

Delft University of Technology

Orchestration Procedures for the Network Intelligence Stratum in 6G Networks

Chatzieleftheriou, Livia Elena; Gramaglia, Marco; Camelo, Miguel; Garcia-Saavedra, Andres; Kosmatos,
Evangelos; Gucciardo, Michele; Soto, Paola; Iosifidis, George; Fuentes, Lidia; More Authors
DOI
10.1109/EuCNC/6GSummit58263.2023.10188297
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 Joint European Conference on Networks and Communications and 6G Summit,
EuCNC/6G Summit 2023

Citation (APA)
Chatzieleftheriou, L. E., Gramaglia, M., Camelo, M., Garcia-Saavedra, A., Kosmatos, E., Gucciardo, M.,
Soto, P., Iosifidis, G., Fuentes, L., & More Authors (2023). Orchestration Procedures for the Network
Intelligence Stratum in 6G Networks. In Proceedings of the 2023 Joint European Conference on Networks
and Communications and 6G Summit, EuCNC/6G Summit 2023 (pp. 347-352). IEEE.
https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188297
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188297
https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188297

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Orchestration Procedures for the Network
Intelligence Stratum in 6G Networks

Livia Elena Chatzieleftheriou, Marco Gramaglia, Miguel Camelo, Andres Garcia-Saavedra,
Evangelos Kosmatos, Michele Gucciardo, Paola Soto, George Iosifidis, Lidia Fuentes,

Gines Garcia-Aviles, Andra Lutu, Gabriele Baldoni, Marco Fiore

Abstract—The quest for autonomous mobile networks introdu-
ces the need for fully native support for Network Intelligence (NI)
algorithms, typically based on Artificial Intelligence tools like
Machine Learning, which shall be gathered into a NI stratum.
The NI stratum is responsible for the full automation of the
NI operation in the network, including the management of
the life-cycle of NI algorithms, in a way that is synergic with
traditional network management and orchestration framework.
In this regard, the NI stratum must accommodate the unique
requirements of NI algorithms, which differ from the ones of,
e.g., virtual network functions, and thus plays a critical role in
the native integration of NI into current network architectures.
In this paper, we leverage the recently proposed concept of
Network Intelligence Orchestrator (NIO) to (i) define the specific
requirements of NI algorithms, and (ii) discuss the procedures
that shall be supported by an NIO sitting in the NI stratum
to effectively manage NI algorithms. We then (iii) introduce a
reference implementation of the NIO defined above using cloud-
native open-source tools.

Index Terms—Network Intelligence, Network Intelligence Or-
chestration; Intelligence Plane

I. INTRODUCTION

One of the key expectations for 6G networks is definitively
closing the gap to full autonomous operation, by enabling
self-configuration with minimal or no human intervention
through the adoption of intelligent algorithms. This calls for
the introduction of an additional stratum in the network, i.e.,
one layer that is specifically devoted to the management and
orchestration of the intelligence in the network [1].

Managing intelligence in the network. Artificial Intelli-
gence (AI), and more concretely Machine Learning (ML) tech-
niques, pushed by the increased availability of measurement
data and computational resources within mobile networks,
have the potential to develop the Network Intelligence (NI)
that will enable fully autonomous 6G networks. Practical
steps towards this direction have been recently investigated
by major Standard-Defining Organization (SDO) entities such
as 3GPP and the European Telecommunications Standards
Institute (ETSI), as well as by global industrial initiatives
like O-RAN. Within the EU-funded DAEMON project [2],

L.E. Chatzieleftheriou is with IMDEA Networks Institute and University
Carlos III de Madrid (UC3M). M. Gramaglia is with UC3M. M. Camelo-
Botero and P. Soto are with University of Antwerp - imec A. Garcia-Saavedra
is with NEC Laboratories Europe. E. Kosmatos is with WINGS ICT Solutions.
M. Gucciardo and M. Fiore are with IMDEA Networks Institute. G. Iosifidis is
with Technical University of Delft. L. Fuentes is with University of Malaga. G.
Garcia-Aviles is with i2CAT Foundation. A. Lutu is with Telefonica Research.
G. Baldoni is with Zettascale Technology.

NI Function

N

A

K

S

K

NIF Components

Many to Many

NI Service
One to Many

Fig. 1. The hierarchical taxonomy of NI algorithm components. A NIF
corresponds to an individual NI instance that assists a specific functionality:
for example, it could capture the implementation of a capacity forecasting
task, assisting an NI edge orchestration functionality.

we have identified key gaps in the above efforts. Namely,
the implementations currently provided by the standarization
entities do not deliver the following essential functionalities:
(i) coordination of the NI across different network domains;
(ii) data management across NI instances in a decentralized
and unified fashion; (iii) support for the NI lifecycle man-
agement; and, (iv) solid methodologies for the definition and
representation of NI models. Failing to meet the above would
severely compromise the applicability of NI and, subsequently,
its practical adoption within 6G networks.

Network Intelligence stratum. As part of its activities, the
DAEMON project aims at filling the gaps above by presenting
a clear set of functional and non-functional requirements
that target the coordination of NI instances in an end-to-
end fashion. To this end, we are proposing a new Network
Intelligence stratum that complements and interacts with the
existing planes in current and next-generation mobile net-
works, i.e, the user/data, control, and management planes. In
our effort to define the NI stratum organization and operations,
we already introduced a reference representation of complex
NI algorithms as a hierarchy, sketched in Fig. 1, of Network
Intelligence Services (NISs) that can be broken down into
one or more Network Intelligence Functions (NIFs), which is
turn are composed of atomic NIF Components (NIF-Cs) [3].
We also specified how NISs and NIFs can be managed by
a Network Intelligence Orchestration (NIO) with a precise
internal structure of fundamental building blocks [3].

In addition, in a separated work, we defined a suitable
reference representation to be adopted by the NIO to model
any NI algorithm [4]. To that end, we adapted a popular
model that is widely adopted for autonomous and self-adaptive

2023 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Wireless, Optical and Satellite
Networks (WOS)

979-8-3503-1102-0/23/$31.00 ©2023 IEEE 347

20
23

 Jo
in

t E
ur

op
ea

n
Co

nf
er

en
ce

 o
n

N
et

w
or

ks
 a

nd
 C

om
m

un
ic

at
io

ns
 &

 6
G

Su
m

m
it

(E
uC

N
C/

6G
 S

um
m

it)
 |

 9
79

-8
-3

50
3-

11
02

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

CN
C/

6G
SU

M
M

IT
58

26
3.

20
23

.1
01

88
29

7

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 06:32:48 UTC from IEEE Xplore. Restrictions apply.

DAEMON

Intelligent Orchestrator

NIF ManagerNIF Manager

NIF component
Manager

NIF Catalog

NIS Catalog

Service Management and
Orchestration Framework

MLOps

Control plane

User plane (switch)

K A

S

P

N
AP S

N

IP packets

traffic volumes

switch configuration

ONOS switch controller

CPU GPUMemory

O-DU
P

N
K

NIF4: S.2.1 [8]

O-RAN Near-RT RIC
P

NIF3: S.2.5 [8]

S

S

S

K

O-Cloud

MAC
Scheduler

FEC decoder

User
SNR

User
BSR

NIF1: S5.1 [9]

NIF2: S5.2 [9]

Edge

S N

NIF6: S2.1 [8]

A K

NIF5: S2.3 [8]

K
P

A

P

Non-RT-RIC SMO
S
A

K
P

N

ource
nalyze
lan
nowledge

Si k

Shared NIF
component

Network
core

Network
edge
- RAN

NIF-Cs

NIF

Fig. 2. NI-native architectural concept proposed by the DAEMON project for the NI stratum. The diagram portrays the interactions between many different
NIFs that implement two NI-assisted functionalities, or NIS, also developed in the project. The NIF-Cs that compose each NIF are categorized using our
original N-MAPE-K representation. The hierarchies of NISs, NIFs, and NIF-Cs are managed all at once by the NIO framework, by avoiding conflicts and
leveraging synergies among them.

systems, i.e., the Monitor-Analyze-Plan-Execute over a shared
Knowledge (MAPE-K) feedback loop [5]. Building on top
of the MAPE-K representation, we dissected NI algorithms
into common elements that have different characteristics (e.g.,
a data-gathering probe or a Neural Network model), and
introduced original training and closed control loops that a
NIF may implement, which resulted into an extended Network
MAPE-K (N-MAPE-K) model tailored to the NI environment.
The N-MAPE-K model allows capturing (i) the inference loop,
(ii) a traditional supervised training loop, and (iii) a second
training loop dedicated to online learning.

Mapping NI algorithm components into the N-MAPE-K
representation allows highlighting the following fundamental
classes of atomic NIF-Cs.

• Sensor NIF-Cs specify all the probes needed to gather
the input measurement data.

• Monitors NIF-Cs specify how each NIF interacts with the
Sensor NIF-Cs and gathers raw data from them.

• Analyze NIF-Cs include any pre-processing, summary,
or preparation of the data for the specific NI algorithm
implemented in the plan NIF-Cs.

• Plan NIF-Cs constitute the specific NI algorithm imple-
mented by the NIF.

• Execute NIF-Cs specify how the algorithm is going to
interact with the managed system and how to possibly
change its configuration parameters.

• Effector NIF-Cs specify the configuration parameters up-
dated in the Network Function (NF), and the Application
Programming Interfaces (APIs) to be used to that end.

Contribution. In this paper, we present a unified framework
that brings together our earlier proposals for (i) the operational
hierarchy of NI components in the NIO, and (ii) the N-MAPE-
K representation of NIF-Cs. By doing so, we make a step
forward the vision of a complete NI stratum anticipated above.

An illustrative example of the resulting integration is pro-
vided in Fig. 2. There, each circle depicts a NIF-C and a
double circle captures a NIF-C shared among multiuple NI-
assisted functionalities. For example, the circle in the O-Cloud
rectangle captures the FEC decoder. Multiple united NIF-Cs

constitute a NIF, e.g. Nuberu [6] or Henna [7], to mention
two solutions developed in the project itself. Finally, by
combining NIFs we get a NIS: as an example, the integration
of different RAN-related algorithms can realize an overall
reliable virtualized RAN (vRAN) service.

We identify and present in detail the specific requirements
that NI algorithms pose on the NIO framework discussed
before, understanding their specificity and devising procedures
that the NIO shall provide in §II. Then, in §III, we analyse
how the NIO can support them by discussing specific NIP
processes. Finally, in §IV, we discuss how state-of-the-art
open-source solutions for cloud-native orchestrations can be
leveraged to implement our proposed framework.

II. THE NEED FOR SPECIFIC NI STRATUM PROCEDURES

The concurrent instantiation of many different NIFs raises
challenges that the architecture we propose allows addressing.
Next, we detail the management needs that such challenges
create, and exemplify them with representative NI-assisted
functionalities developed in the DAEMON project [8], [9].

A. Conflict resolution

DAEMON’s NIO allows to efficiently re-use and combine
different elements that can be shared across NIFs, by repre-
senting their split into atomic NIF-Cs that abide by the N-
MAPE-K framework [4]. This eventually enables building in
an effective ways a NIS, analogously to the approach used by
3GPP SA5 to build the Network Slicing data model –where
a Network Slice is decomposed into Network Slice subnets.
However, while composing NIFs to build a NIS, through the
sharing of different NIF-Cs, possible conflicts on operations
and/or resources may arise. It is hence a task of the NIO to
arbitrate the operation of such components, guaranteeing that
the overall goal of the NIS is met.

Let us illustrate this issue by detailing the arrangement of
Nuberu and Athena, two NIFs described in [8] (§2.1 and
§2.5, respectively), that aim at improving the resiliency of
a virtualized radio access network (vRAN) system by acting
on MAC scheduling decision at the Distributed Unit (DU)

2023 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Wireless, Optical and Satellite
Networks (WOS)

348Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 06:32:48 UTC from IEEE Xplore. Restrictions apply.

of base stations. Nuberu [6] proposed a re-design of the full
stack to be cloud-native and resilient; while Athena introduced
a model that learns the limits of the infrastructure and takes
scheduling decisions. Thus both algorithms support the Radio
MAC scheduler acquiring knowledge from similar input data
(e.g., the information about the channel) and enforcing radio
scheduling decisions, optimizing the reliability of the system,
at different time scales. This results in the sharing of two NIF-
C, the sources and the sinks between these two NIFs, as also
shown by the N-MAPE-K representation depicted in Fig. 2.

A similar consideration applies when dealing with mixed
user and control intelligence, as in the case of the algorithms
in §5.1 of [8], whose goal is (i) performing in-switch inference
at line rate [7] and (ii) achieving optimal configuration of
circuit switching by using real-time traffic demands. The NIF
implementing in-switch inference, i.e., NIF1 in Fig. 2, acts
almost entirely in the user plane, directly classifying IP traffic
and directly enforcing decisions into the NF that is classifying
the traffic, the switch controller in this case. NIF2 in the figure
generates instead the circuit switching configuration in the
control plane and enacts it in the user plane. The configuration
decision is taken based on information about traffic volume,
which is available at each switch.

The previous two examples, in which different NIFs share
sources and sinks, motivate the need for monitoring and
coordination of policy enforcement. In this context, different
conflicts may arise, as follows.

• Conflicts when monitoring data. Algorithms may need
data from the same source but with different granularity.
Hence, the NIF Manager shall guarantee that the required
information arrives from the Sources to the specific
Plan/Analyze modules with the necessary granularity
(e.g., at subframe or packet level) in an automated manner
to, e.g. avoid duplicating the monitoring over IP packets.

• Conflicts in the policy enforcement. Different NI algo-
rithms may act on the same network functions (in the
proposed example, the DU MAC scheduler), configuring
different parameters. Thus, the Intelligent Orchestrator
shall deploy conflict resolution policies with the NIF-C
of each NIF to guarantee that, e.g., the scheduled MAC
frame never exceeds the available capacity or contrasting
selected users.

Therefore, the NIO shall oversee and amend any subopti-
mal decision taken by individual NIFs by closely monitoring
the access to data sources and the policies determined by
decision-making algorithms.

B. Knowledge sharing among NIFs

Fig. 2 also illustrates the shared representation of two NIFs
detailed in [9] (§2.3 and §2.1, respectively): energy-driven
vRAN orchestration, i.e., NIF5 in the figure, and energy-aware
VNF placement, or NIF6 in the figure. In the case of these
two NIFs, energy consumption measurements from an edge
cloud platform are required and a source node component
is hence shared. Moreover, NIF5 generates knowledge about
high-performing RAN control policies given a context and

once virtualized instances of RAN components have been
deployed. On the other hand, NIF6 is in charge of VNFs
placement, which in this case implements virtualized RAN
functions. In this context, the NIO shall provide central-
ized coordination among multiple NIFs. Such centralized
coordination would allow sharing of knowledge that fostered
synergetic performance improvements between both NIFs. For
instance, part of the knowledge learned by NIF6 can be used
by NIF5 to make better placement decisions and, vice versa,
some knowledge learned by NIF5 can be used by NIF6 to
enforce informed (placement-aware) RAN control policies.

Knowledge sharing aspects should also be available cross-
domain. For instance, in §4.2 of [9] we describe an anomaly
detection solution for IoT platforms. In that scenario, the user
plane traverses multiple domains, which brings new challenges
in terms of running root-cause analysis of anomalies. Hence,
the parties involved in building the user plane for the IoT
devices suffering from anomalies should be integrated into
the anomaly detection scheme, and such synchronization shall
happen at the NI Orchestration.

C. Model selection, catalog, and re-training

Although this is not a condition directly stemming from
the design of the NI algorithms themselves, NISs may need
to build on the knowledge of the underlying environment.
This calls for awareness of the software/hardware environment
(e.g., as the performance of a specific FEC implementation
depend on the target hardware [10]) or of the location of
the device where they are executed (e.g., as reconfigurable
intelligent surfaces may have different behaviors according to
their geographical position and surrounding environment [11]).

When executed in the context of a pure ML environment,
these tasks are natively tackled by several MLOps frameworks.
In the context of an NI-native architecture, however, this
requires tight interaction with the underlying orchestration
environment. To guarantee that the deployed NIF can operate
in the right context, NI models need to match the specific
hardware-software-environmental characteristics of the net-
work functions deployed in a network service. Thus, the NIO
shall exchange execution context information with the
sibling MANO operating in the network, so as to select
the proper model to be used for inference within a NIF.

This incidentally calls for the need of a model catalog
from which the NIO can select the most appropriate model
depending on the specific infrastructural status operated by
the network at a certain point in time. If no model is available
for the specific execution environment, the NIO shall be able
to invoke the training of a new model, fetching the required
data as required by the target algorithm.

III. NI-NATIVE ARCHITECTURAL PROCEDURES

As described in the previous section, several considerations
and challenges emerge while concurrently deploying multiple
NIFs providing the same or different NISs. Building on the
NIO organization and N-MAPE-K represenation of NIF-Cs,
we next define processes that answer such needs.

2023 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Wireless, Optical and Satellite
Networks (WOS)

349Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 06:32:48 UTC from IEEE Xplore. Restrictions apply.

NIF 1 NIF 2

NI Virtual Infrastructure

CPU GPU Memory

NIF Manager

NIF component
manager

Data
Ingestion

Model
Training

Model
Testing

Model
Packing

Model
Registering

Machine Learning Pipeline

NIF/NIS Catalog

Network Intelligence Orchestrator
Model
Retrain

NIS 1

NIF 3

NIS 2
NIS 3

NIS Lifecycle
management

Data Analytics

Conflict detection and
resolution

Policy Interpreter and
configuration

Monitoring

Knowledge
Management

NIS workflow
configuration

NIS creation,
selection, optimization,

and instantiation
Explainability

Network Management
and Orchestration

Fig. 3. The NI stratum and the functional blocks of the Network Intelligence Orchestrator.

A. Rationale

When used outside the network domain, the set of solu-
tions that deal with the lifecycle management of intelligent
algorithms is usually referred to as MLOps [12]. Items such
as Feature Engineering, Model Training, Model Engineering,
as well as their integration in a CI/CD system are usually
encompassed in this definition. When transferring this view
into the mobile network realm, however, these items cannot
be transferred as is, mostly because of the very different
timescales that are usually involved in network environments,
which may go down to sub-ms levels.

Therefore, we split the items into elements that are only
related to pure ML tasks and are commonly executed offline,
either only once or very rarely. We mark them as Machine
Learning Pipeline in Fig. 3. Instead, other elements need to
directly interact with the NIFs in the network, continuously
evaluating the quality of the NIS and performing fine-grained
lifecycle management of the NIF-Cs, including their coordi-
nation. These are the most interesting in the context of the NI
stratum, and we discuss them next.

B. Overall description

As mentioned in the previous section, the NIO should
incorporate multiple functionalities to support the described
challenges and beyond. Some key functionalities are shown in
Fig. 3. Their main purposes are as follows.

• Data analytics. This block includes any pre-processing
or preparation of the data (e.g., averages, autoencoders,
filtering, or clustering algorithms).

• Knowledge management. A critical components of the
NIO, the knowledge management block provides all the
mechanisms required to plan, organize, act, and control
the knowledge across all the deployed NIS.

• Monitoring. This block processes the NIS’s information.
As NIS can be composed of both non-ML (e.g., tradi-
tional VNFs) and ML-based functionalities, the monitor-

ing information can also be of both types: ML-related
(e.g., model-specific metrics and detection of data drift
for essential features), and non-ML-related (e.g., QoE,
QoS, etc.). In addition, this block will monitor NIs in
both training and inference deployments.

• NIS lifecycle management. This functional block takes
care of the deployment and maintenance of working ML
models, aligned with MLOps practices. This includes the
creation of new ML pipelines to re-train ML models.

• NIS creation/selection, optimization, and instantiation.
Before any deployment, the NIO has to select (e.g., based
on hardware constraints), optimize (e.g., compress a
Neural Network (NN)-based NIS to achieve a given trade-
off between model size and performance), and instantiate
the selected NIS. In case a given NIS is not available in
the catalog, the NIO should be able to create it based on
the available data and execution context information.

• Model explainability. This block provides the methods
that help human experts understand NIS composed of
black-box (e.g., deep neural network) ML algorithms.
This is a fundamental capability to understand the cause
of a decision from a NIS such that a human can consis-
tently review/correct its results.

• Policy interpreter and configuration. This functional
block interprets high-level user’s intent objectives, e.g.,
high-level QoE targets and business KPIs, that are as-
sociated with different NIS. If needed, it also performs
changes in the policy.

• NIS workflow configuration. This block puts together
data engineering, ML, and DevOps in a more straight-
forward, efficient, and effective fashion. In a general
perspective, the NIO uses NIS workflow configuration to
operationalize the deployment, monitoring, and lifecycle
management in a modular and flexible way.

• Network management and orchestration (MANO).
This functional block takes care of the lifecycle manage-

2023 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Wireless, Optical and Satellite
Networks (WOS)

350Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 06:32:48 UTC from IEEE Xplore. Restrictions apply.

ment of the traditional Network Virtual Functions (NVF)
that communicate with a NIS. In addition, it provides the
context execution information from the network.

• Conflict detection and resolution. This block provides
a mechanism to solve trade-offs that may emerge from
conflicting objectives in the control and user planes,
e.g., in establishing policies (at small timescales) ver-
sus enforcing such policies (at large timescales). This
functionality allows the NIO to compare policies among
different NIS to detect conflicts and perform conflict
resolution based on comparison and resolution rules.

The previous functionalities provide the mechanisms that
allow the NIO to address the challenges that can emerge
when NISs are deployed across different network domains and
operating in multiple time scales. Next, we briefly describe
how the combination of some functional blocks can help to
address the challenges described in the previous section.

C. Conflict resolution

We introduced two specific conflict cases in the previous
section: (i) when conflicts emerge when monitoring data, e.g.,
algorithms may need data from the same source but with
different granularity, and (ii) when conflicts in the policy
enforcement of different NI algorithms may act on the same
network functions but configuring different values for the
target parameters. In situations like those above, the policy
interpreter and configuration block will gather information
about the policy guiding the different NIS and pass their
interpretation to the conflict detection and resolution module.
In both cases, a conflict will be detected, and the NIO will
identify and apply the conflict resolution rules associated with
(i) multi-time scale coordination and (ii) parameter constraints
and execution priority. The outcome after applying the rules
should provide a plan that will trigger configuration modifi-
cation of the NIS policies. In the case of NIS empowered by
black-box ML algorithms, the model explainability block will
interpret policies associated with such algorithms.

D. Model selection, catalog, and re-training

NI solutions stored in the NIS/NIF catalog are inherently
trained on hardware and software platforms that may not
match the ones available in the new environment where they
need to be deployed. In such cases, the NIS creation/selection,
optimization, and instantiation block will obtain networking
and execution context information from its MANO block
operating in the network and select the proper model to be
used in inference within a NIF. Suppose a mismatch between
trained and targeted hardware/software appear. In that case, the
same block should perform the optimization/adaptation (e.g.,
compression of a neural network, change of inference library
from GPU to CPU) to match the new environment. In case no
model is available for the specific execution environment, the
NIS creation/selection, optimization, and instantiation block
will create a new NIS and then notify the NIS workflow
configuration block to trigger a new training phase.

E. Knowledge Sharing

NISs deployed in the same or across different domains use
their knowledge to derive their execution plans. The knowl-
edge management block will allow the NIO to understand the
knowledge of each NISs, via the interaction with the model
explainability block and derive new policies that represent the
shared knowledge among NISs, by interacting with the policy
interpreter and configuration block.

IV. REFERENCE IMPLEMENTATION

We implement the NI-native architecture presented above
as a prototype using Kubernetes [13] as the main deployment
environment. In addition, Kubeflow [14] is used to perform
MLOps and as the baseline for developing some of the
NIO functionalities. Furthermore, selected functionalities of
the NIO are developed from scratch. The Eclipse Zenoh
framework [15] is used for data flow programming among the
NIF-Cs and for metric collection and aggregation, such as the
ones coming from the sources NIF-Cs. A visual representation
of the prototype implementation is in Fig. 4.

In the prototype, Kubernetes serves as the main deployment
environment taking care of the MANO functionalities on top
of a virtualized infrastructure. The Kubeflow deployment is
realized as a Kubeflow cluster with one controller and 3 worker
nodes, in which the NIF-C components are deployed as pods.
The management of NIF-Cs is realized by the NIF component
manager in Fig. 3 through the Kubernetes API. As described
in previous sections, a set of interconnected NIF-Cs following
the N-MAPE-K representation compose a NIF. This is realized
by a pipeline of pods managed by the NIF Manager utilizing
the Kubeflow Pipelines SDK. This is illustrated in Fig. 2.
The generated pipeline of NIF-Cs is defined in Python, is
translated in YAML, and then deployed in Kubernetes (both
pods and connectivity) using the developed service which
utilises the Kubeflow pipeline service. In the same fashion, NI
Orchestrator manages the NISs (using Kubeflow) at a higher
hierarchical level.

Following the described approach, we can provide a set of
NI Orchestrator functionalities including (i) NIS composition,
(ii) NIS lifecycle management, (iii) NIS workflow configura-
tion, (iv) NIS selection, and (v) Monitoring, which are realized
by building on the functionality already available in the
Kubeflow framework. The developed monitoring service of NI
Orchestration provides monitoring of (i) NIF-C/NIF/NIS de-
ployment status, (ii) NIF/NIS pipeline progress, (iii) MLOps
progress, (iv) resource utilization, and (v) performance KPIs.
The rest of the functionalities are planned to be developed as
separate modules integrated with the final solution.

The MLOps operations responsible for the model retraining,
at the top of Fig. 3, is realized as ML pipelines in the Kubeflow
environment, while the NIF/NIS catalog is created using a
Docker repository linked to the Kubernetes environment.

Finally, it is important to stress that the NIF-C taxonomy
(i.e., Analyse, Plan), as well as the adopted communication
paradigm (Eclipse Zenoh) were adopted in all components of
the architecture including NIF/NIS Catalogs (Dockers with

2023 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Wireless, Optical and Satellite
Networks (WOS)

351Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 06:32:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Prototype demonstrating NIS/NIF/NIF-C pipeline generation, deployment and monitoring.

different prebuilt libraries per NIF-C type) and during the
NIF/NIS creation process (different preconfigured attributes
per NIF-C type). This taxonomy is further used by the solution
for realizing tasks related to the application of policies and
conflict resolution.

V. CONCLUSIONS

In this paper, we discuss the Network Intelligence (NI)
orchestration procedures that are needed to support a NI-
native architecture. Following the recent proposals, we identify
the requirements that a range of NI algorithms based on AI
techniques pose to the Network Intelligence Orchestration
(NIO) framework. Based on this discussion, we devise re-
quirements stemming from the concurrent instantiation of NI
Services (NISs) and NI Functions (NIFs) that the NIO shall
meet, as well as detailed processes that should be supported
by the NIO framework. Finally, we go one step forward,
and provide the discussion of a reference implementation of
the NIO framework, building on top of state-of-the-art open-
source tools for cloud-native orchestration.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement no. 101017109 “DAEMON”.

REFERENCES

[1] 5G PPP Architecture Working Group, “The 6G Architecture Landscape
- European perspective,” Dec. 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.7313232

[2] “H2020 ICT-52 DAEMON,” https://h2020daemon.eu/, 2021-2023, ac-
cessed: 2018-12-06.

[3] M. Camelo, M. Gramaglia, P. Soto, L. Fuentes, J. Ballesteros, A. Bazco-
Nogueras, G. Garcia-Aviles, S. Latré, A. Garcia-Saavedra, and M. Fiore,
“Daemon: A network intelligence plane for 6g networks,” in 2022 IEEE
Globecom Workshops (GC Wkshps), 2022, pp. 1341–1346.

[4] M. Gramaglia, M. Camelo, L. Fuentes, J. Ballesteros, G. Baldoni,
L. Cominardi, A. Garcia-Saavedra, and M. Fiore, “Network Intelligence
for Virtualized RAN Orchestration: The DAEMON Approach,” in 2022
Joint European Conference on Networks and Communications & 6G
Summit (EuCNC/6G Summit). IEEE, 2022, pp. 482–487.

[5] IBM Corporation, “Autonomic computing white paper – an
architectural blueprint for autonomic computing,” 2005. [Online].
Available: https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%
20White%20Paper%20V7.pdf

[6] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
P. Serrano, and A. Banchs, “Nuberu: Reliable ran virtualization in shared
platforms,” in Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking, 2021, pp. 749–761.

[7] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Henna:
Hierarchical machine learning inference in programmable switches,”
in Proceedings of the 1st International Workshop on Native Network
Intelligence, ser. NativeNi ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1–7. [Online]. Available:
https://doi.org/10.1145/3565009.3569520

[8] A. Garcia-Saavedra, J. X. Salvat, D. D. Vleeschauwer, C.-Y. Chang,
L. Fuentes, D.-J. Munoz, A. Lutu, M. Gucciardo, M. Fiore,
L. E. Chatzieleftheriou, N. Slamnik-Kriještorac, P. Soto, M. Camelo,
M. Gramaglia, G. Garcia-Aviles, E. Municio, and N. Mhaisen,
“DAEMON Deliverable 3.2: Refined Design of Real- Time Control
and VNF Intelligence Mechanisms,” Nov. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7525876

[9] L. Fuentes, M. Amor, Ángel Cañete, M. Fiore, S. Alcalá,
S. Barmpounakis, I. Chondroulis, I. Belikaidis, E. Kosmatos, A. G.
Saavedra, J. X. Salvat, M. Camelo, P. Soto, A. Lutu, G. Iosifidis, D. D.
Vleeschauwer, C.-Y. Chang, and A. Pentelas, “DAEMON Deliverable
4.2: Refined design of intelligent orchestration and management
mechanisms,” Nov. 2022, This project has received funding from
the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 101017109. [Online]. Available:
https://doi.org/10.5281/zenodo.7544155

[10] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-
Perez, A. Banchs, and J. J. Alcaraz, “Vrain: A deep learning
approach tailoring computing and radio resources in virtualized
rans,” in The 25th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3300061.3345431

[11] W. Xia, S. Rangan, M. Mezzavilla, A. Lozano, G. Geraci, V. Semkin,
and G. Loianno, “Generative neural network channel modeling for
millimeter-wave uav communication,” IEEE Transactions on Wireless
Communications, vol. 21, no. 11, pp. 9417–9431, 2022.

[12] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations
(mlops): Overview, definition, and architecture,” 2022. [Online].
Available: https://arxiv.org/abs/2205.02302

[13] “Kubernetes.” [Online]. Available: https://kubernetes.io/
[14] “Kubeflow.” [Online]. Available: https://www.kubeflow.org/
[15] “Eclipse zenoh.” [Online]. Available: https://zenoh.io/

2023 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Wireless, Optical and Satellite
Networks (WOS)

352Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 06:32:48 UTC from IEEE Xplore. Restrictions apply.

		2023-07-21T16:41:43-0400
	Preflight Ticket Signature

