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Abstract—In this manuscript, we test the operational per-
formance decrease of a probabilistic framework for Demand
Response (DR). We use Day Ahead Market (DAM) price scenar-
ios generated by a Combined Quantile Regression Deep Neural
Network (CQR-DNN) and a Non-parametric Bayesian Network
(NPBN) to maximise profit of a Battery Energy Storage System
(BESS) participating on the DAM for energy arbitrage. We apply
the generated forecast time series to a stochastic Model Predictive
Control (MPC), and compare the performance using a point
and perfect forecast. For the probabilistic forecasts, we test two
control strategies; 1) minimising the Conditional Value at Risk
(CVaR) for making costs, and 2) minimising the expected value
of the cost. We apply the MPC in a closed-loop simulation setting
and perform a sensitivity analysis of the profit by changing the
ratio between battery capacity and the max power, the cluster
reduction method, and the number of scenarios used by the
MPC. We show that the proposed framework works, but the
approach does not increase profit compared to a deterministic
point forecast. This can possibly be explained by the deterministic
forecast capturing the shape of the price curve with less noise
than a probabilistic forecast without enough scenarios. We show
that the value of a good forecast becomes smaller as the charging
time of the battery becomes larger, due to the battery being
unable to exploit small price differences optimally.

Index Terms—Demand Response, probabilistic forecasting, sce-
nario generation, stochastic programming, battery energy storage
systems, day ahead market

I. INTRODUCTION

As the transition to renewable energy accelerates, uncer-
tainty plays a larger role in decision-making. The increasing
market penetration of renewables results in volatile electricity
generation, which leads to more volatile electricity prices [1],
making them more difficult to forecast [2]–[5]. Price forecasts
help Demand Response (DR) by allowing users to adjust their
planned energy consumption schedules based on price fore-
casts. The Day Ahead Market (DAM) is the primary market for
short-term trading in Europe, where energy is traded in hourly
blocks and with hourly prices. To buy electricity on a specific
day and time, market participants must make a bid before

This project was funded by TKI Watertechnologie

12:00 AM the preceding day, after which the market shuts,
and the Market Clearing Price is determined. When placing a
bid, the actual price is unknown, driving study in Electricity
Price Forecasting in the context of the DAM.

Large forecasting mistakes can result in suboptimal dis-
patching and a loss of system efficiency as well as income for
users and producers. Because energy production is becoming
increasingly unpredictable as a result of renewable energy
penetration, probabilistic forecasting can be useful because
it provides a prediction interval, which indicates forecast
uncertainty. It enables asset risk management and stochastic
bidding/optimisation [6].

The Combined Quantile Regression Deep Neural Network
(CQR-DNN) [7] is a probabilistic forecasting method where,
instead of a single value, the model estimates many quantiles
of a response distribution. The collection of forecast quantiles
may be utilised to build Cumulative Distribution Functions,
allowing for estimating the predicted variable’s marginal dis-
tribution (e.g. the hourly electricity price). These distributions
are independent marginal distributions, since the forecast time
is the same for all hours examined in the forecast.

A typical way of applying DR is through Model Predictive
Control (MPC). When uncertainty is introduced into the MPC
problem, price scenarios may be utilised to make optimal
decisions based on financial or physical risk. The CQR-DNN
forecasts 24-hourly DAM prices at the same time, yielding
24 marginal Cumulative Distribution Functions (CDFs) that
are conditional on the network’s input. However, to generate
realistic multivariate price samples, the relationship between
hourly DAM prices should be considered.

Non-parametric Bayesian Networks (NPBNs) are proba-
bilistic graphical models that express complex and high-
dimensional dependencies between variables. NPBNs employ
marginal distributions and bivariate copulae to characterise
variable dependencies according to a user-defined structure.
Since no assumptions are made about the marginal distri-
butions, the model is flexible to the desired distribution.
Spearman’s rank-correlation between hourly DAM prices is
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calculated on historical data and then applied to parameterize
the bivariate copulae as in [8].

The application of Battery Energy Storage Systems (BESS)
in the energy system is an active topic of research [9], [10],
where it is shown they can be of great value in providing flexi-
bility. Many mathematical formulations can be found for BESS
MPC problems. However, many focus on battery state-of-
health and deterministic point and perfect forecasts [11]. The
operational performance decrease, due to forecasting errors, is
often unknown. The operational performance of an asset using
a forecast is perhaps a better metric for price forecasting model
performance than classical error-based metrics.

In this work, we test the operational performance decrease
of a probabilistic DR framework for DAM participation in a
BESS environment. We model a simple BESS to be active on
the DAM based on quantile forecasts of the Dutch DAM price
and scenarios generated with an NPBN. The scenarios are re-
duced to be optimally representative of the original scenario set
while ensuring computational feasibility. The DR framework
is applied in a closed-loop simulation setting, simulating DAM
participation in 2019 and 2020 for varying power/storage
ratios, using Conditional-Value-at-Risk and Expected Value
objective functions. The results are then compared with a point
and perfect forecast strategy.

II. METHODOLOGY

Our proposed probabilistic DR framework for DAM partic-
ipation consists of four main steps; forecasting distributions
of prices (II-A), generating 48-hourly price scenarios that
obey both the forecast distribution and the observed temporal
dependencies in the data( II-B), reducing those scenarios for
computational feasibility (II-C), and applying the scenarios in
a stochastic MPC (II-E).

A. CQR-DNN

To forecast DAM price distributions, we apply the Com-
bined Quantile Regression Deep Neural Network (CQR-
DNN) [7]. Compared to ensemble models in which each quan-
tile is represented by a separate model, the CQR-DNN was
developed to forecast all quantiles simultaneously. By applying
a different loss to each output node while minimising the
mean loss across all output nodes, the combined quantile loss
function enables simultaneous training of multiple regression
quantiles in a single DNN. This prevents separate quantile
models from diverging to different local optima during train-
ing, significantly reducing the ’crossing quantile problem’.

The CQR-DNN is trained a multiple pinball loss func-
tions [12], a combined quantile loss

LCQ =
∑
τ∈T

Lτ , (1)

Lτ = max(τ · eτ , (τ − 1) · eτ ), (2)
eτ = zτ − y, (3)

where Lτ is the loss, T denotes the set of quantiles τ and
eτ the quantile forecast error, with y being the observed
value and zτ the quantile forecast. Due to the asymmetrical

penalisation of over- and under-predictions, the model will
learn how to regress a variable that is expected to exceed the
actual target for a τ fraction of the samples; a quantile. In
our case, we apply the CQR-DNN to forecast 13 quantiles
(0.99, 0.95, 0.8, 0.7, 0.6, 0.5, ...).

B. Non-parametric Bayesian Networks

In order to efficiently sample multiple hourly prices at
once while having realistic temporal dependencies between the
hours, we apply a Non-parametric Bayesian Network (NPBN)
like in [8]. The NPBN is a Directed Acyclical Graph with
nodes and arcs representing uncertain or random variables
and their dependencies. A marginal distribution describes each
node that does not have a parent. Each child node is described
by a conditional distribution, which captures the NPBNs
dependency between variables. NPBNs have been previously
applied in Earth Dam safety assessment, emission source
linking, air transport safety the reliability of structures, like
flood defense infrastructures or bridge safety assessment [13],
[14].

Within the NPBN, multivariate distributions are described
by univariate marginals and a copula to describe dependencies.
The joint density of NPBNs with n variables is factorized as

f1,...,n(x1, . . . , xn) = f1(x1)

n∏
i=2

fi|Pa(i)(xi|xPa(i)), (4)

where f1,··· ,n denotes the joint density of the n variables,
fi denotes their marginal distributions, and fi|j denotes con-
ditional distributions. Each random variable xi belongs to
node i, where the parent nodes if node i form the set
Pa(i) = {i1, . . . , ip(i)}. The arcs are assigned one-parameter
conditional copulae [15], parameterised by Spearman’s rank
correlations [13]. The arc from parent-node im to node i
is assigned a conditional rank correlation, where k denotes
the order of the condition (e.g. the number of variables it is
conditional to).

In this work, we fit parametric distributions to the hourly
forecast quantiles and use these as marginal distributions. The
rank correlation is based on the data, and the dependency
structure is depicted in Figure 1.

P0 P24

P1 P2 P22 P23 P25 P26 P46 P47
. . . . . .

Fig. 1. Bayesian network with consecutive dependency structure and a shared
dependency on the first sample of the day. [8]

C. Scenario reduction

We reduce the sampled scenarios by the NPBN to optimally
represent the full set of scenarios. Random sampling from
the generated set of scenarios might result in the over- or
under-representation of certain events or shapes. Therefore
we take a large number of samples from the NPBN, and
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reduce these by clustering them. We apply three methods;
first, as comparison, we randomly choose scenarios from the
full set of scenarios. Second, we apply the KMeans clustering
algorithm [16] to group scenarios into a specified amount
of clusters. The KMeans algorithm functions by assigning n
forecast timeserie scenarios x with length of 48 hours into
cluster sets S in such a way that the in-cluster inertia is
minimised

argmin
S

k∑
i=1

∑
x∈Si

||x− µi||2, (5)

where k ≤ n, S ∈ {S1, S2, ..., Sk}, and µi is the mean of
cluster i. Third, we apply the KMedoids algorithm [17] to
cluster data similarly to KMeans, but with centroids being an
actual forecast time series in the cluster. An example of the
resulting scenarios can be seen in Figure 2. We assign the
representative scenarios a probability by dividing the size of
the cluster by the size of the initially generated set of scenarios.
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Fig. 2. Quantile forecast of the DAM price and reduced scenarios for each
method.

D. Conditional Value at Risk

The Conditional Value at Risk (CVaR) is applied to BESS
energy arbitrage in order to reduce the risk of participating in
volatile and uncertain markets. CVaR is defined as

CV aRα =
1

1− α

∫
f(x,y)≥VaR

f(x, y)p(y)dy, (6)

which is the mean value of the stochastic variable for the
part that is greater than a (predefined) Value at Risk (VaR)
with a certain confidence level α [18]. It is also known as
the expected shortfall in financial theory, where it depicts the
expected return on a portfolio in the worst α% of the cases.
The CVaR is a risk measure that describes the whole tail of a
distribution, rather than a single cut-off point at the distribution
like the VaR. When CVaR is minimised, more conservative
choices are made compared to minimising VaR.

E. MPC for BESS DAM participation

We apply a receding horizon MPC to bid on the DAM using
the reduced set of scenarios with a prediction horizon of 48
hours. For this study, we apply three strategies and compare
them with the theoretical optimum. First, we minimise the
expected value (EV) (J1) of the cost over all scenarios.
Second, we minimise the Conditional-Value-at-Risk (CVaR)
(J2) with a 50% and 90% confidence level. We compare the
methods with a point forecast and a perfect forecast to estimate
the value of a stochastic program. The stochastic program for
EV minimisation is formulated as

R[s] :=

N∑
t=1

(Pin[t]− Pout[t] · ρout)∆t · price[t, s], (7a)

J1 := min
∑
s∈S

R[s] · p[s], (7b)

s.t.

C[t] ∈ [0, Cmax], (7c)
Pin[t] ∈ [0, Pmax], (7d)
Pout[t] ∈ [0, Pmax], (7e)
Zp[t] ∈ {0, 1}, (7f)
Pin[t] ≤ Pmax · Zp[t], (7g)
Pout[t] ≤ Pmax · (1− Zp[t]), (7h)
C[t] = C[t− 1] + (Pin[t] · ρin − Pout[t])∆t, (7i)

where R[s] is the cost function in [C] of scenario s which
is part of the set of M scenarios in S, C[t] the storage level
at time t in [kWh], Pin[t] and Pout[t] are the charging and
discharging power at time t in [kW], respectively, ρin and
ρout the charging- and discharging efficiency [-], p[s] is the
probability [-] of scenario s, and Zp the binary indicator for
charge- or discharging mode. When a point- or perfect forecast
is applied in the simulation, a single scenario with p[s] = 1 is
introduced.

The stochastic program for CVaR minimisation is formu-
lated as

J2 = min CVaR := min VaR +
1

1− α
·
∑
s∈S

Zc[s] · p[s],

(8a)

s.t. (7c), (7d), (7e), (7f), (7g), (7h), (7i),

Zc[s] ∈ [0,∞), (8b)
V aR ∈ R, (8c)
Zc[s] ≥ R[s]− V aR, (8d)

where VaR is the Value-at-Risk in [C] that is implicitly
calculated as a variable in the optimisation problem, α the
confidence level of the CVaR calculation, and Zc a deficit
variable introduced to calculate the CVaR efficiently [18].
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Fig. 3. A depiction of the BESS operations using an MPC with (a) 10 KMedoids selected scenarios with expected value minimisation, and (b) a perfect
forecast.

III. RESULTS AND DISCUSSION

We assume a battery with 10 MWh storage capacity and
varying power/storage ratios. Figure 3 shows the results of
the closed-loop simulation for February 10 and 11 in 2019 for
(a) the MPC with 10 scenarios selected through KMedoids
while minimising the expected value of the cost, and (b) the
MPC with a perfect forecast. The decisions made by the MPCs
are similar, but the perfect forecast is slightly more optimal,
which is expected.

Multiple amounts of scenarios and different scenario re-
duction techniques are analysed. Figure 4 shows the relative
profit for the closed-loop simulation experiments with varying
power, objectives, amount of scenarios and scenario reduction
technique. The results show that for this case, there is no added
value for the use of stochastic programs compared to a point
forecast. When enough scenarios are considered, the profit
converges to that of a single point forecast consisting of the
expected value of the quantile forecast. The results also show
that generally, the profit with KMedoids scenario reduction
technique converges with fewer scenarios than the Clustered
Random or Random approaches.

In this setting, a higher confidence level for the CVaR
translates into less profit due to deviation of the plan from the
maximum expected profit. As the confidence level decreases,
CVaR minimisation of the cost coincides more with the
expected value minimisation of the cost. However, for BESS
participating solely on the DAM, it seems that a stochastic
MPC approach does not lead to extra benefits compared to
using a point forecast. This could be due to the nature of
CVaR, which is not to maximise profit, but to decrease risk of
participation. This could change when local system constraints
by (uncertain) demand or generation are taken into account,
making it more likely for a point forecasting framework to
result in suboptimal results. CVaR can be constrained in the
minimisation of the expected value, which could represent the
risk of causing imbalance due to insufficient storage left in the

battery to supply the local demand. In a multi-market setting,
risk acceptance could translate into the frequency of trading,
or speculation, on the intraday market. The simulation with the
minimisation of the expected value of energy cost converges
to a point-forecast performance with enough scenarios. It
could be that the point-forecast (i.e. the expected value of the
quantile forecast) represents the shape of the price realisation
well enough and that the consideration of uncertainty through
an insufficient number of scenarios only gives noise to that
signal. As the number of scenarios increases, uncertainty is
captured more completely, and performance converges to the
expected value.

The results show that for a decreasing ratio between power
and storage, the accuracy of a forecast starts becoming less
valuable. When batteries can charge quickly within the times-
lot of the market, small deviations in price have higher impact
on optimal results. When a BESS takes multiple market
timeslots to charge or discharge, small deviations matter less
since (dis)charging covers multiple timeslots.

IV. CONCLUSIONS

In this work, we test the operational performance decrease
that using a probabilistic DR framework causes for BESS
participation in the DAM using quantile price forecasts. We
apply 1) a CQR-DNN to forecast price distributions of the
Dutch DAM for 2019 and 2020; 2) an NPBN to sample
48h price scenarios with realistic temporal dependencies; 3)
scenario reduction techniques based on several clustering al-
gorithms; 4) a stochastic MPC maximize profits due to energy
arbitrage based on the forecast price scenarios. A closed-
loop simulation is performed with a BESS using the forecast
price scenarios and a stochastic program for varying battery
parameters, number of scenarios, scenario reduction technique,
and control objectives. Results are compared with the BESS
participating on the DAM with a single price scenario (point
forecast) and the theoretically optimal case with know prices
(perfect forecast).
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1 2 5 10 25 50 100
N price scenarios [-]

KMedoids EV

 CVaR 0.9

 CVaR 0.5

ClusteredRandom EV

 CVaR 0.9

 CVaR 0.5

Random EV

 CVaR 0.9

 CVaR 0.5

0.73 0.65 0.70 0.72 0.71 0.72 0.72

0.73 0.63 0.68 0.70 0.72 0.72 0.72

0.73 0.63 0.67 0.68 0.69 0.70 0.70

0.73 0.61 0.67 0.70 0.71 0.71 0.72

0.73 0.57 0.65 0.67 0.70 0.71 0.72

0.73 0.57 0.63 0.64 0.67 0.68 0.69

0.73 0.62 0.68 0.71 0.71 0.73 0.72

0.73 0.60 0.65 0.69 0.71 0.72 0.72

0.73 0.60 0.63 0.64 0.66 0.68 0.70

Cmax P 1
max = 1 [h]

1 2 5 10 25 50 100
N price scenarios [-]

0.81 0.75 0.78 0.80 0.80 0.80 0.81

0.81 0.73 0.77 0.78 0.80 0.80 0.80

0.81 0.72 0.74 0.76 0.76 0.77 0.78

0.81 0.71 0.77 0.79 0.79 0.80 0.80

0.81 0.67 0.74 0.76 0.79 0.80 0.80

0.81 0.67 0.71 0.72 0.74 0.76 0.76

0.81 0.72 0.76 0.80 0.80 0.80 0.81

0.81 0.69 0.73 0.77 0.80 0.80 0.81

0.81 0.69 0.71 0.71 0.73 0.76 0.77

Cmax P 1
max = 2 [h]

1 2 5 10 25 50 100
N price scenarios [-]

0.86 0.83 0.85 0.85 0.85 0.86 0.86

0.86 0.81 0.84 0.85 0.85 0.85 0.85

0.86 0.81 0.81 0.81 0.82 0.83 0.84

0.86 0.79 0.83 0.84 0.85 0.85 0.85

0.86 0.75 0.80 0.82 0.84 0.85 0.85

0.86 0.74 0.77 0.78 0.80 0.81 0.81

0.86 0.80 0.83 0.85 0.85 0.85 0.85

0.86 0.76 0.80 0.83 0.84 0.85 0.85

0.86 0.76 0.77 0.77 0.79 0.82 0.83

Cmax P 1
max = 4 [h]

1 2 5 10 25 50 100
N price scenarios [-]

0.86 0.84 0.85 0.85 0.85 0.85 0.86

0.86 0.82 0.84 0.85 0.85 0.85 0.85

0.86 0.82 0.82 0.82 0.82 0.82 0.84

0.86 0.79 0.83 0.84 0.85 0.85 0.85

0.86 0.76 0.81 0.83 0.84 0.84 0.85

0.86 0.75 0.77 0.78 0.80 0.80 0.81

0.86 0.80 0.83 0.84 0.85 0.85 0.85

0.86 0.77 0.81 0.83 0.84 0.85 0.85

0.86 0.77 0.77 0.77 0.79 0.81 0.82

Cmax P 1
max = 8 [h]

Fig. 4. Relative profit for a BESS system with 10 MWh capacity (C) and varying power. Profits are normalised by the profit from the simulation with a
perfect forecast.

The results show that including uncertainty does not lead
to improved profit for energy arbitrage on the DAM only
compared to a point forecast in this specific case. This can
possibly be explained by the fact that the deterministic point
forecast consists of the expected value of the probabilistic
forecast, making the general shape of the price forecast curves
similar. Including a small number of other scenarios would
then only introduce noise to the shape. This results is hypoth-
esised to change when multiple markets (e.g. FRR, intraday)
are considered in a multi-stage fashion where intraday prices
are conditional to the DAM prices, which we leave for future
work. Also, when local generation and/or consumption are
taken into account, risk-aware decision-making can be of value
to ensure the continuation of critical processes, prevent curtail-
ment, or to prevent high imbalance costs by constraining the
risk. For market participants without liquidity constraints (e.g.
energy traders), a CVaR cost objective is not preferred over
an expected value objective. However, when energy trading is
secondary in the business model, or when large energy costs
could threaten the business model, CVaR minimization of cost
can be of value.

We also show that as the BESS takes longer to charge or
discharge, profits are closer to the theoretical optimum due to
the spreading of market participation over multiple timeslots.
Small hourly deviations in price can be exploited less, due to
the relatively slow (dis)charging of the BESS, decreasing the
value of a good forecast.

We show how the operational performance decrease of
the proposed DR framework, and how it would work. The
framework can be flexibly changed to accommodate local con-
straints and objectives resulting from, for example, generation
and demand. In future work, we will focus on multi-market
scenarios and local consumption and/or generation.
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