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1. Introduction
Oceans regulate our climate system, with ocean warming accounting for over 90% of the Earth's energy inventory 
increase between 1971 and 2010 (IPCC, 2013). Fluxes across the air-sea interface are driven by kilometer-scale 
coupled processes. Temperature variations and gradients at the interface can change near-surface stratification 
properties. Resulting air-sea fluxes of momentum, heat and water vapor are also affected. On the atmospheric side 
of this interface, these near-surface stratification properties are generally traced by the occurrence of organized 
large coherent structures.

Indeed, for decades it has been known that wind fields contain atmospheric stability information within their 
kilometer-scale organization (e.g., Figure 12 in Grossman,  1982). Vertical temperature and wind gradients 
lead to microscale convection, 𝐴𝐴 

(

10
2
− 10

3
m
)

 , whereas large-scale horizontal gradients result in mesoscale 
convection, 𝐴𝐴 

(

10
3
− 10

5
m
)

 , (Fiedler & Panofsky, 1970; Lilly, 1989). Today, global climate models parameter-
ize  the kilometer-scale convection. Future models with the capacity to fully capture all scales of convection up 
to a climatological level are still decades away (e.g., National Academies of Sciences, Engineering, and Medi-
cine, 2019; Rio et al., 2019). To aid the representation of kilometer-scale marine atmospheric boundary layer 
(MABL) properties—necessary to project the impact of changing coupled air-sea interactions on a climatological 
scale (Christensen & Zanna, 2022; Cronin et al., 2019)—more observational quantitative estimates are necessary. 
Yet, over the oceans, direct insight into the small-scale boundary-layer processes remains rather difficult. Field 
campaigns (e.g., Bony et al., 2017) are conducted locally with high costs, and optical satellite images are often 
limited due to low-resolution and high cloud coverage. Synthetic aperture radar (SAR) satellite observations 
have been proposed as a solution to resolve this data gap (T. D. Sikora & Ufermann, 2004). SAR measurements 
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can indeed capture and quantify sea-surface roughness changes induced by the MABL-stratification properties 
(Alpers & Brümmer, 1994; T. Sikora et al., 1995; Vandemark et al., 2001). The visibility of MABL-related coher-
ent structures on SAR images is quite systematic as perturbations of surface winds at kilometer-scales, which 
modulate the centimeter-scale ocean roughness, leave measurable imprints (Wang et al., 2020; Wang, Mouche, 
Tandeo, et al., 2019; Wang, Tandeo, et al., 2019).

At medium scales, 𝐴𝐴 (10 km) , first-order wind-field statistics can quantify momentum fluxes, but are generally 
insufficient at distinguishing between atmospheric regimes. This is illustrated by the upper two SAR-derived wind 
fields presented in Figure 1d. Despite similar median wind characteristics, corresponding wind-field textures 
suggest different atmospheric surface-layer stability regimes. This stability is quantified following surface-layer 
similarity theory from Monin and Obukhov (1954) in

𝐿𝐿 = −
𝑇𝑇 𝑣𝑣𝑢𝑢

3

∗

𝜅𝜅𝜅𝜅𝑤𝑤′𝑇𝑇
′
𝑣𝑣

, (1)

where friction velocity 𝐴𝐴 𝐴𝐴
3

∗ captures the wind-stress related shear production of turbulence and 𝐴𝐴 𝑤𝑤′𝑇𝑇
′
𝑣𝑣  the heat-

flux related convective production (Stull, 1988). Tv is the virtual temperature, κ the Karman constant and g the 

Figure 1. Two wind fields (upper panels) calculated from Sentinel-1B, date: 06-04-2020, absolute orbit: 021017, vignette: 70, product unique ID: BD8A (left) and 
Sentinel-1A, date: 09-03-2021, absolute orbit: 036917, vignette: 128, product unique ID: 5608 (right), (Lower panel) Atmospheric instability from ERA5 (only unstable 
conditions considered) versus mean normalized spectral amplitude within the estimated inertial subrange for a specified number of synthetic aperture radar scenes 
classified as wind streaks or micro convective cells obtained from the same incidence angle (WV2) and similar wind speeds (Un, ERA5 [5.5, 6.5] ms −1). Location on the 
graph highlighted for the upper left (a) and upper right (b) wind fields.
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gravitational acceleration. The resulting Obukhov length L could therefore be seen as the balance between two 
competing sources of turbulence. For greater wind speeds, the shear component generally dominates, forming 
roll-like wind-field structures. At low wind speeds the convective component dominates, and cell-like struc-
tures are formed. Therefore cell- and roll-like structures span different, though partially overlapping, parts of the 
wind-speed range. Obukhov length is proportional to atmospheric stability parameter ζ following

𝜁𝜁 =

𝑧𝑧

𝐿𝐿
 (2)

with z being the measurement height. A negative ζ-sign represents unstable conditions. This study works with 
a constant measurement height of 10 m such that the inverse of L gives consistent insight into atmospheric 
stability.

Co-located reanalysis data from the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA5 
confirms that L corresponding to the second wind field, whose cell-like texture contrasts the streaky patterns of 
the former (ignoring the swell), indicates greater instability. SAR measurements are thus apparently capable of 
capturing high-resolution, 𝐴𝐴 

(

10
1
− 10

3 m), surface wind-field perturbations, which contain information on the 
local stability conditions.

Young et al. (2000) first proposed to estimate atmospheric surface-layer stability from SAR imagery by rely-
ing on work from J. C. Kaimal et al.  (1972) and J. Kaimal et al.  (1976), and assuming that the wind-field's 
spectral amplitude within the microscale inertial subrange is related to atmospheric turbulence. Though this 
analysis yielded promising results on a handful of case studies (e.g., T. D. Sikora et al., 2000; T. D. Sikora 
& Thompson,  2002), when applied on a greater collection of SAR scenes its flaws become apparent. The 
lower graph in Figure 1 indicates that the wind-field spectral amplitude obtained from SAR scenes (y-axis) 
does not uniquely correspond to an atmospheric stability (x-axis) for convective scenes observed with similar 
wind speeds and viewing geometries (i.e., similar backscatter amplitudes); spectral amplitudes contain too little 
information to discriminate between atmospheric stability properties. Furthermore, Young's approach requires 
a clear spectral peak and inertial subrange within the microscale, a range often obscured in SAR-derived spectra 
due to the presence of long-wavelength swell (an inevitable consequence of global analyses) or imaging arti-
facts. Additionally, the selection of constants in Young's approach implicitly assume a specific (currentless) sea 
state and atmosphere (e.g., a = 0.011 and Ψ = 0.6 in Equations 3 and 11 of Young et al. (2000) respectively). 
A clear microscale and adherence to specific sea- and/or atmospheric states cannot be guaranteed for global 
analyses.

To overcome these uncertainties, a greater quantity of kilometer-scale wind-field information is thus likely neces-
sary. In this study, several additional parameters are derived to improve the characterization of the wind-field's 
distributed variance, in addition to first-order parameters (such as median wind speed) and parameters originally 
derived in Young's analytical methodology. Machine Learning (ML) is then employed to connect the additional 
wind-field information to L. The addition of ML is intended to make up for the lack of an analytical framework 
through which to combine all derived parameters, to compensate for incorrect assumptions (such as those related 
to the sea state and atmosphere), to squeeze out extra information on the atmosphere which remained untapped 
in  the purely analytical method and to facilitate the analysis of vast quantities of observations.

Since the launch of ESA's Sentinel-1 missions in 2014 (Sentinel-1A) and 2016 (Sentinel-1B), millions of SAR 
observations over the oceans have been acquired, capturing a wide variety of air-sea environmental conditions 
(Wang, Mouche, Foster, et  al.,  2019). Noteworthy is the SAR-image classification work by Wang, Tandeo, 
et  al.  (2019) which provides a means of selecting a subset of convective SAR observations. The aim of this 
paper is thus to quantify L for convective SAR scenes in a regression sense, rather than in terms of classification 
(e.g., the ternary stability classification of Stopa et al., 2022). The analysis is first performed on 124,682 SAR 
scenes, classified as containing convective wind streaks (referred to as rolls throughout this study) to determine 
to what extent it is possible to further discern between L's within one of Wang et al.’s convective classes. After-
ward, the scope is extended by including a similar number of micro convective cells (referred to as cells) to 
determine the applicability of the approach on a broader range of convective conditions and to assess the impor-
tance of kilometer-scale SAR-detected features. Validation is performed by a comparison and regression toward 
co-located retrievals from ERA5. In Text S1 in Supporting Information S1, the suitability of ERA5 for validation 
is assessed through a comparison with a smaller, secondary data set comprised of moored buoys.
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2. Description of Data
2.1. Observations

C-band SARs onboard the Sentinel-1 constellation are sensitive to surface roughness variations on the centim-
eter scale (ESA,  2021) and thereby insensitive to most phenomena occurring in the atmosphere. SARs are 
thus incapable of measuring atmospheric turbulence directly. Instead, SAR quantitatively traces short-scale 
turbulence-induced roughness patterns on the ocean surface and indirectly approximates the projection of the 
atmospheric turbulence spectrum. Naturally, roughness patterns may be contaminated by other phenomena which 
affect the ocean surface such as swell, biological films, rain, etc.

Sentinel-1's C-band radars operate at various exclusive modes with different polarizations. This study uses WaVe 
mode (WV) observations with a resolution of 5 by 5 m. Measurement and processing artifacts such as smearing, 
azimuthal cut-off and velocity bunching (e.g., Brüning et al., 1990; Kerbaol et al., 1998; Rizaev et al., 2021) 
reduce the effective resolution by orders of magnitude. The WV scenes are then resampled to 100 m resolution. 
All analyzed images are obtained with the radar transmitting and receiving in VV polarization. A total of 249,496 
pre-classified WV scenes are selected within the years 2020–2021 which, according to the convolutional neural 
network from Wang, Tandeo, et al. (2019), contain 124,682 rolls and 124,814 cells. The observations are evenly 
distributed over both years and Sentinel-1 sensor platforms. The estimation of 100 m resolution wind fields from 
SAR observations and a geophysical model function (GMF) is provided in Text S1 in Supporting Information S1. 
Filtering of observations is described in Text S2 in Supporting Information S1, which aims at reducing noise by 
removing misclassification and images with poor convective signatures.

2.2. Validation

This study uses two validation sources: gridded global reanalysis from ERA5 and point-wise observations from 
various buoys. Acquisition details for both are described in Text S1 in Supporting Information S1. ERA5 is used 
in direct comparison with our estimates. Buoy observations are used as a check on ERA5's validity.

Global hourly validation data on single levels at 1° × 1° resolution is downloaded from ECMWF's ERA5 reanal-
ysis data set (Hersbach et  al.,  2018). Each scene is co-located with the nearest ERA5 grid cell. The ERA5 
parameters, along with the latitude and respective measurement heights, are fed into the COARE-like algorithm 
COARE3.5, available at Ifremer (2015) and based on COARE3 from Fairall et al. (2003), yielding a value of 
Obukhov length based on ERA5 data only (LERA5).

The validity of using ERA5 data for validation is assessed in Text S1 in Supporting Information S1. For a small 
sample of triple co-locations (ERA5, SAR, buoys), buoy and ERA5-retrieved validation were found to be approx-
imately equally representative of the atmosphere as extracted from SAR imagery. A separate analysis between 
triple co-located buoys and ERA5 confirmed a minimum of 75.9% of the latter's signal is physically based (up 
to +80% on a larger data set of buoy-ERA5 co-locations). Under the assumption that the obtained results are 
representative of ERA5's capabilities beyond direct buoy-ERA5 co-locations, this result justifies the use of ERA5 
for validation.

3. Methodology
3.1. SAR Spectral-Derived Parameters

High-resolution SAR enables the calculation of high-resolution wind-field spectra. This study utilizes infor-
mation derived from both the one- and two-dimensional wind-field spectra. Our one-dimensional spectra are 
similar to Figure 2 in Young et al. (2000), with the important distinction that ours are constructed through polar 
integration. A polar integration of the two-dimensional spectrum is more robust than the equivalent obtained 
from a one-dimensional cross section. It prevents high-wavenumber noise (such as from swell) projecting itself 
onto the relevant, larger scales (see Text S2 in Supporting Information  S1). Furthermore, polar integrations 
negate the need to rotate and clip images along a particular axis. However, as a trade-off this method adds extra 
sensitivity to noise occurring at the wavelengths of interest, regardless of orientation. Parameters derived from 
the two-dimensional spectra are related to spectral-energy contours and orientation. These give insight into the 
spread and directionality of the spectrum. Details on the derived parameters can be found in Text S2 in Support-
ing Information S1, with an example shown in Figure S1 in Supporting Information S1.
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3.2. Analysis Frameworks

3.2.1. Analytical Approach

The analytical approach follows the methodology of Young et al. (2000), which assumes a correlation between 
the sea-surface roughness patterns detected by SAR and the atmosphere above. Specifically, the magnitude of 
backscatter relates to the wind-induced shear component whereas the backscatter variations are related to the 
turbulent eddies of the convective component. Having computed a wind field and its one-dimensional spectrum, 
corresponding shear and convective components are calculated following Young et  al.  (2000) in Text S2 in 
Supporting Information S1. Eight physically related parameters are computed during this stage including the 
analytical estimate of Obukhov length, 𝐴𝐴 �̂�𝐿 .

3.2.2. Machine-Learning Assisted Approach

Machine Learning (ML) is employed in an effort to overcome inadequacies in, and deviations from, the analytical 
approach. Parameters from the analytical approach are fed into a ML regression algorithm along with additional 
zero-dimensional parameters retrieved from the one- and two-dimensional spectrum and the SAR viewing geom-
etry, yielding a second estimate of the Obukhov length, 𝐴𝐴 �̂�𝐿ML . ML is expected to improve upon the initial estimate 
by learning when to account for systematic biases and errors. Several distinct ML algorithms are trained in this 
study. Their general design and training process remain the same. Differences between ML algorithms relate 
only to the data on which they are trained, unless specified otherwise. The data preparation prior to ML, such as 
filtering, and a description of the regression itself are presented in Text S2 in Supporting Information S1.

4. Results
4.1. SAR Observed MABL Rolls

Analytical and ML results, 𝐴𝐴 �̂�𝐿 and 𝐴𝐴 �̂�𝐿ML , are presented in the top panel of Figure  2 respectively. Between 
10 ≤ |LERA5| ≤ 100 m the median trendline of 𝐴𝐴 log

10

(

�̂�𝐿

)

 appears to follow the slope of ERA5 validation, though 
with a bias and significant noise. Beyond |LERA5|  =  100  m the analytical methodology appears incapable of 
differentiating between stability states. The ML-assisted approach increases both the precision and accuracy 
of estimates. Additionally, where estimates from the analytical approach plateau, the ML-assisted approach 
remains capable of discerning between stability states. The ML-assisted method suffers from underestimation for 
|LERA5| ≥ 100 m and overestimation for |LERA5| ≤ 100 m. This is likely an artifact of the non-uniform distributed 
data as visible in the histograms of Figure 2.

Quantitative assessments are performed using the coefficient of determination (R 2) and median absolute error 
(MAE) on logarithmic |L|-values. The former gives insight into the average—and therefore outlier-sensitive—
performance. The more robust MAE yields insight into the systematic performance. R 2 values can be inter-
preted as the fraction of explained variance. An antilog of MAE yields the median relative error (MRE) on a 
non-logarithmic scale. Mean and standard deviations are obtained through a five-fold cross validation.

Analytical results in the upper left panel of Figure 2 do not linearly follow validation data (yielding a negative 
R 2). When assisted by ML the R 2 metric increases to 0.673 (see Table 1); the ML algorithm can account for 
over two-thirds of the observed variance. Antilogs of MAE's 0.341 and 0.113 yields MRE's of 119% and 30% 
for 𝐴𝐴 �̂�𝐿 and 𝐴𝐴 �̂�𝐿ML respectively; the MRE error decreases by a factor four when assisted by ML, resulting in half of 
the ML-assisted estimates experiencing a relative error in L-estimation of less than 30%. Performance varies 
little across the relevant scales of turbulence, as detailed in Text S3 in Supporting Information S1, such that the 
methodology can be used for both microscale and mesoscale turbulence. A spatiotemporal analysis of results is 
provided in Text S3 in Supporting Information S1, from which can be deduced that 𝐴𝐴 �̂�𝐿ML estimates are qualita-
tively similar to LERA5 (unlike 𝐴𝐴 �̂�𝐿 ) and that coherent correlated errors between the two suggest regional phenom-
ena, such as currents, may induce errors.

Additional ML algorithms are trained on a subset of available parameters to assess their respective prediction 
importance (see Table 1). When trained on a single parameter, estimated median neutral wind speed 𝐴𝐴 𝑈𝑈𝑛𝑛 , the 
ML algorithm already outperforms the results from the analytical approach and is able to explain 47.6% of the 
observed LERA5 variance. Including two parameters related to the viewing geometry (radar incidence angle ϕ 
and spectral energy direction in range δ), for a total of three parameters, increases the explainable variance by 
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nearly 7%-points to 54.4%; the predictive power extracted from three parameters accounts for over 80% of the 
total predicted variance. The predictive power contained within 𝐴𝐴 𝑈𝑈𝑛𝑛 logically follows from Equation 1, wherein 
wind speed directly affects the wind-shear component u* and is correlated to 𝐴𝐴 𝑤𝑤′𝑇𝑇

′
𝑣𝑣  . However, neither view-

ing geometry parameter is considered in the analytical framework, nor should the atmospheric state depend on 
them. Yet ϕ and δ experience a Pearson's correlation coefficient of 0.27 and 0.31 with log10(|LERA5|) respectively. 

# Params 1 3 9 35 43

𝐴𝐴 �̂�𝐿ML R 2 0.476 ± 0.019 0.544 ± 0.011 0.529 ± 0.023 0.651 ± 0.013 0.673 ± 0.015

MAE 0.158 ± 0.004 0.144 ± 0.003 0.149 ± 0.003 0.117 ± 0.002 0.113 ± 0.001

𝐴𝐴 �̂�𝐿ML, R&C R 2 – 0.709 ± 0.004 – – 0.796 ± 0.005

MAE – 0.161 ± 0.004 – – 0.125 ± 0.003

Note. First the ML algorithm is trained on a single parameter, 𝐴𝐴 𝑈𝑈𝑛𝑛 . Next parameters ϕ and δ are included, for a total of three parameters. Then the analysis is performed on 
𝐴𝐴 𝑈𝑈𝑛𝑛 in addition to eight parameters uniquely calculated in the analytical approach (e.g., 𝐴𝐴 log

10

(

|�̂�𝐿|

)

 , u*, z0, Cdn, σu, B, w*, and χ) for a total of nine parameters. Afterward 
all spectral-derived parameters (with the exception of the previous eight) are considered in addition to 𝐴𝐴 𝑈𝑈𝑛𝑛 , ϕ and δ for a total of 35 parameters. Lastly, the ML algorithm 
is trained on all 43 parameters. The R&C results are obtained from a ML algorithm trained on a larger data set comprising both rolls and cells.

Table 1 
Estimation Performance as a Function of Parameters Included in Machine Learning Algorithms

Figure 2. ERA5 validation versus (top left) analytical L estimates on rolls, (top right) ML-assisted L estimates on rolls, (bottom left) ML-assisted L estimates on rolls 
and cells from synthetic scatterometer, (bottom right) ML-assisted L estimates on rolls and cells. Histograms of estimation and validation values of L included.
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This indicates a sampling bias introduced by the classification algorithm of Wang, Tandeo, et al. (2019) with 
specific atmospheric conditions being more frequently detected during specific viewing geometries, for example, 
low values for |LERA5| are disproportionately sampled at smaller incidence angles (WV1) with wind directions 
propagating in the along-range direction. Vice versa for greater |LERA5| values. A more detailed analysis on the 
influence of δ on estimation performance is included in Text S3 in Supporting Information S1, whose results 
suggest a decrease in atmospheric information captured in SAR imagery as a function of δ. Combining 𝐴𝐴 𝑈𝑈𝑛𝑛 with 
eight parameters derived uniquely in the analytical approach (for a total of nine) yields poorer performance 
than the model trained on three parameters; parameters retrieved from the analytical approach appear to contain 
little predictive power beyond that already contained in the wind-speed estimate. The ML algorithm trained on 
all parameters but those retrieved from the analytical approach, for a total of 35 parameters, explains 65.1% of 
variance. Lastly, when including the eight previously omitted parameters, for a total of 43 parameters, 67.3% of 
variance is explained. Therefore, the parameters from the analytical approach uniquely contribute 2.2%-points. 
A more detailed variance budget is provided in Text S3 in Supporting Information S1, which also includes the 
validation data components.

4.2. SAR Observed MABL Rolls and Cells

We perform new analyses on scenes classified as cells in addition to rolls to extend the model for a broader range 
of convective conditions and to determine whether wind speed remains the dominant predictor across classes. A 
new ML algorithm is trained on composite data containing the original rolls and approximately twice as many 
cells (R&C). Data set details are provided in Text S2 in Supporting Information S1.

Estimation results of the new ML algorithm, 𝐴𝐴 �̂�𝐿ML, R&C , are shown in the bottom right panel of Figure 2. Qualita-
tively, the 𝐴𝐴 �̂�𝐿ML, R&C estimates appear as an extension toward greater instabilities from 𝐴𝐴 �̂�𝐿ML . The greater spread in 
the distribution of LERA5 corresponding to 𝐴𝐴 �̂�𝐿ML, R&C allows the new ML algorithm to remain unbiased for a greater 
range between approximately 10 ≤ |LERA5| ≤ 100 m. An apparent asymptote at |LERA5| ≤ 10 m prevents correct 
estimation for very unstable scenes. This may be the result of fewer observations nearing said asymptote, or due 
to the fleeting nature of very unstable atmospheric conditions causing greater decorrelation between observation 
and validation. The R 2 metric for 𝐴𝐴 �̂�𝐿ML, R&C shoots up to 0.795 as compared to 0.673 from 𝐴𝐴 �̂�𝐿ML , indicating that 
L-estimation can successfully be applied on a broad range of stabilities. The near three-fold increase in observa-
tions is likely to account for part of the apparent improvement, as is the increased spread of LERA5: the R 2 metric 
weights errors inversely proportional to the variance of the validation data, which is greater when considering 
both cells and rolls. Meanwhile the MAE metric of 𝐴𝐴 �̂�𝐿ML, R&C increases slightly to 0.125 as compared to 0.113 
from 𝐴𝐴 �̂�𝐿ML ; despite significantly increasing the range of estimation possibilities, the median error only marginally 
increases.

5. Discussion
Roll-analysis results indicate that two-thirds of the predictive power is extracted from the GMF-retrieved median 
wind speed. A second analysis on both rolls and cells indicates an even greater relative importance of wind speed 
on stability estimations. These observations may give the impression of high-resolution information being redun-
dant. The additional value of high-resolution SAR observations is perhaps best illustrated by an example. The 
two SAR scenes in Figure 1 occurred during similar wind speeds and are part of the test fraction of data. They 
are classified as containing rolls and cells respectively, with ERA5 confirming that the right-hand figure occurred 
in a more unstable regime. Predictions from the ML algorithm trained on parameters derivable through SAR  
(𝐴𝐴 �̂�𝐿ML, R&C trained on all available 43 parameters), LSAR, are significantly closer to validation than Lscat (𝐴𝐴 �̂�𝐿ML, R&C 
trained only on parameters obtainable from hypothetical scatterometers, i.e., 𝐴𝐴 𝑈𝑈𝑛𝑛 , ϕ and δ). Since 𝐴𝐴 𝑈𝑈𝑛𝑛 ’s are similar 
and both observations were made at the same incidence angle, the only remaining degree of freedom is δ, whose 
prediction contribution springs from observational biases. Therefore, the contribution of parameters obtainable 
with high-resolution SAR appears to mainly lie in error reduction rather than first-order approximations. This 
finding also holds on a statistical level as is evident from the results in Table 1 demonstrating that high-resolution 
related parameters result in a relatively greater decrease in MAE than the relative increase R 2.

Globally LSAR consistently outperforms Lscat in our preliminary investigation. Therefore, by mapping the differ-
ences between the two we can identify where the ML algorithm benefits from high-resolution information (see 
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Figure 3). Regionally coherent structures, such as off the North American East Coast, suggest local importance 
of high-resolution information. In the past, this region was the subject of studies investigating current signatures 
of the Gulf Stream in SAR imagery (e.g., Beal et al., 1997; Marmorino et al., 1997). The Gulf Stream's warm 
currents transport heat from the tropics up to the mid-latitudes, where the resulting enhanced air-sea temperature 
gradient provides ample opportunity for atmospheric convection. Even more so when the prevailing westerlies 
transport cold continental air over the warmer western boundary current. The negative sign of the structure indi-
cates |Lscat| underestimates the atmospheric instability with respect to |LSAR| (and |LERA5|); without kilometer-scale 
texture information Lscat is incapable of estimating atmospheric instability beyond a first-order approximation. 
Consequently, we deduce from this regional example, the comparison discussed in Figure 1 and the summary 
statistics in Table 1 that kilometer-scale texture information is needed to uniquely distinguish between instabil-
ities. Furthermore, kilometer-scale information is prerequisite on account of having to identify convective SAR 
scenes.

Naturally results would change as a function of data distribution. If our data set had contained excessive obser-
vations over the Gulf Stream, estimation for this region would improve (regardless of parameters included) at 
the expense of all other regions. Similarly, estimation will be poor for any new observation with previously 
unsampled convective signatures. The presented performance should therefore be seen as secondary to the facts 
that L can quantitatively be extracted from SAR scenes and that robust extraction necessitates high-resolution 
information. Without this information and following Equation  1, L-estimates would provide poor constraints 
on momentum and heat fluxes—in particular for infrequently sampled regions with unique convection-driving 
mechanisms—across the air-sea interface. This could subsequently affect derived regional weather forecasts and, 
potentially, cascade into erroneous climatological predictions.

6. Conclusion and Perspective
Results confirm the possibility of inferring stability conditions at the air-sea interface from SAR imagery. The 
analytical method proposed by Young et al. (2000) has limited applicability but provides useful guidance and 
parameters with which to filter non-convective observations. Our method, based on a ML algorithm trained on 
zero-dimensional parameters, demonstrates a leap forward in performance. The MAE largely drops while R 2 
increases, suggesting that 67.3% of the validation variance can be explained for rolls, and up to 79.6% when 
considering rolls and cells. Accordingly, atmospheric information can be extracted from relatively simple param-
eters to discriminate between an already narrow range of atmospheric states.

Much of the prediction power could be achieved with scatterometer measurements due to the importance of wind 
speed in making a first-order approximation. Though, texture-related parameters derived from high-resolution 
SAR scenes enable a significant reduction in errors. In fact, without information on kilometer-scale features, the 
ML algorithm is incapable of providing more than a first-order approximation.

Future high-resolution Earth observation missions, such as EE10 Harmony (ESA, 2022) and the proposed EE11 
SEASTAR (Gommenginger et al., 2019), could improve results by providing multiple observations obtained from 
additional viewing angles. With the added degrees of freedom, it may be possible to identify, learn and infer what 

Figure 3. Global difference between LSAR and Lscat on 2.5° × 2.5° for the 20% test fraction of the composite data set.
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atmospheric information might else be lost as a function of viewing geometry. In turn, this would allow for the 
creation of a global convective-scenes data set unbiased by viewing geometry.

The presented results illustrate the prediction potential when trained exclusively on a parameterized model. A new 
generation of co-located validation data is needed to go beyond the current ML predictions, to make estimates 
independent of and surpassing ERA5. However, the present predictions can already be employed to improve 
parameterization despite being trained toward a parameterized model. Discrepancies between our estimates and 
ERA5 may highlight where the latter falls short (e.g., poorly parameterized regions/phenomena). Future work 
could include localized ground truth measurements, regional models and ancillary information into the training 
data to locally enhance predictions. A ML model trained on such enhanced databases could in turn provide new 
constraints on parameterized models by providing vast quantities of estimates covering complex phenomena. 
After all, Sentinel-1 satellites promise decades of data and continuity.

Additionally, enhanced wind-field inversion schemes would evidently benefit from including high-resolution 
texture information to retrieve non-neutral wind-fields and stability information (as opposed to the 
scatterometer-based statistical inversion schemes in CMOD5). If incorporated in a deterministic manner, an 
improved understanding of the connection between textures and stability conditions would be required. This 
connection may be inferred from the ML algorithm itself by deliberate manipulation of the testing data set (and 
study of its propagated effect), by dissecting the ML algorithm itself (akin to studying the intermediate layers of 
a neural network) or through joint analysis of wide-swath predictions with corresponding large eddy simulations. 
Furthermore, the ML algorithm could be applied and/or trained on LES-retrieved wind fields to aid in constrain-
ing new inversion schemes developed on LES-derived backscatter fields.

Lastly, our methodology could serve as an example to future studies on leveraging preexisting databases of satel-
lite observations in combination with ML for preliminary feasibility assessment. Future studies can go beyond 
Obukhov length and employ the same methodology on other/additional data sets to estimate parameters related 
to the Richardson number, ocean currents and heat fluxes.

Data Availability Statement
This study relied on buoy measurements, ERA5 reanalysis and Sentinel-1 acquisitions. Processed data is available 
at https://doi.org/10.5281/zenodo.7801577. A GitHub repository with example notebooks is provided at github.
com/owenodriscoll/supplement_paper and https://doi.org/10.5281/zenodo.8064027. Raw data for the WHOTS 
and Stratus buoys are available at WHOI (2022). Additional buoys off the North American coast are made avail-
able by NOAA at NDBC (2022), with data from the PAPA network available at NOAA (2022b) and data from 
the Triton, RAMA and PIRATA buoy networks available at NOAA (2022a). ERA5 data (Hersbach et al., 2018) 
is made available by the Copernicus Climate Change Service at https://doi.org/10.24381/cds.adbb2d47. The 
Sentinel-1 SAR images are hosted by Ifremer, whose data set contains Copernicus Sentinel data (2022). Freely 
accessible Sentinel-1 data is available at ESA's Sentinel Open Access Hub https://sentinel.esa.int/web/sentinel/
sentinel-data-access.
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