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Abstract
I comment on the recent article Grüneisen approach for universal scaling of the Brillouin shift in gases
by Liang et al (2022 New J. Phys. 24 103005). While the result of this article indeed provides a
parametrization of measured Rayleigh Brillouin scattering spectra, I argue that the association with
the Grüneisen effect is fortuitous. The Grüneisen effect is the change of the specific heat with
compression of a gas. For the nontrivial case of the van der Waals gas, it predicts the decrease of the
velocity of sound with increasing pressure. In solids, which is the context considered in the article
by Liang et al, the effect is opposite: an increase of the velocity of sound with pressure.

1. Rayleigh Brillouin scattering

In a recent paper Liang et al [1] associate the Rayleigh–Brillouin spectrum of scattered light in dilute gases
with the Grüneisen effect, a phenomenon rooted in solid state physics, which describes the change of phonon
frequency due to compression. Alternatively, the Grüneisen effect is the change of specific heat with
compression, as quantified by the Grüneisen ratio Γ,

Γ =
ακT

ρCV
, (1)

with α the thermal expansivity, α= (1/V) ∂V/∂T|p, κT the isothermal compressibility, κT =

[−(1/V) ∂V/∂p|T]
−1 and CV the heat capacity per unit mass at constant volume. Inspection of

Rayleigh–Brillouin spectra at different pressures, such as illustrated in figure 1, teaches that the side-band
peak shifts to higher frequencies with increasing pressure. As the peak frequency was interpreted as the
frequency of sound at the scattering wavelength (2π/ksc) of light, the apparent velocity of sound increases
with increasing pressure, suggestive of the analogous situation in solids.

In the context of solid-state lattice phonons, the corresponding dimensionless Grüneisen ratio is
Γ =−dlnΘ0/dlnV, withΘ0 the Debye temperature which is proportional to h̄ω, the quantized phonon
energy, so that

Γ =−dlnω

dlnV
. (2)

The change of the phonon frequency ω with volume is due to the anharmonicity of the atomic interaction
potential. Clearly, the context of the Einstein–Debye theory of phonon dispersion is very different from the
microscopic physics of gases. In gases, a nontrivial Grüneisen ratio only exists for van der Waals molecules.
For monatomic real gases Γ = 2

3Vm/(Vm − b), with Vm the molar volume and b the finite eigenvolume of the
molecules [2]. In a monatomic ideal gas, Γ takes on the trivial value Γ = 2/3.

The marriage between two contexts—the phonon dispersion relation and sound dispersion in a gas—led
Liang et al [1] to propose equation (2) as a relation between the sound frequency and pressure in
Rayleigh–Brillouin scattering. With the additional assumption that the Grüneisen ratio Γ itself is
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Figure 1. (a) Rayleigh Brillouin spectrum of CO2 at 1 and 4 bars [3]. Only the right sideband is shown. The temperature is
T= 295 K, laser wavelength λ= 532 nm, scattering angle θsc = 55.5◦, so that the scattering wavevector is ksc = 1.099× 107 m−1.
The gray lines indicate a quadratic fit to the region around the peak frequency which was used to pinpoint the peak (the Brillouin
shift fB). (b) Open circles with error bars: v ′s determined from fB in (a) as v ′s = fB/ksc. The error bars correspond to half the sum
between left and right sideband frequencies. Gray dots: using a model spectrum of three Lorentzians, with parameters determined
in a least squares procedure. Full line: v ′s from peak positions of the Tenti model for these spectra [3, 5]. Dash-dotted line:
Grüneisen model, v ′s = 2π fB/ksc, fB = fB 0 exp(−γ0Vm/Vm0), with Vm0 the molar volume at T= 295 K and p= 1 bar, and fB 0

the corresponding ideal gas sound frequency. In agreement with [1], the parameter γ0 = 0.06. Gray line: vs from the CO2 van der
Waals gas, p= RT/(Vm − b)− a/V2

m, with a= 3.647× 105 m6 Pa kmol−1 and b= 0.04267 m3 kmol−1. Dashed line: ideal gas
vs = (γRT)1/2, with γ = 7/5. At large pressure the apparent sound velocity asymptotes to the real gas prediction.

proportional to pressure, a formula resulted that successfully describes the shift of peaks in
Rayleigh–Brillouin spectra (see figure 1). That this marriage is forced is exemplified by the evaluation of
equation 2 for the van der Waals gas; the result Γ = b/(Vm − b) is very different from the thermodynamic
relation.

Therefore, the Grüneisen effect in a real gas cannot be reconciled with that in solids as embodied by
equation 2. In solid-state lattices the Grüneisen effect is associated with the anharmonicity of the atomic
interaction potential. Contrary to what is stated in [1] there is no such effect in gases. Real gas molecules
engaged in a collision do indeed sense an anharmonic interaction potential (the van der Waals potential), but
that only enters into the continuum behavior in the form of transport coefficients.

The increase of the Brillouin frequency fB—the position of the side band peak in the spectrum—with
pressure is illustrated in figure 1 for CO2 at temperature T= 295K. Shown is the corresponding ‘velocity of
sound’ as defined by v ′s = 2π fB/ksc as a function of pressure. It is compared to the true velocity of sound of
the van der Waals gas, which decreases with increasing pressure.

Figure 1 also shows fB from the Tenti model which is known to adequately parametrize Rayleigh–Brillouin
spectra [3]. It agrees with the measured Brillouin shift fB, but it is consistent with the classic continuum
equations, without invocation of anharmonicity, and without invocation of a pressure-dependent velocity of
sound. As in [1], the peak positions fB were determined ‘through peak reading’. A slightly more refined
estimate of fB can be done through fitting an analytical model to the spectrum [4]. A model with Lorentzians
leads to larger fB at low pressures due to peak overlap and convolution with the experiment function. These
results show that at low pressures the peak position fB cannot simply be related to the velocity of sound.

What remains of [1] is a heuristic formula that reproduces the position of maxima in Rayleigh-Brillouin
spectra.
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