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Abstract—The literature and the news regularly report cases
of exploiting Universal Serial Bus (USB) devices as attack tools
for malware injections and private data exfiltration. To protect
against such attacks, security researchers proposed different
solutions to verify the identity of a USB device via side-
channel information (e.g., timing or electromagnetic emission).
However, such solutions often make strong assumptions on the
measurement (e.g., electromagnetic interference-free area around
the device), on a device’s state (e.g., only at the boot or during
specific actions), or are limited to one particular type of USB
device (e.g., flash drive or input devices).

In this paper, we present PowerID, a novel method to fin-
gerprint USB peripherals based on their power consumption.
PowerID analyzes the power traces from a peripheral to infer
its identity and properties. We evaluate the effectiveness of our
method on an extensive power trace dataset collected from
82 USB peripherals, including 35 models and 8 types. Our
experimental results show that PowerID accurately recognizes
a peripheral type, model, activity, and identity.

Index Terms—USB Security, Power Side-Channel, USB periph-
erals, Hardware fingerprinting.

I. INTRODUCTION

Universal Serial Bus (USB) is the de-facto standard for the

connections of a broad range of peripheral devices with higher

speed transfer capability. The USB standard supports two main

functions: data transfer (e.g., between USB guest and host) and

power supply (e.g., smartphone charging). While these stan-

dards have been highly studied and improved over the years,

little importance was given to their security [1], [2]. Indeed,

the USB standard still lacks basic security practices such as

encryption and authentication [2]. This aspect has exposed the

USB ecosystem to many threats and exploitations [2].

On the one hand, the default trust on USB ports on a host

device (e.g., workstation, public charging station, power bank)

can be exploited by hackers to exfiltrate private information

from USB devices [3], such as smartphones, tablets, and

flash drives (i.e., host-to-guest attack). On the other hand,

an attacker can disguise a malicious USB peripheral [4], [2]

(i.e., guest-to-host attack) as a legitimate one to inject harm-

ful commands (BadUSB, Mousejack, Rubber Ducky) deploy

malware [5], [6], steal private user information (OMGCable,

BadUSB2.0), spy on a user (tiny microphone/camera, cotton-

mouth, GSM spy bug), or destroy host’s hardware (USBKill).

Hence, malicious USB peripherals can cause severe harm to

a host device if not promptly identified and blocked.

In recent years, several research works have investigated

the feasibility of fingerprinting USB devices to protect

host devices by relying on Physical Unclonable Functionss

(PUFs) [7], or side-channels such as timing [8], [9] and

electromagnetic emissions [10]. To the best of our knowledge,

no work in the literature considers Power Side-Channel (PSC)

information to fingerprint USB peripherals.

Using PSC information to fingerprint a USB peripheral has

two main advantages. First, a USB peripheral’s power traces

are extremely difficult to replicate due to the complexity and

specificity of its hardware components. Second, power traces

do not retain information about the content of USB packets.

Hence they preserve the confidentiality of the data exchanged

between the peripheral and the host.

This paper presents PowerID, a framework that profiles

USB peripherals from their power traces. PowerID leverages

time series analysis and machine learning techniques to fin-

gerprint the power trace related to a USB peripheral type

(e.g., webcam, flash drive, or keyboard) and its specific actions

(e.g., booting, writing on memory, or downloading via WiFi).

Hence, users can rely on PowerID to uniquely fingerprint

their peripherals and detect the connection of unauthorized

devices or illicit actions. Since PowerID only leverages PSC

information, it can be deployed on an external standalone

device, i.e., it does not require additional information from or

access to the host device. We develop PowerID framework and

evaluate its effectiveness on a large-scale dataset composed of

the power traces generated by distinct actions for a wide range

of USB peripherals. Our experimental results demonstrate that

PowerID recognizes with high accuracy the peripheral type, its

specific model, and actions performed. Furthermore, we also

show that PowerID can effectively detect attack tools disguised

as a legitimate flash drive (e.g., BadUSB), thereby helping to

protect host devices against such threats.

We can summarize our contributions as follows:

• We present PowerID, the first framework that leverages

PSC analysis to fingerprint USB peripherals, infers their

properties, and recognizes ongoing actions.

• Via an automated power traces collection system of our

design, we collect a large dataset* with solid ground

*The dataset is available at https://doi.org/10.5281/zenodo.7467989
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truth from 82 USB peripherals (8 types and 35 different

models).

• We evaluate the performance of PowerID on the power

traces dataset on different classification tasks. We show

that PowerID can build robust fingerprints and recognize

them with high accuracy.

II. BACKGROUND AND THREAT MODEL

In this section, we provide useful concepts to understand

the remainder of the paper. We briefly recall the USB power

management system in Section II-A. In Section II-B, we

present the threat model for PowerID and the related security

scenarios. Then, we state the research questions we investigate

in this work in Section II-C.

A. USB Power Management

The USB is the most popular standard for wired connections

between peripheral devices (e.g., flash drive) and a host (e.g., a

laptop) for exchanging data and powering. The USB standards

define the unit load for the power draw of a USB device, i.e.,

100mA and 150mA for USB 2.0 and 3.0, respectively [11].

When connected to a port, a device triggers a series of

preliminary operations, including the initial handshake, device

enumeration, and configuration. While only one unit load is

initially provided by default, a device can request up to six unit

loads in USB 3.0+ during the configuration for a maximum

of 900mA. Henceforth, we refer as state Boot to the above

operations after a device is connected to a host. At the end

of the state Boot, a USB device enters the state Sleep as no

activity is ongoing. Upon the OS request or interrupt from

the device, a device enters the state On to perform data

transfer. Thus its power draw increases. Therefore, a device

continuously switches between the states On and Sleep (i.e.,

life-cycle) until either removed from the port or turned off by

the OS (i.e., Sleep).

The versatility of the USB standard enables the use of

a broad range of peripherals categorized according to the

type of data transfer: storage peripherals (e.g., flash drives)

rely on bulk transfer since it guarantees delivery of extensive

data but has a low priority over the bus (i.e., bandwidth);

audio and video peripherals (e.g., webcams, microphones)

use isochronous transfer that allows the stream of data with

low latency but without guaranteeing delivery; and Human

Interface Devices (HID) (e.g., mouse, keyboards) use an

interrupt transfer with bounded latency. In this paper, we

use the term Type for the purpose of a USB peripheral.

Among the types, we consider the most common types of USB

peripherals: flash storage drive (Fd), external hard drive (Hdd),

WiFi and Bluetooth (Bt) network adapters, Microphone (Mic),

Webcam (Wcam), Keyboard (Keyb), and Mouse. Specifically,

manufacturers adopt their own or third parties hardware to

produce USB peripherals. We refer to the combination of

brand and model of a USB peripheral simply as Model (e.g.,

Kingston DT100 G3). As many peripherals share the same

model, we define as Device the specific individual peripheral.

B. Threat Model

This paper investigates the feasibility of inferring coarse-

and fine-grained information about a USB peripheral from

its power traces measured at a USB port. Our system aims

to protect the host device by identifying unauthorized USB

peripherals, thus preventing subsequent attacks such as mal-

ware injection or private information exfiltration. In what

follows, we describe possible use case scenarios, the attacker

capabilities, and the PowerID preparation.

1) Use Case Scenarios: We conceive the threat model by

considering two use case scenarios described in the following,

where users and system administrators can rely on PowerID to

enhance the security of the USB ecosystem.

End-user Personal Protection. Aside from malware-infected

storage drives, USB attack tools disguised as flash drives or

even concealed within USB cables are employed to perpetrate

dangerous threats to user security and privacy (e.g., data

exfiltration, command injection, credential theft). To protect

from these attacks, users may want to assess the legitimacy of

a connected-USB peripheral. Hence, users can deploy Pow-

erID on a USB port to build power trace-based fingerprints for

all their legitimate peripherals creating a whitelist of allowed

personal devices.

Organization Assets Protection. An organization has a strict

policy on the peripherals that its members are allowed to

use. For example, the Stuxnet worm [5] has penetrated an

air-gapped critical infrastructure via an infected USB storage

drive. Hence, an organization’s security team may enforce

access control on its workstations to avoid potential attacks or

human errors in connecting unauthorized USB peripherals. To

this end, an organization can deploy PowerID to only allow the

connection of USB peripherals with pre-approved characteris-

tics (e.g., type, model) or permitted actions (e.g., read-only),

alerting the security team whether anomalous power traces are

detected.

2) Attacker Capabilities: We assume an attacker aims to

compromise the host device of a user, an organization, or a

critical infrastructure with a malicious USB peripheral. The at-

tacker’s objective may include delivering malware, exfiltrating

sensitive information, or corrupting the host device. Therefore,

the attacker replaces the legitimate USB peripheral with a

compromised one (with the same appearance but concealing

an attack tool) inducing the user to connect it to the host.

Moreover, the attacker may obtain physical access to a user’s

host device (e.g., lunch-time attack) and attempt to connect its

attack tool to the USB port.

3) PowerID Preparation: We assume that the adversary

cannot interfere with power traces collection (e.g., sensor

tampering) or compromise the model training phase (e.g.,

poisoning attack [12]) since such processes are crucial in

the PowerID preparation. To obtain optimal fingerprints, we

assume that the hardware settings during these processes are

the same (or similar) as the ones of the final deployment

(i.e., testing phase). Therefore, the device employed for the

data collection is the same one used during the testing phase.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



We believe this is a reasonable assumption since organiza-

tions typically purchase many identical host devices with the

same hardware components. PowerID framework relies on an

external standalone device to collect the power traces from

an electric current sensor between the host and the peripheral

under test (more details in Section III-A).

Traces processing and analysis can be done locally on such

a device or remotely on a server (i.e., such a device streams

the collected traces via networking technologies).

C. Goals of the Analyses

In our analyses, we assess whether we can infer information

about a USB peripheral from the power traces analysis. In

particular, the objective of our analyses is to answer the

following questions:

1⃝ Type: Can we recognize the type of a USB peripheral

during its states Boot and On?

2⃝ Model: Can we distinguish the specific model of a

peripheral during its states Boot and On?

3⃝ Device: Given peripherals of the same model, can we

assess the identity of a specific device?

4⃝ Action: Considering a peripheral in On state, can we

recognize an ongoing action given a device type? E.g.,

reading from an Fd, or downloading from a WiFi adapter.

5⃝ Device via action: Given an ongoing action for a type

of peripheral, can we identify a specific device?

6⃝ Bad vs. Good: Can we discriminate between malicious

USB-based tools and legitimate peripherals?

III. POWERID SYSTEM DESIGN

In this section, we present our system and describe its

components. In Figure 1, we provide an overview of PowerID.

As a preliminary parameter, the inference target 1 defines

the specific information about the connected peripheral as the

target of the inference. Excluding the power traces acquisition

2 , such parameter influences all the other components 3 -6

and outcome 7 of our system. It is worth noticing that we can

use the same power trace as input of several instances of our

system with different inference targets. In what follows, we

describe in detail the components of PowerID system.

A. Power Traces Acquisition

This component acquires the power traces of a connected

peripheral via a sensor deployed between the port and such

a peripheral (step 2). Such a sensor provides reliable mea-

surements of the electric current supplied by the port. The

resolution and the sampling rate of a sensor determine the

quality of power traces acquired and their size. While a low

resolution and sampling rate negatively affect the informative-

ness of a power trace, a high sampling rate requires more

computational resources and time for processing. For this

reason, it is important to find a trade-off between trace quality

and the required processing and resources available. A sensor

needs to be calibrated to provide readings within zero and

maximum current provided by the considered USB port safely

under the full-scale value to avoid saturation. As an additional

Fig. 1: The system design of PowerID.

requirement, the sensor deployment should not affect the

performance of the peripheral. With the above requirements

in mind, we consider an Analog-to-Digital Converter (ADC)

as a sensor that measures current in terms of voltage drop

on a shunt resistor (see Section IV). Finally, this component

delivers the power traces for further processing. In Figure 2

we report some examples of power traces collected from our

experiments.

B. Traces Processing

We process the acquired power traces to obtain viable data

for a machine learning-based model. The goal of this process

is two-fold: preserving the information within power traces

and identifying the current state of the peripheral. To attain

this goal, we apply three methods: trace segmentation 3 , state

identification 4 , and feature engineering 5 . It is worth noticing

that we apply the same process to obtain the datasets for both

the model training and testing. However, while the state of a

peripheral is known in the training data, during the testing, we

identify the state with step 4 .

1) Traces Segmentation: In this step, we divide the power

traces into segments by applying a sliding window. Such a

method considers two parameters: the window duration and

overlap ratio. In selecting values for these parameters, we

consider several insights obtained by observing the power

traces of USB peripherals. Since some activities span for a

brief time, a window with a long duration may produce seg-

ments that include an excessive amount of data unrelated to a

state or action. Hence, such segments may not contain enough

meaningful information for a considered inference target. The

overlap allows us to obtain more segments for training our

models, make them more robust to noise, and avoid overfitting.

However, a big overlap can produce excessive segments and

information redundancy, leading to high computational over-

head in the processing phase. From observing the obtained

traces, we set a duration window of 1 second with a 75%

overlap.

2) State Identification: In our system, we focus on the

states Boot and On of a USB peripheral. The analysis of

segments from state Boot allows achieving the inference target

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



(a) State Boot for different types. (b) State On of a Flash drive.

Fig. 2: Example of power traces of states Boot and On for

different USB peripherals.

1 within a few seconds from the connection of a peripheral

to the monitored USB port. PowerID also relies on state

On segments to infer all the considered target information,

especially the ones related to the actions on a peripheral (i.e.,

4⃝ and 5⃝). Due to low variability, we do not consider the

power traces during the state Sleep. While identifying the

starting time of a state Boot is trivial (i.e., change between

open to close circuit), the identification of the transition time

between states Sleep and On requires a refined approach

since different peripherals produce heterogeneous power con-

sumption in these states. Hence, we need a general approach

independent of the considered peripheral (rather than setting

a specific threshold for each USB peripheral type and model).

To do this, we apply on groups of four consecutive segments

a Changing Point Detection algorithm based on cumulative

sum [13]. In particular, we consider a valid changing point if:

(1) the next one does not occur within less than 250ms, (2)

there is at least 25% of value increase. We consider as the

start of a state On the changing point identified by at least

three segments among the four in the same group.

3) Features Engineering: We consider the segment of a

power trace as a univariate time-series, i.e., sequential single

data points over a constant time increment. Therefore, we

apply the feature extraction method for time series provided

by the tsfresh libraries [14]. Such libraries allow to extract 740

features from each segment, such as statistical features (e.g.,

mean, standard deviation, variance), linear trend, coefficients

of Fast Fourier, and Continuous Wavelet Transform. The

feature extraction depends on the inference target 1 and

differs between the model training and testing phases. During

the training phase, we select the k most significant features

that effectively characterize the inference target. As a general

approach, we aim to minimize the number k for two main

reasons: (1) to not incur the curse of dimensionality and (2)

to reduce the time and computational resources required by

the feature extraction process. In the testing phase, we only

extract the k meaningful features for the inference target.

C. Selected Model

For each inference target 1 considered, we train a clas-

sification model on the selected features for such a target.

Upon the preliminary analyses, we select the Random Forest

(RF) classifier as it achieves a higher performance among

the other considered learners. While side-channel analyses via

deep learning techniques [15], [16], [8], [17] can automate the

feature selection process, the training of a deep neural network

requires a huge number of examples and high computational

and time resources due to the repeated training (i.e., epochs)

for weights and parameters optimization. By performing the

classification via non-deep learning-based techniques, we can

pre-select the important features, thus reducing the complexity

of the problem (i.e., the number of features to extract from

the time series) and, consequently, the model size in memory.

In the testing phase, we load the previously trained model

(step 6) related to the inference target and test the previously

unseen power trace segments. As a result of the classification,

the model provides in the output the inferred information 7 .

IV. EXPERIMENTAL SETUP

In this section, we describe the implementation details of

the power traces collection framework in Section IV-A and the

dataset collection and processing setup in Section IV-B.

A. Power Traces Collection Framework

We design and implement a framework to collect the power

traces for our analyses. In Figure 3a, we overview the logical

components of our framework*, while in Figure 3b we show

our experimental setup.

1) Power Traces Acquisition: In our experimental frame-

work, we measure the electric current supplied by a USB

port to a peripheral in terms of the voltage at the extremities

of a shunt resistor (i.e., 0.01Ω) in a series of the GND

(ground) wire of a USB extender cable. We measure such

voltage with the ADC of a National Instruments USB-6210

Data AcQuisition (DAQ) and acquire the measurements via

the DAQExpress tool (depicted purple in Figure 3a). Although

such ADC can acquire up to 125ksps (samples per second),

we set the sampling rate to 10ksps to achieve a faster feature

extraction.

2) Actions Controller: For our analyses, collected power

traces for states Boot, On, and Sleep of the USB peripherals.

To automatize this process, we rely on two components: Plug

in/out controller for Boot and Action executor for On and

Sleep.

From the hardware perspective, the Plug-in/Out controller

uses a series of electronic switches driven by a micro-

controller (i.e., Arduino Nano). Data and power wires of

the USB cable are connected to an electronic switch. From

a software perspective, we can open or close the switches

by sending the related command to the micro-controller. In

particular, we implement such a function to replicate the

*For the sake of simplicity, we report a USB 2.0 pinout while our
experimental setup fully supports the USB 3.1 standard
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Fig. 3: Framework for power traces collection.

insertion of a USB peripheral into a USB port (i.e., first

connecting the power and then the data wires), thus triggering

the state Boot.

Once the peripheral is connected to the host, the Action

executor performs a list of actions (i.e., state On) according

to the type of peripheral currently under test. In Table I, we

report the list of considered actions for each peripheral type.

For actions based on file transfer (e.g., Write, Download), the

action executor involves a file randomly selected from a pool

of files with assorted sizes (i.e., from 10MB to 200MB).

To obtain a reliable ground truth for our data, the scripts

of the Action controller log the timestamp for each plugin/out

and action. To assess whether a script is properly triggered

and action on the peripheral, we also monitor the USB data

traffic via USB sniffer (i.e., USBPcap collector).

B. Dataset Collection and Analyses Setup

We collected the power traces of the USB peripherals listed

in Table II. In total, we collected 8 different device types, 35

different device models, and 82 unique devices. In total, we

collect more than 6k traces for state Boot (i.e., around 43k

segments) and more than 14k traces for state On. (i.e., around

132k segments). We obtain the power traces from the USB

3.1 port of a laptop Lenovo Legion AMD Ryzen 7 5800H 16-

core CPU 3.2GHz with 16GB RAM running MS Windows 10

64-bit.

For the power traces processing and model training, we use

a Desktop PC AMD Ryzen 9 5900X 12-core 3.7Ghz CPU with

64GB RAM running MS Windows 10 64-bit. As libraries, we

TABLE I: List of considered actions for device types.

Type Action Description

Flash Drive /
Portable
Hard Drive

Write Transfer files from host to guest

In-Write Copy files locally guest to guest

Open Open a file inside guest device

Read Transfer files from guest to host

Delete Delete files from guest device

WiFi
Adapter

Connect Connect to a WiFi network

Download Download files via WiFi network

Upload Upload files via WiFi network

Disconnect Disconnect from a WiFi network

Bluetooth Active Transfer files via Bluetooth

Microphone Active Audio recording from the guest

Webcam Active Video acquisition from the guest

Mouse Active User activity (click, move, scroll)

Keyboard Active A user typing textual contents

TABLE II: List of the USB peripherals involved in our

analyses (# indicates the number of individual peripherals).

Type ID Brand Model USB v. #

Flash
Drive

Fd1 Kingston DT100 G3 3.2 6
Fd2 Sandisk 3.2Gen1 3.2 6
Fd3 Aigo U310 pro 3.1 6
Fd4 Aigo U310 3.1 1
Fd5 Kingston DTKN 3.2 1
Fd6 Kingston MicroDuo3 G2 3.2 1
Fd7 PNY TA4-064 3.2 1
Fd8 Sandisk Ultra 3.2 1

Portable
Hard
Drive

Hdd1 WD My Passport 3.1 2
Hdd2 WD Black P10 3.1 1
Hdd3 Seagate One Touch 3.2 1
Hdd4 Toshiba DTB420 3.0 1

WiFi
Adapter

WiFi1 TP-Link WN726N 2.0 6
WiFi2 TENDA U6 N300 2.0 6
WiFi3 D-Link DWA-171 2.0 3
WiFi4 ASUS USB-AC57 3.1 1
WiFi5 ASUS USB-AC68 3.0 1
WiFi6 Ugreen AC650 11ac 2.0 1
WiFi7 Mercury UD6H 2.0 1

Bluetooth
Adapter

Bt1 Lenovo BT5 LX1815 2.0 4
Bt2 Ugreen BT4 US192 2.0 1
Bt2 TP-Link TL-UB240 2.0 1

Microphone
Mic1 Ugreen Desktop Mic. 1.1 4
Mic2 Soaiy L28 1.1 1
Mic3 Depusheng T7 1.1 1

Webcam
Wcam1 Logitech C270 2.0 2
Wcam2 Logitech C920pro 2.0 1
Wcam3 Philips P506 HD 2.0 1

Mouse

Mouse1 Dell MS116c 2.0 6
Mouse2 Logitech G102 2.0 2
Mouse3 Logitech M546 2.0 1
Mouse4 Logitech MX Master 2.0 1

Keyboard
Keyb1 Dell KB216d 2.0 6
Keyb2 Logitech K845 2.0 2
Keyb3 DURGOD TAURUS K320 2.0 1

utilize the tsfresh for the time series feature extraction, Scikit-

learn for the machine learning model and evaluation metrics

implementations, and imblearn to deal with dataset unbalance.

V. EXPERIMENTAL EVALUATION

We analyze the performance of PowerID to answer the

research questions in Section II-C. We select the RF classifier

upon a preliminary comparison across several learners. In

each analysis, we split the dataset into 80% training set and

20% testing set using a stratified approach to maintain the
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TABLE III: List and description of the analyses. For each anal-

ysis, we mark the states and types involved in the considered

analysis (* only data from models with at least four devices).

States Types

Analysis Target Approach B
o
o
t

O
n

F
d

H
d

d

W
iF

i

O
th

er

1⃝ Type Multiclass

2⃝ Model Multiclass

3⃝ Device Binary * * *

4⃝ Action Multiclass

5⃝ Device Binary

6⃝ Bad vs. good Multiclass

same class proportions. By relying on a validation set (10%

of the training set), we study the performance of a model

trained by varying the number of features k. In particular,

we select the k top features ranked by their ANOVA F-

value. Since the analyses have different goals, the best feature

set can change considerably. For this reason, we perform a

different feature selection for each analysis. To mitigate the

possible unbalancing in the training set, we employ SMOTE

algorithm [18] to balance the elements in each class. We apply

the above-described pipeline in all the considered analyses

unless explicitly mentioned.

In Table III, we summarize the analyses we present in the

remainder of this section. In particular, we report the states

considered for every analysis and the device models employed

for the classification. We refer as multiclass to a classification

task involving more than two classes. Instead, we refer as

binary to a specific binary classifier focusing on a single target

class at the time (i.e., we apply a One-vs-All strategy). This

second approach allows the model to create a decision bound

around the target class to discriminate it with respect to all

the other classes. In this type of classification, we report the

aggregated results as the average of the binary classification

of all the considered classes. Interested readers can find more

details on the difference between these two approaches in [19].

To attain an open-world scenario in a multiclass approach,

we consider an additional class Other composed of a random

sample of segments (10% of the considered dataset) unrelated

to the current analysis. Similarly, we attain an open-world

condition for a binary approach by removing the 10% of

the non-target classes from the training set but not from the

testing set. By leaving out classes from the training set, we can

evaluate the robustness of our models against unseen devices.

We evaluate our classification performance with several

standard metrics: Precision (Pr), Recall (Re), F1-Score (F1),

Geometric Mean (Gm), and Area Under the receiver operating

characteristic Curve (AUC). For each analysis, we present the

experimental results, highlight the meaningful insights and

discuss the limitations.

TABLE IV: Results of the analysis 1⃝ for device type recog-

nition in terms of F1, Pr, Re, and Gm.

Types
State = Boot, k=100 State = On, k=50

F1 Pr Re Gm F1 Pr Re Gm

Fd 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99

Hdd 0.97 0.97 0.98 0.99 1.00 0.99 1.00 1.00

WiFi 0.99 1.00 0.98 0.99 1.00 1.00 0.99 1.00

Bt 0.93 0.93 0.93 0.96 0.98 0.97 1.00 1.00

Mic 0.95 0.93 0.96 0.98 0.98 0.97 1.00 1.00

Wcam 0.98 0.98 0.99 0.99 0.99 0.98 1.00 1.00

Mouse 0.95 0.94 0.95 0.97 0.99 0.99 1.00 1.00

Keyb 0.94 0.94 0.94 0.96 0.98 0.97 1.00 1.00

Avg. 0.96 0.96 0.96 0.98 0.99 0.98 1.00 1.00

Std. 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00

A. Device Type Classification 1⃝

In this analysis, we aim to classify the device type from the

power traces during the states Boot and On. Considering the

state Boot, we can assess the peripheral within a few seconds

from its connection to a USB port. However, we also classify

the type of a peripheral during its activity (i.e., state On) to

continuously verify that its type would not change (e.g., an Fd

turns into a spy camera/microphone after some time).

1) Method and Dataset: We collected power traces from

peripherals and grouped them by device type, obtaining eight

classes. We also consider an additional class Other where in

the state Boot analysis corresponds to random traces from the

state On, and in state On analysis corresponds to random traces

in the state Sleep.

2) Results: We first analyzed the multiclass classification

performance on the validation set, varying the number of

features selected. By inspecting the Mouse and Keyb traces on

the state Boot, we observe that most of them follow a sequence

in terms of power draw: an initial peek at the connection

(below 0.5 second), flat low, moderate, and stabilize in the

state Sleep. Hence, we can assume that the model requires

more information (features) and segments to classify them

correctly. Hence, by selecting the best 100 features for the

state Boot, we achieve the performance plateau with all the

device types.

For state On, we can achieve high accuracy even with a

small number of features as we reach the plateau with 50

features for all considered types. Considering the best feature

sets for the two states separately, we report the classification

result on the testing set in Table IV. PowerID models can

discriminate with high accuracy between the device types for

both the states Boot and On. Therefore, every device type has

a unique fingerprint.

B. Device Model Classification 2⃝

In this analysis, we delve a further level deep into the device

identification by assessing whether the states Boot and On

can discriminate the device model. Therefore, we perform

a multiclass classification by considering as classes all the

different device models in Table II.

1) Method and Dataset: We group power traces by the

device model, obtaining the 35 different classes. We consider
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(a) State Boot. (b) State On.

Fig. 4: Performance for the analysis 2⃝ varying the number of

considered features.

an additional class Other that for the state Boot analysis

corresponds to random traces from the state On while for state

On analysis corresponds to random Sleep traces.

2) Results: We report in Figure 4 the F1 on the validation

set, varying the feature number. The results indicate the

average F1 and the standard deviation of the device models

belonging to the same device type. Considering the state Boot,

we can notice in Figure 4a that the performance plateau for

every device model is reached at around 75 features. As in

the previous analysis, we also note that the Keyb models are

hard to classify when using information from a few features.

This is again due to the quick handshake between the host

and the device during the Boot phase. Regarding the state On

in Figure 4b, the classification performance is high. Thus, we

can conclude that this state presents a clear fingerprint for all

device models.

By selecting the best 75 features for both states Boot and

On, the results on the testing set underline that most of

the device models present a unique power fingerprint, also

among devices of the same type. However, the device model

fingerprints from the state On perform better than the ones on

state Boot. In particular, the devices which perform worst are

the Keyb3 and Fd8, from a visual inspection of the traces for

such models, we observe that the state Boot lasts a short time

(below 0.5 second), thus more difficult to fingerprint.

C. Authentication of Individual Device 3⃝

In this analysis, we aim to discriminate individual devices

of the same models. This fine-grained analysis detects whether

a device has been tampered with or substituted.

1) Method and Dataset: We consider power traces of the

device models with at least four individual devices, i.e., the

device models with # ≥ 4 in Table II. For the same model

devices, we perform a binary classification using one device as

a target class at a time. Given a target device, we removed the

segments of one random non-target device from the training

set, and we added them to the testing set. We iterate this

process for every device of a given model considering the

states Boot and On.

2) Results: We analyzed the averaged F1 by device model

varying the number of considered features. As expected, due

to the high specificity of this analysis, we generally achieve

lower performance than analyses 1⃝ and 2⃝. For both states, we

require at least 100 features to reach an F1 higher than 0.95

for most models. The detailed results of the testing set are

reported in Table V. Confirming the results from the previous

analysis, PowerID achieves an F1 higher than 0.9 for most

models on state On, but it cannot correctly discriminate a few

individual Mouse1 and Keyb1 devices for the state Boot. As a

noticeable exception, the WiFi1 model has the lowest score on

the state On. Upon further inspection, we confirm our findings

by observing that the traces of the action are very similar

among the devices of such a model.

D. Actions Classification per Device Type 4⃝

In this analysis, we focus on the state On, and we investigate

whether we can infer type-specific actions across all models.

After identifying the device type (analysis 1⃝), PowerID aims

to identify unexpected action a device performed (e.g., unau-

thorized file transfer).

1) Method and Dataset: We consider three device types of

power traces: Fd, Hdd, and WiFi. We focus on these types

because they have a broader set of actions to analyze (see

Table I). For every device type, the class Other is composed

of random segments of actions by the other types.

2) Results: Figure 5 reports the results of the analysis. In

particular, Figure 5a shows that the actions of WiFi type have

a clear fingerprint while Fd and Hdd require a higher number

of features to reach an average F1 higher than 0.8. For a

better understanding, in figures 5b, 5c, and 5d we report the

confusion matrix with the 75 best features selected for Fd,

Hdd, and WiFi, respectively. In figures 5b and 5c, we can

observe that most of the miss-classification of Fd and Hdd are

between Write and In-Write actions. This is probably because

In-Write is derived by the combination of Read and Write.

Therefore, In-Write generates power traces similar to the Write

actions. Moreover, the Hdd type suffers from the Other class

mainly due to the similarity with traces of the Fd type.

E. Individual Device by Actions 5⃝

The previous results demonstrate that PowerID identifies

with suitable accuracy types, models, the individual device

of a specific model, and actions. Building on top of analyses

1⃝, and 4⃝, we investigate whether PowerID can discriminate

individual devices from the actions they are performing.

1) Method and Dataset: Similarly to analysis 4⃝, we focus

on Fd, Hdd, and WiFi types. In particular, we consider

Read and Write for Fd and Hdd, and Download and Upload

for WiFi. These actions are the most commonly performed

for legitimate and malicious purposes (e.g., data exfiltration,

malware injection). We select the power traces of the actions

from all device models for each type. Considering a class is

the pair (Device, Action), we obtain 46, 10, and 38 classes

for Fd, Hdd, and WiFi, respectively. For each device type, we

perform binary classification on such classes.
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TABLE V: Results of the analysis 3⃝ for device fingerprinting. For each row, we report the averaged score (and its standard

deviation) across the devices of the same model.

Models
State = Boot, k=100 State = On, k=100

F1-score Precision Recall Gmean AUC F1-score Precision Recall Gmean AUC

Fd1 0.97 ±0.04 0.97 ±0.05 0.97 ±0.03 0.98 ±0.02 1.00 ±0.00 0.98 ±0.01 0.98 ±0.02 0.98 ±0.02 0.99 ±0.01 1.00 ±0.00

Fd2 0.98 ±0.02 0.98 ±0.03 0.98 ±0.04 0.99 ±0.02 1.00 ±0.00 0.96 ±0.02 0.96 ±0.01 0.97 ±0.02 0.97 ±0.01 1.00 ±0.00

Fd3 0.98 ±0.04 1.00 ±0.00 0.96 ±0.08 0.98 ±0.04 1.00 ±0.00 0.91 ±0.07 0.91 ±0.07 0.91 ±0.07 0.95 ±0.04 1.00 ±0.00

WiFi1 0.98 ±0.01 0.99 ±0.01 0.98 ±0.03 0.99 ±0.01 1.00 ±0.00 0.79 ±0.02 0.72 ±0.02 0.88 ±0.05 0.90 ±0.01 0.97 ±0.02

WiFi2 0.99 ±0.01 0.99 ±0.01 0.99 ±0.01 0.99 ±0.00 1.00 ±0.00 0.97 ±0.02 0.97 ±0.03 0.98 ±0.02 0.98 ±0.02 1.00 ±0.00

Bt1 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Mic1 1.00 ±0.01 1.00 ±0.00 0.99 ±0.01 1.00 ±0.01 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Mouse1 0.82 ±0.12 0.79 ±0.15 0.87 ±0.10 0.90 ±0.07 0.96 ±0.03 0.95 ±0.05 0.95 ±0.06 0.96 ±0.05 0.97 ±0.03 1.00 ±0.01

Keyb1 0.90 ±0.12 0.92 ±0.07 0.89 ±0.17 0.92 ±0.10 0.98 ±0.03 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Avg. 0.96 ±0.06 0.96 ±0.06 0.96 ±0.05 0.97 ±0.03 0.99 ±0.01 0.95 ±0.06 0.94 ±0.08 0.96 ±0.04 0.97 ±0.03 1.00 ±0.01

(a) Performance varying the
number of features. (b) Confusion matrix for Fd. (c) Confusion matrix for Hdd. (d) Confusion matrix for WiFi.

Fig. 5: Results for analysis 4⃝ for action identification per device type.

2) Results: We report the results in Figure 6. We represent

with the low and high caps of error bars the best and worst

scores among the individual devices, respectively. Overall,

PowerID achieves good classification for all the types and ac-

tions, despite the high number of classes per type. In particular,

we observe that in the case of Fd and Hdd, the different actions

are distinguishable from one device to another. However,

the WiFi type obtains slightly lower performance and higher

variability. From a detailed analysis, we assess that some

devices (of model WiFi1, WiFi2, and WiFi6) are misclassified

due to similar behavior in several power trace segments.

Despite the variability in the WiFi type, PowerID can correctly

discriminate most of the devices. Hence, it is possible to

fingerprint an individual device from its actions.

F. Malicious Device Identification 6⃝

To assess whether it is possible to detect malicious devices

from their power traces, we perform a multiclass classification

between legitimate peripherals and BadUSB devices, focusing

on states Boot and On.

1) Method and Dataset: In this analysis, we collect power

traces from four BadUSB devices (two WiFi-enabled and two

memory-based BadUSB devices). While collecting the traces,

we run several common attacks, such as local (memory-based)

and remote (WiFi-enabled) command injection on the com-

mand prompt (varying the types and number of commands)

and WiFi scanning and connection. For the state Boot, we

execute the attack at the device connection, while for state On,

Fig. 6: Performance of analysis 5⃝ for device fingerprinting

on different actions.

we delay its execution. The class Other legitimate is composed

of traces from legitimate peripherals other than Fd type (e.g.,

Bt, Mic, WiFi). Moreover, we use the features set of the states

Boot and On identified in 1⃝.

2) Results: From the results in Figure 7, we observe that

PowerID discriminates the BadUSB devices from Fd and other

legitimate peripherals with perfect accuracy.

VI. RELATED WORK

In recent years, attacks and countermeasures for the USB

standard have been widely investigated [2], [4]. As an alterna-

tive to software-based approaches, researchers have considered

the analysis of side-channels on the USB ecosystem [1]. We

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



(a) State Boot. (b) State On.

Fig. 7: Performance of analysis 6⃝ on the discrimination

between legitimate and malicious types.

are the first to propose a USB peripheral fingerprinting method

that relies on the power side-channel. In what follows, we

review and compare the work related to power and USB-based

side channels.

1) Power Side-channel: Researchers in the literature pro-

pose various attack and profiling techniques via PSC consider-

ing different targets for information inference (e.g., passcode,

browsing activities, encryption key), devices (e.g., PC, smart-

phones, embedded chips), and trace acquisition locations (i.e.,

local, vicinity, remote) [20]. In the vicinity settings, measuring

the power traces at the source (e.g., wall-socket, USB port)

is not invasive since it does not require any modification or

tampering with the target device. Brighente et al. in [21]

profile the Electric Vehicles charging based on the current

exchange between vehicles and charging columns. Conti et

al. in [22] use a wall-socket smart meter to obtain data on

the power traces of laptops and identify authorized users.

In the smartphone environment, Spolaor et al. [23] exploit

the PSC to covertly exfiltrate user information encoded as

power consumption bursts during the charging process of

the victim’s Android phone. Cronin et al. in [15] profile the

dynamic content of the smartphone display to infer the PIN

sequence by measuring the power consumption leaked via a

charging cable. Under the same settings, Yang et al. in [24],

[25] infer the user browsing activities in a smartphone via

PSC information. Recent work also investigates the privacy

leakage from wireless charging for smartphones. In particular,

La Cour et al. in [16] profile the user browsing activities while

Liu at al. in [17] infer additional private information such

as passcode, keystrokes, and payment apps. Su et al. [26]

assess that USB hubs expose a channel-to-channel crosstalk

information leakage. In particular, they show how PSC of a

USB port data lines are leaked from adjacent ports on the

USB hub. However, no previous research considers the PSC

analysis of USB peripherals (i.e., keyboards, webcams, flash

drives), despite their prominent role in our everyday lives and

their potential security threats [2].

2) USB Side-channels: In recent years, researchers have

investigated the physical and logical side-channels of USB

technology. Considering the physical side-channels, Belgarric

et al. [27] and Genkin et al. in [28] use the ElectroMagnetic

(EM) signal on the USB channel to recover the cryptographic

key from a device connected via a USB cable. DeviceVeil [7]

identifies individual USB devices by exploiting their PUF.

This method achieves an accurate identification, but it requires

a low-cost yet invasive hardware modification of individual

USB peripherals. Differently, PowerID does not require any

hardware or software modification of the peripherals under

test. MAGNETO [10] is a framework to authenticate USB

flash drives from their EM emissions. Despite sharing a

similar goal, PowerID differs from this work in terms of side-

channel considered, peripherals, and fingerprinting approach.

In the first instance, MAGNETO and PowerID consider two

different side-channels, EM and PSC respectively, making

different assumptions in the threat model (see Section II-B). In

particular, MAGNETO assumes that the peripheral under test

is in an electromagnetic safe zone, which may be challenging

to achieve in a realistic scenario. In the second instance,

MAGNETO only focuses on operations during the booting

(i.e., state Boot) for different models of USB flash drives

only. Differently, PowerID considers a wider variety of USB

peripherals, including multiple devices of the same model.

Moreover, PowerID builds the fingerprints not only during a

peripherals’ state Boot but also in their activity (i.e., state On),

which allows the identification of the ongoing actions (e.g.,

read/write, upload/download).

Other work considers USB logical side-channels (i.e.,

software-based). Monaco in [9] presents a fingerprint method

for USB HIDs (e.g., keyboards, mouses, and touchscreens)

based on clock timing and input events. Due to the peculiar

nature of this side-channel, this work can only fingerprint HID

peripherals, and it cannot be extended to other types of USB

peripherals. Time-Print [8] authenticate USB flash drives by

measuring USB packets’ timing during a series of reading

operations via a software tool on the host device. Unlike Time-

Print, PowerID does not need to access the host device, and it

aims to authenticate different types of peripherals (not limited

to flash drives) based on their state Boot and from several

actions (not only from reading operations), i.e., state On.

VII. CONCLUSION

This paper presents PowerID, a framework to fingerprint the

USB peripherals based on their power consumption during

different working conditions. Based on the fingerprints of

authorized peripherals, PowerID can protect the host from

USB-based threats by identifying unauthorized peripherals and

detecting illicit actions. We extensively evaluated the perfor-

mance of PowerID with an exhaustive power traces dataset

composed of more than eighty unique devices spanning 35

models and 8 types. The results highlight that PowerID achieve

a high accuracy in inferring peripheral type, model, activity,

and identity. The authors have provided public access to their

data at https://doi.org/10.5281/zenodo.7467989.
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[6] B. Bencsáth, G. Pék, L. Buttyán, and M. Felegyhazi, “The cousins of

stuxnet: Duqu, flame, and gauss,” Future Internet, vol. 4, no. 4, pp.
971–1003, 2012.

[7] K. Suzaki, Y. Hori, K. Kobara, and M. Mannan, “Deviceveil: Robust
authentication for individual USB devices using physical unclonable
functions,” in 2019 49th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN). IEEE, 2019, pp. 302–
314.

[8] P. Cronin, X. Gao, H. Wang, and C. Cotton, “Time-print: Authenticating
USB flash drives with novel timing fingerprints,” in 2022 IEEE Sympo-

sium on Security and Privacy (SP). IEEE, 2022.
[9] J. V. Monaco, “Device fingerprinting with peripheral timestamps,” in

2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.
[10] O. A. Ibrahim, S. Sciancalepore, G. Oligeri, and R. D. Pietro, “Magneto:

Fingerprinting USB flash drives via unintentional magnetic emissions,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 20,
no. 1, pp. 1–26, 2020.

[11] J. Axelson, USB complete: the developer’s guide. Lakeview research
LLC, 2015.

[12] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Coference on

International Conference on Machine Learning, ser. ICML’12. Madi-
son, WI, USA: Omnipress, 2012, p. 1467–1474.

[13] O. A. Grigg, V. Farewell, and D. Spiegelhalter, “Use of risk-adjusted
cusum and rsprtcharts for monitoring in medical contexts,” Statistical

methods in medical research, vol. 12, no. 2, pp. 147–170, 2003.
[14] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time series

feature extraction on basis of scalable hypothesis tests (tsfresh–a python
package),” Neurocomputing, vol. 307, pp. 72–77, 2018.

[15] P. Cronin, X. Gao, C. Yang, and H. Wang, “Charger-Surfing: Exploiting
a power line Side-Channel for smartphone information leakage,” in

30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 681–698.

[16] A. S. La Cour, K. K. Afridi, and G. E. Suh, “Wireless charging
power side-channel attacks,” in Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security, 2021, pp. 651–
665.

[17] J. Liu, X. Zou, L. Zhao, Y. Tao, S. Hu, J. Han, and K. Ren, “Privacy
leakage in wireless charging,” IEEE Transactions on Dependable and

Secure Computing, pp. 1–1, 2022.
[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intel-

ligence research, vol. 16, pp. 321–357, 2002.
[19] Jason Brownlee. (2020) One-vs-Rest and One-vs-One for

Multi-Class Classification. [Accessed: 07-06-2022]. [Online].
Available: https://machinelearningmastery.com/one-vs-rest-and-one-vs-
one-for-multi-class-classification/

[20] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 465–488,
2017.

[21] A. Brighente, M. Conti, D. Donadel, and F. Turrin, “Evscout2.0: Electric
vehicle profiling through charging profile,” ACM Transactions on Cyber-

Physical Systems, sep 2022.
[22] M. Conti, M. Nati, E. Rotundo, and R. Spolaor, “Mind the plug! laptop-

user recognition through power consumption,” in Proceedings of the 2nd

ACM International Workshop on IoT Privacy, Trust, and Security, ser.
IoTPTS ’16, 2016, p. 37–44.

[23] R. Spolaor, L. Abudahi, V. Moonsamy, M. Conti, and R. Poovendran,
“No free charge theorem: A covert channel via USB charging cable on
mobile devices,” in International Conference on Applied Cryptography

and Network Security. Springer, 2017, pp. 83–102.
[24] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On

inferring browsing activity on smartphones via USB power analysis side-
channel,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 5, pp. 1056–1066, 2016.

[25] Q. Yang, P. Gasti, K. Balagani, Y. Li, and G. Zhou, “USB side-channel
attack on tor,” Computer Networks, vol. 141, pp. 57–66, 2018.

[26] Y. Su, D. Genkin, D. Ranasinghe, and Y. Yarom, “USB snooping
made easy: Crosstalk leakage attacks on USB hubs,” in 26th USENIX

Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 1145–1161.

[27] P. Belgarric, P. A. Fouque, G. Macario-Rat, and M. Tibouchi, “Side-
channel analysis of weierstrass and koblitz curve ecdsa on android
smartphones,” in Cryptographers’ Track at the RSA Conference, 2016.

[28] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA key extraction from mobile devices via nonintrusive physical
side channels,” in Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, 2016, pp. 1626–1638.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 


