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Abstract. Statistical methods, particularly machine learning
models, have gained significant popularity in air quality pre-
dictions. These prediction models are commonly trained us-
ing the historical measurement datasets independently col-
lected at the environmental monitoring stations and their op-
erational forecasts in advance using inputs of the real-time
ambient pollutant observations. Therefore, these high-quality
machine learning models only provide site-available predic-
tions and cannot solely be used as the operational forecast.
In contrast, deterministic chemical transport models (CTMs),
which simulate the full life cycles of air pollutants, provide
predictions that are continuous in the 3D field. Despite their
benefits, CTM predictions are typically biased, particularly
on a fine scale, owing to the complex error sources due to
the emission, transport, and removal of pollutants. In this
study, we proposed a fusion of site-available machine learn-
ing prediction, which is from our regional feature selection-
based machine learning model (RFSML v1.0), and a CTM
prediction. Compared to the normal pure machine learn-
ing model, the fusion system provides a gridded prediction
with relatively high accuracy. The prediction fusion was con-
ducted using the Bayesian-theory-based ensemble Kalman
filter (EnKF). Background error covariance was an essen-

tial part in the assimilation process. Ensemble CTM predic-
tions driven by the perturbed emission inventories were ini-
tially used for representing their spatial covariance statistics,
which could resolve the main part of the CTM error. In ad-
dition, a covariance inflation algorithm was designed to am-
plify the ensemble perturbations to account for other model
errors next to the uncertainty in emission inputs. Model eval-
uation tests were conducted based on independent measure-
ments. Our EnKF-based prediction fusion presented superior
performance compared to the pure CTM. Moreover, covari-
ance inflation further enhanced the fused prediction, particu-
larly in cases of severe underestimation.

1 Introduction

Rapid economic growth and urbanization have led to severe
ambient air pollution in China (Li et al., 2016a). Thanks to
the National Air Pollution Prevention and Control Action
Plan released in 2013 (The State Council of China, 2013), air
quality has steadily improved. However, for the past decade,
air pollution has still been ranked as the third major factor
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causing death in China, following tobacco and high blood
pressure (GBD 2019 Risk Factors Collaborators, 2020). Ap-
proximately 80 % of the Chinese population is still exposed
to fine particulate matter (PM2.5), with annual mean concen-
trations exceeding 35 µg m−3, and over 99 % of the popula-
tion is exposed to severe air pollution according to the World
Health Organization air quality guideline value of 10 µg m−3.
(Wang et al., 2019; Cheng et al., 2021b). Forecasting primary
atmospheric pollutants with high spatial resolution is thus es-
sential in order to provide early warning for residents and re-
duce detrimental public exposure to air pollution (Bi et al.,
2022).

Machine learning methods, particularly deep learning
tools, have gained significant popularity in geoscientific
fields owing to their high accuracy and relatively low com-
putational resource requirements. For instance, Chen et al.
(2023) fully estimate hourly near-surface ozone concentra-
tion in China using a new geostationary satellite with the
help of machine learning. Numerous studies have success-
fully implemented machine learning algorithms for air qual-
ity prediction. For example, Li et al. (2018) proposed a hy-
brid model combining a weighted extreme learning machine
and an adaptive neuro-fuzzy inference system for air quality
predictions. Ma et al. (2020) improved the accuracy of WRF-
Chem prediction of daily PM2.5 concentrations in Shanghai
by applying an XGBoost machine learning method. Cheng
et al. (2021c) successfully predicted ground-level daily max-
imum 8 h ozone concentrations in two megacities in China,
Shanghai and Chengdu, by utilizing wavelet decomposition
and two machine learning models. Mao et al. (2022) de-
veloped a dynamic graph convolutional approach and se-
quence to sequence embedded with the attention mechanism
model for predicting daily maximum 8 h average ozone con-
centrations. We have successfully used the regional feature
selection-based machine learning model (RFSML) to predict
air quality with high accuracy. Our forecast system can pro-
vide short-term predictions for over 1262 sites across China
at a national scale. We developed the SAGE (Shapley addi-
tive global importance) ensemble feature selection algorithm
to exclude redundant inputs, which efficiently improves our
forecasting ability (Fang et al., 2022). We trained these mod-
els using historical measurement datasets collected at inde-
pendent air quality monitoring stations, and they operate us-
ing real-time air quality observations as inputs. However, un-
like gridded forecasts, our predictions are only available for
the location of the air quality monitoring sites. Meanwhile,
the spatial distribution of existing environmental monitor-
ing stations is rather uneven in China, with a dense monitor-
ing network in the east and a sparse network in the west, as
shown in Fig. 1. Therefore, our RFSML predictions limited
to these few monitoring stations cannot accurately represent
the true PM2.5 concentrations on a national scale.

Deterministic 3D chemical transport models (CTMs) are
widely used for operational air quality forecasting due to
their ability to predict air pollution in continuous spatiotem-

poral domains by modeling complex physical and chemi-
cal processes of air pollutant life cycles. CTMs provide an
advantage over machine-learning-based air quality forecast
models, which typically rely on point-source observations.
Various CTMs have been developed and employed for air
quality forecasting. For example, Keller et al. (2021) pro-
vided a new modeling system, GEOS-CF, that can make 5 d
forecasts of the concentrations of five primary ambient pol-
lutants; Cheng et al. (2021a) developed a real-time forecast-
ing system of hourly PM2.5 concentrations using the WRF-
CMAQ model in Taiwan. Lin et al. (2020) developed the
WRF-GC model (coupling the Weather Research and Fore-
casting meteorological (WRF) and the GEOS-Chem model)
that can perform high-resolution air pollutant forecasts. Us-
ing the WRF-Chem model, Georgiou et al. (2022) developed
a high-resolution real-time air quality forecast system over
the eastern Mediterranean with better performance than the
Copernicus Atmosphere Monitoring Service. While these air
quality forecast models can capture the spatiotemporal vari-
ations in ambient pollutants to some extent, they are suscep-
tible to systematic bias, particularly at a fine scale, due to
multi-source uncertainties in emission inventories (Keenan
et al., 2009; Fan et al., 2018), initial and boundary condi-
tions, and parameterization of physical and chemical pro-
cesses such as transport and removal (Croft et al., 2012; So-
lazzo et al., 2017). This makes the CTM prediction less reli-
able for localized air quality predictions (Bi et al., 2022).

Both the machine learning models and CTMs have weak-
ness when they are solely used in operational air quality
forecasting. The same challenges exist when observations
and simulation models are used to describe the atmospheric
dynamics in reanalysis products. Observations are widely
preferred due to their higher accuracy compared to numer-
ical dispersion models. However, they are inherently lim-
ited in providing a continuous 3D field and cannot fully
scan the entire target domain. On the other hand, models
provide gridded simulation results but are typically biased
as explained previously. To address the limitations of rely-
ing solely on observations or simulation models, Bayesian-
theory-based assimilation methods (Evensen et al., 2022),
by combining the observations and model simulations, have
long been performed for producing gridded reanalysis that
is much closer to reality. For example, the fifth generation of
atmospheric reanalysis (ERA5) from ECMWF was produced
by fusing atmospheric simulation from the Integrated Fore-
casting System (IFS) Cy41r2 and various types of measure-
ments through a four-dimensional variational (4DVar) data
assimilation (Hersbach et al., 2020). To analyze desert dust
aerosol along with its climatic interactions, Di Tomaso et al.
(2022) developed a product with a high resolution and con-
tinuous 3D field of dust aerosols over northern Africa, the
Middle East, and Europe, ranging from 2007 to 2016. The
reanalysis was generated by assimilating (via local ensem-
ble transform Kalman filter) MODIS aerosol optical depth
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(AOD) into their Multiscale Online Nonhydrostatic Atmo-
spheRe CHemistry model (MONARCH).

This study introduces the Bayesian-theory-based assimi-
lation method to fuse the regional feature selection machine
learning forecast (RFSML v1.0) (Fang et al., 2022) and the
deterministic chemical transport model (CTM) air quality
prediction. The prediction fusion aims to achieve a gridded
prediction with less bias and higher accuracy than the pure
CTM prediction. It is continuous in the 3D field unlike the
machine learning forecast that is only site-available. To the
best of our knowledge, this is the first time that the assimi-
lation method has been applied in this way, as it is typically
used for nudging model simulations with observations. The
specific assimilation algorithm used is the ensemble Kalman
filter (EnKF). The background error covariance of the CTM
prior prediction is the fundamental term in the assimilation-
based fusion. Ensemble CTMs, which are driven by per-
turbed emission inventories, are forwarded in parallel to rep-
resent the potential distribution of ambient pollutant levels
and the spatial covariance statistics. To avoid model diver-
gence, an additional covariance inflation algorithm is devel-
oped that accounts for model errors other than uncertainties
in emission inputs. The uncertainty of the other prior, the ma-
chine learning forecast, is also an essential part of the assim-
ilation fusion. To accurately quantify the errors, dynamic co-
variance is designed.

The paper is structured as follows: Sect. 2.1 presents
an overview of the study domain and the observations.
Section 2.3 describes the machine learning forecast, and
Sect. 2.4 provides a detailed account of the CTM predic-
tion. Section 2.2 presents the EnKF assimilation method-
ology used to fuse the machine learning and CTM predic-
tions. In Sect. 2.5, a popular spatial interpolation tool, namely
the Cressman interpolation, is illustrated to expand the site-
available machine learning forecast to a gridded one. Sec-
tion 3 describes the independent evaluation of the proposed
fused prediction. Finally, Sect. 4 concludes the paper with a
summary of the findings and future prospects.

2 Data and methods

2.1 Study domain and observations

The abundance of hourly measurements obtained from the
air quality monitoring network established by the Ministry
of Environmental Protection (MEP) of China, as depicted
in Fig. 1, facilitates the application of data-driven machine
learning forecasting techniques at these stations. These sites
have been categorized into five groups, which is consistent
with previous research (Fang et al., 2022); they are ones
in the North China Plain (NCP; 34–41◦ N, 113–119◦ E),
the Yangtze River Delta (YRD; 30–33◦ N, 119–122◦ E),
the Pearl River Delta (PRD; 21.5–24◦ N, 112–115.5◦ E),
the Sichuan Basin (SCB; 28.5–31.5◦ N, 103.5–107◦ E), and

the Fenwei Plain (FWP; 33–35◦ N, 106.25–111.25◦ E; 35–
37◦ N, 108.75–113.75◦ E). In this study, we evaluated the
performance of the proposed EnKF-based prediction fusion
system for PM2.5 concentration forecasting over the entire
region of China. The method can potentially be extended
to other airborne pollutant predictions in future studies. The
winter of 2019 (from 15 October to 30 December 2019) was
selected as the test period following the choice in our recent
work (Li et al., 2022) as winter suffers the most severe haze
pollution than other seasons in China.

2.2 EnKF-based prediction fusion

The proposed assimilation-based prediction fusion is illus-
trated in Fig. 2. This figure shows the time series of hypothet-
ical ambient pollutant predictions from both machine learn-
ing models and pure CTMs along the spatial coordinates,
which could beX, Y , orZ, without the loss of generality. The
data-driven forecast using our RFSML system, indicated by
the blue line, provided an accurate short-term forecast of the
air pollutants that is very close to reality (blue dots), as vali-
dated in Fang et al. (2022) and as can also be seen in Fig. 3.
However, they are only available at limited sites where obser-
vation stations are located as explained before. The dynamic
variance was introduced in this study to describe the uncer-
tainty of the RFSML results, as denoted by the light-blue
shading. Unlike the data-driven forecast, the CTM provides
predictions over the continuous 3D field (indicated by a gold
curved surface), but it might contain unavoidable systematic
bias. The Bayesian-theory-based assimilation methodology
is used to calculate the most likely posterior (or the fused
prediction) given the potential spread of two priors.

The specific sequential assimilation system that is used to
combine the site-available RFSML prediction and CTM pre-
diction is the EnKF that was originally proposed by Evensen
(1994) and further corrected by Evensen (2004). Similar to
other assimilation algorithms, this assimilation system fun-
damentally relies on the Bayesian theory for finding the op-
timal posterior that fits the two priors quantified by their co-
variance matrices (Evensen et al., 2022).

To begin with, ensemble chemical transport model predic-
tions (N = 32) are forwarded with perturbed emission inven-
tories, as will be discussed in Sect. 2.4, as follows:

[xf
1, . . .,x

f
N ], (1)

where x̄f
∈ Rn equals the ensemble mean of xf

i ∈ R
n, and

X′ ∈ Rn×N calculates the perturbation of the ensemble pre-
dictions as

X′ = [xf
1− x̄

f, . . . ,xf
N − x̄

f
], (2)

where N represents the ensemble number, while n denotes
the gridded chemical transport model size. The spatial back-
ground covariance matrix of the CTM prediction P ∈ Rn×n
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Figure 1. Distribution of air quality monitoring stations in the study area as of 2019. The black boxes represent the classification of five main
megacity clusters used for the regional feature selection in RFSML. The RFSML predictions at these sites (represented by red dots) will be
assimilated into the fused prediction. Independent evaluation will be carried out using observations from the blue and black rectangles.

Figure 2. Framework of EnKF-based prediction fusion. The blue lines and their corresponding shaded regions represent the RFSML pre-
dictions and their uncertainty at the air quality monitoring stations, which are assumed to be very close to the actual PM2.5 concentration
values. The golden surface and its surrounding gray surfaces represent the CTM prediction and its uncertainty. The medium-slate-blue sur-
face represents the fused prediction of the RFSML and CTM prediction. y and [xf

1, . . .,x
f
N

] are the inputs of EnKF, which represent RFSML
prediction and ensemble CTM prediction respectively.

can be approximated using the ensemble perturbations via

P =
1

N − 1
X′ X′T. (3)

The posterior forecast xf
a can then be fused according to the

EnKF rules via

xf
a = x̄f

+ K( y − Hx̄f ), (4)

where y ∈ Rm represents the RFSML machine learning fore-
cast from m= 1074 sites, as will be explained in Sect. 2.3;
H ∈ Rn×m is the linear operator that selects the gridded CTM
prediction into the site-available machine learning forecast
space; and K denotes the Kalman gain, which can be calcu-
lated as follows:

K = PHT (HPHT
+ O )−1, (5)

Geosci. Model Dev., 16, 4867–4882, 2023 https://doi.org/10.5194/gmd-16-4867-2023



L. Fang et al.: ML prediction and CTM forecast fusion using EnKF 4871

where O ∈ Rm×m is the error covariance matrix of the ma-
chine learning forecast y, as will be illustrated in Sect. 2.3.

The classic EnKF has limitations such as its dependence
on the relatively small ensemble number (N ) compared
to a high number of model dimensions (n) to estimate
background error covariance P dynamics (Houtekamer and
Mitchell, 2001). To cut off those spurious spatial correlations
in P, the most representative distance-dependent localization
scheme (Lei and Anderson, 2014) is used. The localization
is performed by multiplying a local support L via a Schur
product as follows:

Plocal
= P ◦ L (6)

Li,j =
1−

5
3

S2
i,j +

5
8

S3
i,j +

1
2

S4
i,j −

1
4

S5
i,j , Si,j<1

−
2
3 S−1
i,j+4−5Si,j+ 5

3 S2
i,j+

5
8 S3
i,j−

1
2 S4
i,j+

1
12 S5

i,j , 1≤Si,j<2
0, Si,j≥2

(7)

Si,j =
Di,j
Lthres

, (8)

where Di,j represents the spatial distance between the grid
cell i and j , while Lthres is the localization distance thresh-
old. The individual elements of the local support L can be
calculated using Eqs. (7) and (8). The correlation Li,j de-
clines as the distance increases. The shorter distance thresh-
old equals the greater descent rate. In this study, it was em-
pirically set as 300 km, which was tested to give the optimal
performance.

2.3 RFSML prediction and uncertainty

Approximately 1500 air quality monitoring stations are
present over China that provide hourly ambient pollutant
measurements up to 2019 as shown in Fig. 1. Recently, the
regional feature selection-based machine learning forecast
system (RFSML) was successfully developed for short-term
(with a horizon up to 24 h) air quality predictions. The com-
mon machine learning prediction process involves several
steps. Firstly, it requires data collection of PM2.5 observa-
tions and datasets. Next, data interpolation should be con-
ducted to address missing values in the original dataset. Fol-
lowing that, an appropriate machine learning model must
be selected. Additionally, the continuous data time series
should be reformed into the required input structure. Then,
the model is repeatedly trained to determine optimal hy-
perparameters. Finally, predictions can be made using the
trained model. In addition to these procedures, the RFSML
utilized the SAGE ensemble to obtain the optimal input fea-
ture subsets instead of using all related features. The total
national air quality monitoring stations were divided into six
regions. Using a computationally efficient SAGE ensemble
selection, we identified the top three significant features for
each region, as outlined in the Supplement Table S1 (Ta-
ble 6; Fang et al., 2022). Given the regional key feature sub-

set as = {a1,a2, . . .,as}, the RFSML can be described math-
ematically as follows:

ŷt+h = F(at−tp+1
1 , · · ·,at1,a

t−tp+1
2 , · · ·,at2, · · ·,

· · ·,a
t−tp+1
s , · · ·,ats), (9)

where at any instant t , the input vector storing s = 3 individ-
ual selected features over the previous tp = 9 h is utilized to
forecast the target PM2.5 concentrations ŷ with a prediction
horizon of h h. The choice of tp = 9 h is obtained on the ba-
sis of the auto-correlation and partial auto-correlation analy-
sis. The forecast predictor F represents the machine learning
model. In RFSML, three machine learning models, namely
random forest, gradient boosting, and multi-layer perceptron
(MLP), are employed. The prediction results obtained from
MLP are directly utilized as this work’s RFSML prediction.
A highlight in RFSML was use of the SAGE ensemble al-
gorithm to select the regional key features, which resulted
in remarkable improvements in the forecast effeciency (Fang
et al., 2022).

These high-quality predictions were available at 1262 sta-
tions (denoted as red dots and blue rectangles in Fig. 1), and
188 were skipped because of the high missing data rate in
the data interpolation period (January 2018 to October 2019).
Details concerning the strict data quality control can be found
in Fang et al. (2022). These stations however still contain
valuable measurements for validation. For this study, the 188
stations that were skipped in the RFSML model training were
used for validating our fused prediction; they are referred to
as validation sites B and marked as black rectangles in Fig. 1.

Meanwhile, these 188 validation sites B are not evenly dis-
tributed over the entire modeling domain, as can be seen in
Fig. 1. To fully evaluate the forecasting ability of the pro-
posed gridded prediction system, an additional 188 sites were
randomly selected from the 1262 RFSML stations and used
for cross-validations. They are referred to as validation sites
A, as shown in Fig. 1. Conclusively, the RFSML predictions
at 1074 air quality monitoring stations (red dots) are used as
one prior (y) for the fused prediction, which is then com-
pared with the measurements at 376 stations (blue rectangles
and black rectangles) for validation, as can be seen in Fig. 1.
Snapshots of our RFSML predictions at 1074 stations for as-
similation are available in Fig. 6a–c, which captured the spa-
tial variations in the PM2.5 exactly, as shown in Fig. S1 in the
Supplement. Our RFSML is capable of providing the opera-
tional air quality prediction with a maximum horizon of 24 h.
The RFSML prediction results used in this study are directly
acquired from our last work (Fang et al., 2022).

As aforementioned, the error covariance matrix of the RF-
SML forecast (O) is the essential input for Kalman gain cal-
culation in Eq. (5). It governs the weight of the y prior in
the optimization by describing its potential distribution. The
errors in the RFSML predictions were assumed to be spa-
tially independent, and hence O was diagonal. The RFSML
errors are not only varied in different stations but also dynam-
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ically varied in a given site. The typical method is shown in
Fig. 3a, presenting the relationship between observations and
RFSML prediction at a random site. The RFSML-predicted
PM2.5 values were relatively close to the observations. More-
over, it presented high errors under severely polluted scenar-
ios. To explore the variations in the RFSML uncertainties,
the samples shown in Fig. 3a were evenly divided into 10
collections (indicated by the dashed gray line) based on the
observation values. The mean values and root mean square
errors (RMSEs) of the 10 sample collections are plotted in
Fig. 3b, and their relationship was described using a linear
function (solid blue line). Instead of characterizing the error
using a fixed value, the linear function was used to quantify
the RFSML prediction error at the given station. The individ-
ual diagonal elements in O storing the square of the dynamic
RFSML prediction error were then calculated by repeating
the above calculation.

2.4 CTM prediction

The short-term CTM prediction used for gridded predic-
tion fusion in this study was from the GEOS-Chem v13.1.0
(https://doi.org/10.5281/zenodo.4984436, The International
GEOS-Chem User Community, 2021) in a nested-grid simu-
lation. It takes the global simulation with a horizontal res-
olution of 2◦ latitude by 2.5◦ longitude as the boundary
condition. The nested modeling domain of China (0–55◦ N,
70–140◦ E) has a horizontal resolution of 0.5◦ latitude by
0.625◦ longitude and 47 vertical layers. This version had
fully coupled aerosol–ozone–NOx–hydrocarbon chemistry
representation (Park et al., 2004; Dang and Liao, 2019). In
this study, GEOS-Chem was driven by the archived Modern
Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2) meteorological fields (Gelaro et al.,
2017). Notably, the reanalysis meteorology product was tem-
porally used for testing our prediction fusion methodology.
For the CTM prediction in practice, the operational mete-
orology forecast is the essence, e.g., the GEOS-CF (Keller
et al., 2021) and WRF-GC system (Lin et al., 2020). Note
that the CTM results utilized in this work remain consistent
regardless of changes in the forecast horizon. The global an-
thropogenic emission inventory used in this study was the
Global anthropogenic emissions from the Community Emis-
sions Data System (CEDS) inventory (Hoesly et al., 2018),
which primarily contains aerosol, aerosol precursor, and re-
active compounds. The monthly anthropogenic emission in-
ventory for China is the Multi-resolution Emission Inven-
tory for China (MEIC; http://www.meicmodel.org, last ac-
cess: 13 July 2023) (Zheng et al., 2018). The MEIC utilized
here was the 2017 collection, which is the latest version.
Several natural emission sources were also included in the
model that can dynamically respond to the meteorological
conditions, such as NOx emissions during lightning (Mur-
ray et al., 2012) and biogenic emissions which are computed
online using MEGAN2.1 (Model of Emissions of Gases and

Aerosols from Nature version 2.1; Guenther et al., 2012). To
achieve the successful operation of GEOS-Chem, a 3-month
spin-up simulation was carried out before testing the 2019
winter PM2.5 prediction. The PM2.5 concentrations were cal-
culated as the sum of the concentrations of the sulfate, nitrate,
ammonium, black carbon, and organic carbon in this study.

2.4.1 CTM prediction covariance

The uncertainty in the GEOS-Chem prediction is initially
attributed to the errors in the emission inventories. It is as-
sumed to be compensated for using a spatially varying tun-
ing factor similar to the approach in related work (Di Tomaso
et al., 2017; Jin et al., 2018), as follows:

f true(i)= f b(i) ·α(i), (10)

where f b(i) denotes the aerosol emission rate in the given
grid cell i from the MEIC, and f true(i) represents the true
value. The α values are defined to be random variables with
a mean of 1.0 and a standard deviation σα = 0.2. This empir-
ical value was found to provide sufficient freedom for resolv-
ing the observation-minus-simulation errors to a large extent.
A background covariance Bα was formulated as a product of
the constant standard deviation and a spatial correlation ma-
trix C:

Bα(i,j)= σα ·C(i,j), (11)

where C(i,j) represents a distance-based spatial correlation
between two αs in the grid cell i and j and is defined as

C(i,j)= e−(di,j /l)
2/2, (12)

where di,j represents the distance between two grid cells i
and j . Here, l denotes the correlation length scale, which
controls the spatial variability freedom of the αs. A small
l means more errors in fine scale could be resolved using the
assimilation, which however requires more ensemble runs
to represent the model realization from emission to simu-
lation, as will be explained later. An empirical parameter
l = 300 km used in EnKF to cut off the dust emission that has
a rapid spatial variability was also considered in this study.

With Bα that describes the potential spread of the
true emission situation, the ensemble emission inventory
[f 1, . . .,fN ] could then be generated randomly. They will
then be input into our GEOS-Chem model M for ensemble
PM2.5 predictions in Eq. (1) via

[xf
1, . . .,x

f
N ] = [M(f 1), . . . , M(fN )]. (13)

2.4.2 Covariance inflation

The perturbed emission inventories could resolve the defi-
ciencies in the model prediction effectively, as will be dis-
cussed in Sect. 3, by feeding the site-available RFSML result.
However, the posterior forecast error occasionally remained
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Figure 3. Dynamic uncertainty of the RFSML prediction at a random air quality station. Panel (a) is the distribution of the observation and
RFSML prediction 6 h in advance. Panel (b) shows the linear fit of the average RFSML prediction and RMSE. The averages in panel (b)
correspond to the intervals depicted in panel (a).

at high values, especially when the prior CTM severely un-
derestimated the pollution levels. This is evident in Fig. 4.
Panel (a) shows the times series plot of prediction from RF-
SML with the uncertainty, mean CTM predictions with its
uncertainty, PM2.5 concentration measurements, and fused
result at a station labeled as 1063A. Note that the mean and
uncertainty (standard deviation) of the CTM are calculated
based on the ensemble CTM simulations, which could be
found in Fig. S2a as well. The difference between the fused
prediction (sky-blue line) and observations (red stars) is not
resolved steadily, especially in the red marked regions. The
uncertainty quantified by the CTM spread (silver shading) is
far less than the RFSML uncertainty (blue shading). There-
fore, the prior CTM prediction was weighted more highly
than the prior of RFSML in the assimilation. This resulted in
a posterior prediction at a level similar to that of the mean
ensemble result (black dot) and deviated considerably from
the RFSML prediction (blue line). This could be attributed to
the fact that the perturbed MEIC emission uncertainty only
partially accounts for the simulation-minus-observation error
in CTM prediction. However, the unconsidered error caused
by meteorology, deposition, and other processes could also
contribute to the simulation-minus-observation error.

To compensate for these inevitable errors in the CTM un-
certainty and avoid the assimilation divergence, covariance
inflation was designed. The basic idea was to amplify the en-
semble perturbations while maintaining the mean via

xinflate
i (j) = x̄(j)+β[ xi(j) − x̄(j) ], (14)

where xi(j) represents the original prediction from the en-
semble i at grid cell j , while xinflate

i denotes the inflated one,
and β is the inflation factor for amplifying the ensemble per-

turbation with respect to the ensemble mean x̄(j), which is
defined as follows:

β = 15 · e−(x̄(j)/5)+ 1.5. (15)

As the ensemble mean increase, the inflation factor declines
smoothly from a maximum of 16.5 to a minimum of 1.5
as shown in Fig. 4c. The spread of the resampled ensem-
ble CTMs is available in the Supplement Fig. S2b. Higher
inflation was set for these low-value predictions to compen-
sate for the uncertainty raised by meteorology or other trans-
port processes. The posterior prediction could subsequently
be calculated with the inflated covariance.

Figure 4b shows the time series of the uncertainty of
the resampled ensemble members, presenting a much wider
spread compared to the original ones in panel (a). This ef-
fectively avoids assimilation divergence and allows the pos-
terior prediction to be nudged toward RFSML. Overall im-
provement on gridded prediction against independent mea-
surements will be discussed in Sect. 3.

2.5 Spatial interpolation benchmark: the Cressman
interpolation

Interpolating data from observational stations to regular grid
cells is also a hot topic in the geoscience (Yu et al., 2011).
Many deterministic and geospatial tools for spatial interpo-
lation have been developed, such as the Cressman interpo-
lation (Cressman, 1959), kriging interpolation (Oliver and
Webster, 1990; Stein, 1999), and inverse distance weight-
ing (Bartier and Keller, 1996). These methods can transfer
the site-available RFSML prediction into the continuous 3D
field product alternatively. All these methods are based on
the assumption that the weight is inversely proportional to
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Figure 4. Panels (a) and (b) are the time series of an environmental monitoring station (latitude: 40.98◦ N, longitude: 117.95◦ E) in Chengde,
Hebei Province. RFSML prediction is available at this station and will be assimilated. The solid medium-blue line, solid deep-sky-blue line,
solid dark-violet line, and black dot represent the RFSML prediction, prediction fusion without covariance inflation, prediction fusion with
covariance inflation, and mean ensemble CTM predictions respectively. The silver and blue shading represents the uncertainty of the CTM
and RFSML respectively. Panel (c) is the inflation function.

the distance between the predicted location and the sampling
location (Lu and Wong, 2008). Therefore, they are relatively
simple and efficient in computation compared to our pro-
posed prediction fusion method, which relies on the ensem-
ble CTMs to represent the spatial covariance statistics.

In this work, these popular tools including ordinary krig-
ing interpolation, the Cressman interpolation, and inverse
distance weighting were also tested to interpolate our site-
available RFSML prediction in order to obtain a gridded one.
They are served as the benchmark for comparing against our
proposed assimilation-based fusion method. To ensure a fair
comparison, the statistical interpolation methods were per-
formed based on the RFSML prediction at 1074 sites which
were used for our assimilation-based fusion. However, they
failed to forecast the spatial pattern of the PM2.5 concentra-
tion either on the national scale or on a fine scale. Of the
three, the Cressman interpolation provided the most optimal
results. Snapshots of the prediction interpolation are shown
in panels (a), (b), and (c) in Fig. 5, with a scaling radius
of 3, 5, and 10◦respectively. The typical limitations of us-
ing these distance-weighted methods can be clearly observed
in the figure. While parts of the PM2.5 spatial pattern were
captured with the hottest spot in the North China Plain us-
ing the smallest search radius in panel (a), it failed to obtain
the full gridded prediction as the air quality monitoring sta-
tions are sparsely distributed, especially in the western areas.
However, when using a large scaling radius, most of the spa-
tial dynamics are lost with a huge discrepancy against the
independent measurements (indicated by colored circles) in
panel (c). Therefore, distance-weighted methods cannot sat-
isfy the motivation for obtaining a 3D continuous prediction

starting from the site-available machine learning forecast. It
is worth noting that the interpolation method is computation-
ally less expensive than the fusion method, and it can be a
powerful tool for gridded prediction when there are plenty of
ground observations available.

3 Results and discussion

The effectiveness of our gridded prediction approach, which
combines machine learning and CTM prediction using
EnKF, was thoroughly assessed. First, the performance of
the CTM was evaluated and discussed in Sect. 3.1. Next,
the impressive skill of our proposed approach in terms of
time series prediction at single stations was demonstrated in
Sect. 3.2, highlighting the importance of using covariance in-
flation. Finally, the overall spatial performance of the fused
prediction against independent observations was evaluated
over the entire test period in Sect. 3.3. To assess the per-
formance, we used RMSE, mean absolute error (MAE), and
Pearson correlation coefficient (R) metrics, whose formulas
are provided in Formulas (S2)–(S4) of the Supplement.

3.1 Pure CTM prediction

An ensemble of 32 CTM predictions with the disturbed
MEIC was forwarded to quantify the spatial covariance
statistic of the PM2.5 prediction as discussed in Sect. 2.4.
In addition, a base run driven by the default MEIC was per-
formed over the test period (2019 winter) to verify the predic-
tion skill of the pure CTM. This run served as the benchmark
for validating our fused prediction.
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Figure 5. Snapshots of the distribution of the PM2.5 concentration forecasts and observations on 30 October 2019 at 16:00:00 (UTC). Panels
(a), (b), and (c) represent the Cressman interpolation of the RFSML (6 h in advance) predictions with a scaling radius of 3, 5, and 10◦. The
colored circles imply the independent observations from 376 ground stations which are not used as a source of interpolation.

The overall evaluation results of the CTM prediction in
terms of RMSE and MAE over the test period are shown in
Fig. 8. Although the CTM can reproduce the PM2.5 spatial
and temporal variation to a larger extent, as will be discussed
in Sect. 3.2 and 3.3 in detail, a noticeable difference in PM2.5
intensity exists, resulting in relatively high RMSE and MAE.
In severely polluted regions such as the NCP and FWP, the
RMSE and MAE were particularly high, reaching values as
high as 42.8 and 29.7 µg m−3 and 47.0 and 32.8 µg m−3 re-
spectively. Moreover, the significant overestimation in the
SCB region contributes to the high RMSE and MAE (53.1
and 42.6 µg m−3), which are consistent with the findings of
Li et al. (2016b). Model validation of the CTM is shown in
the Supplement Fig. S3, with a normalized mean bias (NMB)
of −6.87 % over the entire test period. Details concerning
improvements of the proposed fused prediction over the pure
CTM will be given in Sect. 3.3.

3.2 Time series of single monitoring station

One of the 376 environmental monitoring stations used for
independent validation, station 1812A (34.65◦ N, 112.39◦ E),
was selected as a typical example for the time series discus-
sion. This station was used to illustrate the typical results
that were observed at other validating sites. Panels (a) and
(b) in Fig. 6 show the pure CTM prediction and fused fore-
casts (6 and 18 h in advance respectively) against the inde-
pendent PM2.5. While the CTM captured the temporal dy-
namics at station 1812A in general, there were significant
differences in magnitude at times. By assimilating the spa-
tial pattern from the site-available RFSML result, the fused
gridded prediction outperformed the purely CTM prediction
significantly. Notably, the optimal result was obtained with
covariance inflation implemented. The posterior prediction
with covariance inflation performed better, especially in low-
value PM2.5 situations, as discussed in Sect. 2.4.2. To further
highlight the superior forecast skill, we present the distribu-

tions of both prediction fusion methods and ground observa-
tions for a 6 h prediction horizon in the Supplement Fig. S5.
The results clearly indicate that the prediction fusions align
closely with the ground observations and that the prediction
fusion with covariance inflation effectively addresses the un-
derestimation issue present in the prediction fusion without
covariance inflation.

The benefit of the covariance inflation is highlighted when
the RFSML forecast is fused for longer prediction horizons,
as shown in panel (b) (18 h). This is because the dynamic
error of RFSML grows steadily as the prediction length in-
creases (Fang et al., 2022). Without using covariance infla-
tion, the assimilation algorithm would rely more on the CTM
than on RFSML, resulting in a forecast that stays closer to
the CTM prior. A similar outcome can be observed in the
Supplement Fig. S4, which shows the time series diagram
of the same station for forecast horizons of 12 and 24 h.
However, there is one exception around 23 December 2019
(UTC), where CTM overestimates the PM2.5 concentrations,
while prediction fusion all underestimates it. This discrep-
ancy is mainly due to the abnormally low prediction values
from the RFSML at nearby sites. In general, the proposed
prediction fusion exhibits significant advantages over CTM,
and the adopted covariance localization effectively prevents
the assimilation divergence and further improves the gridded
prediction fusion.

3.3 Spatial forecast

Figure 7 depicts the spatial distribution of the fused predic-
tions (panels g–i) and the ones using extra covariance in-
flation (panels j–l) against the independent PM2.5 measure-
ments at three randomly selected tested instants. Those two
gridded posteriors were obtained via fusing the site-available
RFSML in panels (a)–(c) and CTM prediction in panels (d)–
(f). The proposed fused prediction consistently exhibits im-
provements in the spatial pattern compared to the pure CTM.
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Figure 6. Time series of an environmental monitoring station (latitude: 34.65◦ N, longitude: 112.39◦ E) in Luoyang, Henan Province. This
station is one of the validation set. The solid deep-sky-blue line, solid dark-violet line, red star, and black dot represent prediction fusion with-
out covariance inflation, prediction fusion with covariance inflation, ground observation, and mean ensemble CTM predictions respectively.
Panels (a) and (b) represent forecasts 6 and 18 h ahead respectively.

Specifically, the CTM underestimated the PM2.5 pollution
over the NCP region at the first (red box in panel d) and
third instants (red box in panel f). The underestimation was
partially relieved by assimilating the RFSML prediction (see
panels g and i). The CTM’s overestimations in the SCB
(panel e) and the south of China (panel f) were also reduced
to a great extent by the proposed prediction fusion (see panels
h and i). When severe underestimation occurred in northern
China (green box in panels), especially in Xinjiang Province,
assimilating only the RFSML prediction was not sufficient
to correct it. However, the application of covariance inflation
effectively resolved the underestimation in the fused predic-
tions, as shown in panels (j), (k), and (l) (green box). Overall,
these results demonstrate the potential of our proposed pre-
diction fusion approach to improving the accuracy of PM2.5
predictions, especially in regions with complex and hetero-
geneous air quality patterns.

In summary, the fused prediction obtained through assim-
ilating the high-quality RFSML prediction could effectively
improve CTM spatial variability prediction. Additionally, the
covariance inflation can further enhance the performance of
the prediction fusion, especially in places with severe un-
derestimation. This is mainly because the perturbed MEIC
emission only partially accounts for the simulation-minus-
observation error. The error caused by meteorology, deposi-
tion, and other processes should also be taken into account,
as has been done in our proposed covariance inflation.

Overall, the EnKF-based prediction fusion approach
showed superior performance compared to the CTM in most
of the validation stations, as indicated by the lower RMSE
and MAE values shown in Fig. 8. However, there were a
few sites where the improvements were limited, such as in

Xinjiang Province, which could be attributed to the lack of
nearby RFSML sites for assimilation. The fused prediction
with covariance inflation demonstrated even further improve-
ment in prediction skill, particularly in areas with sufficient
RFSML sites for assimilation, which were mainly located in
the five major megacity clusters (indicated by the black boxes
in Fig. 8).

To clearly visualize the benefit of using the EnKF-
based prediction fusion method and covariance inflation, we
present a modified Taylor diagram (Taylor, 2005) in Fig. 9,
which shows the RMSE and R of the CTM and our fused
prediction over the five clusters simultaneously. These met-
rics are calculated with respect to the independent air qual-
ity monitoring sites in the region. In terms of the Pearson
correlation coefficient, the SCB shows the best predictability
among the regions, while the PRD has the poorest perfor-
mance. The smallest R value of the PRD can be attributed
to both the smallest R value of RFSML and CTM predic-
tions. However, no significant differences were observed in
the predictive performance of these regions. Regarding the
root mean square error (RMSE), the NCP and FWP exhibited
the largest values. This outcome can be attributed to the fact
that the NCP and FWP are located in the northern region of
China, where the frequency of pollution days is higher due to
adverse meteorological conditions and high emissions during
winter. It should be noted that the RMSE metric is directly in-
fluenced by the atmospheric pollution levels, wherein higher
PM2.5 concentrations tend to yield larger RMSE.

The improvement in prediction skill using our prediction
fusion method compared to the pure CTM prediction is con-
sistent across all five regions and various prediction horizons
(6, 12, 18, and 24 h). For example, in panel (a), the CTM has
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Figure 7. Snapshots of PM2.5 forecast 6 h in advance at three instants (each column indicates the same moment). Panels (a)–(c) show the
RFSML predictions (colored dots) at 1074 air quality stations. Panels (d)–(f) show the CTM prediction and the ground observation (colored
dots). Panels (g)–(l) show the prediction fusion (without and with covariance inflation) results and the actual results (colored squares) from
376 evaluation stations.
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Figure 8. Spatial statistics of CTM, prediction fusion without covariance inflation, and prediction fusion with covariance inflation. Panels
(a)–(c) and panels (d)–(f) represent statistical results of RMSE and MAE respectively. The results are based on prediction 6 h in advance.

the worst prediction in terms of R (< 0.1) in the PRD region,
but it increases to 0.62 when the RFSML forecast is assimi-
lated and further increases to 0.85 when covariance inflation
is implemented. In terms of the RMSE, the most remark-
able improvement is obtained in the SCB region. Our EnKF-
based fusion reduced the RMSE from 43 to 12.73 µg m−3 and
10.97 µg m−3 (with covariance inflation). This is a consider-
able improvement and can be attributed to the densely dis-
tributed RFSML prediction sites in the region, as can be seen
in Fig. 1. Note that our fused prediction skill also generally
declines with an increase in prediction length following the
RFSML. Therefore, prediction fusion with a longer forecast-
ing horizon (> 24 h) was not carried out. Thus, the prediction
fusion method has much better prediction performance than
CTM, and covariance inflation can further enhance this ad-
vantage in all the tested predicting horizons.

To further showcase the robustness of the proposed pre-
diction fusion approach, we conducted testing for a less pol-
luted month (April 2020) using prediction horizons of 6 and
18 h. The overall performance of each region is illustrated in
the Supplement Fig. S6 using a Taylor diagram. Our results
demonstrate that the prediction fusion method outperforms

CTM in all regions, and the incorporation of covariance in-
flation further enhances this advantage.

3.4 Computational complexity analysis

In this study, all computations related to the prediction fu-
sion were carried out on nodes equipped with 4× 16-core
2.1 GHz Intel Xeon E5-2620 v4 CPUs and with a memory
of 64 GB. The RFSML was demonstrated to be relatively
efficient in computation, as illustrated in Fang et al. (2022).
The ensemble CTM predictions take up the most computa-
tion power; however they could be implemented in parallel.
Each CTM takes approximately 30 min to run a 24 h simula-
tion on average, with only 16 cores. The computational cost
for EnKF fusion is also low, with an average time of 3 min for
a prediction fusion. Overall, the proposed prediction fusion
is time-affordable.

4 Conclusions

Machine learning models offer strong advantages for air
quality predictions, but their high-quality predictions are lim-
ited to air quality monitoring stations. Conversely, CTMs can

Geosci. Model Dev., 16, 4867–4882, 2023 https://doi.org/10.5194/gmd-16-4867-2023



L. Fang et al.: ML prediction and CTM forecast fusion using EnKF 4879

Figure 9. A modified Taylor diagram that illustrates RMSE and R together. The NCP, PRD, SCB, YRD, and FWP were represented by the
circle, star, square, triangle, plus symbol, and diamond respectively. Black, blue, and red indicate results from CTM, prediction fusion without
covariance inflation, and prediction fusion with covariance inflation respectively. The panels from top left to bottom right are forecasts 6, 12,
18, and 24 h ahead.

predict ambient pollutants in a continuous, spatially resolved
manner, but their accuracy is not guaranteed due to various
error sources, such as the emission inventory, meteorology,
and initial and boundary conditions. To address these limita-
tions, we proposed an EnKF-based method to fuse the site-
specific machine learning predictions (RFSML v1.0 in this
study) and CTM predictions. In our assimilation approach,
the uncertainty of RFSML results is quantified using a dy-
namic covariance, while the uncertainty of the CTM predic-
tion is represented by ensemble realizations driven by per-
turbed emission inventories. The proposed prediction fusion
method resulted in a relatively accurate and continuous 3D
field prediction. This method exhibited remarkable perfor-
mance compared to the pure CTM, as indicated by metrics
such as R, MAE, and RMSE. For example, when consid-
ering the prediction with a 6 h horizon in the five megacity
clusters, the average RMSE was reduced from 48.82, 27.66,
53.14, 27.42, and 47.04 µg m−3 to 27.28, 17.46, 12.73, 17.11,
and 32.24 µg m−3 in the NCP, PRD, SCB, YRD, and FWP re-
spectively. The corresponding R increased from 0.63, 0.07,
0.55, 0.54, and 0.57 to 0.79, 0.62, 0.89, 0.78, 0.82, and 0.68
simultaneously.

The CTM, on the other hand, is subject to various uncer-
tainties, including meteorology, deposition, and initial and
boundary conditions, in addition to the uncertainty in the
emission inventory that was initially considered. To address

these uncertainties, covariance inflation was applied to rep-
resent CTM errors and improve their prediction accuracy. By
re-weighting the two priors using empirical covariance in-
flation, the prediction fusion method achieved the best pos-
terior prediction results. The method successfully detected
local severe pollution events, such as in Xinjiang Province,
and captured fine-scale PM2.5 variation in regions with com-
plex pollution patterns. Notably, the average RMSE of PM2.5
prediction in the five densely populated clusters (NCP, PRD,
SCB, YRD, and FWP) was further reduced to 20.22, 12.68,
10.97, 14.78, and 24.10 µg m−3, respectively, with the ap-
plication of covariance inflation. The corresponding R was
further increased to 0.89, 0.80, 0.92, 0.85, and 0.90, respec-
tively, demonstrating the effectiveness of the prediction fu-
sion method with covariance inflation.

In summary, the proposed fused prediction effectively
overcomes the weakness of machine learning, which can
only predict at specific sites. However, our method has some
drawbacks, such as 32 ensemble CTM predictions which are
still computationally expensive. Additionally, the site-based
RFSML prediction may have unavoidable errors in repre-
senting atmospheric dynamics of the grid mean, which we
will address in our future work. This method can be extended
to predict the concentrations of other airborne pollutants.
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https://quotsoft.net/air/. The GEOS-Chem v13.1.0 source code
is archived on Zenodo (https://doi.org/10.5281/zenodo.4984436,
The International GEOS-Chem User Community, 2021), and
the MEIC for modeling the anthropogenic activity emission
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