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Various computational fluid dynamic simulations in engineering, such as external aerodynamics, only
need the silhouette of an input geometry. Often, it is a laborious process that can take up many
human hours. In addition, the CAD geometries are too complex and contain intricate features and
topological holes. We showcase an effortless way to shrink-wrap triangulated surfaces with the sole
intent of topology and surface simplification. Building upon the concepts of mathematical morphology
and newer advancements in geometry processing, we present a straightforward and robust algorithm
that can guarantee genus-zero surfaces. Our techniques are equally applicable to general polyhedral
meshes and well-suited for handling both oriented and unoriented point clouds. We provide examples
using unoriented point clouds to demonstrate the versatility of our algorithms. We have designed
our algorithms with a wide variety of applications in mind. However, we specifically highlight
their capability for aerodynamic simulations, fluid volume extraction, and surface simplification.
Additionally, we emphasize the practicality and ease of implementing the proposed algorithms, and
we chain additional algorithms to develop variants of our wrap algorithm.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Shrink-wrapping for surface remeshing

The shrink-wrapping algorithm can be a helpful tool for
emeshing triangulated (or any polyhedral) surfaces. Most algo-
ithms take a volumetric approach to solve the problem. They
ork by projecting a voxelized approximation of the input surface
nto itself. Several papers in the literature focus on this problem,
ith most of the work being accomplished in the industry. Attene
t al. [1] provide a very detailed comparison of different mesh
epair algorithms. The ‘‘Global repair section’’ of their review
rticle offers an excellent overview of state-of-the-art algorithms
sing a global mesh repair and simplification approach. A key
ighlight of this discussion is that all authors take a volumetric
pproach to the problem. However, none of them explicitly solve
he problem of shrink-wrapping with CAE simulations in mind.
hese algorithms are generic mesh simplification approaches, pri-
arily focused on computer graphics applications. Some notable
ontributions are from Esteve et al. [2] and Nooruddin et al. [3],
ho also employ volumetric approaches. Esteve et al. [2] shrink a
iscrete membrane to remesh surface meshes and point clouds,
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while Nooruddin et al. [3] take a strict morphological approach
to the problem. One major drawback in their works is the lack of
control over the surface genus. In the case of Nooruddin et al. [2],
they oversimplify the meshes in all examples unlike our shrink-
wrap mesh simplification. They also do not guarantee a manifold
mesh as output, making their results unsuitable for numerical
simulation. Y. K. Lee et al. [4] provide a good summary of ex-
isting techniques tailored to the shrink-wrapping problem for
engineering applications. They highlight the effectiveness of these
algorithms in closing gaps and removing interior parts of complex
geometry, along with their potential as remeshing algorithms.
They also show that gap detection and bridging are usually
achieved with the help of poor/coarser voxelization, and there
is often a need to intersect these voxels with the input surface
mesh, which increases computational costs. Some algorithms [5]
require explicit tolerance values for the gaps and holes, which
could be advantageous in certain applications.

1.2. Notable contributions and limitations

More recent works on shrink wrapping are from the computer
graphics community. Point2Mesh[6] from Rana Hanocka et al.
solves the problem of shrink wrapping with a self-priori approach
that employs deep learning. Their algorithm was tailor-made for
point clouds. More recent work from Pierre Alliez et al. on three-
dimensional alpha wrapping [7] uses alpha shapes for shrink
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

M Triangulated mesh (or surface)
σ Structuring element
σr Structuring element radius
Tl Topological sphere level
ω Solid angle for a query point with

respect to an input mesh

wrapping surface meshes. A reference implementation of their
algorithm has been included in CGAL, and it is extremely robust
to various input geometries and can handle even line segments
as input. Depending on the alpha value, the geometry’s genus can
change. It can be considered a more robust surface reconstruction
algorithm that handles geometries with various defects. In a later
section, we make a more direct comparison of our work against
these works.

1.3. Recent advances in shrink wrapping

While the algorithms proposed in our present work can be
ine-tuned to function similarly, we explicitly focus on fully au-
omated genus simplification. In a later section, we make a more
irect comparison of our work against these works. Hence, we
ropose an algorithm that can close all the gaps in triangulated
urfaces and remove all internal structures. The significant con-
ribution in our work is an efficient way of computing genus
implified offset surface with the help of morphological opera-
ors. Our algorithms will guarantee an outcome even in the case
f imperfect geometries. Imperfections can range from missing
riangles to non-manifold edges or completely separated compo-
ents. We demonstrate the same in our numerical experiments.
e also extend the existing shrink-wrap algorithm for selec-

ive genus control. An existing semi-heuristic algorithm that we
eveloped [8] for hole detection is used to control the closing
perations so that only selective holes are closed.

. Morphological operators

Mathematical morphology is a vibrant subject that finds typ-
cal applications in the area of image processing [9]. However,
t has been extended to many other application areas, including
hree-dimensional geometry processing [10]. Broadly, the subject
f mathematical morphology is composed of four operators.

1. Erosion (M ⊖ σ )
2. Dilation (M ⊕ σ )
3. Opening ((M ⊖ σ ) ⊕ σ )
4. Closing ((M ⊕ σ ) ⊖ σ )

Mathematical morphology operators, such as erosion and di-
ation, are fundamental in various applications, including mesh
rocessing. Erosion is an iterative process that erodes a given
olume M (which can be in any dimension) using a structur-
ng element σ with a radius of σr . On the other hand, dilation
teratively expands the input volume, adding to its size.

In our work, we draw inspiration from Zhen Chen et al. [11],
ho employed morphological operations for computing discrete
urface offsets. However, our focus is on a more specific form
f mesh and topology simplification. Instead of computing exact
ffset surfaces, we aim to derive simplified or approximated
ffset surfaces that primarily serve the purpose of topological
implification. To represent all the morphological operators, we
2

utilize the Octree data structure, enabling the reuse of the mesh
for numerical simulation.

Additionally, we introduce a topological sphere level param-
eter that corresponds to the scaled structuring element radius,
denoted as σr , and scaled by the offset distance. This parameter
holds substantial importance in our methodology, influencing
the behavior and characteristics of the morphological operations
employed in our approach.

We also mention the work of Silvia Sellán et al. [12], who
propose a surface-only approach for selective modification of sur-
face meshes. However, their method has limitations with surface
flows and is not suitable for shrink wrapping applications. In our
work, we utilize iterative surface opening to achieve a spherical
topology, followed by iterative erosion for closure.

Detailed explanations of the different morphological operators
in the context of mesh generation are provided in the subsequent
sections.

2.1. Mathematical morphology of surface meshes

In our present investigation, the morphological operators uti-
lized bear similarities to their counterparts in image processing.
However, it is important to note some key distinctions due to
the nature of surface meshes. In image processing, morphological
operators are typically applied to simple two-dimensional grids,
where a binary image is represented on a Cartesian mesh with
binary mask values (0 and 1). This representation allows for a
straightforward application of morphological operators, as the
binary mask serves as an implicit representation of the object’s
boundaries.

In contrast, surface meshes lack an implicit mask as commonly
used in image processing. In order to perform morphological
operations on surface meshes, a volumetric representation of the
mesh needs to be calculated from its boundary representation.
This typically involves techniques such as voxelization or distance
field computation, which allow for the determination of the inte-
rior and exterior regions of the mesh. By converting the surface
mesh into a volumetric representation, we establish a comparable
binary mask that aligns with the principles of morphological
operators used in image processing. This enables the application
of morphological operations on the surface mesh.

It is worth noting that one key difference with our erosion
operator is that we do not erode the geometry beyond its original
boundary, as our focus is on preserving the internal volume.
This distinction is evident in our subsequent sections, where we
provide a detailed explanation of our erosion operator and its
specific behavior within the context of surface mesh processing.
By adapting and applying morphological operators to surface
meshes, we bridge the concepts of morphological operators in
image processing with our approach in mesh processing, allowing
for topology and surface simplification of surface meshes while
preserving internal volume.

Let us consider the dilation and erosion operators on binary
images and their geometric counterparts. Since other operators
such as opening and closing can be built as a combination of these
two, it is enough to understand these two operators.

2.2. Dilation

In the dilation process, we begin by dilating the given image
using a square as the structural element. This choice is natural
since images are represented as pixels, and using a square struc-
tural element simplifies the computation of adjacent neighbors
at the edge level. Once the image’s boundary is identified, per-
forming one step of dilation becomes a matter of finding the
neighboring faces of the border. A crucial aspect of this approach



V.K. Suriyababu, C. Vuik and M. Möller Computer-Aided Design 164 (2023) 103608

i
b
s

b

s selecting the neighbors in the positive normal direction of the
oundary. By repeating this process for the desired number of
teps, we can achieve the required criterion.
In the context of image processing, the dilation operation can

e implemented using the snippet in listing 1.
1 def dilation(image):
2 dilated_image = copy(image)
3 for each pixel p in image:
4 for each neighbor n of pixel p:
5 if n is a background pixel:
6 mark pixel p as a foreground pixel
7 break
8 return dilated_image

Listing 1: Pseudo code for dilation in image processing

Similarly, in the context of octree-based mesh processing, the
dilation operation can be implemented using the snippet in listing
2.
1 def dilation(mesh):
2 dilated_mesh = copy(mesh)
3 for each face f in mesh:
4 for each neighboring face n of face f:
5 if n is an empty face:
6 mark face f as a filled face
7 break
8 return dilated_mesh

Listing 2: Pseudo code for dilation in octree-based mesh
processing

These pseudo code snippets illustrate the process of dilation
in both image processing and octree-based mesh processing.

2.2.1. Erosion
The erosion operator also starts from the boundary of a given

image. However, it differs from the dilation operator in that
it finds the border neighbors in the negative normal direction,
typically within the image itself. A pivotal contrast to the dilation
approach is that an image cannot be eroded infinitely. At some
point, the erosion operation reaches a singularity where further
erosion is not possible.

In the case of shrink wrapping, it is essential to prevent the
erosion operation from destroying the internal volume of a sur-
face mesh. Therefore, the erosion operation usually stops at the
boundary of a surface mesh.

In the context of image processing, the erosion operation can
be implemented using the following pseudo code:
1 def erosion(image):
2 eroded_image = copy(image)
3 for each pixel p in image:
4 for each neighbor n of pixel p:
5 if n is a foreground pixel:
6 mark pixel p as a background pixel
7 break
8 return eroded_image

Listing 3: Pseudo code for erosion in image processing

Similarly, in the context of octree-based mesh processing,
the erosion operation can be implemented using the following
pseudo code:
1 def erosion(mesh):
2 eroded_mesh = copy(mesh)
3 for each face f in mesh:
4 if f is not on the boundary of the mesh:
5 for each neighboring face n of face f:
6 if n is a filled face:
7 mark face f as an empty face
8 break
9 return eroded_mesh

Listing 4: Pseudo code for erosion in octree-based mesh
processing
3

These pseudo code examples illustrate the process of erosion
in both image processing and octree-based mesh processing.

2.2.2. Closing and its extension to surfaces
The closing operator combines the dilation and erosion oper-

ations. In computer vision and image processing, this operator is
used to close holes (or missing pixels) in a binary image. In our
algorithms, we apply the same operation to three-dimensional
data to close holes in the meshes. For easy comparison in mesh
processing, we extract a three-dimensional surface of the same
geometry (by extruding the contour in the Z direction) and per-
form the closing operation on it. The results can be seen in
Fig. 4.

There are two differences compared to the image processing
approach:

• We do not erode beyond the boundary of the input geome-
try to preserve its shape.

• We project the eroded geometry onto the input geometry to
maintain its original topology.

Fig. 4 demonstrates the effect of the closing operation on a
three-dimensional surface. This geometry is equivalent to the
two-dimensional binary images shown in Fig. 3. In addition to
closing the holes caused by missing triangles, the closing opera-
tion also seals the topological holes in the mesh. Multiple levels
of closing are showcased in this case, demonstrating the ability
to achieve the desired topology by adjusting the number of wrap
operations. The explicit and implicit control of genus is further
discussed in later sections of the paper. This benefit is leveraged
for shrink wrapping surface meshes in external aerodynamic
simulations.

However, it should be noted that the straightforward closing
operation on its own is not suitable as it lacks a stopping criterion.
To address this limitation, our workflow incorporates a series
of algorithms and data structures, such as octrees, to efficiently
utilize these morphological operators for shrink wrapping surface
meshes. The details of these techniques are explained in the
subsequent section.

3. Shrink wrap algorithm

This work focuses on three versions of the wrapping algorithm
to cater to specific practical applications. These variants are as
follows.

1. Simple wrap
2. Smooth wrap
3. Developable wrap

The simple wrap algorithm acts as a base for all variants.
Additional algorithms are chained to the simple wrap algorithm
results to yield a smooth and developable version of the algo-
rithms.

3.1. Simple wrap

As stated earlier, the simple wrap algorithm acts as a common
denominator for all the variants of the algorithm proposed in the
present investigation. It has the following steps

1. Conversion of Boundary representation(B-Rep) to a volu-
metric representation (V-Rep)

2. Computation of signed distance function
3. Dilation of the input surface for a given topological sphere
level
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Fig. 1. Dilation operation on a binary image. The input image on the left is
dilated to obtain the image on the right.

Fig. 2. Erosion operation on a binary image.

Fig. 3. Closing operation on a binary image (black blobs on the left indicate
missing pixels), equivalent to holes or missing triangles in a surface mesh.

4. Erode the dilated surface to obtain a topologically hole-free
offset surface

5. Iteratively project and smooth the dilated surface
6. Remesh the surface using existing remeshing algorithms

(Optional).

We explain these individual components in detail along with
the respective algorithms in the subsequent sections.

3.1.1. B-Rep to V-Rep
It was shown earlier that geometry information needs to be

encoded as binary images for efficient computation of morpho-
logical operators in computer vision applications. This translates
to a boolean value in every voxel of a Cartesian mesh1 in three
dimensions. However, it would require intersecting the surface
mesh with the Cartesian mesh. This would only work for wa-
tertight surface meshes and lead to some inaccuracies in the
case of degenerate geometries. Hence, we do not physically in-
tersect the input geometry with the Cartesian mesh as we only
need a scalar field to distinguish the inside and outside of the
geometry. The usual workflow for Cartesian mesh generation

1 We use the terms Cartesian mesh and octree interchangeably throughout
he paper. The reader should be aware that all the computations are performed
n an octree, which we consider a special kind of Cartesian mesh
4

starts with a bounding box computation as shown in Fig. 6.
These can be an axis-aligned or oriented-bounding box. In either
case, the generated Cartesian mesh would not be very beneficial
for morphological operations. Morphological operators such as
erosion and dilation are applied in successive layers. For example,
the dilation operator starts from the boundary of a surface and
dilates the surface one layer after another, as shown in Fig. 1.
Since we use a cube or a voxel as a structuring element, it is
easier to perform these operations successively if the geometry
sits approximately in the center of the Cartesian mesh. If the
geometry is moved to the origin of the octree, a dilation operation
may not completely dilate the entire surface in a given step.
First, the mini ball algorithm [13] is used to obtain a tightly
fitting sphere of an input geometry as shown in Fig. 7. Then we
compute a bounding box for this sphere with a specified offset
threshold to ensure that our geometry always sits precisely at
the center of our voxelization. Next, we refine all the cells inside
the tightly fitting sphere as shown in Fig. 8. Post refinement, the
generalized winding number approach [14] helps distinguish the
cells inside and outside the geometry. The generalized winding
number algorithm gives a solid angle value at every vertex in
the octree mesh. This value is thresholded to mark the cells
in the octree as inside, outside, or boundary cells. This refine-
ment allows us to get a more accurate surface description during
the segmentation process. Spherical refinement also limits the
inside–outside queries to the cells within the sphere. As a result,
we do not need to query the generalized winding number for cells
outside the sphere, thereby saving computational time. Finally,
we also ensure a 2:1 refinement in our octree for all elements
in our workflow. The mesh generation approach referenced in
algorithm 1 can be used for any kind of numerical simulation
irrespective of the rest of the workflow.

3.1.2. Computation of signed distance function
It is evident that once the cells of the octree are classified into

inside and outside (using an approach such as generalized wind-
ing numbers in our case), an artificial signed distance function can
be bestowed upon the voxelization as shown in Fig. 10. We rely
on Generalized winding numbers since they are swift even on a
CPU-only computational environment and are immune to imper-
fections in the input surface to a large degree. A brief overview of
this approach can be seen in Appendix A. However, for the rest
of the algorithmic workflow, one only needs to categorize the
cells in the octree as inside or outside cells. These will be used
to build an approximate surface boundary which can be used for
morphological operations described in the consequent sections.
Our experimental observation has shown that a solid angle value
of 0.9 sr indicates cells inside a surface mesh, and everything else
can be marked as outside. The bounding sphere computed in the
mesh generation algorithm can be used to automatically mark all
the cells outside the sphere as outside cells.

We use the term artificial since we do not compute the exact
distance here. We only use an integer that indicates a particular
voxel’s relative position with its respective boundary voxel. As
will be evident later, we do not need an exact signed distance
field for computing a Genus simplified offset surface. A similar
approach has been used by other researchers [15] to calculate
intersection-free offset surfaces. We achieve the same by outward
propagation from the zero-level set voxels. This outward propa-
gation is done along the normal outward direction of the surface
mesh. Since we mark all the cells in the octree as inside or out-
side, zero level set voxels or boundary voxels can be determined
by finding cells that contain faces that are part of both inside and
outside cells. As opposed to the usual approaches, which intersect
the surface mesh with the octree mesh, our proposed method is
highly computationally efficient. All the morphological operations
are explained with the help of a maple leaf geometry shown in
Fig. 9.
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Fig. 4. Closing operation on a three-dimensional surface. This geometry is equivalent to the two-dimensional binary images in Fig. 3. Additional holes have been
intentionally introduced in the geometry. The closing operation is performed on the leftmost geometry and then projected onto the ground truth.

Fig. 5. Algorithm workflow.

5
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Fig. 6. Normal bounding box computation (In case of many geometries, a
anual offset threshold may be required for ensuring there are enough layers
f mesh for morphological operations. The threshold might also be different for
ifferent directions.).

Fig. 7. Spherical bounding box computation (In most cases, a threshold of
or 3 times the size of the bounding sphere is enough for all morphological
perations). The scaling will be uniform irrespective of the geometry since only
he sphere is scaled and the bounding box is always a perfect cuboid.

Fig. 8. Spherical refinement.

.1.3. Dilation driven approximated offsets
In the previous section, we proposed a straightforward method

o determine the zero level set or boundary voxels of a given
urface mesh inside an octree. We already established that a
ilation operation followed by an erosion operation performed in
sequence leads to the morphological closing operation as shown
n Fig. 3. Our investigation also reveals that one does not need to
ilate the boundary voxels across the entire voxelization. Instead,
e only need to dilate the input surface until we achieve a
pherical topology. Here, we use a user-specified parameter called
‘Topological sphere level’’. This parameter is the only user-
ontrolled input in the algorithm, and the choice of topological
phere level dictates the number of outward propagation levels
s shown in algorithm 2. The bigger the hole in the geometry, the
arger the topological sphere level. Effects of different Topological
phere levels are clearly shown in the numerical experiments. For
xample, the dilated maple leaf geometry can be seen in Fig. 11.
t is clearly evident that a spherical topology is achieved after
pproximately 15 levels.
6

Fig. 9. Maple leaf geometry.

Algorithm 1: B-Rep to V-Rep
Result: Voxelized mesh where every cell has a scalar

associated with it (inside / outside)
Initialise Surface;
Compute a tight bounding sphere using the mini ball
algorithm and store its radius and center ;

Calculate the bounding box of the sphere, which is offset at a
user-specified distance (2.0 in our experiments);

Initialize a Cartesian mesh with a specified cell size or
number of cells (64 * 64 * 64 in all of our experiments);

forall Cells of Cartesian mesh do
if Cell inside bounding sphere then

Mark for refinement;
end
else

Mark for coarsening;
end

end
forall Cells in bounding sphere do

Compute the Generalized winding number (This indirectly
gives us the solid angle for all the cells in the octree);

end
Mark cells outside bounding sphere as outside and store this
in the respective cells;

forall Cells in bounding sphere do
if Solid angle is higher than 0.9 steradians (based on our
experimental observation) then

Mark the cell as inside and store this in the respective
cell;

end
else

Mark the cell as outside and store this in the
respective cell;

end
end

If complete automation is required from input to projection,
the topological sphere level can be ignored, and the geometry can
be dilated to the maximum level.
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Fig. 10. Artificial signed distance function of a maple leaf (Computed using our
approach).

Fig. 11. Dilated maple leaf geometry with a spherical topology.

3.1.4. Erosion of dilated offset surface
The dilated surface should now have a spherical topology, and

it needs to be eroded towards the input surface. This process
is similar to the dilation except for the marching direction. The
number of levels would be the same as the topological sphere
level chosen during the previous step of the algorithm. Once
eroded, this will give a hole-free approximation of the input
geometry. Once the surface is eroded to the given ‘‘Topological
Sphere Level’’, the operation becomes straightforward. It is ex-
plained in detail in algorithm 3. The scalar field can be directly
eroded until it hits the boundary voxels. This is where the erosion
operation differs from the erosion operation in computer vision
algorithms. In the case of surface mesh, the geometry is never
eroded beyond the boundary voxels for volume preservation. This
approach is relatively simple since a manifold mesh can be easily
extracted without the need for any additional algorithms [16].

The offset surface is still embedded inside a volumetric mesh
as shown in Fig. 12, and a surface needs to be extracted. Due to
the artificial nature of the signed levels in the volumetric mesh, it
7

Algorithm 2: Dilation of the input surface
Result: Dilated surface stored in the voxelized mesh
Initialize interior_cells as seed_cells;
Initialize current_topological_sphere_level to 0;
while current_level ≤ topological_sphere_level do

Initialize a newer_seeds_cells_id vector;
forall cells in seed_cells do

forall cell_neighbours in voxelized_mesh do
if Neighbour is outside cell then

Add neighbour to newer_seeds_cells_id;
end

end
Set newer_seeds_cells_id as seed_cells;
Increment current_topological_sphere_level; if
current_topological_sphere_level eq
topological_sphere_level then

Store these cells as topological_sphere_cells;
end

end
end

is easy to distinguish the region where the genus simplified offset
meets the external offset surface. Surface extraction becomes a
simple task with this information. This is similar to the approach
proposed for identifying boundary voxels from inside and outside
voxels. The detailed algorithm for surface extraction is listed in
algorithm 4.

Algorithm 3: Erosion of the dilated offset surface
Result: Eroded surface stored in the voxelized mesh
Initialize topological_sphere_cells as seed_cell_ids;
forall topological_sphere_levels do

Initialize a newer_seeds_cells_id vector;
forall cells in seed_cells do

forall cell_neighbours in voxelized_mesh do
if Neighbour is from lower topological_sphere_level
then

Add neighbour to newer_seeds_cells_id;
end

end
Set newer_seeds_cells_id as seed_cells;

end
end
Final seed_cells form the basis for the Genus simplified offset
surface;

3.1.5. Projection and smoothing
The eroded surface needs to be projected onto the input ge-

ometry. With practicality in mind, we chose a point cloud- based
approach over direct projection on the triangulated surface. In
realistic industrial geometries, the construction of an AABB tree
is costly and time-consuming and leads to failure in many cases.
Since we chose to allow input meshes that are not perfectly
two-manifold, the point cloud-based approach will support a
broader range of input meshes, including those that are entirely
degenerate, as shown in the later section. We approximate the
input geometry as a uniformly sampled point cloud and then
construct a kD tree [17] on it. We also extended our algorithm
for point cloud due to this projection approach. However, one can
choose a more sophisticated method that projects directly onto
the triangles in the input surface. This might produce erroneous
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Algorithm 4: Surface Extraction
Result: Genus simplified watertight surface
nitialize topological_sphere_cells as seed_cell_ids;
orall topological_sphere_levels do

Initialize a newer_seeds_cells_id vector;
forall cells in seed_cells do

forall cell_neighbours in voxelized_mesh do
if Neighbour is from lower topological_sphere_level
then

Add neighbour to newer_seeds_cells_id;
end

end
Set newer_seeds_cells_id as seed_cells;

end
end
Final seed_cells form the basis for the Genus simplified
surface;

results if the surface mesh is completely degenerate. We experi-
mented with both a direct projection approach and the one using
point cloud sampling as shown in Fig. 13 and the results were
satisfactory for our point cloud approach.

Algorithm 5: Projection and Smoothing
Result: Projected and smoothed mesh
ample a uniform point cloud on the input surface;
uild a kD tree on the uniformly sampled point cloud;
orall vertices in the Extracted surface do

Find the nearest vertex in the kD tree and move the
vertex;

nd
orall vertices in the projected mesh do

Find one ring neighborhood ;
Average the position of the current vertex with the
vertices from the one ring neighborhood ;

nd

We can find the nearest neighbor in this point cloud for every
ertex in the eroded surface and move the vertex to this position.
nfortunately, results do not look good at this stage, and the
esh seems slightly tangled. However, our experiments show

hat a few cycles of Laplacian smoothing followed by projection
ill immediately provide better quality results, as seen in Fig. 5.
Our investigation also shows that the geometry can be double

rapped to achieve better quality results. In double wrapping,
he final result from the first run of the algorithm can be passed
ack onto the same workflow to produce a better quality ap-
roximation. The mesh at this stage is already analysis suitable.
f required, one can include an optional remeshing step for im-
roving the mesh quality further. The geometry practitioner is
ot required to follow our heuristic-based approach. They can
hoose any remeshing algorithm (commercial or public domain).
owever, the proposed algorithms provide satisfactory results in
ur investigation.

.1.6. Remeshing and quality improvement (optional)
This step is entirely optional. The projected surfaces are well

uited for analysis, and we show the same in numerical ex-
eriments for various surface and volumetric PDEs. However,
he smoothed surface may still have a few tangled edges and
riangles with lousy quality. Therefore, we remeshed the geome-
ries using existing algorithms available in open source libraries
8

Fig. 12. Eroded offset surface (Unsmoothed & Hole Free).

Fig. 13. Projected & smoothed mesh.

Fig. 14. Remeshed and quality improved maple leaf geometry.

such as Geogram and CGAL [18]. This approach seems to im-
prove the mesh quality in all our numerical experiments vastly.
Since we produce a genus zero surface in most cases, spher-
ical parameterization-based remeshing approaches can also be
considered an alternative. However, we found meshes at the
projection stage suitable for numerical simulations. Therefore, it
is not within the scope of our work to investigate a dedicated
remeshing approach. In fact, we use the geometries from the
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Fig. 15. Input geometries along with their simple and smooth wrapped geometries. It can be noticed that smooth wrap produces a smooth and high quality
riangulation due to the RVD based surface reconstruction algorithm.
rojection stage for the numerical experiments shown in the
ubsequent section and ignore the remeshing routine altogether
see Fig. 14).

.2. Smooth wrap algorithm

Our shrink wrap algorithm at its core is a topological simpli-
ication algorithm. Hence, it inherently simplifies the geometry
o a certain extent. However, specific applications may desire a
moother version of the output and might not need to preserve
he geometry features accurately. Hence, we introduce a version
f our algorithm called the smooth wrap. In some cases, the
imple wrap algorithm can introduce sharp edges, which may not
e desirable for specific applications (see Fig. 15).

Algorithm 6: Smooth wrap algorithm
Result: Smoothly wrapped mesh
etermine median edge length of the wrapped surface mesh;
ubdivide the simply wrapped mesh until all the edges are
divided to the median edge length;
niformly sample points on the surface;
moothly reconstruct a surface using RVD based approach;

Therefore, we use the longest edge subdivision algorithm to
plit the edges until it reaches an average edge length. Subdi-
ision allows uniform point sampling on the surface. Dobrina
oltcheva and Bruno Lévy proposed a smooth surface reconstruc-
ion based on the restricted Voronoi diagram [19]. This approach
oes not preserve any of the sharp features. However, it produces
smooth representation of the wrapped surface that can be

eadily used for practical applications.

.3. Developable wrap algorithm

Developable surfaces are highly valuable in architectural ap-
lications, as well as in manufacturing for producing sheet metal
odels during the early design stage. The key characteristic of a
evelopable surface is that it should be easy to manufacture. To
chieve this, there exist numerous sophisticated approaches that
an be employed.
In the context of triangular meshes, Oded Stein et al. have

onducted extensive research on the developability of such sur-
aces. Their work provides a comprehensive exploration of the
9

topic [20]. We encourage readers to refer to their excellent re-
search for further insights.

In our specific case, the wrapped geometry exhibits irregular
curvature and features. To enhance the manufacturability of such
geometries, Zhang et al. proposed a static/dynamic filtering al-
gorithm [21] for filtering and denoising meshes. This approach
iteratively removes weaker features from the wrapped geometry,
resulting in a simplified geometry that retains only the most
prominent features. By doing so, the geometry becomes easier to
manufacture (see Fig. 16).

More sophisticated approaches can be employed to transform
our wrapped meshes into specific developable surfaces. However,
for our investigation, we found the denoising approach to be
suitable due to its ability to consistently remove unnecessary
features in a wrapped geometry. We apply this algorithm as a
post-processing step on meshes wrapped using the simple wrap
algorithm. It is worth noting that this denoising approach can also
be utilized with the smooth wrap algorithm, providing flexibility
in its application.

4. Numerical experiments

We perform experiments on a wide variety of input geome-
tries that help underscore the robustness of our algorithm. We
noticed that even in the case of entirely ill-formed artifacts from
industry, we could guarantee some form of a Genus simplified
geometry. Our algorithm produced a valid two-manifold surface
mesh without any holes in all cases; a wide variety of surfaces
and their shrink-wrapped counterparts are shown in Appendix B.

4.1. Effect of topological sphere level

As stated earlier, ‘‘Topological sphere level’’ is the only pa-
rameter in the algorithm. In simpler terms, this is the number
of layers the algorithm needs to travel along the positive normal
direction of an input surface. It can be increased or decreased
depending on the size of the biggest hole in the geometry. Since
the algorithm is fast, one can choose the topological sphere level
value on trial and error. The algorithm could be allowed to
propagate to the maximum possible level. However, this might
significantly increase the algorithm’s run time, which is entirely
unnecessary in our case. We show some examples of the same in
Section 4.3.1 and some of its pleasant side effects.
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Fig. 16. Various geometries filtered using static/dynamic filtering. It can be seen that the geometries are developable.
Fig. 17. A human skull geometry with at least 15 non-manifold edges and many disconnected components. Various defects in a skull geometry (gaps, disconnected
teeth, non-manifold edges, and holes) are highlighted. It also includes the bottom view of the skull, which is entirely deformed.
4.2. Effect on bad quality geometries

We show a car geometry in Fig. 19 which is missing most
f its bottom. We use a coarser grid to produce a simplified
pproximation of the car geometry. It can be seen that our al-
orithm produces a tight wrap even in this case and simplifies
he geometry. Since the offset computation does not require
n exact segmentation of the geometry boundary, the hole-free
ffset computation works even in such extremely poor quality
eometries. The topological sphere level can be tuned on a trial
nd error basis for such geometries until the complete geometry
s wrapped. In the case of skull geometry shown in Fig. 17, it has
any non-manifold edges and many disconnected components.
here is no pre-processing requirement on either of the geome-
ries, and their shrink-wrapped results are shown in Fig. 18 a
erfect two-manifold mesh without any leaks.
10
4.3. Selective genus closing

Almost all of the shrink wrapping algorithms are either used as
remeshing (i.e., preserve the genus of the input mesh) or surface
simplification algorithms (i.e., turn the input mesh into a topolog-
ical sphere or Genus zero). However, there are scenarios where
an industrial practitioner is only interested in closing selective
holes. We could not find any other works that directly address
this problem. We propose two ways to do this in our paper.

• Implicit Genus control
• Explicit Genus control

4.3.1. Implicit genus control
In this case, no additional algorithms are required. However,

it can be an iterative process to achieve the necessary genus.
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Fig. 18. Wrapped skull geometry (Watertight geometry with a genus zero).
Fig. 19. Bad quality geometries shrink wrapped (Car with hole) - Input mesh along with wrapped output mesh. It can be observed that the bottom of the car is
ompletely closed.
e leverage the topological sphere level’s ability to control the
enus implicitly. A lower value for the topological sphere level
sually leads to incomplete closing of the geometry. This can
e a desirable side effect in the case of selective Genus control.
e have an example geometry in Fig. 20 below with a huge

opological hole at the top and a smaller one at the bottom. The
ffects of different topological sphere levels are shown in Fig. 21.
t can be observed that a value of 50 yields a Genus zero surface;
owever, at a level 10, only the smallest hole in the mesh is
losed.

.3.2. Explicit genus control
Explicit Genus control requires prior information about the

opological holes in the mesh. Therefore, we use our topological
11
hole detection algorithm [8] to accomplish the same. In this case,
topological hole information is extracted from the hole detection
algorithm, which is used as a boundary condition in the dilation
stage. The hole detection algorithm would provide the holes’
center and radius, and the desired hole radius can be given as
a criterion. The radius criterion is only suitable for circular holes.
If the geometry also has non-circular holes, hole surface patches
from the algorithm can be used to compute the surface area of
individual holes. This can be used as a further filtering criterion.
Then the faces which are part of the desired holes are not diffused
into the volume, thus preserving the structure. The algorithm 2
would have to be modified for Explicit Genus control, and it can
be seen in algorithm 7
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Fig. 20. An example geometry with a big hole on top and a small hole at the bottom.
Fig. 21. Shrink wrapped geometry for different topological sphere levels.
As explained earlier, the dilation process happens layer by
layer. Therefore, one would have to ignore the blocklisted bound-
ary cells for the dilation process to achieve selective genus con-
trol.

4.4. Boosting projection quality using external sources

We mentioned earlier that we double wrap the geometries
to achieve a better projection quality. This is primarily due to
the geometric structure of morphological erosion. It leads to a
competitive projection which can be beneficial in many cases.
For example, if the bottom is entirely missing, rather than failing
to close the hole in the bottom, vertices are projected to the
next closest area, which would be the boundary of the bottom
hole. This ensures a good priori for the next wrapping stage.
Hence, the double wrapping stage would provide a better dis-
tribution of triangles. This is an undesirable yet pleasant side
effect of the competitive nature of the projection of the algo-
rithm to stick to whatever comes first. However, if the geometry
practitioner/end-user in the industry would like to have better
conditioning for such holes/even topological holes, using external
sources would help. In our earlier work [8], we proposed a semi-
12
Fig. 22. Run time comparison for increasing number of triangles.

heuristic algorithm to detect topological and geometric cavities in
a triangulated mesh. Just like our present algorithm, it does not
need a perfect two-manifold mesh.
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Fig. 23. A Partial car geometry that has been shrink wrapped and its fluid volume extracted as a volumetric point cloud. Volumetric point clouds are otherwise
considered particle distributions for meshless methods like Smoothed particle hydrodynamics.
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Algorithm 7: Dilation of the input surface (with Genus
control)
Result: Dilated surface stored in the voxelized mesh
etect holes using hole detection algorithm;
ark the cells that intersect with the holes and mark them
as blocklisted cells;
nitialize interior_cells as seed_cells;
nsure that the blacklisted cells are removed from the initial
seed_cells;

Initialize current_topological_sphere_level to 0;
while current_level ≤ topological_sphere_level do

Initialize a newer_seeds_cells_id vector;
forall cells in seed_cells do

forall cell_neighbours in voxelized_mesh do
if Neighbour is outside cell then

Add neighbour to newer_seeds_cells_id;
end

end
Set newer_seeds_cells_id as seed_cells;
Increment current_topological_sphere_level; if
current_topological_sphere_level eq
topological_sphere_level then

Store these cells as topological_sphere_cells;
end

end
nd

4.5. Runtime analysis

The algorithm presented in this paper is memory-bound, and
ts memory usage is directly influenced by the size of the octree
nd the number of triangles in the input mesh. While we have
mphasized the importance of the Topological Sphere Level as the
rimary parameter in the algorithm, other geometric parameters
elated to the octree can also be adjusted according to specific
equirements.

Throughout our investigations, we conducted experiments us-
ng a fixed initial grid size of 64 × 64 × 64 and employed three
evels of spherical refinement. These settings yielded satisfactory
esults for our purposes. The implementation of the algorithm
as done in C++ with OpenMP parallelization to enhance compu-
ational efficiency. However, please note that the source code is
urrently not available, as it is part of a larger in-house codebase.
e do have plans to release a standalone implementation as an

pen-source project in the future.

13
All results presented in the paper were obtained using a laptop
quipped with a 12-core Intel Core i7 CPU and 64 GB of RAM.
ig. 22 illustrates the program runtime (in minutes) as a function
f the number of triangles in the input mesh. It can be observed
hat our algorithm exhibits linear scalability with an increasing
umber of triangles. Even for the largest triangulation in our
nvestigation, consisting of 23 million triangles, the algorithm
onverged to a manifold surface in under 10 min.

. Applications and variants

.1. Fluid volume extraction

Fluid volume extraction is yet another excellent application of
ur shrink wrapping algorithm. If the goal is to generate the fluid
olume or topological holes in a geometry, simple boolean opera-
ions help extract these volumes. There are practical difficulties in
xtracting topological holes in a geometry (multiple holes) since
here will be a lot of noise to sift through. However, suppose
he industrial practitioner is interested in extracting a single fluid
olume like a fluid volume of an interior of a car. In that case, it is
ossible to automate the process entirely. Once we have a Genus
ero shrink-wrapped surface, one can lay out a straightforward
lgorithm with the following steps

1. Subtract the genus zero shrink-wrapped geometry from the
input geometry

2. Split the result based on connectivity and compute the
component volumes

3. Largest volume geometry is the fluid volume

We did not implement any boolean operations for this algo-
rithm and used the existing functionalities from CGAL [18].

Smoothed particle hydrodynamics (SPH) is a meshless method
requiring a volumetric point distribution for numerical simula-
tion. In example 1, we show a partial car in Fig. 23 that has been
shrink-wrapped, and its fluid volume has been extracted for a
smoother particle hydrodynamic simulation.

In the second example, we show a case for raspberry pi, its
shrink-wrapped geometry, and the subsequent fluid volume in
Fig. 24. Again, it can be seen that our algorithm produces a
spotless fluid volume. The results can be further de-noised to turn
them into developable surfaces.

5.2. External aerodynamic simulation

One of the primary focuses of our investigation is external
aerodynamic simulations. Since they do not require all the inter-
nal components of a geometry, a simplified geometry can be con-
sidered during early prototyping. We ran the RANS simulations
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Fig. 24. A raspberry pi case and its fluid volume.
n a generic shrink-wrapped car geometry using OpenFoam [22].
he car geometry was meshed using the snappyHexMesh tool
rom OpenFoam with a base refinement of 10 cells in all three
irections. We considered the entire car geometry for numerical
imulation without using symmetry boundary conditions. We
sed a steady-state incompressible SIMPLE solver for solving
he Reynolds Averaged Navier Stokes equation with a k-ω SST
turbulence model. A velocity inlet with a velocity of 20 ms was
used as the boundary condition. The shrink-wrapped geometry
produces physically consistent results, as shown in the Fig. 25.
We have not made a rigorous mathematical analysis or experi-
mental verification for these simulations. We only performed this
simulation to show the suitability of shrink-wrapped geometries
for computational fluid dynamic simulations.

6. Comparison against similar approaches

6.1. Point2Mesh

Many recent papers in geometry processing use deep learning-
based approaches to solve geometric problems. One such recent
article is Point2Mesh[6] where the authors shrink wrap an ori-
ented point cloud based on self-similarity. Their algorithm is
built on mesh-based convolutional neural networks and similar
algorithms found in computer vision. We extended our shrink
14
wrapping algorithm for point clouds to make a fair compari-
son. Since we rely on generalized winding numbers for inside–
outside segmentation, there is a straightforward extension to
point clouds. Usually, this is done by computing point areas using
a Voronoi diagram [14]. However, we found that such a complex
approximation is not always required. We compute a series of
local triangulations and consistently ensure their orientation us-
ing a greedy approach. Hence, our algorithm does not require an
oriented point cloud. This modification ensures that we do not
have to modify the rest of our shrink wrapping algorithm. Once
the inside–outside segmentation is done in the octree, the rest of
the algorithm remains the same. We chose the same geometries
as the authors and found that we produce similar quality results
in most cases. While we provided a variety of heuristics to avoid
this in a surface mesh-based approach, we did not thoroughly
investigate the same for point clouds since it was beyond the
scope of our work.

An observation can be made that our algorithm complements
the authors’ work nicely. If our algorithm is considered an initial
priori, it improves the convergence speed of Point2Mesh algo-
rithm. For example, their algorithm relies on an initial mesh
computed based on a convex hull approach and converges to a
ground truth based on self-similarity. However, our algorithm’s
mesh before the projection stage is a better priori. It also con-

verges the Point2Mesh [6] algorithm in a fraction of the time.



V.K. Suriyababu, C. Vuik and M. Möller Computer-Aided Design 164 (2023) 103608

c

I
c
b
p
o
o
i
t

Fig. 25. External aerodynamic simulation of a generic car model (shrink wrapped).
Fig. 26. Few point cloud geometries from Point2Mesh [6] along with its output. Our wrap algorithm produces equally smooth results except for a few artifacts
reated as a result of morphological operators.
t can also be noticed that their approach is not meant for me-
hanical parts, and features found in CAD geometries cannot
e preserved without significant modifications. Our goal is to
roduce genus-zero surfaces for aerodynamic simulations. We
ptionally provide variants that allow various levels of control
ver the genus of the wrapped surface. However, their approach
s strictly a surface construction approach and does not consis-
ently produce zero surfaces. It can only be achieved by stopping
15
the algorithm halfway; the reconstruction might not be accurate
globally in such cases, and a projection might be required (see
Fig. 26).

6.2. Alpha wrapping

Pierre Alliez et al. [7] recently proposed a practical shrink
wrapping algorithm based on three-dimensional alpha wrapping.
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Fig. 27. Influence of increasing alpha value on a geometry. The offset value is fixed at 0.000001 for all the cases.
Fig. 28. Solid angle of a query point.

ike ours, their algorithm is controlled by alpha and offset values
hat determine the wrap’s accuracy. Even though their approach
an handle a variety of inputs such as triangles, line segments,
nd points (due to the advantage of being implemented inside
GAL), we limit our comparison to triangle meshes. The term
lpha controls the accuracy of the wrapping algorithm. This is
imilar to the topological sphere level or the number of oper-
tions in our algorithm. An increase in alpha leads to a better
rapping of the geometry.
For comparison, we show the effect of increase in alpha value

n Fig. 27 for the same geometry used in Section 4.3.1. It can be
oticed that while an increase in alpha closes the bigger hole, the
ottom of the geometry gets severely distorted. An interesting
bservation could be made for the alpha value of 0.1, where the
ottom of the geometry starts to form artifacts similar to the

rtifacts produced by morphological operators. As we have shown

16
in previous examples with our algorithm, such artifacts only start
to show when the number of morphological operations is very
high. However, in the case of alpha wrapping, even extremely
low alpha values produce such artifacts in concave areas of the
geometry. Our algorithm closes both the holes of the geometry,
as shown in Fig. 21 without heavily distorting the bottom of
the geometry. In our experiments, we noticed that a very low
value of alpha and offset makes alpha wrapping an excellent
surface reconstruction algorithm. Its two-manifold guarantee and
ability to handle extremely degenerate geometries add to the
advantages. However, it is not a suitable algorithm for producing
hole-free geometry approximation. In the presence of concavities,
alpha wrapping destroys the geometry significantly.

7. Limitations

Since the proposed algorithms are built on top of morpholog-
ical operators, they inherit the drawbacks of mathematical mor-
phology. For example, the erosion stops in concave regions once
it hits the closest triangle in the mesh. This leads to over closing
of specific features in the mesh. However, since the primary ap-
plication for our algorithms is external aerodynamic simulations,
these do not make a massive difference in the macro scale. Our
smooth and developable variants alleviate most of these issues
and produce good quality meshes suitable for various practical
applications.

8. Conclusion

We presented a practical algorithm that can perform Genus
simplified shrink wrapping for polyhedral surfaces with the help
of morphological operators. We also show that these algorithms
extend easily for point clouds. One can implement the algorithms
proposed in this paper in the same mesh used for numerical
simulation, thereby avoiding another expensive volumetric mesh
generation process. The algorithms also run at a linear runtime
and are not heavily CPU bound. Furthermore, user-defined con-
straints and additional interactivity could further improve the
algorithm’s output quality. In addition, our smooth and devel-
opable wrap variants can significantly benefit engineers in the
early prototyping stage. Finally, the algorithm’s fluid volume ex-
traction variant can significantly benefit industrial fluid dynamic
practitioners.



V.K. Suriyababu, C. Vuik and M. Möller Computer-Aided Design 164 (2023) 103608
Fig. 29. A variety of geometries and their shrink wrapped results.
r
t
r
f

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which
data has been used.

Acknowledgments

Österreichische Forschungsförderungsgesellschaft, Austria has
funded this research under an industrial Ph.D. grant titled
‘‘HIOMESH’’.

Appendix A. Generalized winding number based solid angle
for surface segmentation

We rely on a classical differential geometry idea called wind-
ing numbers, which uses solid angles for surface segmentation.
For a given surface S, for a query point p, the solid angle is the
17
signed surface area of the projection of S onto the unit sphere
centered at p as shown in Fig. 28. We rely on its definition in
discrete setting [23].

ω(p) = 2 ∗ tan−1

(
det([abc])

abc + (a.b)c + (b.c)a + (c.a)b

)
Triangle = {vi, vj, vk}

a = vi − p, b = vj − p, c = vk − p
a = ∥a∥
b = ∥b∥

c = ∥c∥

(A.1)

Given this relation for solid angle given by ω(p), we can
compute winding number as follows

w(p) =

nTriangles∑
n=1

1
4π

ωf (p)

For every query point, the direct implementation w(p) would
equire the contribution of all triangles in the surface mesh. Since
his would yield a solution with time complexity of O(n2), we
ely on the work of Gavin Barill et al. [14]. They proposed a
ast multipole method [24] style implementation that uses direct
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Fig. 30. An adaptively refined Cartesian mesh with a half-edge like internal
epresentation.

omputation for triangles near the query point and approximates
he result everywhere else, making it a O(log(n)) algorithm.

ppendix B. Various input geometries and their shrink
rapped results

We show a few geometries and their shrink-wrapped results.
he results shown below are shrink-wrapped with a topological
phere level of 15. Our algorithm could produce a genus zero
urface consistently in all the cases shown below. It also creates
two-manifold mesh suitable for external aerodynamics or finite
lement analysis simulations (see Fig. 29).

ppendix C. Morphology and other image processing algo-
ithms on adaptive meshes

Adapting image processing algorithms for volumetric applica-
ions has become increasingly common. While images inherently
ave a 1:1 connectivity everywhere, this can pose challenges
hen adapting algorithms for adaptive grids. However, with the
orrect data structure, the adaptation process becomes straight-
orward.

In Fig. 30, we illustrate an example using a quadtree data
tructure. A half-edge like representation is employed to establish
egular grid-like connectivity from regular cells to hanging cells.
his approach is similar to the representation used for unstruc-
ured T-Splines [25], where an edge of a regular cell can be split
nto multiple half edges, ensuring a unique copy of the edge for
very hanging cell. This representation is also compatible with
nbalanced grids. While alternative memory-efficient approaches
an be implemented using tree traversal, we found the demon-
trated approach to be efficient enough for our investigation (see
ig. 2).

eferences

[1] Attene M, Campen M, Kobbelt L. Polygon mesh repairing: An applica-
tion perspective. ACM Comput Surv 2013;45(2). http://dx.doi.org/10.1145/
2431211.2431214.
18
[2] Esteve J, Brunet P, Vinacau A. Approximation of a variable density
cloud of points by shrinking a discrete membrane. Comput Graph Forum
2005;24(4):791–807.

[3] Nooruddin F, Turk G. Simplification and repair of polygonal mod-
els using volumetric techniques. IEEE Trans Vis Comput Graphics
2003;9(2):191–205. http://dx.doi.org/10.1109/TVCG.2003.1196006.

[4] Lee YK, Lim CK, Ghazialam H, Vardhan H, Eklund E. Surface mesh
generation for dirty geometries by shrink wrapping using cartesian grid
approach. In: Pébay PP, editor. Proceedings of the 15th international
meshing roundtable. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006,
p. 393–410.

[5] Wang ZJ, Srinivasan K. An adaptive Cartesian grid generation method for
‘Dirty’ geometry. Internat J Numer Methods Fluids 2002;39(8):703–17.
http://dx.doi.org/10.1002/fld.344.

[6] Hanocka R, Metzer G, Giryes R, Cohen-Or D. Point2Mesh: A self-prior
for deformable meshes. ACM Trans Graph 2020;39(4). http://dx.doi.org/
10.1145/3386569.3392415.

[7] Alliez P, Cohen-Steiner D, Hemmer M, Portaneri C, Rouxel-Labbé M. 3D
alpha wrapping. In: CGAL user and reference manual. 5.5th ed. CGAL
Editorial Board; 2022.

[8] Vijai Kumar S, Vuik C. A simple and fast hole detection algorithm for
triangulated surfaces. J Comput Inf Sci Eng 2021;21(4). http://dx.doi.org/
10.1115/1.4049030, 044502.

[9] Najman L, Talbot H. Introduction to mathematical morphology. In: Mathe-
matical morphology. John Wiley & Sons, Ltd; 2013, p. 1–33. http://dx.doi.
org/10.1002/9781118600788.ch1.

[10] Jeulin D. Analysis and modeling of 3D microstructures. In: Mathematical
morphology. John Wiley & Sons, Ltd; 2013, p. 421–44. http://dx.doi.org/
10.1002/9781118600788.ch19.

[11] Chen Z, Panozzo D, Dumas J. Half-space power diagrams and discrete
surface offsets. IEEE Trans Vis Comput Graphics 2020;26(10):2970–81.
http://dx.doi.org/10.1109/TVCG.2019.2945961.

[12] Sellán S, Kesten J, Sheng AY, Jacobson A. Opening and closing surfaces.
ACM Trans Graph 2020;39(6). http://dx.doi.org/10.1145/3414685.3417778.

[13] Gärtner B. Fast and robust smallest enclosing balls. In: Proceedings of
the 7th annual European symposium on algorithms. London, UK, UK:
Springer-Verlag; 1999, p. 325–38.

[14] Barill G, Dickson N, Schmidt R, Levin DI, Jacobson A. Fast winding numbers
for soups and clouds. ACM Trans Graph 2018.

[15] Liu S, Wang CCL. Fast intersection-free offset surface generation from
freeform models with triangular meshes. IEEE Trans Autom Sci Eng
2011;8(2):347–60. http://dx.doi.org/10.1109/TASE.2010.2066563.

[16] Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface
construction algorithm. In: Proceedings of the 14th annual conference
on computer graphics and interactive techniques. New York, NY, USA:
Association for Computing Machinery; 1987, p. 163–9. http://dx.doi.org/
10.1145/37401.37422.

[17] Blanco JL, Rai PK. Nanoflann: a C++ header-only fork of FLANN, a library for
Nearest Neighbor (NN) with KD-trees. 2014, https://github.com/jlblancoc/
nanoflann.

[18] The CGAL Project. CGAL user and reference manual. 5.3th ed. CGAL
Editorial Board; 2021, URL https://doc.cgal.org/5.3/Manual/packages.html.

[19] Boltcheva D, Lévy B. Surface reconstruction by computing restricted
Voronoi cells in parallel. Comput Aided Des 2017;90:123–34. http://
dx.doi.org/10.1016/j.cad.2017.05.011, URL https://www.sciencedirect.com/
science/article/pii/S0010448517300829, SI:SPM2017.

[20] Stein O, Grinspun E, Crane K. Developability of triangle meshes. ACM Trans
Graph 2018;37(4). http://dx.doi.org/10.1145/3197517.3201303.

[21] Zhang J, Deng B, Hong Y, Peng Y, Qin W, Liu L. Static/dynamic filtering
for mesh geometry. IEEE Trans Vis Comput Graphics 2019;25(4):1774–87.
http://dx.doi.org/10.1109/TVCG.2018.2816926.

[22] The OpenFOAM Foundation. Openfoam v8 user guide. 2021, URL https:
//cfd.direct/openfoam/user-guide.

[23] Jacobson A, Kavan L, Sorkine-Hornung O. Robust inside-outside segmen-
tation using generalized winding numbers. ACM Trans Graph 2013;32(4).
http://dx.doi.org/10.1145/2461912.2461916.

[24] Carrier J, Greengard L, Rokhlin V. A fast adaptive multipole algorithm
for particle simulations. SIAM J Sci Stat Comput 1988;9(4):669–86. http:
//dx.doi.org/10.1137/0909044.

[25] Wang W, Zhang Y, Du X, Zhao G. An efficient data structure for calculation
of unstructured T-spline surfaces. Vis Comput Ind Biomed Art 2019;2(1):2.
http://dx.doi.org/10.1186/s42492-019-0010-0.

http://dx.doi.org/10.1145/2431211.2431214
http://dx.doi.org/10.1145/2431211.2431214
http://dx.doi.org/10.1145/2431211.2431214
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb2
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb2
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb2
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb2
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb2
http://dx.doi.org/10.1109/TVCG.2003.1196006
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb4
http://dx.doi.org/10.1002/fld.344
http://dx.doi.org/10.1145/3386569.3392415
http://dx.doi.org/10.1145/3386569.3392415
http://dx.doi.org/10.1145/3386569.3392415
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb7
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb7
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb7
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb7
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb7
http://dx.doi.org/10.1115/1.4049030
http://dx.doi.org/10.1115/1.4049030
http://dx.doi.org/10.1115/1.4049030
http://dx.doi.org/10.1002/9781118600788.ch1
http://dx.doi.org/10.1002/9781118600788.ch1
http://dx.doi.org/10.1002/9781118600788.ch1
http://dx.doi.org/10.1002/9781118600788.ch19
http://dx.doi.org/10.1002/9781118600788.ch19
http://dx.doi.org/10.1002/9781118600788.ch19
http://dx.doi.org/10.1109/TVCG.2019.2945961
http://dx.doi.org/10.1145/3414685.3417778
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb13
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb13
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb13
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb13
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb13
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb14
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb14
http://refhub.elsevier.com/S0010-4485(23)00140-9/sb14
http://dx.doi.org/10.1109/TASE.2010.2066563
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1145/37401.37422
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://doc.cgal.org/5.3/Manual/packages.html
http://dx.doi.org/10.1016/j.cad.2017.05.011
http://dx.doi.org/10.1016/j.cad.2017.05.011
http://dx.doi.org/10.1016/j.cad.2017.05.011
https://www.sciencedirect.com/science/article/pii/S0010448517300829
https://www.sciencedirect.com/science/article/pii/S0010448517300829
https://www.sciencedirect.com/science/article/pii/S0010448517300829
http://dx.doi.org/10.1145/3197517.3201303
http://dx.doi.org/10.1109/TVCG.2018.2816926
https://cfd.direct/openfoam/user-guide
https://cfd.direct/openfoam/user-guide
https://cfd.direct/openfoam/user-guide
http://dx.doi.org/10.1145/2461912.2461916
http://dx.doi.org/10.1137/0909044
http://dx.doi.org/10.1137/0909044
http://dx.doi.org/10.1137/0909044
http://dx.doi.org/10.1186/s42492-019-0010-0

	Towards a High Quality Shrink Wrap Mesh Generation Algorithm Using Mathematical Morphology
	Introduction
	Shrink-Wrapping for Surface Remeshing
	Notable Contributions and Limitations
	Recent Advances in Shrink Wrapping

	Morphological Operators
	Mathematical morphology of surface meshes
	Dilation
	Erosion
	Closing and its extension to surfaces


	Shrink wrap algorithm
	Simple wrap
	B-Rep to V-Rep
	Computation of signed distance function
	Dilation driven approximated offsets
	Erosion of dilated offset surface
	Projection and smoothing
	Remeshing and quality improvement (Optional)

	Smooth wrap algorithm
	Developable wrap algorithm

	Numerical Experiments
	Effect of topological sphere level
	Effect on bad quality geometries
	Selective Genus Closing
	Implicit Genus control
	Explicit Genus control

	Boosting projection quality using external sources
	Runtime analysis

	Applications and Variants
	Fluid Volume Extraction
	External aerodynamic simulation

	Comparison against similar approaches
	Point2Mesh
	Alpha wrapping

	Limitations
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Generalized Winding Number based solid angle for surface segmentation
	Appendix B. Various input geometries and their Shrink wrapped results
	Appendix C. Morphology and other image processing algorithms on adaptive meshes
	References


