled by limiting the NO3-N concentration upstream. Additionally, control of the 
flow rate upstream could also lead to a reduction in the overall average concentration of 
NO3-N downstream, but this predominantly occurred when the NO3-N concentration was 
decreasing. In conclusion, the design and implementation of strategies for the control of 
NO3-N downstream should be carried out after performing a quantitative analysis of the 
impact of different control measures for different downstream conditions using a water 
quality model. 

4.1 INTRODUCTION 

Climate change has already negatively impacted water resources in terms of quantity and 
quality (UNESCO and UN-Water, 2020). This has prompted increasing interest in ways 
to effectively improve water quality, particularly in rivers and surface water bodies that 
provide water for the public water supply. A severe reduction in water quality can pose a 
risk to public health by increasing human exposure to contaminated water (WHO, 2022). 
Among the major sources of water pollution, nitrate nitrogen (NO3-N), one of the nitrogen 
fractions (Celikkol et al., 2021), may cause specific cancers and adversely affect human 
reproduction when people take it in excess (Ward et al., 2005; Danaraj et al., 2022; Ward 
et al., 2018). In this regard, the maximum contaminant level (MCL) of NO3-N has been 
set to 10 mg L−1 for drinking water by the U.S. Environmental Protection Agency (EPA). 
The same standard in drinking water has been applied in other countries such as South 
Korea (Lee et al., 2020) and Japan (Nakagawa et al., 2016). The European Nitrate 
Directive has required designating areas with surface water or groundwater whose nitrate 
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(NO3
−) concentration has been more than 50 mg L−1 as Nitrate Vulnerable Zones 

(Musacchio et al., 2020). The 50 mg L−1 of NO3
− or 11.3 mg L−1 (50 mg L−1 multiplied 

by 0.2258) of NO3-N is identical to the guideline provided by the World Health 
Organization (WHO) (Ward et al., 2018). However, many studies showed that health risks 
could still be present despite nitrate ingestion below this MCL (Ward et al., 2018). Thus, 
the water quality of reservoirs and rivers needs to be improved by controlling the 
concentration of this particular pollutant to make it as low as possible since reservoirs and 
rivers are principal sources of drinking water. 

Nitrogen fractions such as NO3-N may flow into reservoirs or rivers due to agricultural 
practices such as the use of nitrogen fertilizer (Ward et al., 2018). Therefore, there is a 
risk of nitrate contamination in a river catchment with a lot of agricultural activities, such 
as the Nakdong River in South Korea (Elzain et al., 2022). Moreover, these pollutants 
have become water quality parameters that contribute to the complexity of water pollution 
(Yang and Yu, 2018). NO3-N can be not only risky as a pollutant itself, but some studies 
indicated NO3-N as one of the main drivers of Harmful Algal Blooms (HABs) (Kim et 
al., 2022a; Park et al., 2021b; Zhao et al., 2017). HABs have caused harm to ecology in 
an aquatic environment (Paerl and Otten, 2013) and have threatened public health by 
producing toxic substances such as microcystin (Falconer and Humpage, 2005; Ho and 
Goethals, 2020). This is problematic particularly in South Korea, where HABs have 
frequently created environmental problems with the four major rivers since 2012, when 
16 weirs were constructed resulting in lentic water bodies in the rivers (Park et al., 2021a; 
Park et al., 2017b; Song and Lynch, 2018; Romo et al., 2013). The specific NO3-N 
concentration is hardly possible to be indicated in terms of preventing or minimizing 
HABs because the relationship between NO3-N and HABs depends on other factors such 
as the state of water flow, site-specificity, and weather. Nevertheless, if the NO3-N 
concentrations are controlled when flowing into a river or reservoir, a beneficial effect 
can be achieved for both the aquatic environment and public health. 

A water quality model can be an effective and essential tool from the perspective of Water 
Quality Management (WQM). A well-developed model can help decision-makers take 
proper precautions or emergency actions. Strategies designed with a water quality model 
would be more cost-effective than others, in particular, if they involve establishing new 
infrastructures or imposing government regulations (Aguilar et al., 2014) to control water 
pollution. However, success in WQM based on water quality modelling is dependent on 
the use of reliable data for the model setup and the high performance of the developed 
model. 

Model selection is made with consideration of various conditions including research 
purposes, data collection, and the required level of model performance (Engel et al., 2007). 
Models (including water quality models) can be generally classified as process-based and 
data-driven models (Ejigu, 2021; Rousso et al., 2020). The process-based model is based 
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on scientific theories or knowledge, while the data-driven model uses data analytics or 
statistical techniques. Users must select a model that meets optimum conditions after 
understanding its advantages and disadvantages. To achieve the desired results by 
developing a process-based model, the user should fully acknowledge the fate and 
transport of water quality parameters (Srivastava et al., 2006; Razavi et al., 2012). 

There are various modelling systems that have the capability to simulate NO3-N dynamics 
in catchments and rivers—for instance, CE-QUAL-W2, SWAT, WASP7, MIKE11 
(Costa et al., 2021; Alam and Dutta, 2021), and HEC-RAS (Gunawardena and Najim, 
2017; Abed et al., 2020; Brunner, 2016; Teran-Velasquez et al., 2022; Taralgatti et al., 
2020; Abed et al., 2021). Developing water quality models generally requires many kinds 
of input variables, which is challenging for model developers (Ghafoor et al., 2022). 
Nonetheless, HEC-RAS outweighs other one-dimensional river water quality models in 
terms of user interface and ease of model development, although it has not been widely 
used compared to the others. HEC-RAS allows users to simultaneously develop a 
hydraulic and a water quality model (Brunner, 2016). In addition, HEC-RAS ensures the 
reproduction of river flows as realistically as possible when there are inline structures 
such as a weir in a river. This is because it is well-equipped with various structures for 
geometric data and numerous boundary condition types (Brunner, 2016). Several studies 
on water quality have recently been conducted based on these advantages of HEC-RAS. 
A recent study showed tangible results for nitrogen dynamics linked to unsteady flow 
(Teran-Velasquez et al., 2022), while most studies on water quality models developed 
with HEC-RAS were limited to the analysis of steady flow (Gunawardena and Najim, 
2017; Abed et al., 2020; Taralgatti et al., 2020; Abed et al., 2021). 

We aim to set out the guidelines for designing strategies to control the NO3-N 
concentration using a process-based model developed with HEC-RAS for the Nakdong 
River. This river is an important water source for many cities located in the southeastern 
part of South Korea. Specifically, we first produced a model of NO3-N dynamics for the 
target area of the upper Nakdong River using HEC-RAS and data from 2019 to 2020. The 
water quality model was developed based on the hydraulic model of unsteady flow. The 
downstream boundary of the model was in the vicinity of the Chilgok Weir, which is 135 
km away from the upstream boundary. Second, we simulated the change in NO3-N 
concentration at the location of Chilgok Weir by using the model developed in the first 
step. For this purpose, 55 scenarios were constructed with variation in water quantity and 
quality at the upstream boundary. Finally, we generated guidelines for the design of 
strategies to control the concentration of NO3-N at Chilgok Weir. These guidelines were 
based on the scenarios of the second step. 

To the best of our knowledge, this is the first study for the Nakdong River designed to 
use HEC-RAS for the development of a river water quality model linked with unsteady 
flow. The novelty of this study is based on an in-depth analysis of the change in NO3-N 
concentration in the lower reach of a river under controlled conditions of the upstream 
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boundary such as water quantity and quality. The methodology presented in this study 
may also be applied for controlling HABs when linked to research that suggests NO3-N 
is the main driver of HABs. 

4.2 MATERIALS AND METHODS 

The upper reach of the Nakdong River was selected as a study area (see Figure 2.1). The 
study area covers 135 km in length from the confluence of the Nakdong River and the 
Banbyeoncheon River to the Chilgok Weir. From 2019 to 2020, the flow rate in this area 
varied from 5 to 4680 m3 s−1 and the NO3-N concentration varied from 0.240 to 3.099 mg 
L−1. 

4.2.1 Model description 
We used HEC-RAS version 5.0.7 for this study. HEC-RAS has several capabilities such 
as analysis of steady flow and unsteady flow, simulation of sediment transport, and 
simulation of fate and transport of water quality parameters (Brunner, 2016). Of these 
functions, we focused on the module for the river water quality analysis, which was first 
added to version 4.0 in 2008. The analysis of steady or unsteady flow should precede a 
water quality analysis (Brunner, 2016). As we had to consider the operations of the four 
weirs, we performed the analysis of unsteady flow (Choi and Han, 2014) ahead of 
simulating the dynamics of NO3-N, which is an output variable for this study. 

HEC-RAS allows users to build a river water quality model combined with an unsteady 
flow analysis with inline structures including a weir. This modelling system analyzes 
unsteady flow by solving the Saint-Venant equation with the implicit finite difference 
method. The module for analysis of unsteady flow enables the application of several 
boundary conditions such as stage hydrograph, flow hydrograph, lateral inflow 
hydrograph, elevation-controlled gates, and so forth (Brunner, 2016). These various 
boundary conditions help to replicate river flows as realistically as possible. HEC-RAS 
also solves the one-dimensional Advection–Dispersion equation for water quality 
analysis using an explicit numerical method called QUICKEST–ULTIMATE (Quadratic 
Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms–
Universal Limiter for Transient Interpolation Modelling of the Advective Transport 
Equations) (Brunner, 2016; Leonard, 1979; Leonard, 1991). The module for water quality 
analysis simulates the fate and transport of water temperature, dissolved oxygen (DO), 
carbonaceous biochemical oxygen demand (CBOD), and nutrient components such as 
NO3-N (Brunner, 2016). 
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4.2.2 Data for HEC-RAS model 
HEC-RAS requires geometric data, parameters, hydraulic data, water quality data, and 
meteorological data for the development of a water quality model (Brunner, 2016). The 
geometric data include the geometry of cross sections and the inline structures such as a 
weir (Brunner, 2016). Parameters for a flow model incorporate Manning’s roughness 
coefficients of each cross section and the status of inline structures (e.g., gate conditions 
at weirs) (Brunner, 2016). For water quality, parameters include dispersion coefficients 
and different coefficients controlling the rate of change of different compounds with 
chemical reactions (Brunner, 2016). Furthermore, HEC-RAS needs hydraulic data such 
as flow rate, water quality data such as water temperature and concentrations of pollutants, 
and meteorological data such as atmospheric pressure (Brunner, 2016). When different 
nutrients are modelled (such as NO3-N), their conversion rates (named ‘pathways’ in 
HEC-RAS) may be temperature dependent, and water temperature variations are 
modelled using the meteorological data (Brunner, 2016). 

The geometric data were obtained from the Basic River Plan for the Nakdong River, 
including Manning’s roughness coefficients for cross sections (numbered in HEC-RAS 
as 411–689, see Figure 4.1) and the inline structures. The River Act of South Korea says 
that institutions for river management should make a ten-year plan for river management 
called the Basic River Plan and confirm its validity every five years if necessary. The 
Basic River Plan for the Nakdong River was made in 2013. 

The observational data were retrieved from 16 monitoring stations for hydraulic data, 19 
monitoring stations for water quality, and two weather stations (Sangju and Gumi). The 
location of these stations is shown in Figure 4.1. The daily data are available for flow rate, 
water level, and climate, while water quality data is monitored almost weekly (48 or 36 
times a year). We collected the data for model development in terms of the fate and 
transport of NO3-N. The hydraulic data included flow rate and water level. The water 
quality data contained water temperature, chlorophyll a (Chl-a), dissolved oxygen 
demand (DO), total dissolved nitrogen (TDN), ammonia nitrogen (NH3-N), and NO3-N. 
Five types of meteorological data were collected, including atmospheric pressure, air 
temperature, relative humidity, solar radiation, and wind speed, as shown in Table 
4.1. Table 4.2 shows the mean, minimum, and maximum values of the observational data 
of flow rate and NO3-N in the cross sections for model calibration (2019) and validation 
(2020). 
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(a) Stations for hydraulic data                  (b) Stations for water quality data 

Figure 4.1. Location of the monitoring stations including two weather stations 

Table 4.1. List of the data collected for model development 

Category (Source) Data Unit 

Hydraulic data 

(Water Resources Management 
Information System) 

Flow rate m3 s–1 

Water level mamsl 

Water quality data 

(Water Environment Information 
System) 

Water temperature °C 
Chlorophyll a (Chl-a) mg m–3 

Dissolved oxygen (DO) mg L–1 
Total dissolved nitrogen (TDN) mg L–1 

Ammonia nitrogen (NH3-N) mg L–1 
Nitrate nitrogen (NO3-N)  mg L–1 

Meteorological data 

(Open MET Data Portal) 

Atmospheric pressure hPa 
Air temperature °C 

Relative humidity % 
Solar radiation MJ m–2 

Wind speed m s–1 
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Table 4.2. Mean, minimum, and maximum values of the observational data (flow rate 
and NO3-N) in the cross sections for model calibration (2019) and validation (2020) 

Data  
(Unit) 

Cross Section  
Number 

Calibration (2019) 
Mean Minimum Maximum 

Flow rate 
(m3 s–1) 

620 48.85 5.06 976.45 
559 76.78 17.30 1675.61 

505 98.87 4.27 3031.83 
437 116.09 24.06 4677.58 

NO3-N 
(mg L–1) 

658 1.313 0.679 3.038 
620 1.398 0.240 3.058 

559 1.750 0.807 2.872 
517 1.688 0.651 2.935 

503 1.760 0.798 2.803 
459 1.693 0.722 2.871 
427 1.886 0.624 3.099 

416 1.841 0.732 3.027 

Data (Unit) Cross Section Number 
Validation (2020) 

Mean Minimum Maximum 

Flow rate 
(m3 s–1) 

620 94.41 10.38 1909.73 
559 173.68 18.84 2499.44 

505 212.05 23.78 3632.07 
437 270.62 21.50 4495.12 

NO3-N 
(mg L–1) 

658 1.445 1.055 2.453 
620 1.547 1.095 2.512 

559 1.844 0.900 2.924 
517 1.840 0.993 2.858 

503 1.884 0.869 2.890 
459 1.917 1.179 2.957 
427 2.011 1.055 3.095 

416 2.009 1.066 2.986 
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4.2.3 Data preparation 
We preprocessed raw data for water quality to make them suitable for model development. 
The reason we needed this process is that the observational data and their frequencies do 
not exactly correspond to those required in the modelling system. HEC-RAS requires 
water temperature, algae, DO, carbonaceous biochemical oxygen demand (CBOD), 
dissolved organic nitrogen (DON), ammonium nitrogen (NH4-N), nitrite nitrogen (NO2-
N), and NO3-N (Brunner, 2016) as water quality parameters related to NO3-N dynamics, 
as shown in Table 4.3. To address the problem of such discrepancies between the data, 
we interpolated the weekly data to convert them into daily data and estimated the data 
which are not measured—for example, algae, CBOD, and a few nitrogen components. 

Table 4.3. Components of water quality required in HEC-RAS 

Data Unit 

Water temperature °C 

Algae mg L–1 

Dissolved oxygen (DO) mg L–1 

Carbonaceous biochemical oxygen demand (CBOD) mg L–1 

Dissolved organic nitrogen (DON) mg L–1 

Ammonium nitrogen (NH4-N) mg L–1 

Nitrite nitrogen (NO2-N) mg L–1 

Nitrate nitrogen (NO3-N) mg L–1 

The following are four processes we went through for data preparation. First, the weekly 
data for water quality were interpolated so that they were transformed into daily data, 
which is the same interval as the water level and flow data. We interpolated the water 
quality data by applying a step function to avoid distortion of the data variation (Cullinan 
et al., 2007). In other words, the same values as the previous observational data were 
placed at daily intervals until the next data were available (James, 2016; Mcintyre and 
Wheater, 2004). 

Second, we estimated the algal biomass required as input data by using the observational 
data of Chl-a, which is often used as a proxy index for HABs (Kim et al., 2017; Yi et al., 
2018; Zhang and Johnson, 2016). The concentration of Chl-a can be converted into the 
algal biomass with the stoichiometric ratio according to Equation (4.1) (Zhang and 
Johnson, 2016; Teran-Velasquez et al., 2022). 
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 100.0 g Algae ∶ 40.0 g C ∶ 7.2 g N ∶ 1.0 g P: (0.4 − 1.0) g Chl−𝑎𝑎 (4.1) 

where C is carbon, N is nitrogen, and P is phosphorus. 

Third, a few nitrogen fractions such as NO2-N, NH4-N, and DON had to be estimated 
because they were not monitored (Teran-Velasquez et al., 2022). NO2-N was assumed to 
be zero since it hardly exists in rivers (Meybeck, 1982; Park et al., 2014; Bhuyan et al., 
2020; Mihale, 2015). The concentrations of NH3-N were determined by laboratory 
experiments using an ion analyzer (Park et al., 2021a) after converting ammonium ions 
(NH4

+) into ammonia (NH3) by increasing the pH of samples with sodium hydroxide 
(NaOH). Because NH4

+ and NH3 are pH-dependent, NH3-N exists in the form of NH4-N 
in most aquatic environments (Rus et al., 2012; Hem, 1985). We thus replaced the data 
of NH4-N required in HEC-RAS with the available data of NH3-N. The DON 
concentration was calculated by subtracting the sum of NH3-N and NO3-N from TDN 
(Celikkol et al., 2021; Park et al., 2014). 

Lastly, we did not consider CBOD as an input variable because the module for water 
quality analysis in HEC-RAS calculates only losses due to oxidation and settling for 
CBOD (Brunner, 2016). We performed the sensitivity analysis on the assumption that the 
changes in the CBOD concentration at all the boundary conditions would not cause 
fluctuation in the downstream NO3-N concentration. The result from this sensitivity 
analysis demonstrated that the assumption was valid, as shown in Figure 4.2. 

 

 

Figure 4.2. Graph showing the changes in the downstream NO3-N concentration caused 
by changes in the CBOD concentration at all the boundary conditions 
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4.2.4 Experimental setup 
To build a water quality model using HEC-RAS, we needed not only the geometric data 
but also the boundary conditions for modules for both unsteady flow and water quality 
(Brunner, 2016). We collected the geometric data by extracting the upper reach including 
cross sections (number 411–689) corresponding to approximately 135 km from the Basic 
River Plan for the Nakdong River. The daily data of flow rate were entered as boundary 
conditions for the cross section most upstream in addition to 10 cross sections with lateral 
inflows. The data of stage hydrograph was provided as a boundary condition most 
downstream. Regarding the four weirs included in the geometric data, we entered the data 
of the water levels for management as the boundary conditions of the type of elevation-
controlled gate. The boundary condition of the elevation-controlled gate enables the 
control of the gates of the weirs in time (Brunner, 2016). This control of the gates was 
automatically taken into account in HEC-RAS based on each water level for the 
management (see Table 2.2) of the four weirs. As the boundary conditions for the water 
quality module, we entered the daily data interpolated from the weekly data in the cross 
sections where the boundary conditions for flow analysis were already given (Brunner, 
2016). 

We calibrated the model parameters with data from 2019 and validated the model with 
data from 2020. Since the peak flow in 2019 was larger than in 2020 at the monitoring 
station most downstream for calibration and validation, the data from 2019 were used for 
calibration. The warm-up period is also necessary for model development until dynamic 
stability is achieved for the initial conditions (Daggupati et al., 2015). Therefore, we 
entered the data for the warm-up period from August to December of the previous years. 

The data for unsteady flow were derived from four monitoring stations for calibration and 
validation. For water quality analysis, we used the data from eight monitoring stations, 
which is twice as many stations as used for the flow analysis. The reason we used data 
from more stations for water quality analysis is that figuring out the fate and transport of 
NO3-N is more important and complicated than flow analysis in this study. These stations 
were designated in consideration of the locations of the tributaries and the weirs, as shown 
in Figure 4.1, which illustrates the location of the monitoring stations. The main 
parameters related to NO3-N dynamics are the conversion rates, shown in Table 
4.4 (Brunner, 2016), and model calibration was performed based on the default values 
provided in HEC-RAS. Finally, for the dispersion coefficient, we used the HEC-RAS 
option of automatic computation based on flow data. 
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Table 4.4. Main parameters related to NO3-N dynamics provided in HEC-RAS 

Parameter Description Default Value 

Beta 3 Rate constant: DON→NH4-N 0.020 

Beta 1 Rate constant: NH4-N→NO2-N 0.100 

Beta 2 Rate constant: NO2-N→NO3-N 0.200 

Sigma 4 Settling rate (DON) 0.001 

KNR Nitrification inhibition coefficient 0.600 

 

We constructed 55 scenarios to understand how the concentration of NO3-N downstream 
is changed by the variation in water quantity and quality at the upstream boundary. Three 
components such as flow rate, water temperature, and NO3-N were related to these 
scenarios. Table 4.5 shows how we constructed the scenarios using these components. 
For example, the seventh scenario (Scenario 7) is that the flow rate of the upstream 
boundary increases by 50 m3 s−1 for 10 days from 1 January. 

Table 4.5. Scenarios constructed for an understanding of NO3-N dynamics downstream 

Components * 
Increment 

/Decrement 
Period Start Date Scenario 

Water 
quantity 

Flow rate 
(m3 s−1) 

−30 

365 days 1 January 

Scenario 1 

−20 Scenario 2 

−10 Scenario 3 

+50 Scenario 4 

+100 Scenario 5 

+150 Scenario 6 

+50 

+100 

+150 

10 days 

20 days 

31 days 

1 January 

1 May 

1 July 

1 October 

Scenario 

7–42 
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Table 4.5. Cont. 

Components * 
Increment 

/Decrement 
Period Start Date Scenario 

Water 
quality 

Water 
temperature 

(°C) 

–20 

365 days 1 January 

Scenario 43 

−5 Scenario 44 

+10 Scenario 45 

Constant 0 Scenario 46 

Constant 15 Scenario 47 

Constant 30 Scenario 48 

NO3-N 
(mg L−1) 

−1.0 

365 days 1 January 

Scenario 49 

−0.5 Scenario 50 

+0.5 Scenario 51 

+1.0 Scenario 52 

Constant 0.0 Scenario 53 

Constant 1.5 Scenario 54 

Constant 3.0 Scenario 55 

Note(s): * The components belong to the boundary conditions at the upstream boundary. 

 

These scenarios were constructed under the assumption that the water quantity and quality 
at the upstream boundary can be controlled. In practice, controls on the water quantity 
and quality can be imposed by the joint operation of the Andong and Imha reservoirs and 
the use of SWF installed in the Imha Dam (Lee et al., 2007; Jeong et al., 2020; Park et al., 
2017a). The maximum increment of flow rate, 150 m3 s−1, was given based on the 
maximum amount of water that can be released downstream via the generators of the 
Andong Dam and the Imha Dam. The simulations under the scenarios were carried out 
with data from 2018 and the developed model. 
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4.3 RESULTS 

4.3.1 Calibration and validation for unsteady flow 
We used Manning’s roughness coefficients, listed in Table 4.6, for calibration of the 
hydraulic model. The Manning’s roughness coefficient is the main parameter for 
calibration. We obtained the data of the coefficients from the Basic River Plan for the 
Nakdong River. 

Table 4.6. Manning’s roughness coefficients for the hydraulic unsteady model 

Cross Section Number Manning Roughness Coefficient (Unit: m−1/3 s) 

411–467 0.024 

468–672 0.026 
673–689 0.028 

Moriasi et al. (2015) suggested the criteria of performance evaluation for watershed-scale 
models using Coefficient of Determination (R2), Nash Sutcliffe Efficiency (NSE), and 
Percent Bias (PBIAS). According to the study, model performance for flow simulations 
is “Good” if 0.75 < R2 ≤ 0.85, 0.70 < NSE ≤ 0.80, and ±5% ≤ PBIAS < ±10%, while it is 
“Satisfactory” if 0.60 < R2 ≤ 0.75, 0.50 < NSE ≤ 0.70, and ±10% ≤ PBIAS < ±15%. These 
criteria are mainly applied to watershed-scale models, but they can be used for 
measurement of the performance of our river model built using HEC-RAS. However, we 
also simultaneously employed a graphical method (Moriasi et al., 2015) to assess the 
quality of the models. Equations (4.2)–(4.4) show R2, NSE, and PBIAS, respectively 
(Moriasi et al., 2015). 

 𝑃𝑃2 =
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× 100 (4.4) 

where O is observational data and S is simulation result. 
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Unsteady flow was simulated using observational hydraulic data such as flow rate and 
water level as boundary conditions of HEC-RAS. As a result of both calibration and 
validation for unsteady flow, we carefully judged that the performance of our model was 
high overall in consideration of both the quantitative evaluation and the graphical method. 
The quantitatively measured model performance was more than “Satisfactory” except for 
one cross section (437), as shown in Table 4.7. However, the peak flows from the model 
simulation were not consistent with the observational data according to Figure 
4.3 and Figure 4.4, so this produced an unsatisfactory outcome of PBIAS in cross section 
437. Nonetheless, since the upward or downward trends in the flow rate simulated were 
consistent with those of the observational data, model performance was judged as high 
for this unsteady flow model. 

Table 4.7. Hydraulic model performance for unsteady flow 

Calibration 
/Validation 

Cross Section 
Number 

R2 NSE 

Calibration 

620 0.956 0.612 
559 0.975 0.945 
505 0.967 0.962 
437 0.929 0.866 

Calibration 
/Validation 

Cross Section 
Number 

PBIAS (%) Performance 

Calibration 

620 −10.3  Satisfactory 
559 2.0  Very Good 
505 10.5  Satisfactory 
437 11.7  Satisfactory 

Calibration 
/Validation 

Cross Section 
Number R2 NSE 

Validation 

620 0.875 0.870 
559 0.948 0.937 
505 0.952 0.918 
437 0.963 0.917 

Calibration 
/Validation 

Cross Section 
Number PBIAS (%) Performance 

Validation 

620 −9.4  Good 
559 6.5  Good 
505 9.8  Good 
437 16.7  Not Satisfactory 
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(a) Cross section 620                                 (b) Cross section 559 

      

(c) Cross section 505                                 (d) Cross section 437 

Figure 4.3. Hydrographs showing the difference between simulation and observation 
for calibration 

 

      

(a) Cross section 620                                 (b) Cross section 559 

Figure 4.4 cont. 
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(c) Cross section 505                                 (d) Cross section 437 

Figure 4.4. Hydrographs showing the difference between simulation and observation 
for validation 

4.3.2 Calibration and validation for NO3-N dynamics 
The water quality model for NO3-N dynamics was developed using the hydraulic model 
built for unsteady flow. We simulated NO3-N dynamics using the water quality data and 
the meteorological data as the boundary conditions of HEC-RAS. For calibration and 
validation, we used the main parameters of the model related to NO3-N dynamics 
(see Table 4.4). One model parameter was significantly adjusted during calibration, 
namely Beta 3, for which a value of 0.001 was applied, while the default values were used 
for the other model parameters. We simulated the water quality parameters including 
NO3-N by applying these model parameters. Table 4.8 shows the mean values of both the 
observational data and the simulation results for the water quality parameters between 
2019 (calibration) and 2020 (validation). 

Table 4.8. Mean values of both the observational data and the simulation results for the 
water quality parameters between 2019 (calibration) and 2020 (validation) 

Water Quality Parameter 
(Unit) 

Cross Section Number 
658 620 559 517 

Water temperature Observation 15.0 14.5 16.4 16.7 
(°C) Simulation 13.8 12.8 12.5 12.6 

Water Quality Parameter 
(Unit) 

Cross Section Number 
503 459 427 416 

Water temperature Observation 15.7 16.2 17.4 15.7 
(°C) Simulation 12.0 12.8 12.4 12.1 
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Table 4.8. Cont. 

Water Quality Parameter 
(Unit) 

Cross Section Number 
658 620 559 517 

DO Observation 10.6 10.5 10.6 11.0 
(mg L−1) Simulation 10.6 10.6 10.8 10.8 
Water Quality Parameter 

(Unit) 
Cross Section Number 

503 459 427 416 
DO Observation 10.9 10.4 10.8 10.3 

(mg L−1) Simulation 11.0 10.8 10.9 11.1 
Water Quality Parameter 

(Unit) 
Cross Section Number 

658 620 559 517 
DON Observation 0.483 0.424 0.418 0.428 

(mg L−1) Simulation 0.410 0.411 0.397 0.410 
Water Quality Parameter 

(Unit) 
Cross Section Number 

503 459 427 416 
DON Observation 0.359 0.375 0.425 0.379 

(mg L−1) Simulation 0.402 0.420 0.418 0.416 
Water Quality Parameter 

(Unit) 
Cross Section Number 

658 620 559 517 
NH4-N Observation 0.062 0.048 0.055 0.045 

(mg L−1) Simulation 0.045 0.043 0.044 0.037 
Water Quality Parameter 

(Unit) 
Cross Section Number 

503 459 427 416 
NH4-N Observation 0.053 0.050 0.077 0.091 

(mg L−1) Simulation 0.033 0.041 0.033 0.032 
Water Quality Parameter 

(Unit) 
Cross Section Number 

658 620 559 517 
NO3-N Observation 1.379 1.473 1.798 1.765 

(mg L−1) Simulation 1.310 1.324 1.664 1.709 
Water Quality Parameter 

(Unit) 
Cross Section Number 

503 459 427 416 
NO3-N Observation 1.822 1.810 1.949 1.925 

(mg L−1) Simulation 1.772 1.847 1.899 1.917 
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We assessed the model performance for NO3-N dynamics by adopting both the objective 
criteria established by Moriasi et al. (2015) and the graphical method. According to 
Moriasi et al., model performance for nitrogen (N) is “Good” if 0.60 < R2 ≤ 0.70, 0.50 < 
NSE ≤ 0.65, and ±15% ≤ PBIAS < ±20%, while it is “Satisfactory” if 0.30 < R2 ≤ 0.60, 
0.35 < NSE ≤ 0.50, and ±20% ≤ PBIAS < ±30% at the watershed scale. The gap between 
the watershed-scale model and our river model was closed by simultaneously employing 
the graphical method in the same way as when the model performance for flow simulation 
was assessed. 

We judged that we built a robust model for NO3-N dynamics when carefully evaluating 
model performance at eight monitoring stations. Model performance for NO3-N dynamics 
was more than “Satisfactory” except for one cross section (620), as shown in Table 
4.9. Figure 4.5 and Figure 4.6 show that NO3-N dynamics simulated by the HEC-RAS 
model had a remarkably similar pattern to the observational data in eight cross sections. 

 

Table 4.9. Model performance for NO3-N 

Calibration 
/Validation 

Cross Section 
Number R2 NSE 

Calibration 

658 0.789 0.750 
620 0.438 0.301 
559 0.766 0.667 
517 0.849 0.801 
503 0.872 0.828 
459 0.895 0.803 
427 0.816 0.732 
416 0.852 0.777 

Calibration 
/Validation 

Cross Section 
Number 

PBIAS (%) Performance 

Calibration 

658 5.7 Very Good 
620 10.3 Not Satisfactory 
559 9.5 Very Good 
517 3.5 Very Good 
503 3.7 Very Good 
459 –5.0 Very Good 
427 0.5 Very Good 
416 –1.7 Very Good 
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Table 4.9. Cont. 

Calibration 
/Validation 

Cross Section 
Number 

R2 NSE 

Validation 

658 0.621 0.478 
620 0.366 –0.155 
559 0.494 0.442 
517 0.652 0.640 
503 0.611 0.605 
459 0.750 0.749 
427 0.606 0.575 
416 0.791 0.764 

Calibration 
/Validation 

Cross Section 
Number 

PBIAS (%) Performance 

Validation 

658 4.4 Satisfactory 
620 10.0 Not Satisfactory 
559 5.7 Satisfactory 
517 2.8 Good 
503 1.8 Good 
459 0.4 Very Good 
427 4.5 Good 
416 2.4 Very Good 

 

 

      

(a) Cross section 658                                 (b) Cross section 620 

Figure 4.5. Cont. 
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(c) Cross section 559                                 (d) Cross section 517 

      

(e) Cross section 503                                 (f) Cross section 459 

      

(g) Cross section 427                                 (h) Cross section 416 

Figure 4.5. Graphs showing the difference between simulation and observation of the 
NO3-N concentration for calibration 
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(a) Cross section 658                                 (b) Cross section 620 

      

(c) Cross section 559                                 (d) Cross section 517 

      

(e) Cross section 503                                 (f) Cross section 459 

Figure 4.6. Cont. 
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(g) Cross section 427                                 (h) Cross section 416 

Figure 4.6. Graphs showing the difference between simulation and observation of the 
NO3-N concentration for validation 

The model delivered high performance, particularly in cross section 416, which is closest 
to the Chilgok Weir. The station in this cross section is located most downstream among 
the eight monitoring stations for calibration and validation. Cross section 416 is critically 
important in this study because the scenarios, provided in Table 4.5, were constructed for 
the simulation of NO3-N dynamics in cross section 416. 

4.3.3 NO3-N dynamics according to variation in water quantity 
Simulations under Scenarios 1–6 indicated changes in the concentration of NO3-N in 
cross section 416 caused by variations in the flow rate most upstream for the whole period 
(365 days), as shown in Figure 4.7. The black graph in Figure 4.7 shows the NO3-N 
concentration simulated using the observational data from 2018 as boundary conditions. 
We compared the other graphs, which are simulation results achieved by variation in flow 
rate, to the black graph. 

The results showed that increased flow rates at the upstream boundary led to a decrease 
in the NO3-N concentrations in cross section 416. However, different aspects were 
explored regarding the change in the NO3-N concentration only around July and August, 
as indicated by the blue ellipses in Figure 4.7. In other words, the peak concentration of 
NO3-N increased in the blue ellipses, although the flow rate increased at the upstream 
boundary. This reversal was brought about when the downstream NO3-N concentration 
sharply increased in the simulation result using observational data at the boundaries 
(black graph). Here, the increase in flow rate seems to have accelerated the dispersion of 
the NO3-N concentration downstream. The acceleration in the dispersion temporarily 
caused a rapid increase in the NO3-N concentration. This hypothesis can be supported by 
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comparing Figure 4.7 with Figure 4.8, which shows the results simulated with the fixed 
dispersion coefficient of zero. In the blue ellipses of Figure 4.8, the increase in flow rate 
did not lead to an increase in NO3-N concentration, unlike in Figure 4.7, which shows the 
results simulated with the computed dispersion coefficients.  

 

 

(a) Changes in the NO3-N concentration by a decrease in flow rates (Scenarios 1–3) 

 

(b) Changes in the NO3-N concentration by an increase in flow rates (Scenarios 4–6) 

Figure 4.7. Changes in the NO3-N concentration in cross section 416 caused by 
variations in flow rate at the upstream boundary for 365 days (The black graph shows 

the NO3-N concentration simulated using the observational data from 2018 as boundary 
conditions. The dispersion coefficient was automatically computed in HEC-RAS.) 
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(a) Changes in the NO3-N concentration by a decrease in flow rates (Scenarios 1–3)  

 

(b) Changes in the NO3-N concentration by an increase in flow rates (Scenarios 4–6) 

Figure 4.8. Changes in the NO3-N concentration in cross section 416 caused by 
variations in flow rate at the upstream boundary for 365 days (The black graph shows 

the NO3-N concentration simulated using the observational data from 2018 as boundary 
conditions. The dispersion coefficient was set to zero.) 

The effect of decreasing the NO3-N concentration was more considerably exerted by an 
increase in the flow rate when the NO3-N concentration downstream was decreasing than 
when it was increasing, as indicated by the red ellipses in Figure 4.7. As shown in Table 
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4.10, the flow rate that increased by 150 m3 s−1 brought about a reduction effect of only 
5.1%. This effect was shown when the NO3-N concentration was increasing. On the other 
hand, the rate of reduction in the NO3-N concentration was much higher (60.3%) when 
the NO3-N concentration was decreasing. 

Table 4.10. Example, taken from the red ellipses in Figure 4.7b, of the change in NO3-N 
concentration produced by an increase in flow rate 

Flow Rate NO3-N 

Increment 
(m3 s–1) 

Rate of 
Increment 

(%) 

Concentration 
(mg L–1) Date 

Reduction in 
Concentration 

(mg L–1) 

Rate of 
Reduction 

(%) 

0 - 2.463 14 November - - 

50 33.3 2.414 1 November 0.049 2.0 

100 66.7 2.371 26 October 0.091 3.7 

150 100.0 2.337 23 October 0.126 5.1 

0 - 2.046 21 December - - 

50 33.3 1.299 2 December 0.747 36.5 

100 66.7 0.992 28 November 1.054 51.5 

150 100.0 0.813 26 November 1.233 60.3 

 

Interestingly, we found that a fall in the NO3-N concentration was not proportional to a 
rise in the flow rate. In Figure 4.7, this point is demonstrated by the unequal changes in 
the NO3-N concentration corresponding to the equal-step increase in flow rate (e.g., 
change in concentration is high for flow variation from 0 m3 s−1 to 50 m3 s−1, but it is 
insignificant for the change from 100 m3 s−1 to 150 m3 s−1). In any case, ever-increasing 
flow rates under Scenarios 4–6 do not match the reservoir operations in practice, because 
this may lead to a shortage of water supply. That is why we considered Scenarios 7–42, 
where the flow rates were increased at the upstream boundary temporarily instead of for 
the whole period (365 days). 

The overall results obtained by the simulation under Scenarios 7–42 showed that the 
larger the flow rate, or the longer duration of the increase in flow rate, the more significant 
the reducing effect on the NO3-N concentration. Nonetheless, the results showed slight 
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differences depending on when the flow rate started to increase. For instance, in Figure 
4.9b and Figure 4.10b, it can be seen that the concentration of NO3-N decreased compared 
to the black graph, depending on the amount or the duration of increased flow. On the 
contrary, Figure 4.9c and Figure 4.10c show opposite results to Figure 4.9b and Figure 
4.10b. The only difference between these cases was the time when the flow rate started 
to increase. Figure 4.9b and Figure 4.10b show the results achieved under the condition 
where the increase in flow rate began in May, when the NO3-N concentration was falling. 
On the other hand, in Figure 4.9c and Figure 4.10c, the flow rate increased at a time when 
the concentration of NO3-N was markedly rising. 

 

 

(a) Change in flow rate in January               (b) Change in flow rate in May 

 

(c) Change in flow rate in July                  (d) Change in flow rate in October 

Figure 4.9. Changes in the NO3-N concentration in cross section 416 caused by 
variations in flow rate (50, 100, and 150 m3 s−1) at the upstream boundary for 31 days 
(The black graph shows the NO3-N concentration simulated using the observational 

data from 2018 as boundary conditions.) 
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(a) Change in flow rate in January               (b) Change in flow rate in May 

 

(c) Change in flow rate in July                  (d) Change in flow rate in October 

Figure 4.10. Changes in the NO3-N concentration in cross section 416 caused by 
variations in flow rate (100 m3 s−1) at the upstream boundary for 10, 20, and 31 days 
(The black graph shows the NO3-N concentration simulated using the observational 

data from 2018 as boundary conditions.) 

In this regard, the current status of a river should be considered for decision-making 
related to reservoir operations in terms of WQM. Specifically, decision-makers should 
determine to what extent the flow rate released from a reservoir will be increased or 
decreased or when this action will be taken by considering the current status of the 
concentration of water pollutants. This will result in effective and efficient control of 
NO3-N downstream. 

4.3.4 NO3-N dynamics according to variation in water quality 
We learned from Scenarios 43–48 that variations in water temperature at the upstream 
boundary had little impact on the NO3-N concentration in cross section 416, as shown 
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in Figure 4.11. This phenomenon seems to emerge because the water upstream is mixed 
with tributaries as the water flows downstream, and the water temperature of the river 
reaches equilibrium. This means that there is little impact on the concentration of NO3-N 
downstream only with the change in water temperature at the upstream boundary. 

 

  

(a) Scenarios 43–45                                  (b) Scenarios 46–48 

Figure 4.11. Changes in the NO3-N concentration in cross section 416 caused by 
variations in water temperature at the upstream boundary under Scenarios 43–48 (The 

black graphs show results simulated using the observational data from 2018 as 
boundary conditions.) 

The simulation results under Scenarios 49–55 demonstrated that a marked variation in the 
NO3-N concentration occurred downstream if the concentration of NO3-N increased or 
decreased at the upstream boundary, as shown in Figure 4.12. In other words, control over 
the NO3-N concentration itself in the tributaries or the upper reaches of a river would be 
highly effective in controlling the concentration of NO3-N downstream. However, the 
amount of variation in the downstream NO3-N concentration may increase or decrease 
depending not only on the change in the upstream NO3-N concentration but also on the 
current status of the river, such as flow rate and water temperature. Therefore, the control 
method for NO3-N should be adopted in consideration of the current status in the target 
area. This sufficient consideration for the downstream status enables the establishment of 
effective strategies for controlling the downstream NO3-N concentration with a water 
quality model. 
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(a) Scenarios 49–52                                  (b) Scenarios 52–55 

Figure 4.12. Changes in the NO3-N concentration in cross section 416 caused by 
variations in the NO3-N concentration at the upstream boundary under Scenarios 49–55 

(The black graphs show results simulated using the observational data from 2018 as 
boundary conditions.) 

4.3.5 Guidelines for design of strategies to control NO3-N 
downstream 

Effective strategies can be devised to control the downstream NO3-N concentration based 
on the simulation results of the Scenarios of this study. Guidelines for the design of 
strategies can be suggested using the control methods of the flow rate or the NO3-N 
concentration at the upstream boundary, which was proven effective under the Scenarios. 
The primary purpose of control methods should be carefully considered before employing 
the methods. The purpose can include control of the peak concentration or the overall 
average concentration of downstream NO3-N. 

Specifically, the control method of the NO3-N concentration itself at the upstream 
boundary is much more practical for decreasing the highest concentration of NO3-N 
downstream than a change in the flow rate at the upstream boundary. This can be 
demonstrated in Figure 4.13a, which shows conditions of both decreasing and increasing 
concentrations of NO3-N in 2018 (black graph). The blue graph shows the variation in 
the NO3-N concentration in cross section 416 when the NO3-N concentration decreased 
by 1.0 mg L−1 at the upstream boundary. The red graph shows the simulation result 
achieved by a flow rate increase of 150 m3 s−1 at the upstream boundary. We could clearly 
observe that the peak concentration in the blue graph was lower than the peak in the red 
graph when the NO3-N concentration was increasing (July–August 2018). Contrastingly, 
when the NO3-N concentration was decreasing (May–June 2018), we could produce the 
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effect of decreasing the downstream NO3-N concentration by increasing the flow rate 
more than by reducing the NO3-N concentration at the upstream boundary. 

 

 

(a) Changes in the NO3-N concentration by a decrease in the NO3-N concentration 
(blue graph) or an increase in flow rate (red graph) 

 

(b) Changes in the NO3-N concentration by an increase in flow rate of 100 m3 s−1 (blue 
graph) and 150 m3 s−1 (red graph) for 20 days 

Figure 4.13. Changes in the NO3-N concentration in cross section 416 caused by a 
decrease in the NO3-N concentration at the upstream boundary or an increase in flow 
rate at the upstream boundary (The black graphs show the result simulated using the 

observational data from 2018 as boundary conditions.) 
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Nonetheless, a large flow rate is not always fully effective. Figure 4.13b shows that there 
is a slight difference in making the downstream NO3-N concentration decrease between 
an increase in flow rate of 172.8 million m3 (100 m3 s−1 for 20 days, the blue graph) and 
of 259.2 million m3 (150 m3 s−1 for 20 days, the red graph). The lowest concentrations of 
NO3-N were 1.212 mg L−1 (on 27 January) and 1.097 mg L−1 (on 22 January) in the blue 
and red graphs, respectively, with a difference of only 0.115 mg L−1. 

4.4 DISCUSSION 

The simulation results showed how the downstream NO3-N concentration would respond 
depending on variation in the quantity and quality of water upstream. With these results, 
general guidelines for strategies to control downstream NO3-N can be suggested with the 
control methods for the peak concentration and the overall average concentration of NO3-
N. The peak concentration of downstream NO3-N can be directly controlled by limiting 
the concentration of NO3-N in the tributaries or the upper reaches of a river. Control of 
the upstream flow rate is a viable strategy in terms of control over the overall average 
concentration of downstream NO3-N when its concentration is decreasing. Notably, the 
strategy related to water quantity can be effectively implemented by deciding how much 
the flow rate should be increased after performing a quantitative analysis of the impact 
on the control of the downstream NO3-N concentration. These strategies would be 
implemented by a combination of joint operations of the reservoirs with SWF and 
simulation results with the water quality model. 

As mentioned earlier, the methodology presented in this study can be used in further 
research for the indirect regulation of HABs in rivers by controlling the NO3-N 
concentration. Since HABs are produced by various factors such as climate, aquatic 
environments, etc., many researchers have tried to find the major drivers to predict HABs 
(Rousso et al., 2020). Several previous studies suggested that NO3-N is one of the key 
factors underlying HABs (Kim et al., 2022a; Park et al., 2021b; Zhao et al., 2017). 
Accurate prediction of HABs is not easy because HABs can be produced or faded not 
only by chemical factors but also by biological processes (Kim et al., 2017; Reynolds, 
2006; Park et al., 2017b). However, for cases when NO3-N is determined to be a critical 
factor, appropriate countermeasures against HABs in a river can be introduced by 
predicting and controlling the NO3-N concentration, which is relatively easier to simulate 
than HABs. 

However, some studies have surprisingly shown that a low concentration of NO3-N 
promotes HABs, although the effect could depend on the species of algae (Kim et al., 
2022a; Ferber et al., 2004; Weyhenmeyer et al., 2007; Talib et al., 2008). If these findings 
are linked with this study, HABs could be controlled by a reduction in the flow rate 
released from an upstream reservoir as in Scenarios 1–3 or by an increase in the NO3-N 
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concentration of the released water as in Scenarios 51 and 52 (highly unusual scenarios 
and hardly possible in practice). Nevertheless, since the implementation of this strategy 
may lead to an increase in the downstream NO3-N concentration, an optimization process 
is necessary by considering an acceptable standard in the NO3-N concentration required 
for drinking water sourced from the river. 

All the processes for water quality modelling, such as monitoring, analyzing, predicting, 
and controlling water quality parameters, are closely related to human health and the 
stability of aquatic ecosystems (Ustaoglu et al., 2021; Forio and Goethals, 2020). This 
study, however, focused on the modelling process for one water quality parameter (NO3-
N). Further studies should be oriented toward sustainable development in terms of public 
health and ecological diversity and away from simply focusing on the water quality model. 
For instance, a water quality model would forecast NO3-N concentrations in a river. The 
simulation result could be used for judging whether the concentrations would exceed an 
acceptable level regarding public health. If exceeding the acceptable level, a decision 
should be made in advance to reduce the NO3-N concentrations in the river. A series of 
these processes would support the sustainable development of human life and aquatic 
ecosystems. 

Moreover, we need to mention the hindrances to this study to be considered in further 
research. In this study, we tried to clearly understand NO3-N dynamics depending on the 
changes in water quantity and quality at the upstream boundary. However, since there 
were limitations on available data, we needed to make some assumptions. For example, 
the concentrations of NH4-N and NO2-N required in HEC-RAS were replaced with the 
measured concentration of NH3-N and zero, respectively (Rus et al., 2012; Meybeck, 
1982; Park et al., 2014; Bhuyan et al., 2020; Mihale, 2015; Hem, 1985). Despite these 
reasonable assumptions based on observable facts, the developed model may still have 
uncertainty. Furthermore, the HEC-RAS model has not been widely used as a water 
quality model, although it has been frequently used for flow analysis. This would mean 
that it should be further validated as a water quality model. In this study, we attempted to 
develop the HEC-RAS model to simulate the NO3-N dynamics in the Nakdong River, but 
its suitability for simulating other water quality parameters should be further 
demonstrated. Additionally, we constructed a one-dimensional model with HEC-RAS, 
but a multi-dimensional model would be necessary for detailed analysis of critical 
locations (e.g., weirs close to water supply intakes, such as the Chilgok Weir in this study). 
This is because the fate and transport of NO3-N may tend to vary in a transverse or vertical 
direction and not only in a longitudinal direction as modelled in this study. Further studies 
could be conducted with consideration for adequate substitutes for the data that were not 
measured, the limitations of the HEC-RAS model as a water quality model, and the 
application of a multi-dimensional model. 
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4.5 CONCLUSIONS 

We developed a one-dimensional process-based model to simulate the fate and transport 
of NO3-N using HEC-RAS for the upper reach of the Nakdong River in South Korea. 
Variations in the downstream NO3-N concentration were simulated by the developed 
model according to changes in water quantity and quality at the upstream boundary. For 
the monitoring station located near the Chilgok Weir, these simulation results were 
analyzed in comparison with the modelling result that was obtained using the 
observational data as boundary conditions without the change in water quantity and 
quality. 

The main finding in connection with the control of water quality is that the change in the 
downstream NO3-N concentration was mostly achieved by direct control of the NO3-N 
concentration at the upstream boundary. In terms of the control on water quantity, we 
could create a growing impact on the change in the downstream NO3-N concentration as 
the flow rate was increasing at the upstream boundary. However, the reducing effect on 
the NO3-N concentration varied depending on how long the flow rate increased and the 
current status of the downstream NO3-N concentration. Therefore, strategic decisions on 
WQM should be made after predicting what effect will be achieved using a water quality 
model. 

Based on the guidelines for the design of strategies for controlling the downstream NO3-
N concentration, we learned that the unilateral decision between water quantity and 
quality at the upstream boundary would not be best for the improvement in downstream 
water quality. In this respect, further research can be conducted on the optimal operation 
of reservoirs in consideration of both water quantity and quality. This optimization 
process can be accelerated together with a surrogate model for water quality based on a 
broad spectrum of scenarios. 

  



 

 

5 
5 OPTIMAL RESERVOIR OPERATION 

TO MITIGATE CYANOBACTERIAL 
BLOOMS DOWNSTREAM 

This chapter provides the optimization model for reservoir operation in terms of reducing 
the frequency of occurrence of CyanoHABs at Chilgok Weir and demonstrates the 
applicability of the framework proposed in Chapter 1.  

  

                                                 
This chapter is extracted from Kim, J., Jonoski, A., Solomatine, D. P., and Goethals, P. L. M.: Decision support 
framework for optimal reservoir operation to mitigate cyanobacterial blooms in rivers, submitted to Sustainability in 
2023 (under review). 
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ABSTRACT 

Harmful cyanobacterial blooms (CyanoHABs) can produce toxic substances which can 
harm public health. In South Korea, these CyanoHABs have been a problem in rivers 
since weirs were constructed in the middle sections of the four major rivers in 2012. To 
alleviate this problem, flow control has been imposed such as flushing water from 
reservoirs. However, this measure may cause water shortage in reservoirs because the 
measure may require an additional amount of water, which exceeds the water demand 
allocated to the reservoirs. This study aimed at establishing a practical framework for a 
decision support system for optimal joint operation of the upstream reservoirs (Andong 
and Imha) to reduce the frequency of CyanoHABs in the Nakdong River, South Korea. 
Methodologically, three models were introduced: 1) a machine learning model (accuracy 
88%) based on the k-NN (k-Nearest Neighbor) algorithm to predict the occurrence of 
CyanoHABs at a selected downstream location (the Chilgok Weir located approximately 
140 km downstream from the Andong Dam), 2) a multi-objective optimization model 
employing NSGA-II (Non-dominated Sorting Genetic Algorithm II) to determine both 
the quantity and quality of water released from the reservoirs, and 3) a river water quality 
model (R2 0.79) using HEC-RAS to simulate the water quality parameter at Chilgok Weir 
according to given upstream boundary conditions. The applicability of the framework 
was demonstrated by simulation results using observational data from 2015 to 2019. The 
simulation results based on the framework confirmed that the frequency of CyanoHABs 
would be decreased compared to the number of days when CyanoHABs were observed 
at Chilgok Weir. This framework, with a combination of several models, is a novelty in 
terms of efficiency, and it can be a part of a solution to the problem of CyanoHABs 
without using an additional amount of water from a reservoir. 

5.1 INTRODUCTION 

Reservoir operations have been mainly focused on the management of water quantity, 
such as water supply, hydropower generation, and flood control (Yoo, 2009; Saadatpour 
et al., 2021). However, recent studies have aimed at improving water quality downstream 
through the efficient operation of reservoirs (Yosefipoor et al., 2022; Saadatpour et al., 
2021; Saadatpour et al., 2020). Water quality downstream can be improved by 
discharging more clean water from a reservoir, but this reservoir operation may also cause 
an increase in the risk of water shortages. 

Harmful cyanobacterial blooms (CyanoHABs), which negatively impact water quality, 
frequently occur in lentic water bodies such as lakes and reservoirs due to eutrophication 
(Modabberi et al., 2020; Jankowiak et al., 2019; Park et al., 2021a; Xu et al., 2015; Zhao 
et al., 2019; Mozafari et al., 2023). In South Korea, CyanoHABs have been an 
environmental problem in rivers, particularly since 2012 (Park et al., 2021a; Park et al., 
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2017b; Song and Lynch, 2018), when the Korean government constructed 16 weirs in the 
middle of rivers within the Four Major Rivers Restoration Project (Song and Lynch, 
2018). This project has raised a matter of controversy with the problem of water quality. 
This is because of the claim that the weirs have caused the frequent occurrence of 
CyanoHABs in the rivers, where the flow velocity has decreased (Song and Lynch, 2018). 
According to the Ministry of Environment in South Korea, BOD (Biochemical Oxygen 
Demand) and TP (Total Phosphorus), which are the main parameters of water quality to 
be managed in rivers, at major points of the four rivers as of 2021 were measured as 
follows: BOD 1.6 mg L–1 and TP 0.074 mg L–1 at the point Noryangjin of the Han River, 
BOD 2.2 mg L–1 and TP 0.037 mg L–1 at the point Waegwan of the Nakdong River, BOD 
2.4 mg L–1 and TP 0.054 mg L–1 at the point Buyeo1 of the Geum River, BOD 5.3 mg L–1 
and TP 0.169 mg L–1 at the point Naju of the Yeongsan River. 

CyanoHABs can produce toxic substances such as microcystins (Carmichael and Boyer, 
2016; Falconer and Humpage, 2005; Falconer, 2005). Human health may be damaged 
through the ingestion of water containing these toxic substances (Carmichael and Boyer, 
2016; Falconer and Humpage, 2005; Falconer, 2005) or the inhalation of aerosolized 
cyanotoxins (May et al., 2018; Plaas and Paerl, 2021). Thus, the management of water 
quality is of paramount importance in terms of preventing the occurrence of CyanoHABs. 
This management of water quality requires predicting the occurrence of CyanoHABs. 
However, the prediction of the occurrence of CyanoHABs is challenging due to the 
complexity of factors involved, such as climate, water quality, flow conditions, and 
chemical and biological processes (Rousso et al., 2020). 

In South Korea, reservoir operation for mitigating CyanoHABs has primarily focused on 
flow control, such as flushing water from a reservoir to a river downstream (Kim et al., 
2022c; Lee and Baek, 2022). However, the use of water in reservoirs for improving water 
quality has not been generally factored into the design of reservoirs in South Korea (Kim 
et al., 2019b; Yu et al., 2017; Yoo et al., 2021). Hence, the flow control using an additional 
amount of water has been only temporarily taken in order to mitigate CyanoHABs (Kim 
et al., 2022c), since this flow control can cause water shortage. For a trade-off between 
the conflicting objectives such as improving water quality and alleviating water shortage, 
optimal operation of reservoirs must be conducted by simultaneously considering both 
the quantity and quality of water. 

A selective withdrawal facility (SWF) is designed and used for controlling the quality of 
water released from a reservoir (Kim and Choi, 2021; Smith et al., 1987; Davis et al., 
1987; Bohan and Grace, 1973). In South Korea, the Imha Reservoir (Lee et al., 2007; 
Kim et al., 2022b) and the Soyanggang Reservoir (Kim and Choi, 2021; Park et al., 2018a) 
are equipped with the SWF. Previous studies have demonstrated the effectiveness of the 
SWF regarding the exclusion of turbid water from the reservoirs, which is the primary 
purpose of the SWF (Lee et al., 2007; Park et al., 2018a; Kim et al., 2022b). As the SWF 
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enables the selection of water quality by depth, it can control not only the water quality 
of the reservoir upstream but also downstream. Therefore, this SWF is a critical factor for 
the optimal operation of reservoirs considering the improvement of water quality 
downstream. 

However, there have been few studies on reservoir operation using the SWF in terms of 
addressing issues about biological parameters of water quality such as CyanoHABs in a 
downstream river. Previous studies (Yosefipoor et al., 2022; Saadatpour et al., 2021; 
Saadatpour et al., 2020) have not focused on CyanoHABs but on physical or chemical 
parameters such as temperature, DO (Dissolved Oxygen), and PO4 (Phosphate). This can 
be because simulating biological parameters of water quality is more complex compared 
to physical or chemical parameters. 

The main objective of this study is to demonstrate the practical framework (see Figure 
1.1) for a decision support system aimed at decreasing the frequency of occurrence of 
CyanoHABs at Chilgok Weir, based on the optimal joint operation of two upstream 
reservoirs (Andong and Imha reservoirs). The two reservoirs and the Chilgok Weir are 
located in the Nakdong River of South Korea. Methodologically, we present three models 
for this framework. These models include a machine learning model based on the k-NN 
(k-Nearest Neighbor) algorithm for predicting the occurrence of CyanoHABs at Chilgok 
Weir, an optimization model employing NSGA-II (Non-dominated Sorting Genetic 
Algorithm II) for the joint operation of the two reservoirs considering both the quantity 
and quality of water, and a river water quality model using HEC-RAS to link the machine 
learning and optimization models. The applicability of the framework is finally 
demonstrated using observational data and the three models in terms of reducing the 
frequency of occurrence of CyanoHABs at Chilgok Weir. 

5.2 MODELLING METHODS 

5.2.1 Data preparation 
The modelling process requires hydrological or hydraulic data, water quality data, and 
meteorological data for the study area, the upper reach of the Nakdong River (see Figure 
2.1). These data can be collected from the Water Resources Management Information 
System, the Water Environment Information System, and the Open Met Data Portal of 
South Korea (Kim et al., 2021). Hydrological or hydraulic data and meteorological data 
are available on a daily basis, while water quality data are obtained on a weekly basis (48 
or 36 times a year) for rivers and monthly basis for reservoirs at three depths (Kim et al., 
2021). 

All data should have the same time interval for the modelling process in this study. 
However, while hydraulic data and meteorological data are acquired at daily intervals, 
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water quality data is obtained on a weekly or monthly basis. To address the problem of 
the mismatch between the time steps, we transformed the weekly or monthly water quality 
data into daily data using a step function. The step function involves using the same value 
as observational data of the previous time step until the data for the next time step is 
available (James, 2016; Mcintyre and Wheater, 2004), maintaining consistency between 
water quality measurements (Cullinan et al., 2007). 

5.2.2 Machine learning model 
The machine learning model for Steps 1 and 5 of the framework was developed in Chapter 
3 to predict the occurrence of CyanoHABs one week ahead at Chilgok Weir. The 
determination of the occurrence of CyanoHABs was based on cyanobacterial cell density, 
as specified by the Algae Alert System of South Korea, with a threshold of 1000 cells 
mL–1 (Kim et al., 2022a; Srivastava et al., 2015). If the cyanobacterial cell density was 
equal to or higher than this threshold, CyanoHABs were deemed to appear. 

Warmer temperatures are generally favorable for CyanoHABs, as well as nutrient 
conditions, which was also confirmed in our model. After testing many potential 
influencing factors, including nutrients such as nitrogen and phosphorus, we selected 
nitrate nitrogen (NO3-N) and average air temperature (AT) as the input features to build 
the machine learning model. The model, which was developed using these two input 
features and applying the k-NN algorithm, an instance-based learning classification 
technique, was found to ensure the best accuracy of 88%. One of the input features, NO3-
N, showed a negative correlation with the occurrence of CyanoHABs after one week at 
Chilgok Weir, while the other input feature, AT had a positive correlation. 

5.2.3 Optimization model 
We developed the multi-objective optimization model considering both the quantity and 
quality of water for Step 3 in the framework. The decision variables of the optimization 
included the amount of water supply downstream of the two reservoirs (Andong (QA) and 
Imha (QI)) and the quality of water (CI) released from the Imha Reservoir using the SWF. 
The water quality parameter used in this optimization process was NO3-N, which was an 
input feature of the machine learning model presented in Section 5.2.2. Since the 
optimization problem involved the quantity and quality of water, we formulated two 
objective functions. 

The first objective function (OF1) was related to water quantity as shown in Equation 
(5.1). Through the joint operation of both reservoirs, the two reservoirs can be assumed 
as one in terms of water supply. In this regard, we aimed at minimizing OF1 which is the 
difference between the sum of water quantity released from the Andong (QA) and Imha 
(QI) reservoirs and the sum of the water demand (QWD) to be allocated by the two 
reservoirs. 
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where Days is the number of days for a simulation period. 

The second objective function (OF2), to be minimized, is related to water quality as 
shown in Equation (5.2). It was formulated by subtracting the NO3-N concentration (CJ) 
at the junction where the water from the two reservoirs meets from the reference 
concentration (CR). We formulated OF2 to maximize CJ, as NO3-N concentration was 
negatively correlated with the occurrence of CyanoHABs after one week at Chilgok Weir 
(as stated in Section 5.2.2). However, this CJ was constrained in order not to exceed CR 
(Equation (5.3)). CJ was calculated using the quantity and quality of water from both 
reservoirs with the chemical mass-balance equation (Equation (5.4)) (Jain, 1996; Jha et 
al., 2007). 
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where QD and CD represent the flow rate (m3 s–1) and concentration (mg L–1) of a specific 
water quality parameter at a downstream location, respectively. At an upstream location, 
these values are represented by QU and CU, respectively. Li (g s–1) and n denote the 
individual loadings and the number of inflow points, respectively, between the upstream 
and downstream locations. 

The quality of water (CI) released from the Imha Reservoir was constrained in 
consideration of the NO3-N concentration distributed by the depth of the reservoir. The 
constraint on CI was set between the minimum (Min. CI) and maximum (Max. CI) values 
of the NO3-N concentration, as shown in Equation (5.5), based on the depth where the 
SWF is available. Simulation of water quality is necessary to determine the distribution 
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of NO3-N concentration by the depth of a reservoir, as discussed in Step 2 of the 
framework. However, in this study, we demonstrated the applicability of the framework 
by using the observational data of the NO3-N concentration by depth in the Imha reservoir. 

 𝑀𝑀𝑀𝑀𝑀𝑀.𝐴𝐴𝑃𝑃 ≤ 𝐴𝐴𝑃𝑃 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥.𝐴𝐴𝑃𝑃 (5.5) 

Water quality in the Imha Reservoir is monitored at three stations: Imha Dam 1, Imha 
Dam 2, and Imha Dam 3. The daily data of Min. CI and Max. CI was retrieved from a 
total of four stations, including one station monitoring the quality of water downstream 
released from the Imha reservoir. Figure 5.1 shows Min. CI and Max. CI. 

In the optimization model, we employed NSGA-II, a widely-applied genetic algorithm 
using a fast non-dominated sorting procedure (Deb et al., 2002). The Python library, 
pymoo (version 0.6.0) was used for this optimization model (Blank and Deb, 2020). 

 

Figure 5.1. Range of NO3-N concentrations (CI) in water released from the Imha 
Reservoir 

5.2.4 River water quality model 
In Chapter 4, we developed a river water quality model using HEC-RAS version 5.0.7 to 
simulate the NO3-N dynamics at Chilgok Weir, given upstream boundary conditions. This 
model evaluated to have a high performance of 0.76 or higher with both R2 (Coefficient 
of Determination) and NSE (Nash Sutcliffe Efficiency) was applied in Step 4 of the 
framework since the model covered the same area as in this study. 
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The one-dimensional river water quality model using HEC-RAS, a process-based 
modelling system, does not require a long computation time. However, the HEC-RAS 
model first simulates unsteady flow and then water quality using the simulation results of 
the unsteady flow (Brunner, 2016). In order to apply the framework, repeatedly running 
the HEC-RAS model in the optimization process of Step 3 of the framework is necessary, 
which requries significant computational time. 

To address this time-consuming computational issue, we developed a surrogate model 
that mimics the NO3-N dynamics simulated by the HEC-RAS model, based on an 
Artificial Neural Networks (ANN). Such surrogate models, based on machine learning, 
when trained, are much more computationally efficient compared to process-based 
models (Aguilar et al., 2014). The model was built based on Equation (5.6) (Yosefipoor 
et al., 2022; Saadatpour et al., 2021; Saadatpour et al., 2020) by using the hydraulic, water 
quality, and meteorological data obtained for developing the HEC-RAS model in Chapter 
4. The dataset for training and testing the surrogate model consisted of 508,923 instances, 
which were generated using the HEC-RAS model by varying the upstream boundary 
conditions such as flow rate and NO3-N concentration. This variation in the upstream 
boundary conditions was required to link the optimization results obtained from Step 3 in 
the framework with the surrogate model. The surrogate model SM was constructed using 
the Keras open-source software library in Python: 

 𝐷𝐷�(𝑡𝑡) = 𝑆𝑆𝑀𝑀(𝑥𝑥1(𝑡𝑡 − 1), 𝑥𝑥1(𝑡𝑡 − 2),⋯ , 𝑥𝑥𝑚𝑚(𝑡𝑡 − 𝑙𝑙)) (5.6) 

where 𝐷𝐷� is the prediction result of the NO3-N concentration at Chilgok Weir, SM is the 
surrogate model which emulates the behavior of the HEC-RAS model, x (x1, x2, …xm) is 
a vector of input features, t is the time step (day), m is the number of input features, and l 
is the time lag. The data used for the development of the surrogate model is the same as 
for the HEC-RAS model developed in Chapter 4 (see Table 4.1). 

While the surrogate model has the advantage to save computation time, it may not be able 
to reproduce all the HEC-RAS simulation results with 100% accuracy. Hence, we 
compared the simulation results of the surrogate model with those of the HEC-RAS model. 

5.3 EXPERIMENTAL SETUP 

5.3.1 Procedure 
We established the procedure for demonstrating the applicability of the framework shown 
in Figure 1.1 in three stages: optimization, river water quality modelling, and simulation 
of the occurrence of CyanoHABs at Chilgok Weir. The first stage involves the 
optimization model which simulates time series data for the decision variables QA, QI, 
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and CI. These time series data are used for calculating the flow rate (QJ) and the NO3-N 
concentration (CJ) at the junction where the water from the Andong and Imha reservoirs 
converge. QJ can be different from QA+QI since QJ includes the residual discharge for 
the area from the dam to the junction. In the second stage, the river water quality model 
runs the simulation of the NO3-N dynamics at Chilgok Weir by using the calculated QJ 
and CJ as boundary conditions. Finally, the machine learning model is employed to 
predict the occurrence of CyanoHABs at Chilgok Weir. This model uses the NO3-N 
concentration simulated in the second stage and the observational data of average air 
temperature as input features. Figure 5.2 shows the experimental procedure. 

 

 

Figure 5.2. Experimental procedure 

We adopted the experimental procedure based on the observational data collected over 
five years from 2015 to 2019. During this period there was no record of discharge via 
spillway for flood control from the Andong and Imha reservoirs, which was important, as 
this study did not consider flood routing in the reservoirs. 

The observational data used in this study included the cyanobacterial cell density for 226 
days, of which 72 days had a cell density of 1000 or higher. As mentioned in Section 
5.2.2, we assumed that CyanoHABs occurred when the cell density was 1000 or higher. 
In this study, we compared the results of CyanoHABs simulated using the optimization 
results with the 72 days when they were observed. 

Before following the experimental procedure, we took a simulation test to validate the 
developed models. As mentioned in Section 5.2.2, the NO3-N concentration at Chilgok 
Weir showed a negative correlation with the occurrence of CyanoHABs. In consideration 
of this relationship, two hypothetical scenarios were constructed by increasing or 
decreasing the NO3-N concentration of the upstream boundary condition by 0.50 mg L–1 
from the values in the observational data. The river water quality model using HEC-RAS 
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simulated the NO3-N dynamics at Chilgok Weir under these scenarios. The machine 
learning model was used to simulate the number of days with CyanoHABs at Chilgok 
Weir, using the NO3-N concentration simulated and the average air temperature measured. 

5.3.2 Experimental cases for optimization 
We examined the effect of different constraints on the decision variables of the 
optimization process with nine cases, as shown in Table 5.1. These cases were based on 
five variables: QA, QI, QA+QI, QJ, and CJ. 

QD shown in Table 5.1 is the sum of the maximum amount of water supply allocated 
downstream in the design stage of the Andong and Imha reservoirs, hereinafter referred 
to as "Design Discharge". This Design Discharge includes the water quantity for 
municipal and industrial use, irrigation, and environmental flow, and is presented as 
monthly data as shown in Table 5.2. The sum of the water demands downstream of the 
two reservoirs, referred to as QWD (as stated in Section 5.2.3) can also be presented as 
quantities by month, with slight variations from year to year. QO is the observational data 
for the water supply downstream of the two reservoirs. This QO was acquired on a daily 
basis, but it was converted into a monthly average for comparison with QD and QWD. 
The data for these variables (QD, QWD, and QO) are shown in Figure 5. 

 

Table 5.1. Experimental cases based on the constraints for the optimization process 

Case 
Constraints for optimization 

QA 
(Unit: m3 s–1) 

QI 
(Unit: m3 s–1) 

Case1 
0≤QA≤161.0 1.0≤QI≤119.0 

Case2 

Case3 0≤QA≤0.5QD 1.0≤QI≤0.5QD 

Case4 0≤QA≤0.3QD 1.0≤QI≤0.7QD 

Case5 0≤QA≤0.7QD 1.0≤QI≤0.3QD3 

Case6 0≤QA≤161.0 0≤QI≤119.0 

Case7 0.500QO≤QA≤0.505QO 0.500QO≤QI≤0.505QO 

Case8 0.300QO≤QA≤0.305QO 0.700QO≤QI≤0.705QO 

Case9 0.700QO≤QA≤0.705QO 0.300QO≤QI≤0.305QO 
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Table 5.1. Cont. 

Case 
Constraints for optimization 

QA+QI 
(Unit: m3 s–1) 

QJ 
(Unit: m3 s–1) 

CJ (CJ≤CR) 
(Unit: mg L–1) 

Case1 
QA+QI≤QD 

QJ≥QWD 

CJ≤3.11 

Case2 CJ≤3.50 

Case3 - CJ≤3.11 

Case4 - CJ≤3.11 

Case5 - CJ≤3.90 

Case6 QA+QI=QO 

QJ≥17.5 

CJ≤4.10 

Case7 - CJ≤3.70 

Case8 - CJ≤3.50 

Case9 - CJ≤4.50 

 

Table 5.2. Design Discharge 

Reservoir 
Design Discharge by Month (Unit: m3 s–1) 

Jan Feb Mar Apr May Jun 

Andong 19.9 19.9 19.9 20.8 33.7 49.3 

Imha 13.5 13.5 13.5 13.6 14.0 14.7 

Sum (QD) 33.4 33.4 33.4 34.4 47.7 64.0 

Reservoir 
Design Discharge by Month (Unit: m3 s–1) 

Jul Aug Sep Oct Nov Dec 

Andong 40.5 50.2 36.4 22.0 19.9 19.9 

Imha 14.4 14.8 14.2 13.6 13.5 13.5 

Sum (QD) 54.9 65.0 50.6 35.6 33.4 33.4 
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Figure 5.3. Graph showing Design Discharge, water demand, daily observational data, 
and monthly averages of the daily observational data for the downstream river (sum for 

the Andong and Imha reservoirs) 

The reference concentration of NO3-N, denoted as CR, was used as a constraint on the 
NO3-N concentration (CJ) at the junction of the water downstream from the two 
reservoirs (as mentioned in Section 5.2.3). In Case 1, Case 3, and Case 4, CR was set to 
3.11 mg L–1, the maximum concentration of NO3-N at the junction retrieved from the 
observational data between 2015 and 2019. In Case 2, CR was set to 3.50 mg L–1 in order 
to compare the results of Case 2 with those of Case 1. We made Case 2 to analyze the 
impact of variation in CR. For the remaining cases (Cases 5–9), CR was set to the 
minimum concentration of NO3-N at which the Pareto front could be obtained during the 
optimization process. 

In the first two cases, the maximum amounts of water were set to 161.0 m3 s–1 and 119.0 
m3 s–1 for QA and QI, respectively. These values represent the quantities of water that can 
be released downstream through the hydropower generators of the two reservoirs. The 
minimum QI was set to 1.0 m3 s–1, which is a value that accounts for the water demand 
of a downstream river from the Imha Reservoir. This intake facility for the water demand 
is located between the Imha Dam and the junction where the Banbyeoncheon River, a 
downstream river of the Imha Reservoir, joins the Nakdong River. 

We placed the constraints on the sum of water released from the two reservoirs (QA+QI) 
in Cases 1 and 2 to ensure that QA+QI did not exceed the Design Discharge (QD). 
Additionally, QJ was constrained to satisfy QWD, considering the joint operation of the 
two reservoirs. This constraint on QJ was also applied to Cases 3–5. 
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The major difference between Cases 3–5 and Cases 1–2 is in the constraints placed on 
QA and QI. In Cases 3–5, the maximum values of QA and QI were determined by applying 
to each portion of QD, where the sum of the portions equals one in each case. The goal 
of this approach was to reduce the number of constraints and narrow the range of 
constraints compared to Cases 1–2, allowing efficient optimization. To evaluate the 
impact of different portions on the simulation results for CyanoHABs, the values (in 
percentages) of 50%, 30%, and 70% were applied to Cases 3–5. 

Unlike Cases 1–5, which were related to QD and QWD, Cases 6–9 were based on QO. 
Reservoirs are usually operated to meet water demand, but as shown in Figure 5, the 
amount of water released from the reservoir may be less than the water demand due to 
drought or the status of the flow rate downstream. To assess whether the frequency of 
occurrence of CyanoHABs downstream could be reduced by releasing a similar amount 
of water to the observed, the constraint on QA+QI in Case 6 was set to be equivalent to 
QO. In Cases 6–9, the constraint of QJ was set to exceed 17.5 m3 s–1, considering the 
stability of the water level calculation in the HEC-RAS model used after the optimization 
process. When values of water level for unsteady flow in each cross section are calculated 
using HEC-RAS, a dry condition for a cross section makes an error (Brunner, 2016). To 
avoid this error, a minimum flow rate is required and the value of 17.5 m3 s–1 was used 
as the minimum flow rate for the HEC-RAS model developed in Chapter 4. 

The difference between Case 6 and Cases 7–9 was in the constraints applied to QA and 
QI. In Cases 7–9, we applied the earlier defined portions to QO for the constraints on QA 
and QI, which narrowed the range of QA and QI, enabling efficient optimization. 

We carried out the optimization for these nine cases and then simulated the number of 
days with CyanoHABs at Chilgok Weir using the river water quality model and the 
machine learning model. The simulation results allowed us to evaluate the impact of 
changing the optimization constraints on the number of days with CyanoHABs. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Simulation test 
We generated hypothetical data by modifying the observational data of the NO3-N 
concentrations by increments or decrements of 0.50 mg L–1 for the simulation test, as 
stated in Section 5.3.1. These data were used as the upstream boundary condition for the 
HEC-RAS model. The other boundary conditions and model data remained unchanged. 
Figure 5.4 shows the results of the simulation test in terms of NO3-N concentration at 
Chilgok Weir. Table 5.3 shows the number of days with CyanoHABs after one week at 
Chilgok Weir, obtained after applying the machine learning model based on the NO3-N 
concentration shown in Figure 5.4. 
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Figure 5.4. Results of the simulation test (the NO3-N concentrations at Chilgok Weir 
using the hypothetical data and the HEC-RAS model) 

Table 5.3. Results of the simulation test (the number of days with CyanoHABs after one 
week at Chilgok Weir using the NO3-N concentrations of Figure 5.4) 

CyanoHABs Observation 
Increment  

of 0.50 mg L–1 

Decrement  

of 0.50 mg L–1 

Occurrence 72 days 66 days 103 days 

Nonoccurrence 154 days 160 days 123 days 

Sum 226 days 226 days 226 days 

The results of the simulation test showed a negative correlation between the NO3-N 
concentration upstream and the number of days with CyanoHABs, as shown in Table 5.3. 
These findings indicated that an increase in the NO3-N concentration upstream resulted 
in a decrease in the number of days with CyanoHABs at Chilgok Weir, as expected. 
Hence, the simulation results demonstrated the validity of both the machine learning 
model and the HEC-RAS model. 

5.4.2 Optimization results 
We simulated the time series data for the decision variables, QA, QI, and CI, 
corresponding to a period of 1826 days over five years from 2015 to 2019 by applying 
the two objective functions presented in Section 5.2.3. The optimization process involved 
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the application of constraints for the nine cases outlined in Section 5.3.2. The optimization 
results were obtained as shown in Figure 5.5, which presents the Pareto front for each 
case. 

 

  

(a) Case 1                                                       (b) Case 2 

  

(c) Case 3                                                       (d) Case 4 

  

(e) Case 5                                                       (f) Case 6 

Figure 5.5. Cont. 
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(g) Case 7                                                       (h) Case 8 

 

(i) Case 9 

Figure 5.5. Pareto front (OF1 and OF2 are the objective functions related to water 
quantity and water quality, respectively.) 

The differences were minor between the optimal solutions, as shown through the range 
of the x-axis (OF1) and y-axis (OF2) in Figure 5.5. This would lead to only small 
variations between the decision variables for the solutions. To further examine the 
relationship between the decision variables and the optimal solutions, three optimal 
solutions were selected for each case, as shown in Figure 5.5. These included a solution 
of most minimizing the first objective function (OF1 min.), a solution of most minimizing 
the second objective function (OF2 min.), and a median of the optimal solutions. The 
simulation results, as shown in Figure 5.6, confirmed slight differences between the 
decision variables (QA+QI and CI) corresponding to the three selected solutions in the 
nine cases. 
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(a) QA+QI for Case 1                                      (b) CI for Case 1 

  

(c) QA+QI for Case 2                                      (d) CI for Case 2 

  

(e) QA+QI for Case 3                                      (f) CI for Case 3 

Figure 5.6. Cont. 
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(g) QA+QI for Case 4                                      (h) CI for Case 4 

  

(i) QA+QI for Case 5                                      (j) CI for Case 5 

  

(k) QA+QI for Case 6                                      (l) CI for Case 6 

Figure 5.6. Cont. 
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(m) QA+QI for Case 7                                      (n) CI for Case 7 

  

(o) QA+QI for Case 8                                      (p) CI for Case 8 

   

(q) QA+QI for Case 9                                      (r) CI for Case 9 

Figure 5.6. Optimization results (QA+QI and CI) for three optimal solutions (OF1 min., 
OF2 min., median) 
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Figure 5.7 shows the results of QJ and CJ simulated by the constraints specified in the 
nine cases. These QJ and CJ were used as the upstream boundary conditions for the river 
water quality model. In Cases 1–5, the simulation results indicated that the values of QJ 
were consistently greater than or equal to QWD throughout the entire period. On the other 
hand, the simulation results of Cases 6–9 showed that the values of QJ might be lower 
than QWD. This is because Cases 6–9 used the observation data (QO) as the constraint 
on QA+QI, as shown in Table 5.1. Furthermore, the simulation results confirmed that CJ 
did not exceed the CR specified in each case. 

 

  

(a) QJ for Case 1                                        (b) CJ for Case 1 

  

(c) QJ for Case 2                                        (d) CJ for Case 2 

Figure 5.7. Cont. 
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(e) QJ for Case 3                                        (f) CJ for Case 3 

  

(g) QJ for Case 4                                        (h) CJ for Case 4 

  

(i) QJ for Case 5                                        (j) CJ for Case 5 

Figure 5.7. Cont. 
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(k) QJ for Case 6                                        (l) CJ for Case 6 

  

(m) QJ for Case 7                                        (n) CJ for Case 7 

  

(o) QJ for Case 8                                        (p) CJ for Case 8 

Figure 5.7. Cont. 
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(q) QJ for Case 9                                        (r) CJ for Case 9 

Figure 5.7. Optimization results (QJ and CJ) for three optimal solutions (OF1 min., 
OF2 min., median) 

5.4.3 NO3-N dynamics at Chilgok Weir 
The NO3-N dynamics at Chilgok Weir were simulated by using the QJ and CJ values for 
the three optimal solutions (OF1 min., OF2 min., and median) as the upstream boundary 
conditions for the river water quality model. We used two models for the simulation: the 
HEC-RAS model and the surrogate model. The surrogate model was developed to 
replicate the NO3-N dynamics simulated by the HEC-RAS model, as mentioned in 
Section 5.2.4. 

We assessed the performance of the surrogate model by using both the graphical method 
and the traditional performance indices such as R2, NSE, and RMSE (Root Mean Square 
Error). Figure 5.8 shows the simulation results of the NO3-N concentrations at Chilgok 
Weir for Case 1. Although the simulation results of the two models were not 100% 
identical, the trend of the NO3-N concentration, whether increasing or decreasing, was 
almost the same. The performance indices for the surrogate model are shown in Table 5.4. 
R2 and NSE were higher than 0.90 and 0.80, respectively. In addition, RMSE was less 
than 0.20 for all cases. These performance indices are represented by Equations (4.2), 
(4.3), and (5.7), respectively (Moriasi et al., 2015). Based on these performance measures, 
the performance of the surrogate model can be judged as high. 

 𝑃𝑃𝑀𝑀𝑆𝑆𝑃𝑃 = �
1
𝑀𝑀
�(𝑂𝑂𝑖𝑖 − 𝑆𝑆𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (5.7) 

where O is observational data and S is simulation result. 
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Figure 5.8. Simulation results of the NO3-N concentrations at Chilgok Weir using the 
HEC-RAS model and the surrogate model for three optimal solutions 

 

Table 5.4. Performance of the surrogate model for three optimal solutions 

Case 
R2 

OF1 min. OF2 min. median 

Case1 0.921 0.921 0.920 

Case2 0.918 0.917 0.918 

Case3 0.915 0.912 0.914 

Case4 0.905 0.902 0.905 

Case5 0.907 0.906 0.907 

Case6 0.954 0.954 0.954 

Case7 0.943 0.943 0.943 

Case8 0.932 0.932 0.932 

Case9 0.943 0.943 0.943 
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Table 5.4. Cont. 

Case 
NSE 

OF1 min. OF2 min. median 

Case1 0.910 0.912 0.911 

Case2 0.908 0.908 0.908 

Case3 0.887 0.880 0.884 

Case4 0.846 0.837 0.842 

Case5 0.896 0.893 0.895 

Case6 0.948 0.947 0.947 

Case7 0.920 0.919 0.919 

Case8 0.884 0.881 0.882 

Case9 0.935 0.934 0.934 

Case 
RMSE 

OF1 min. OF2 min. median 

Case1 0.129 0.129 0.129 

Case2 0.131 0.132 0.131 

Case3 0.136 0.138 0.137 

Case4 0.154 0.155 0.155 

Case5 0.138 0.139 0.138 

Case6 0.098 0.098 0.098 

Case7 0.118 0.119 0.119 

Case8 0.140 0.142 0.141 

Case9 0.110 0.110 0.110 

 

Apart from the high performance, the surrogate model had the advantage of saving 
computation time by approximately 1/3 or 1/4 compared to the HEC-RAS model. Despite 
these advantages, we needed to evaluate the final outcome of this study using the NO3-N 
concentrations simulated by the surrogate model. The final outcome is the number of days 
with CyanoHABs after one week at Chilgok Weir. 
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5.4.4 Prediction of the occurrence of CyanoHABs at Chilgok 
Weir 

We simulated the number of days with CyanoHABs after one week at Chilgok Weir. The 
simulation results were obtained by using the NO3-N concentrations simulated by the two 
river water quality models (HEC-RAS and surrogate models). As shown in Table 5.5, the 
prediction results based on the surrogate model were significantly different from those 
based on the HEC-RAS model despite the high performance (see Table 5.4) of the 
surrogate model itself. Given the importance of ensuring the accuracy of the river water 
quality model in this study, we analyzed the simulation results based on the HEC-RAS 
model. 

Table 5.5. Simulation results of the number of days with CyanoHABs after one week at 
Chilgok Weir for three optimal solutions 

Case 
HEC-RAS Model (Unit: days) 

OF1 min. OF2 min. median 
Case1 71 72 70 
Case2 68 69 69 
Case3 67 70 68 
Case4 62 61 62 
Case5 71 73 72 
Case6 75 74 75 
Case7 69 69 69 
Case8 70 73 72 
Case9 70 70 70 

Case 
Surrogate Model (Unit: days) 

OF1 min. OF2 min. median 
Case1 76 76 76 
Case2 77 77 77 
Case3 77 77 77 
Case4 76 76 76 
Case5 77 77 77 
Case6 73 73 73 
Case7 74 74 74 
Case8 73 73 73 
Case9 73 74 74 
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By comparing the observational data of 72 days with a cyanobacterial cell density of 1000 
or higher from 2015 to 2019, we assessed the effect of reducing the number of days with 
CyanoHABs for nine cases. The results showed that, except for Case 6, the number of 
days was 72 or less in eight cases. Therefore, the applicability of the framework for the 
optimal operation of reservoirs was demonstrated in terms of reducing the frequency of 
CyanoHABs at Chilgok Weir. 

Case 4 had the most noticeable effect in reducing the number of days with CyanoHABs 
among the nine cases. This simulation result of Case 4 would appear to be related to the 
constraint on the maximum amount of water from the Imha reservoir, which accounted 
for 70% of the Design Discharge (QD). This is because increasing the amount of water 
from the Imha reservoir would raise the likelihood of increasing the pollution load of 
NO3-N downstream, as water quality could be regulated from the reservoir using the SWF. 
On the other hand, Case 6 showed the simulation result exceeding 72 days despite the fact 
that Case 6 had the objective functions and constraints which were formulated for the 
same purpose of reducing the number of days with CyanoHABs as the other cases. 

As shown in Figures 5.6k and 5.6l for Case 6, CI for the optimal solutions varied near 
Min. CI while QA+QI was constrained on QO. This means that the variation in CI more 
greatly affected not only CJ but also the NO3-N concentrations at Chilgok Weir than 
QA+QI. Comparing Case 6 with Cases 7–9, the values of CI for Cases 7–9 varied near 
Max. CI as shown in Figures 5.6m–5.6r even if the simulation results of water quantity 
for Cases 7–9 were similar to those for Case 6. As a result, the number of days with 
CyanoHABs at Chilgok Weir increased since CI (NO3-N concentration) for Case 6 was 
low. 

Interestingly, the simulation results in Cases 1 and 2 revealed that the effect of reducing 
the number of days with CyanoHABs would be produced with only the constraint on the 
water quality. The performance of Case 2 outweighed that of Case 1. In Cases 1 and 2, 
the reference concentrations (CR) were 3.11 mg L–1 and 3.50 mg L–1, respectively. The 
other constraints in the two cases were the same. This result showed insight into how to 
reduce the frequency of occurrence of CyanoHABs downstream by controlling the quality 
of water from a reservoir by using the SWF, even with the same amount of water. 

Among the simulation results in Cases 7–9, the reducing effect of the number of days 
with CyanoHABs was most significant in Case 7, followed by Case 9 and then Case 8. 
Cases 7–9 imposed constraints on the quantity of water based on the observational data 
(QO). These simulation results indicated that the optimal joint operation of the two 
reservoirs would lead to a reduction in the number of days with CyanoHABs using the 
same amount of water from the two reservoirs as the observational data. Nonetheless, the 
effect of Case 7 (69 days) was not as remarkable as that of Case 4 (61–62 days), where 
the constraint on the water quantity was set based on the water demand (QWD) and QD. 
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These simulation results suggest that the quantity of water from the reservoirs can have 
an impact on the NO3-N loadings downstream. 

The simulation results for the given cases confirmed that optimal operation of reservoirs, 
which simultaneously consider both the quantity and quality of water, would effectively 
decrease the frequency of CyanoHABs downstream. However, this method may not 
always be practical, as in Case 6, where the simulation result showed the number of days 
exceeding 72. This outcome was likely due to the indirect use of optimization results (QJ 
and CJ), which served as upstream boundary conditions of the river water quality model, 
for predicting the occurrence of CyanoHABs at Chilgok Weir. Thus, to achieve tangible 
results in reducing the frequency of CyanoHABs downstream, the series of processes 
outlined in the framework should take place in an orderly and systemic manner. 

5.5 CONCLUSIONS 

In this study, we demonstrated the applicability of the framework (see Figure 1.1) for a 
decision support system aimed at reducing the frequency of CyanoHABs at Chilgok Weir 
of the Nakdong River in South Korea, based on multi-objective optimization of the joint 
operation of the Andong and Imha reservoirs. This framework was designed by using 
three models: the machine learning model, the optimization model, and the river water 
quality model. In order to resolve the computational constraints on the optimization loop, 
a surrogate machine learning model which could replace the process-based model was 
developed. To demonstrate the applicability of this framework, these models were applied 
to the observational data from 2015 to 2019. The simulation results showed that the 
implementation of this framework would reduce the incidence of CyanoHABs 
downstream. Accordingly, this new approach to reservoir operation considering both the 
quantity and quality of water had applicability in terms of mitigating CyanoHABs 
downstream. Additionally, the framework is a novelty in terms of efficiency as it can be 
a part of a solution to the problem of CyanoHABs without using an additional amount of 
water from a reservoir. 

The framework established in this study offered a methodology not to prevent the 
occurrence of CyanoHABs but to reduce their frequency. Nevertheless, the framework 
has advantages in terms of efficiency for two reasons. First, it can decrease the frequency 
of CyanoHABs in rivers without incurring any costs, unlike the current technologies for 
algae removal (Yang et al., 2023). Second, the optimal operation of reservoirs does not 
require an additional amount of water, unlike the reservoir operation which has been 
involved in flushing water to reduce the frequency of CyanoHABs in a river downstream. 
Therefore, this framework related to the management of water quality can efficiently 
support sustainable development in terms of human health and the management of aquatic 
ecosystems (Ustaoglu et al., 2021; Forio and Goethals, 2020). 
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However, this study also has limitations. First, this study did not consider flood routing 
in the reservoirs. In this regard, we used observational data from 2015 to 2019 that did 
not have a record of discharge through the spillway for flood control of the Andong and 
Imha reservoirs. Secondly, errors in the river water quality model, particularly in the 
surrogate model, had an apparently negative impact on the simulation results of the 
occurrence of CyanoHABs. Further studies are needed to transcend these limitations by 
dealing with the optimization process considering flood routing in reservoirs and the 
performance improvement of river water quality models. 
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6 CONCLUSIONS 

 

 

This chapter concludes this dissertation with reflections on the research questions raised 
in Chapter 1, research outcomes, research limitations, and recommendations for further 
studies. 

 

 

  



6. Conclusions 

 

106 

 

6.1 REFLECTIONS ON RESEARCH QUESTIONS 

The main objective of this dissertation is to demonstrate the applicability of the 
framework presented in Figure 1.1. This framework for optimal reservoir operation was 
established to decrease the frequency of occurrence of CyanoHABs at a specific location 
downstream. Throughout this dissertation, the research questions raised in Chapter 1 have 
been addressed in order to accomplish the main objective as follows: 

i.  What is an effective and efficient way to predict the occurrence of CyanoHABs 
at a specific location downstream in terms of linking with the operation of 
upstream reservoirs? 

In Chapter 3, the machine learning models ensuring high accuracy of more than 80% were 
developed using only two input features based on four classification algorithms such as 
k-Nearest Neighbor (k-NN), Decision Tree (DT), Logistic Regression (LR), and Support 
Vector Machine (SVM). To build an effective model for predicting the occurrence or 
nonoccurrence of CyanoHABs with high accuracy, input features were first selected by 
applying ANOVA (Analysis of Variance) and solving a multi-collinearity problem. Next, 
an oversampling method of SMOTE was adopted to overcome the problem of having an 
imbalanced dataset on CyanoHABs.  

As a result, a model applying the k-NN algorithm ensured high accuracy in predicting the 
occurrence or nonoccurrence of CyanoHABs at Chilgok Weir. This efficient model was 
developed by using only two input features: average air temperature (AT) and nitrate 
nitrogen (NO3-N). Understanding the input features affecting CyanoHABs downstream 
enables the development of viable strategies for reservoir operations. This operation of 
upstream reservoirs can be conducted for controlling the specific water quality parameter 
which is one of the input features of the machine learning model. The input feature to be 
controlled by reservoir operation is NO3-N concentration in this research. 

ii. How can a river water quality model be developed to simulate the fate and 
transport of water quality parameters involved in CyanoHABs to cover a river 
reach between upstream reservoirs and a specific location downstream? 

In Chapter 4, a river water quality model using HEC-RAS was built to simulate the 
dynamics of NO3-N concentration which was identified in Chapter 3 as one of the main 
factors for the occurrence of CyanoHABs at Chilgok Weir. This river water quality model 
covered the river reach between the confluence of the water from the upstream reservoirs 
(Andong and Imha) and the Chilgok Weir. 

By applying this river water quality model, the fate and transport of NO3-N were 
understood under the scenarios based on variations in the quantity and quality of water at 
the upstream boundary. The simulation results showed how different aspects of the NO3-
N dynamics downstream were depending on flow rate and NO3-N concentration upstream. 
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These changes in the quantity and quality of water at the upstream boundary can be 
artificially produced by the actual operation of the upstream reservoirs. 

iii. What optimization process for the operation of upstream reservoirs should be set 
up, for simultaneously considering both the quantity and quality of water 
downstream? 

In Chapter 5, the optimization model for joint operation of the upstream reservoirs 
(Andong and Imha) was produced to satisfy the demand for both the quantity and quality 
downstream. The decision variables for water quantity were constrained based on the 
optimal joint operation of the two reservoirs. The decision variable for water quality was 
the NO3-N concentration, which is the main factor for the occurrence of CyanoHABs at 
Chilgok Weir, by considering the use of a selective withdrawal facility of the Imha 
Reservoir. 

iv. How can the optimal operation of upstream reservoirs be coupled to a predictive 
model for CyanoHABs and a river water quality model? 

The three models developed in each chapter were connected within the framework. The 
optimization model first simulated the decision variables for the quantity and quality 
(NO3-N) of water released from the two reservoirs (Andong and Imha). By using the 
optimization results as the upstream boundary conditions, the river water quality model 
simulated the dynamics of NO3-N at Chilgok Weir. Finally, the machine learning model 
predicted the occurrence of CyanoHABs at Chilgok Weir by using the NO3-N 
concentrations simulated by the river water quality model as one of the input features. 

In Chapter 5, the applicability of the framework was demonstrated by simulations using 
observational data for the study area. The simulation results based on the framework 
confirmed that the frequency of CyanoHABs would be decreased compared to the number 
of days when CyanoHABs were observed at Chilgok Weir. 

6.2 RESEARCH OUTCOMES 

In this dissertation, a practical framework has been presented by combining different 
types of water quality models with optimal operation of upstream reservoirs for 
decreasing the frequency of CyanoHABs in a downstream river. The research of this 
dissertation has produced results that conform not only to the innovative approaches from 
the scientific perspective distinguished from the conventional reservoir operation, but 
also to the social interest through the improvement of the aquatic environment 
downstream, as presented in the following sections. 
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6.2.1 Scientific perspective 
This research provides the following scientific perspective: 

i. There is a novelty in the approach for the optimal operation of reservoirs to 
address the issues concerning CyanoHABs downstream. Although there have 
been studies on optimization for reservoir operation considering the demands on 
both the quantity and quality of water in a downstream river, these studies have 
focused not on biological parameters of water quality such as CyanoHABs, but 
on physical or chemical parameters (Yosefipoor et al., 2022; Saadatpour et al., 
2021; Saadatpour et al., 2020). The framework established in this research will be 
able to contribute to the decision-making of reservoir operation in practice to 
create a favorable aquatic environment downstream by reducing the incidence of 
CyanoHABs related to complex processes of biological parameters (Kim et al., 
2017; Park et al., 2017b). 

ii. The predictive model for CyanoHABs developed in Chapter 2 can help decision-
makers in the water sector to formulate effective strategies for preventing the 
occurrence of CyanoHABs at a specific location. If many factors were involved 
in decision-making, a decision-maker could struggle to implement a strategy. This 
means that a decision-maker can need a predictive model which produces intuitive 
results only with a few factors involved in issues to be addressed. In this regard, 
the machine learning model based on a classification algorithm using two input 
features can be effective in terms of decision-making. 

iii. The combination of the optimization model for reservoir operation (Chapter 5) 
with the one-dimensional river water quality model (Chapter 4) and the machine 
learning model (Chapter 3) can facilitate improved integration of the reservoir-
river system considering the quantity and quality of water. This comprehensive 
framework offers the optimal operation of the reservoir away from conventional 
approaches to reservoir operation which have only focused on water quantity. 
Additionally, efficiency in computing time can be improved by employing the 
one-dimensional model and data-driven model. In particular, this framework is 
anticipated to be practically used in South Korea, which introduced a policy on 
the integrated management of reservoirs and rivers in 2022. 

6.2.2 Environmental and social impact 
The results from this research are expected to have the following environmental and social 
impacts: 

i. The application of the framework can not only improve the aquatic environment 
in a river but also produce positive effects on public health by decreasing the 
frequency of CyanoHABs which produce toxic substances. 
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ii. Beneficial impacts on the aquatic ecosystem in rivers can be created owing to the 
improvement of the aquatic environment. Although this research did not carry out 
the ecological assessment, mitigating CyanoHABs can provide fish and other 
organisms with favorable environments. 

iii. A reduction in the cost of producing drinking water can be achieved as the quality 
of raw water in rivers can be improved without using an additional amount of 
water from reservoirs. 

iv. Practical applications of this research method to South Korea can provide an 
opportunity to settle the social conflict between different stakeholders regarding 
the question of whether the river water quality has become low due to the Four 
Major Rivers Restoration Project or not by reducing the frequency of CyanoHABs 
in rivers. 

v. This research can make a significant contribution towards expanding the scope of 
the role of reservoirs from only ensuring water supply to improving the water 
environment of rivers. Furthermore, the research context of this dissertation can 
ultimately lead to a paradigm shift in reservoir operation as there is increasing 
demand for clean water. However, for the paradigm shift in reservoir operation, 
reservoirs should be equipped with SWFs or joint operation of reservoirs must be 
carried out. Agencies in charge of reservoir operation need to recognize the 
necessity for these structural or non-structural measures including costs to be paid. 
These costs may seem to be a drawback in the short term, but the advantages in 
the long term outweigh the drawback. This is because these measures will be one 
of the solutions to problems with water quality caused by climate change and thus 
will support sustainable development in the water sector. 

6.3 LIMITATIONS AND RECOMMENDATIONS 

6.3.1 Research Limitations 
This research focused on controlling the NO3-N concentration in the river to reduce the 
frequency of occurrence of CyanoHABs, since NO3-N was selected as main input feature 
of the machine learning model. Choosing NO3-N as main input feature was the result of 
the feature selection based on not only the theoretical knowledge of CyanoHABs but also 
a rational approach to data analysis, as mentioned in Chapter 3. Nonetheless, this study 
may have limitations regarding ecological parameters considered, because factors such 
as TN (Total Nitrogen) and TP that are widely recognized as main predictors for 
CyanoHABs (Rousso et al., 2020) were not incorporated in the input features of the 
machine learning model. Accordingly, in the process of selecting input features (water 
quality data) related to the occurrence of CyanoHABs, a more theoretical understanding 
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of the complex mechanisms of algal growth would be needed, and detailed consideration 
related to the water quality processes may be required. 

CyanoHABs are widely known to frequently occur in a condition of nutrient over-
enrichment such as nitrogen and phosphorous (Paerl and Otten, 2013; Paerl et al., 2001; 
Noori et al., 2021). Nevertheless, NO3-N was negatively correlated with the occurrence 
of CyanoHABs at Chilgok Weir as shown in Chapter 3. Interestingly, while a positive 
correlation between nitrogen compounds and CyanoHABs is widely accepted, the 
relationship between them can depend on site-specific factors and cyanobacteria species 
present (Park et al., 2021a; Zakova et al., 1993; Harrow-Lyle and Kirkwood, 2020; Deng 
et al., 2007; Jahan et al., 2010; Rousso et al., 2020). This highlights the need for context-
specific approaches to managing freshwater systems, which take into account local 
conditions and the ecology of the system. 

Despite the importance of identifying cyanobacteria species, the dataset on cyanobacterial 
cell density was not split into the groups of harmful cyanobacteria genera when 
developing the machine learning model. This was because analysis considering 
cyanobacteria species could cause the problem of an insufficient number of instances for 
the dataset. Hence, this machine learning model has limitations, since it did not involve 
the distinction of different cyanobacteria species. 

In addition, because of this relationship between NO3-N and CyanoHABs at Chilgok Weir, 
releasing water with a high concentration of NO3-N from the reservoirs can decrease the 
frequency of CyanoHABs. However, this reservoir operation may cause the problem of 
increasing the NO3-N concentration in a downstream river. Therefore, constraints on 
NO3-N for the optimization process should be carefully formulated to address this issue. 
In this regard, we imposed constraints on the NO3-N concentration downstream using the 
reference concentration (CR). These constraints enabled the NO3-N concentration 
downstream to be maintained below CR. 

6.3.2 Recommendations for further studies 
One of the most significant factors in developing a robust predictive model is data 
availability (Goethals and Forio, 2018; Ho and Goethals, 2022). Fortunately, data on 
CyanoHABs including cyanobacterial cell density have been regularly examined and 
managed by the environmental authority in South Korea. However, obtaining water 
quality data is more difficult than collecting data on water quantity. This is because most 
water quality data are generally collected in situ and obtained in laboratory experiments. 
In this regard, these water quality data are available on a weekly or monthly basis. Water 
quality modelling requires hydrological or hydraulic data and meteorological data 
collected at least on a daily basis as well as water quality data. The problem of differences 
in the time interval between these data may affect the performance of the predictive model. 
To resolve this problem, the need for frequently collecting water quality has arisen. 
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Emerging technologies such as real-time and on-site data collection based on remote 
sensing and the Internet of Things (Chowdury et al., 2019; Ho and Goethals, 2022) can 
be pragmatic solutions to the problem. Further research will be able to demonstrate the 
effectiveness of linking these technologies regarding real-time data collection with the 
framework established in this study. 

This research did not incorporate the simulation of water quality in reservoirs 
corresponding to Step 2 of the framework. This decision was made based on the objective 
of this dissertation, which was aimed at demonstrating the applicability of the framework 
using observational data on water quality in the two reservoirs. Further studies will be 
able to make a practical application of the framework through the use of the modelling 
systems, such as CE-QUAL-W2, EELCOM-CAEDYM, and EFDC, for the simulation of 
water quality in reservoirs (Gao and Li, 2014). 

This study can offer scalability for enhancing sustainable development when linked to 
ecological assessments in a river. The impact of mitigating CyanoHABs on the aquatic 
ecosystem can be first analyzed and the analysis result can be included as a factor of 
reservoir operation (Forio and Goethals, 2020). Further studies on the reservoir operation 
considering ecological assessments will be able to suggest innovative approaches in terms 
of the diversity of aquatic ecology in addition to the quantity and quality of water. 

As the framework established in this study focused on only one specific location, the 
Chilgok Weir, further studies can be aimed at reducing the incidence of CyanoHABs at 
multiple locations. If the main predictors for CyanoHABs depend on a location, machine 
learning models, river water quality models, and optimization models should be 
developed corresponding to each location. Machine learning models first need to be 
developed corresponding to multiple locations, and the main predictors of the occurrence 
of CyanoHABs should be selected for each location. River water quality models can be 
built for each location to simulate the dynamics of the multiple parameters of water 
quality selected as the main predictors. An optimization model can be designed to address 
objective functions regarding water quantity and the multiple parameters of water quality. 
To simplify the objective functions, a water quality index can incorporate the multiple 
parameters of water quality (Yosefipoor et al., 2022; Saadatpour et al., 2021; Saadatpour 
et al., 2020). 

Concerning decision-making, the predictive models using nominal or ordinal data can be 
more efficient than real-valued data as the results using the former type of data are much 
more intuitive (Kim et al., 2020). Nonetheless, building a model based on real-valued 
data, rather than on a classification basis, could support more detailed decision-making. 
Further research would be needed on whether the feature selection process presented in 
this study can improve the accuracy of such a model. 

Since cyanobacteria are one of the biological parameters of water quality with complex 
mechanisms, more studies recently have been conducted on predicting the occurrence of 
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CyanoHABs using data-driven models (Rousso et al., 2020), which are developed with 
historical datasets. As these datasets are outcomes of complicated processes for 
CyanoHABs, further studies can be conducted by using machine learning models with 
multiple combinations of input features, combined with Interpretable Artificial 
Intelligence (IAI) and eXplainable Artificial Intelligence (XAI) that provide post hoc 
explanations based on ecological aspects (Başağaoğlu et al., 2022). 
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