
 
 

Delft University of Technology

No (good) loss no gain
Systematic evaluation of loss functions in deep learning-based side-channel analysis
Kerkhof, Maikel; Wu, Lichao; Perin, Guilherme; Picek, Stjepan

DOI
10.1007/s13389-023-00320-6
Publication date
2023
Document Version
Final published version
Published in
Journal of Cryptographic Engineering

Citation (APA)
Kerkhof, M., Wu, L., Perin, G., & Picek, S. (2023). No (good) loss no gain: Systematic evaluation of loss
functions in deep learning-based side-channel analysis. Journal of Cryptographic Engineering, 13(3), 311-
324. https://doi.org/10.1007/s13389-023-00320-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13389-023-00320-6
https://doi.org/10.1007/s13389-023-00320-6


Journal of Cryptographic Engineering (2023) 13:311–324
https://doi.org/10.1007/s13389-023-00320-6

REGULAR PAPER

No (good) loss no gain: systematic evaluation of loss functions in deep
learning-based side-channel analysis

Maikel Kerkhof1 · Lichao Wu1 · Guilherme Perin2 · Stjepan Picek2

Received: 9 October 2021 / Accepted: 23 April 2023 / Published online: 28 May 2023
© The Author(s) 2023

Abstract
Deep learning is a powerful direction for profiling side-channel analysis as it can break targets protected with countermeasures
even with a relatively small number of attack traces. Still, it is necessary to conduct hyperparameter tuning to reach strong
attack performance, which can be far from trivial. Besides many options stemming from the machine learning domain, recent
years also brought neural network elements specially designed for side-channel analysis. The loss function, which calculates
the error or loss between the actual and desired output, is one of the most important neural network elements. The resulting
loss values guide the weights update associated with the connections between the neurons or filters of the deep learning neural
network. Unfortunately, despite being a highly relevant hyperparameter, there are no systematic comparisons among different
loss functions regarding their effectiveness in side-channel attacks. This work provides a detailed study of the efficiency of
different loss functions in the SCA context. We evaluate five loss functions commonly used in machine learning and three
loss functions specifically designed for SCA. Our results show that an SCA-specific loss function (called CER) performs
very well and outperforms other loss functions in most evaluated settings. Still, categorical cross-entropy represents a good
option, especially considering the variety of neural network architectures.

Keywords Side-channel analysis · Deep Learning · Loss function · Evaluation

1 Introduction

Side-channel analysis (SCAs) represents a powerful type of
implementation attack on cryptographic algorithms. A usual
division of side-channel analysis is into direct attacks and
two-stage (profiling) attacks. Profiling attacks assume an
“open” device (or a copy of it). By building the model based
on the leakage of this device, the key recovery of the attack
device requires only a fewmeasurements. Today some of the
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most powerful representatives of profiling attacks come from
the deep learning domain [4, 19, 31]. Literature indicates that
such attacks can break targets equipped with countermea-
sures but require a careful hyperparameter tuning to counter
such protection mechanisms [12]. Unfortunately, due to the
complexity of the deep learning architectures, finding the
best hyperparameter combination is a challenging task.

Loss functions, one of the tunable hyperparameters, play a
central role in training a deep learning model. They are used
to calculate the error or loss between the actual and desired
output; the resulting value is propagated back to learn, i.e.,
update the weights associated with the connections between
the neurons or filters of the deep learning network. The choice
of the loss function can influence the performance of the
resulting deep learning model [10, 33], which is also recog-
nized in the SCA domain.

1.1 Related works

In recent years, deep learning has become more popular in
the context of SCA thanks to its flexibility and strong attack
performance in different attack settings [4, 12, 16, 17, 23, 28,
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36]. Many of these works focus on optimizing the network
architectures to increase the model’s attack capabilities. For
instance, Zaid et al. [36] proposed a methodology to find
good-performing architectures for SCA. Kim et al. [12] also
researched different architectural choices and the influence
of noise. More recently, different frameworks have been pro-
posed to automate the network tuning [24, 32]. However, all
of these works have in common that no considerations about
the used loss function are made. When they first explored
using deep learning techniques for SCA [16], the authors
mentioned that categorical cross-entropy or themean squared
error is commonly used loss function. Later work on deep
learning for SCA seems to exclusively use either categorical
cross-entropy [3, 19, 36] or mean squared error [18, 28].

More recently, three novel loss functions specifically for
usage in the context of SCAhave been proposed: ranking loss
(RKL) [35], cross-entropy ratio (CER) [37], and focal loss
ratio [11]. The detailed discussion can be found in Sect. 2.3.
These papers compare the newly proposed loss functions to
the categorical cross-entropy. Unfortunately, the extent of
these comparisons is limited, and only a single architecture
or leakage model is tested.

To the best of our knowledge, no broad comparison has
been made between commonly used loss functions such as
categorical cross-entropy, mean squared error, or hinge loss
and these novel SCA-based loss functions on different archi-
tectures, leakage models, and datasets.

1.2 Motivation and contributions

To verify the generality of various proposed loss functions,
there is a strong demand for a systematic evaluation of dif-
ferent loss functions in diverse attack settings. In this work,
we aim to fill in that gap. More precisely, we systematically
compare commonly used loss functions and novel SCA-
specific loss functions on four publicly available datasets and
with two commonly used leakage models. We evaluate the
performance from various perspectives: attack performance
(guessing entropy), neural network types and sizes, and the
required training time. Our results show the outstanding per-
formance of recently proposed FLR and CER loss functions,
especially when using the Hamming Weight leakage model
[11, 37], which can represent a challenging scenario due to
class imbalance and the lack of reliability of machine learn-
ing metrics [22]. The performance of ranking loss, another
recently proposed loss function, is strongly connected with
specific neural network architectures: it may perform the
best in some specific settings, but in most cases, FLR and
CER are better options. Finally, a common choice in deep
learning-based SCA, categorical cross-entropy, is confirmed
as a competitive option due to its low calculation overhead
and the generality with different neural network architec-
tures.

1. Profiling

2: A�ack

Profiling model

Profiling 
traces

Profiling 
labels

A�ack 
traces

Rank keys based 
on predic�ons

Fig. 1 Profiling side-channel attack

2 Background

2.1 Profiling side-channel analysis

For profiling side-channel analysis, an attacker is assumed to
have a clone device identical (or at least similar) to the device
to be attacked. The attacker uses O leakages measurements
from the profiling device (with known label information, i.e.,
secret variables to be attacked) to build a profiling model.
Then, the attacker uses Q measurements from the device to
be attacked to infer the secret information. A demonstration
of the profiling attack is depicted in Fig. 1. Depending on
the profiling technique, one builds different types of profil-
ing models: a template for the template attack and machine
learning models. This paper focuses on machine learning
models.

2.2 Deep learning-based side-channel analysis

Supervisedmachine learning aims to learn a function f map-
ping an input to the output based on examples of input–output
pairs. Supervised learning happens in two phases: training
and testing. This corresponds to profiling SCA phases, com-
monly denoted as profiling and attack phases.

A dataset is defined as a collection of side-channel traces
(measurements) T, where each trace ti is associated with an
input value (plaintext or ciphertext)di and a key ki .We divide
the dataset into disjoint subsets where the training set has M
traces, the validation set has V traces (thus, O = M + V ),
and the attack set has Q traces.

1. Profiling phase: the goal is to learn θ (vector of parame-
ters) minimizing the empirical risk represented by a loss
function L on a dataset T of size M (i.e., on the profiling
(training) set).

2. Attack phase: the goal is to make predictions about the
classes

y(x1, k
∗), . . . , y(xQ, k∗),

where k∗ represents the secret (unknown) key on the
device under the attack. The outcome of predicting with
a model f on the attack set is a two-dimensional matrix
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P with dimensions equal to Q × c (where c denotes the
number of classes). The cumulative sum S(k) for any key
candidate k is then used as a maximum log-likelihood
distinguisher:

S(k) =
Q∑

i=1

log(pi,v). (1)

The value pi,v is the probability of the class v derived
from the key k and input di through a cryptographic func-
tion CF and a leakage model l.

In SCA, an adversary aims to reveal the secret key k∗;
standard performance evaluation metrics are the success rate
(SR) and the guessing entropy (GE) [27]. This work uses the
guessing entropy metric to estimate the attack performance.
More specifically, given Q traces in the attack phase, an
attack outputs a key guessing vector g = [g1, g2, . . . , g|K|]
in decreasing order of probability: g1 is the most likely and
g|K| the least likely key candidate.

2.3 Loss functions

In this section, we discuss loss functions that will be used
in our experiments. We use ŷ to denote the predicted vector
and y to denote the ground truth vector. Finally, we use yi to
denote the i th true value and ŷi to denote the corresponding
predicted value.

2.3.1 Mean squared error

One of the simplest loss functions is the mean squared error
(MSE) [26]. The MSE is calculated by taking the mean of
the pairwise squared differences between the elements of the
predicted vector ŷ and the vector y with the true values in
one-hot format:

mse(y, ŷ) = 1

M

M∑

i=1

(yi − ŷi )
2, (2)

where M denotes the number of training samples. MSE and
its variations have been used to solve regression problems
(thus, the function’s output f is continuous) [26]. The loss is
calculated evenly for each sample, regardless of which class
a sample belongs to. By minimizing the loss, we reduce the
distance between the predicted and true labels. MSE is also
usable for classification problems [10] and has been used in
the context of SCA as discussed before [29].

One variation of theMSE is the mean squared logarithmic
error (MSLE) [1]. Instead of using the difference between
the vectors directly, the MSLE is calculated by taking the
difference of the natural logarithm applied to the true yi and

predicted ŷi values. Compared with its counterpart, MSLE
is less sensitive to outliers in the data.

msle(y, ŷ) = 1

M

M∑

i=1

(log(yi + 1) − log(ŷi + 1))2. (3)

Finally,we consider the logarithmof the hyperbolic cosine
(log cosh) as a loss function. Log cosh loss, like MSLE, is
also robust to outliers [30] when compared with MSE:

log_cosh(y, ŷ) = 1

M

M∑

i=1

(log(cosh(ŷi − yi )). (4)

2.3.2 Classification losses

The de facto standard loss function for classification tasks
is the categorical cross-entropy, sometimes also called the
negative log-likelihood, softmax loss, log loss, or just cross-
entropy. It has been used in various classification tasks [8,
13, 34] and is also commonly used in SCA [3, 12, 16, 17].
Cross-entropy is ameasure of the difference between two dis-
tributions. Minimizing the cross-entropy, which represents
the difference between the distribution modeled by the deep
learningmodel and the true distribution of the classes, should
therefore improve the predictions of the neural network:

cce(y, ŷ) = − 1

M

M∑

i=1

c∑

j=1

yi, j log(ŷi, j ), (5)

where c denotes the number of classes.
Another loss function used for classification is the (cate-

gorical) hinge loss [5]. The hinge loss increases the margin
between the predicted probability for correct classes and
wrong classes with the highest predicted probability:

cat_hinge(y, ŷ) = max(1 − yi ŷi , 0). (6)

2.3.3 Custom SCA losses

More recently, three SCA-specific loss functions have been
proposed. One is the ranking loss (RKL) function proposed
byZaid et al. [35]. The ranking loss uses both the output score
of the model and the probabilities produced by applying the
softmax activation function to these scores. The idea behind
the ranking loss is to compare the rank of the correct key byte
and the other key bytes in the score vector before the softmax
function is applied:

rkl(s) =
∑

∈K
k �=k∗

(
log2

(
1 + e−α(s(k∗)−s(k))

))
, (7)
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where s is the vector with scores for each key hypothesis
generated by processing the training samples by the model,
K is the set of all possible key values, k∗ is the correct key,
and s(k) is the score for key guess k, calculated by looking at
the rank of k inK. Finally,α is a parameter that needs to be set
dependent on different attack settings. The implementation
of the ranking loss function is provided by [35] on GitHub.1

Note that α is a critical parameter for RKL. We optimize this
hyperparameter based on a random search.

The other custom loss function is the cross-entropy ratio
(CER) loss proposed by Zhang et al. [37]. The authors intro-
duced the CER as an SCAmetric to estimate the performance
of a deep learning model in the context of SCA. Meanwhile,
this metric could be used as a loss function directly by using
a shuffled set of labels:

cer(y, ŷ) = cce(y, ŷ)
1
N

∑N
i=1 cce(yri , ŷ)

, (8)

where cce is the categorical cross-entropy. yri denotes the
vector with the true probabilities, 1 for the correct class and
0 for all others, for each class but randomly shuffled (shuffled
labels). The variable N denotes the number of shuffled sets
to use. The authors do not provide a value for N , but state that
increasing N should increase the accuracy of the metric. In
our first experiments, to balance computational complexity
and the potential increase in accuracy, we use N = 10.

Recently, the focal loss ratio (FLR) loss function [11]
was proposed, and it combines the benefits from focal loss
function [14], categorical cross-entropy, and CER. FLR is
computed as:

FLR(y, ŷ) = α(1 − ŷ)γ cce(y, ŷ)
1
N

∑N
i=1 α(1 − ŷ)γ cce(ysi , ŷ)

, (9)

Aligned with CER, y and ys denote the true and shuffled
labels, respectively; cce is the categorical cross-entropy, and
N is the number of negative samples to use. α and γ are
introduced to weigh the classes and emphasize hard sam-
ples for both the numerator and denominator, respectively.
In this paper, we set α, γ , and N to 0.25, 2, and 3, respec-
tively, following the original paper on selecting these three
hyperparameters [11].

2.4 Datasets

2.4.1 ASCAD fixed key (ASCADf)

The ASCAD dataset is generated by taking measurements
from an ATMega8515 running masked AES-128 and is pro-
posed as a benchmark dataset for SCA [3]. The dataset

1 https://github.com/gabzai/Ranking-Loss-SCA.

consists of 50,000 profiling traces and 10,000 attack traces,
each trace consisting of 700 features. In this paper, we set
the number of profiling traces to 50,000. In the attacking
phase, we use up to 2000 traces. The profiling and attack-
ing sets both use the same fixed key. We denote this dataset
as ASCADf. We attack the third key byte as that is the first
masked byte. Both Hamming weight (HW) and Identity (ID)
leakage models are considered in this paper. The dataset is
provided on the ASCAD GitHub repository.2

2.4.2 ASCAD random key (ASCADr)

The ASCADr dataset consists of 200,000 profiling and
100,000 attack traces, each consisting of 1400 features.
Unlike the ASCADf dataset, the keys used in the profiling
set are variable. In this paper, we set the number of profil-
ing traces to 50,000. In the attacking phase, 3000 traces are
used. We attack the third key byte as that is the first masked
byte. We will consider attacks in the Hamming weight (HW)
and Identity (ID) leakage models. The ASCADf dataset is
available in the ASCAD GitHub repository.3

2.4.3 CHES CTF 2018 (CHES_CTF)

This datasetwas released in 2018 for theConferenceonCryp-
tographic Hardware and Embedded Systems (CHES).4 The
target implementation is masked AES-128 encryption exe-
cuting on a 32-bit STM microcontroller. In our experiments,
we use 45000 traces for the training set, which contain a
fixed key. The validation and test sets consist of 5000 traces
each, where we used 3000 traces for the attack phase. We
considered a pre-processed dataset version where each trace
consists of 2200 features.Unlike theASCADdataset, the key
used in the training and validation set differs from the key
for the test set. We attack the first key byte and we consider
the Hamming weight and Identity leakage models.

2.4.4 DPAv4.2

The DPAv4.2 dataset contains side-channel measurements
obtained fromamaskedAES-128 software implementation.5

The countermeasure is based on RSM (Rotation S-box
Masking). The original DPAv4.2 contains 80,000 traces
subdivided into 16 groups of 5000 traces. Each group is
defined with a separate but fixed key. Each measurement has
1,704,046 samples. In thiswork,we conduct our side-channel

2 https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1/ATM_AES_v1_fixed_key.
3 https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1/ATM_AES_v1_variable_key.
4 https://chesctf.riscure.com/2018/news.
5 http://www.dpacontest.org/v4/42_doc.php.

123

https://github.com/gabzai/Ranking-Loss-SCA
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://chesctf.riscure.com/2018/news
http://www.dpacontest.org/v4/42_doc.php


Journal of Cryptographic Engineering (2023) 13:311–324 315

analyses on the interval of second-order leakages from key
byte 12, which has the highest SNR from its secret shares.
The attacked interval starts at sample 305000 and finishes at
sample 315,000. Finally, we apply a resampling process with
a resampling window of 10 and step of 5 to the concatenated
intervals, resulting in 2000 samples per measurement. We
attack the dataset in both the Hamming weight and Identity
leakage models.

2.5 Leakagemodel

Two leakage models are considered in this paper:

1. Hamming weight (HW): the attacker assumes the leak-
age is proportional to the sensitive variable’s Hamming
weight.When considering theAES cipher (8-bit S-box6),
this leakage model results in nine classes.

2. Identity (ID): the attacker considers the leakage in the
form of an intermediate value of the cipher. When con-
sidering theAES cipher (8-bit S-box), this leakagemodel
results in 256 classes.

3 Experimental setup

Several different hyperparameters, such as the number of lay-
ers and neurons per layer, the activation function each neuron
uses, and the loss function, influence the training process of
a deep learning model. By picking a single model with cer-
tain training hyperparameters, we could end up with certain
hyperparameters that influence one loss function more than
the others. A demonstration is shown in Fig. 2. Each model
is trained with the same hyperparameters except for the loss
function and learning rate. When the learning rate is set to
0.00001 (Fig. 2a), CER loss performs the best, followed by
CCE and RKL. However, when the learning rate is increased
to 0.001 (Fig. 2b), CCE and RKL, the loss functions that lead
to a converged GE, are not functional anymore. At the same
time, for the CER loss, the performance is even increased.
Thus, benchmarking with a single attack model and the fixed
attack setting cannot represent the generality of a loss func-
tion. Knowing this, we consider the following scenarios for
a fair loss function comparison:

Hyperparameter optimization We perform hyperparameter
optimization via a random search for each considered loss
function for best-performing models. More specifically, we
perform the following steps to select and evaluate the best
model:

6 Or any cipher with 8-bit S-box.

Fig. 2 Allmodels are trainedwith the samehyperparameters, except the
learning rate. The learning rate influences the performance ofmodels for
some loss functions more than others. In the scenario with the learning
rate set to 0.001, the performance of the CER loss is increased while
the other losses fail to result in a model converging to a GE of 1. The
example is given for the ASCADf dataset in the ID leakage model

1. Generate, train, and test 100 randommodels for each loss
function.

2. Select the best-performing model in terms of guessing
entropy.

3. Train and test the selected model 10 times to compensate
for the effect of random weight initialization.

4. From those ten models, select the median model per loss
function based on guessing entropy.

5. Compare the attack performance of each loss function in
terms of guessing entropy and training time.

We decided to showcase the results for the median model
since (1) it avoids outlier behavior, whether being a well-
performing model or a model that cannot converge at all and
(2) there is no guarantee that any of the tested models would
behave exactly as the averaged model.

Architecture typesWeconsider two architecture types: multi-
layer perceptrons (MLPs) and convolutional neural networks
(CNNs). Both of these types of deep learning architectures
are commonly used for SCAandhave shown excellent results
in previous works [3, 16, 36]. For each dataset, leakage
model, and loss function combination, we deploy a hyper-
parameter search with two searching ranges, resulting in
different network sizes. Following this,we can investigate the
training efficiency of loss functions with different learning
capabilities of models. Table 1 provides the hyperparame-
ter ranges for small MLP models. For larger MLP models,
we provide the hyperparameter ranges in Table 2 following
[20] to balance between good performance and a broad range
of possible values per hyperparameter. We train each model
for 200 epochs. Knowing that the number of epochs highly
impacts the performance of a model, we introduce an early-
stopping mechanism to terminate the training process when
themodel starts overfitting. Guessing entropy is used tomon-
itor the model’s performance during training, following the
approach presented in [25]. In terms of optimizers, since the
Adam and RMSProp optimizers perform well [3, 20], both
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Table 1 Hyperparameter space for multilayer perceptrons–small mod-
els

Hyperparameter Options

Dense layers 2, 3, 4, 5, 6

Neurons per layer 10, 20, 30, 40, 50

Learning rate 0.005, 0.0025, 0.001, 0.0005, 0.00025,
0.0001, 0.00005, 0.000025, 0.00001

Batch size 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000

Activation function ReLu, SELU, ELU, Tanh

Optimizer Adam, RMSProp

Total search space 18,000

Table 2 Hyperparameter space for multilayer perceptrons–large mod-
els

Hyperparameter Options

Dense layers 2, 3, 4, 5, 6, 7, 8

Neurons per layer 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000

Learning rate 0.005, 0.0025, 0.001, 0.0005, 0.00025,
0.0001, 0.00005, 0.000025, 0.00001

Batch size 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000

Activation function ReLu, SELU, ELU, Tanh

Optimizer Adam, RMSProp

Total search space 50,400

optimizers are considered as an option and, naturally, the
range of learning rates is broadened.

For the CNNhyperparameters, as shown in Tables 3 and 4,
we again define two search ranges. Additionally, a batch nor-
malization layer, as introduced by [9], is applied after the
input layer and after each convolutional block, as done in
earlier work to improve the performance of CNNs [3, 4, 20].
Note that the size of the architectures is not directly correlated
with the search space size. Even for a small architecture, there
can be many possibilities to build it.

Attack scenariosTo perform a broad comparison between the
different loss functions, we define 32 different attack scenar-
ios to make the comparison for each dataset. Each of these
scenarios combines a dataset, a leakage model, an architec-
ture type, and a network search range.

Loss functionsThe loss functions that are tested are functions
commonly used in different deep learning applications and
novel loss functions specifically developed for SCA, intro-
duced in Sect. 2.3. It is worth noting that when performing
the random search with RKL, a fixed α (e.g., the value used
in the original paper) could restrict to specific attack set-
tings. Therefore, we included α as a hyperparameter to be

Table 3 Hyperparameter space for convolutional neural networks–
small models

Hyperparameter Options

Dense layers 1, 2

Neurons per layer 10, 20, 30, 40, 50

Convolutional layers 1, 2, 3, 4

Convolutional filters 4, 8, 12

Kernel size 10, 20, 30, 40

Strides 5, 10, 15, 20

Pooling size 2, 3, 4, 5

Pooling stride 2, 3, 4, 5

Pooling type Max pooling, average pooling

Learning rate 0.005, 0.0025, 0.001, 0.0005, 0.00025,
0.0001, 0.00005, 0.000025, 0.00001

Batch size 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000

Activation function ReLu, SELU, ELU, Tanh

Optimizer Adam, RMSProp

Total search space 44,236,800

Table 4 Hyperparameter space for convolutional neural networks–
large models

Hyperparameter Options

Dense layers 2, 3

Neurons per layer 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000

Convolutional layers 1, 2

Convolutional filters 4, 8, 12, 16, 32

Kernel size 10, 12, 14, 16, 18, 20

Strides 5, 10, 15, 20

Pooling size 2, 3, 4, 5

Pooling stride 2, 3, 4, 5

Pooling type Max pooling, Average
pooling

Learning rate 0.005, 0.0025, 0.001,
0.0005, 0.00025, 0.0001,
0.00005, 0.000025,
0.00001

Batch size 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000

Activation function ReLu, SELU, ELU, Tanh

Optimizer Adam, RMSProp

Total search space 55,296,000

searched and optimized during the network searching. The
possible values are 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

Pre-processing The pre-selected window of features is used
for both datasets, and no further selection of points of inter-
est is made. Interestingly, we notice that directly applying the
raw features or following earlier work that scales the SCA
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features to values between 0 and 1 [15, 35] could lead to
the loss value equal to a NaN during training, indicating the
possibility of triggering the exploding gradients problem: the
gradients during the backpropagation are getting too large or
small. In the worst case, it may cause the learning process to
fail [21]. To verify this, Fig. 3 shows the largest and smallest
gradient of the input layer for each epoch during the training
process of one of these models. The cause of the exploding
gradient problem could come from combining several hyper-
parameters, e.g., the activation function, the loss function,
and the 0–1 normalization used during pre-processing. For
instance, normalizing all feature values to values between 0
and 1 removes any negative values from the profiling traces.
The output of the activation function, such as ELU [shown
in Eq. (10)], is equal to the input for all x > 0. This means
that the output is unbounded, i.e., there is no limit on how
large it can get. What is more, it also means that, since we
normalized to values between 0 and 1, the output of the acti-
vation function will always be positive (also holds for the
ReLU activation function). This causes the gradients to get
too large, leading to a poorly performingmodel or even failed
training.

ELU(x) =
{
x if x > 0

α(ex − 1) if x < 0.
(10)

There are two methods to solve this problem: (1) normal-
izing the leakage traces by Z-score normalization (standard-
ization); (2) clipping the gradients when they get too large or
too small.We followed the first method as the pre-processing
method for all experiments. Although the attack performance
could be similar to when 0–1 normalization is used, the pos-
sibility of triggering the exploding gradient problem can be
dramatically reduced.

4 Experimental results

In this section, we discuss the results for each of the exper-
iments above. We will look at the performance of the loss
functions onmodels optimizedvia randomsearch.The exper-
iments were performed with a single CPU and an NVIDIA
GTX 1080 Ti graphics processing unit (GPU) with 11 Giga-
bytes of GPU memory and 3584 GPU cores.

4.1 ASCADf

We first consider the performance of the different loss func-
tions on the ASCADf dataset. Figure4 shows the guessing
entropy over 100 attacks for each of the scenario’s best-
performing models generated with small and large search
spaces, respectively. The required number of attack traces

Fig. 3 The largest and smallest gradient of the input layer during train-
ing of a model with CER loss in the median MLP with the HW leakage
model when different pre-processing is done. The gradients explode
to large values with 0–1 normalization, but they do not when Z-score
normalization is applied

to reach guessing entropy zero is listed in the legend of the
figure.

First, we notice that the ASCADf dataset is vulnerable to
SCA with various attack settings. Most of the loss functions
lead to a model that can retrieve the correct key in less than
1000 traces with best-performing MLP and CNN architec-
tures. Besides, even a simple hyperparameter optimization
approach via random search results in an improved attack
performance. For instance, CER models reach a GE of 1 in
less than 300 traces, which is comparable to the state-of-the-
art attack performances [31, 35]. Besides, one can observe
that using a small or big network architecture may influence
the attack efficiency but does not significantly change the
performance rank of the different loss functions.

From the results, althoughnot the best, the commonly used
categorical cross-entropy does perform very consistently in
these scenarios. On the other hand, CER and FLR are almost
always the top-two loss functions thanks to the introduction
of negative samples in the loss functions. In terms of CER, it
is worth noting that Zhang et al. [37] only test this loss func-
tion on the HW leakage model, i.e., imbalanced data. Our
results show that the CER loss is also very suitable for the
ID leakage model. For FLR, the emphasis on the hard sam-
ples makes it even outperforms CER inmost evaluated cases.
Therefore, we can conclude that when the ASCADf dataset is
considered, the best choice of loss functions is the FLR loss.
Surprisingly, ranking loss (RKL) performs less consistently
in the tested scenarios. Zaid et al. [35] compared the RKL
function to categorical cross-entropy and CER loss, stating
that the RKL outperforms both those functions when the
hyperparameter α is properly tuned for each class. However,
they only compared a single CNN architecture and consid-
ered the ID leakagemodel [35]. Our results confirm that RKL
works better with the ID leakage model than the HW leakage
model with the ASCADf dataset. However, except in two test
scenarios where RKL performs the best (Fig. 4d), it always
performs worse than CER and FLR loss functions.
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Fig. 4 GE of the best MLP and CNN models on the ASCADf dataset

Another remark that has to bemadewhen discussing these
results is the required training time. When all other hyperpa-
rameters are the same, FLR, RKL, and CER loss functions
are significantly slower (training speed time)when compared
with other loss functions. In the case of RKL, the cause for
the slower training time is the pairwise comparison that is
part of the loss. This part of the loss is calculated by compar-
ing the rank of the correct key with all the other key guesses.
This causes an impact on the training time when the HW
leakage model is considered, where the output consists of
nine classes, and an even larger impact when the ID leak-
age model is used, where there are 256 output classes. The
increased training time for the FLR and CER loss is also due
to how those loss functions are constructed.

For instance, CER is calculated by dividing the cross-
entropy over the profiling traces by the average of N times
the set of profiling traces with shuffled labels. Calculating
the cross-entropy over the shuffled traces N times causes
slower training than other loss functions. However, as shown
in Fig. 5, different values of N give approximately the same
NTGE , where NTGE represents the number of attack traces
required to reach guessing entropy of zero. Moreover, for
lower values like N = 1 or N = 2, there is no noticeable
difference in training time compared with, for example, the
categorical cross-entropy, while there is still an increase in
performance in GE. A similar argument holds for FLR as
it uses a small value of N , which has a negligible influence
on the training time while providing excellent performance
[11].

The worst-performing loss function is the categorical
hinge loss. A possible reason for this could be the combi-

Fig. 5 Guessing entropy and training time for the optimizedmodelwith
CER loss using different values of N

nation of a low learning rate and the low number of classes
when the HW leakage model is considered. Furthermore,
if we look at the definition of the categorical hinge loss as
described in Sect. 2.3, the negative part of the loss is calcu-
lated based on the wrong class with the highest probability,
i.e., the biggest classification error. Unfortunately, there are
many wrong classes (255) and only one correct class with
the ID leakage model. Due to the random initialization of the
weights, the loss coming from the wrongly classified traces
will stay at approximately 1 at the start of training, and the
main contribution to the change of the loss has to come from
a correctly classified example.

Overall, when considering the ASCADf dataset, if an
adversary uses a random search for hyperparameter tuning,
considering the FLR and CER loss functions increase the
model’s capability in retrieving the secret key thanks to their
resilience to various attack settings. Indeed, they significantly
outperform models with categorical cross-entropy, ranking
loss, and other loss functions.
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4.2 ASCADr

Next, we look at the results on the ASCADr dataset. Figure6
shows the GE performance on the best-performing models
with different search ranges.

For the experiments performed on the ASCADr dataset,
we see results comparable to those on the ASCADf dataset.
Inmost scenarios, themodels trainedwith FLR andCER loss
perform the best, followed closely by those trained with cate-
gorical cross-entropy.RKLperformsworse thanCCE inmost
cases. Finally, categorical hinge loss performs theworst in the
majority of cases. Surprisingly, CCE performs the best when
working with an ID leakage model (e.g., Fig. 6b, d), indi-
cating its excellent performance when working with smaller
network size output nodes. With the ID leakage model or
larger network sizes, more complicated loss functions, such
as FLR and CER, outperform CCE in most cases.

4.3 CHES_CTF

The results of the CHES_CTF dataset are shown in Fig. 7.
Similar to ASCADf and ASCADf datasets, the difference
in the network size could vary the required number of
attack traces to reach guessing entropy zero. However, it
has a limited impact on the benchmark of different loss
functions. Compared with previously evaluated datasets, the
CHES_CTF dataset requires more attack traces to break the
target. Specifically, the HW leakage models lead to more
powerful attacks than its counterpart, which aligns with the
results from literature [24, 32]. When looking at each loss
function, although all of the loss functions lead to GE con-
vergence, FLR and CER remain the top-two candidates in
breaking the target when using theHW leakagemodel.When
moving to the ID leakagemodel, the results aremore difficult
to interpret due to their random performance. Still, CER and
FLR remain the top candidates that lead to the fastest GE
convergence. CCE and RKL loss functions are in the middle
regarding GE performance. Finally, categorical hinge loss
performs the worst among all considered loss functions.

4.4 DPAV4.2

In general, DPAV4.2 is the simplest dataset to break com-
pared to the other dataset evaluated before. The results with
a large search range are shown in Fig. 8. Many loss functions
can break the target within 100 attack traces. Nevertheless,
one can observe the performance variation between different
loss functions. For instance, while most of the loss function
breaks the target with less than 40 traces when using MLP
and HW leakage model (Fig. 8b, e), categorical hinge loss
requires ten times more attack traces, which is consistent
with the observation from the other datasets. On the other
hand, the minor performance variation of CCE, CER, RKL,

and FLR is due to the variation in the neural network archi-
tecture. Still, when using CNN with the HW leakage model,
FLR loss outperforms other loss functions.

5 Discussion

We systematically compared different loss functions in var-
ious deep learning-based SCA scenarios for the first time in
the SCA domain. The results reveal interesting behavior of
the different loss functions and allow us to answer the fol-
lowing questions:

How does the choice of loss function impact the SCA per-
formance in terms of guessing entropy for different datasets
and leakagemodels?Wegenerally see that the FLR andCER
loss perform the best in most of the experiments. Specifi-
cally, while Zhang et al. [37] already demonstrated that CER
loss might work well on balanced data, our experiments con-
firm this for datasets often used in the SCA research domain.
The other novel loss function proposed specifically for deep
learning-based SCA, ranking loss, fared less well in our
experiments. Besides being slower to train than models with
other functions, it performed best in isolated scenarios. In all
the other scenarios, CER and FLR remain the best choices.

Furthermore, our work also shows that categorical cross-
entropy, often used by default in related works, is a solid
choice. It performs well with almost any type of combina-
tion of hyperparameters within the hyperparameter search
space we defined. Regarding guessing entropy, models with
categorical cross-entropy are often third in the performance
(after CER and FLR loss). Besides that, our results show
that it is faster to train and needs less complex models. To
conclude, it showed no obvious weaknesses.

The other loss functions we considered did, in general,
not show promising results. While used before in related
works, MSE and related loss functions such as MSLE and
log cosh are almost always outperformed by the categori-
cal cross-entropy, CER, and FLR loss when an attack can
be performed successfully. Besides that, MSE also does not
have any significant benefits regarding training time ormodel
complexity.

What is the influence of loss functionswhendifferent archi-
tectures likemultilayer perceptrons and convolutional neural
networks are considered? In our results, we saw no consis-
tent differences between the behavior of loss functions with
MLPs or CNNs. In general, loss functions that performed
well did so on both architecture types and any network size.

How does the choice of loss function impact the train-
ing time? In terms of the training time, we do not see large
differences between the different loss functions despite the
more complex models. The only function that is significantly
slower to train than others is the ranking loss. Especially
when the ID leakage model is considered, and the number of
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Fig. 6 GE of the best MLP and CNN models on the ASCADr dataset

Fig. 7 GE of the best MLP and CNN models on the CHES_CTF dataset

classes is high, the training time is increased by up to a factor
of ten. The CER and FLR loss functions are also slower when
a larger N is chosen. Nevertheless, a larger N is not required
for better-performing models.

Our work aims to improve the tools that researchers have
when performing SCA with deep learning. To that end, we
created an overview of strengths and weaknesses in Table 5
for each loss function, as seen in our experiments.

6 Conclusions and future work

This work investigates several loss functions commonly used
in the machine learning domain and compares them with
three recently proposed SCA-specific loss functions. We
analyze four datasets and two leakage models, considering
guessing entropy, neural network size, and training size. Our
results show that the FLR and CER loss are, in most cases,
the best choice for the loss functionwhen using deep learning
for SCA. The categorical cross-entropy is still a solid choice,
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Fig. 8 GE of the best MLP and CNN models on the DPAv4.2 dataset

while ranking loss, or other loss functions, should be used
more carefully, as they only work the best in specific attack
settings. We emphasize that the goal of this paper is not to
select a single best loss function to be used in every scenario.
Rather, we aimed to:

1. Systematically evaluate several loss functions and com-
pare their performance in a fair setting. Indeed, related
works do not provide a detailed comparison of multiple
loss functions, making it necessary to compare results
over different research works and settings.

2. Provide a choice of a few loss functions that performwell
in different settings to be included in future works as part
of the hyperparameter tuning process. In this direction,
we indeed recognize two loss functions (FLR and CER)
that we recommend being used.

Since our experiments confirm the outstanding perfor-
mance of some custom SCA loss functions, this opens inter-
esting future research directions for better SCA-optimized
loss functions than are generalized for different attack scenar-
ios. We notice that in other domains in which deep learning
is applied, several works have also introduced new loss func-
tions that improve the performance in that context [2, 6, 7,
14]. These functions are created to deal with certain charac-
teristics of the targeted datasets, such as a class imbalance or
a low number of measurements per class. It remains an open
question of how more complex loss functions would per-
form in the SCA context. We consider especially interesting
whether it would be possible to design a loss function that can
deal with the desynchronization countermeasure. While this

seems far from trivial, possibly borrowing certain concepts
from the shift invariance and shift equivariance of convolu-
tional neural networks would be interesting. Next, it would
be interesting to explore what elements of loss functions per-
form well and how to combine them to construct new loss
functions for side-channel analysis. Finally, we consider the
setting where the number of features is not too high (i.e., pre-
processed interval). It would be interesting to re-evaluate the
performance of various loss functions when using raw fea-
tures.
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