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ABSTRACT
How can we perform similarity joins of multi-dimensional streams

in a distributed fashion, achieving low latency? Can we adaptively

repartition those streams in order to retain high performance under

concept drifts? Current approaches to similarity joins are either

restricted to single-node deployments or focus on set-similarity

joins, failing to cover the ubiquitous case of metric-space similarity

joins. In this paper, we propose the first adaptive distributed stream-

ing similarity join approach that gracefully scales with variable

velocity and distribution of multi-dimensional data streams. Our

approach can adaptively rebalance the load of nodes in the case of

concept drifts, allowing for similarity computations in the general

metric space. We implement our approach on top of Apache Flink

and evaluate its data partitioning and load balancing schemes on a

set of synthetic datasets in terms of latency, comparisons ratio, and

data duplication ratio.

CCS CONCEPTS
• Information systems→ Stream management.

KEYWORDS
data streams, similarity joins, data partitioning, load balancing,
distributed computations

ACM Reference Format:
George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Odysseas Pa-
papetrou, Arie van Deursen, Asterios Katsifodimos. 2023. Adaptive Dis-
tributed Streaming Similarity Joins. In The 17th ACM International Con-
ference on Distributed and Event-based Systems (DEBS ’23), June 27–30, 
2023, Neuchatel, Switzerland. ACM, New York, NY, USA, 12 pages. https: 
//doi.org/10.1145/3583678.3596891

1 INTRODUCTION
Similarity join is the task of identifying all pairs of similar records
that reside in two or more datasets according to a similarity function.
Similarity joins play an important role in data integration, data
cleaning, recommender systems and many other domains. In fact,
nowadays, with data in motion becoming more ubiquitous, many

of the use cases requiring a similarity join have to be performed in
a streaming fashion.

Performing similarity joins on data streams is challenging and
computationally expensive. The brute force approach – even for
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the case of static datasets – has to compare all records of the first

dataset against all records on the second, leading to quadratic time

complexity, O(𝑛2) where 𝑛 is the number of records. As the number

of records increases, brute-force solutions become infeasible. At the

same time, the unbounded nature of data streams means that the

complete set of records is not available in full prior to their process-

ing. Moreover, since data streams are continuous, their statistical

properties may change over time. Depending on how frequently

those changes occur (also known as concept drift [13, 33]), they

can have a significant impact in optimizing the similarity join oper-

ation. To recap, streaming similarity joins entail solutions that are

𝑖) efficient, 𝑖𝑖) scalable, and 𝑖𝑖𝑖) can adapt to concept drift.

Although equality joins on streams have been studied exten-

sively, scant attention has been paid to streaming similarity joins.

Existing works provide solutions specifically for set-similarity joins

[38], optimizing a self-join operation in a single machine [8], and

scaling out the cross-product comparisons in multiple machines

[11]. However, none of these solutions target the general metric

space or support efficient load balancing that can adapt the load

distribution to the concept drift that frequently occurs (Table 1). At

the same time, a significant research body targets batch similarity

joins targeting the MapReduce [5, 7, 36] framework. Although these

works address scalability and efficiency, their core techniques do

not adhere to the properties of streaming data (unboundedness and

concept drift). Thus, they cannot be applied on streams, and they

do not provide load-balancing capabilities.

Streaming similarity joins can be performed in either exact or

approximate fashion. Approximate similarity join algorithms, such

as [17, 18] are interesting for use cases where applications can sac-

rifice completeness of results. In this work, we explicitly focus on

exact algorithms, which are necessary for scenarios where complete

answers are required. All available similarity join approaches share

a common strategy: they group similar data to reduce the num-

ber of unnecessary comparisons. To this end, they either employ

optimized indices [8] in a centralized setting or data partitioning

schemes [7, 36, 38] in a distributed setting. We have already argued

about the necessity of a distributed approach in order to handle

the massive volumes of modern data streams. However, the dis-

tributed batch-based solutions require multiple passes over the data

[7, 36], and they only provide means of splitting huge partitions

into smaller ones rather than balancing the load. Additionally, the

only distributed streaming similarity joins approach [38] targets

only the specific sub-problem of set-similarity joins instead of pro-

viding an applicable solution for the general problem. The simple

load-balancing scheme which the authors propose has limited scal-

ing capabilities and can only provide balancing for scenarios where

the input has varying lengths. All in all, existing solutions fail to

provide efficient load balancing that can keep up with concept drift

and harness the processing available processing power.
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Table 1: Related work comparison.

Method Characteristics Applicability
Work/Feature Candidate Pruning Load Balancing Mode Environment Problem
Morales et al.[8] X Streaming Centralized Similarity self-joins on a vector stream

Yang et al. [38] X X Streaming Distributed Set similarity join on sets of various lengths

ClusterJoin [7] X X Batch Distributed Similarity joins on general metric space

ElSeidy et al. [11] X Streaming Distributed Cross-product joins to multiple machines

Proposed Solution X X Streaming Distributed Similarity joins on general metric space

In this paper, we propose S
3
J, an approach for adaptive dis-

tributed streaming similarity joins
1
based on a load balancing

scheme that leverages the underlying partitioning to redistribute

the load across our group of workers. We pair our balancing scheme

with a partitioning scheme that adheres to the properties required

to facilitate it. The employed partitioning scheme is suitable for

the general flavor of the similarity joins problem over a metric

space and extends existing work by leveraging two levels of data

partitioning to prune candidate pairs and scale out the similarity

computations to multiple nodes.

Our contributions can be summarized as follows:

• The proposed solution is the first algorithm that solves the

distributed streaming similarity join problem in the general

metric space (see Table 1). Our algorithm is also the first

to properly address the issue of load imbalance, thereby

permitting better scalability and responsiveness.

• We propose a stream partitioning scheme for similarity joins

in the general metric space, providing tight and fine-grained

partitions, ensuring the completeness of results while reduc-

ing the number of computations. Our partitioning scheme

has all required properties to effectively support our load-

balancing scheme (Section 7).

• We show how to map the load balancing problem to the

classic job rescheduling problem and propose a novel algo-

rithm tailored to a partitioning/work imbalance measure

(Section 8) .

• We propose a load balancing scheme to alleviate heavily

loaded nodes while minimizing migration costs. In contrast

to existing load-balancing solutions, we refrain from reparti-

tioning the data, which is prohibitively expensive in stream-

ing scenarios, and instead, we exploit the existing partitions

to perform load balancing (Section 8).

• We conduct a detailed experimental evaluation of our solu-

tion using synthetic datasets in order to evaluate the effi-

ciency of our method under various scenarios (Section 9).

2 PRELIMINARIES
This section provides a discussion of existing concepts and tech-

niques on the foundations of similarity joins and our partitioning

scheme.

The Inner-Outer Partitioning Paradigm. The state-of-the-art
MapReduce solutions for the general metric space [7, 36] define the
inner-outer partitioning paradigm. Specifically, for each worker,

one centroid is randomly selected, and a pair P of inner and outer

partitions is assigned to it. Inner partitions are disjoint, i.e., they

1
Code available in: https://github.com/delftdata/s3j-adaptive-similarity-joins

have no common records, while outer partitions can overlap. We

provide these definitions below.

Definition 1 (Inner Partition). The inner partition 𝐼𝑖 of centroid

𝑐𝑖 contains all records for which centroid 𝑐𝑖 is the closest centroid

among all available centroids, i.e., 𝐼𝑖 = {𝑟 | ∀𝑐 𝑗 ∈ 𝐶, 𝑑𝑖𝑠𝑡 (𝑟, 𝑐𝑖 ) ≤
𝑑𝑖𝑠𝑡 (𝑟, 𝑐 𝑗 )}, where 𝑑𝑖𝑠𝑡 () is the employed distance metric.

To decide whether a record is included in an outer partition,

ClusterJoin [7] proposes the following membership criterion:

Criterion 1 (Outer Partition Membership Criterion). Let
𝑟 be an incoming record and 𝑐𝑖 be the closest centroid to 𝑟 . Then 𝑟

belongs to the outer partition of 𝑐 𝑗 ,∀𝑐 𝑗 ∈ 𝐶, 𝑐 𝑗 ≠ 𝑐𝑖 , if and only if

𝑑𝑖𝑠𝑡 (𝑟, 𝑐 𝑗 ) ≤ 𝑑𝑖𝑠𝑡 (𝑟, 𝑐𝑖 ) + 2 × 𝑡, (1)

where dist() is the employed distance metric and 𝑡 is the provided
distance threshold.

Based on Criterion 1, Definition 2 describes an outer partition.

Definition 2 (Outer Partition). The outer partition𝑂𝑖 of centroid

𝑐𝑖 contains all records that do not belong to the inner partition 𝐼𝑖
and satisfy Criterion 1, i.e., 𝑂𝑖 = {𝑟 | ∀𝑟 ∉ 𝐼𝑖 ∧𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1(𝑟, 𝑐𝑖 )}.

Similarity Computations. A solution based on the inner-outer

partitioning paradigm proceeds in performing the similarity com-

parisons based on the formed pairs of inner and outer partitions

(Figure 2(a)). In short, the records of an inner partition are com-

pared against the records of the same inner partition as well as

the records of the corresponding outer partition, whereas records

from an outer partition are compared only against records from the

corresponding inner partition. All records with a similarity higher

than a threshold are returned to the user. It can be easily shown

that this algorithm retrieves all results [7, 36].

In this work, we extend the inner-outer partitioning paradigm

to encapsulate fine-grained sets of data involved in computations

as a group. This formulation enables us to perform load balancing

of distributed streaming similarity joins with high adaptation to

variable data velocity and distribution.

3 PROBLEM STATEMENT
A streaming similarity join operation identifies all pairs of records

that belong to one or more data streams, arrive in the same time

window, and have a similarity that exceeds a user-defined threshold.

Consider a set of streams S = {𝑆1, 𝑆2, . . .}, each containing records.

Let 𝑠𝑖𝑚(𝑟𝑖 , 𝑟 𝑗 ) denote the user-defined similarity function between

two records 𝑟𝑖 and 𝑟 𝑗 , which takes values within [0, 1]. 2

2
To simplify exposition, hereafter, we expect that 𝑠𝑖𝑚 (𝑟𝑖 , 𝑟 𝑗 ) returns values between
0 (no similarity) and 1 (identical records). If this is not the case, we can define a metric-

specific function 𝑓 (𝑠𝑖𝑚 (𝑟𝑖 , 𝑟 𝑗 )) that bounds the similarity metric within [0, 1].
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Definition 3 (Matching records within a time window). For a
given similarity threshold \𝑠𝑖𝑚 , two records are considered a match

when their similarity exceeds \𝑠𝑖𝑚 , and they both arrive within the

same time window. Formally:

(𝑟𝑖 , 𝑟 𝑗 ) is a match⇔ 𝑠𝑖𝑚(𝑟𝑖 , 𝑟 𝑗 ) ≥ \𝑠𝑖𝑚 and 𝑡𝑖 , 𝑡 𝑗 ∈𝑊𝑘 , (2)

where 𝑡𝑖 , 𝑡 𝑗 are the ingestion timestamps of 𝑟𝑖 , 𝑟 𝑗 and𝑊𝑘 the 𝑘𝑡ℎ
window.

3

The above definition can trivially be rewritten using distances,

where 𝑑𝑖𝑠𝑡 (𝑟𝑖 , 𝑟 𝑗 ) = 1 − 𝑠𝑖𝑚(𝑟𝑖 , 𝑟 𝑗 ), and \𝑑𝑖𝑠𝑡 = 1 − \𝑠𝑖𝑚 .

Notice that similarity join (even over static data) is often a compu-

tationally expensive operation whose complexity increases with the

increase of the dimensionality of the data. The streaming context

further aggravates this issue due to the high velocity of incoming

records in data streams and the need for quick answers. The only

way to efficiently sustain the overall computational burden is by

scaling out the processing to a distributed stream processing sys-

tem. This practice, however, brings forward a new set of challenges,

most importantly the partitioning of the data and the load balancing

across the cluster.

Definition 4 (Partitioning for streaming similarity joins). As-
sume a set of streams S = {𝑆1, 𝑆2, . . .} that contain records con-

sisting of a timestamp, an id, and a (potentially high-dimensional)

value, i.e., 𝑟 = (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑖𝑑, 𝑣𝑎𝑙𝑢𝑒). Consider a set of records

𝑅𝑘 = {𝑟 | 𝑟 ∈ 𝑆𝑖 , 𝑆𝑖 ∈ S}, ingested within a time window𝑊𝑘 , a set

of worker nodes 𝑁 , and a given threshold \ . Partition the records in

𝑅𝑘 in |𝑁 | partitions, such that i) each pair of matched records based

on the similarity threshold \ is contained in the same partition and

ii) the computation load across the worker nodes is balanced.

Unfortunately, the partitioning of the records is not guaranteed

to be stable in the lifetime of a streaming workload. Even if we

could efficiently decide on an optimal partitioning of the data, this

remains unknown since the data is not available when creating

the partitions. Furthermore, statistical changes in the incoming

streaming data, i.e., a possible concept drift, create skews in data

partitions. Consequently, these aspects entail the consideration of

computational load and accompanying challenges. We define the

load of a worker node in a set of workers as follows.

Definition 5 (Load). Given a partitioning scheme PS, the load 𝐿
𝑝𝑠
𝑛

of a worker 𝑛 in a set of workers 𝑁 is equivalent to the number of

similarity comparisons it needs to perform based on the partition

of records assigned to it.

As new data arrive, the existing partitioning of the data in the

cluster’s workersmay no longer provide a balancedworkload across

the cluster, thereby leading to the load balancing problem.

Definition 6 (Load balancing). Assume a set 𝑅𝑘 = {𝑟 |𝑟 ∈ 𝑆𝑖 , 𝑆𝑖 ∈
S, 𝑎𝑛𝑑 𝑟 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ 𝑊𝑘 } of streaming records ingested within

a time window𝑊𝑘 , a set of the previously defined partitions 𝑃𝑆

that contain the streaming records 𝑅𝑘 , and a set of workers 𝑁 .

Each worker 𝑛 is assigned a partition 𝑃 and has an estimated load

𝐿
𝑝𝑠
𝑛 based on partition 𝑃 . Find a new optimal partitioning scheme

3
Hereafter, without loss of generality, we refer to tumbling windows only to simplify

the presentation of our approach with respect to time window semantics. Our work is

applicable to any type of time window.

𝑂𝑃𝑆 (𝑅, 𝑁 ) that minimizes howmuch the load of eachworker differs

from the desired average load, i.e.,

𝑂𝑃𝑆 (𝑅, 𝑁 ) so that𝑚𝑖𝑛(
∑
| 𝐿𝑜𝑝𝑠𝑛 − 𝐿𝑜𝑝𝑠𝑎𝑣𝑔 |),∀𝑛 ∈ 𝑁 . (3)

4 RELATEDWORK
In this work, we discuss the works that are most relevant to the

problem of adaptive distributed similarity joins.

Distributed Stream Equi-Joins. Equality joins have been investi-

gated thoroughly in the literature. Najafi et al. [25] propose SplitJoin,

a novel stream join architecture that achieves high scalability by

dividing the join operation into independent storing and process-

ing, and employing adjustable join output ordering guarantees.

Dossinger et al. [10] introduce MultiStream, a novel multi-way

stream join operator that leverages tuple routing and exploits a ma-

terialization vs. network cost to perform stream join optimization.

Najafi et al. [26] propose a circular multi-way join operator that

benefits from hardware and a parallel multi-way join operator that

reduces computation time.

None of these works deal with similarity joins.

Single-node Similarity Joins on Streams. Contrary to equal-

ity joins, research on similarity joins on data streams is limited.

Morales et al. [8] propose a solution to streaming similarity self-

joins. However, this work does not discuss a parallel distributed

solution, and their approach cannot be trivially scaled out. Similarly,

[21] introduces an operator to tackle similarity joins on uncertain

data streams, but their solution cannot be trivially scaled out. In

addition, none of these works considers load (re-)balancing, which

is necessary to retain high performance in the case of concept drift.

To the best of our knowledge, no existing work in stream processing
can provide a general solution over the metric space, which can scale
out to multiple machines and provide load balancing capabilities to
tackle concept drift.

Distributed Similarity Joins on Streams. Closest to the spirit

of our work is the work by Yang et al. [38]. The authors propose

a distributed streaming similarity join framework that employs a

simple length-based filter to distribute the data across the cluster.

Such a filter cannot be used for metric-space similarity computa-

tions, which we consider in this work. Instead, [38] focuses on the

set similarity problem.

In contrast to [38], in this paper, we aim for metric-space similarity
computations, which are required in state-of-the-art approaches in
similarity joins, like keyless joins [32].

k-Nearest Neighbours on Streams . In contrast to the exact sim-

ilarity join problem on streams, streaming kNN queries attempt

to identify and retrieve a specific number, k, of results. Koudas

et al. [20] introduce an error-bounded variation of the problem

and propose DISC that can answer error-bounded kNN queries

over sliding windows. Sundaram et al. [31] propose PLSH, a fast

distributed variation of LSH, that supports approximate nearest

neighbours queries over high throughput streams. ADS-kNN [29]

overlaps communication and computation stages and leverages

an adaptive partitioning that keeps the load balanced in order to

improve performance.
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Figure 1: Overview of proposed solution’s workflow

Streaming kNN employs similarity computations and requires effi-
cient real-time results. However, it does not retrieve all existing pairs,
and the results are not threshold bounded. Therefore, its solutions
cannot be applied in our context.

Distributed, Batch Similarity Joins in MapReduce. There are
two main approaches that MapReduce methods usually follow:

Filter & Verification and General Metric Space [12]. The Filter &

Verification methods [9, 24, 34] rely on prefixes and signatures,

which they leverage to scale out the similarity computations and

filter unnecessary comparisons. On the other hand, General Metric

space methods [5, 7, 36, 37] divide the metric space into partitions

to which similar objects are grouped.

None of the MapReduce solutions is applicable to streaming similar-
ity joins, as they require multiple passes over the given dataset to
gather statistics, as well as additional pre-processing steps.

Dynamic reconfiguration for stream processing. Load balanc-
ing is a native concern in distributed stream processing environ-

ments. Zhou et al. [40] formalize the problem of operator placement

and propose heuristics that provide load balancing with minimum

data movement across nodes that execute multiple queries. Piet-

zuch et al. [27] propose an intermediate layer between the physical

network and the stream processing engine that provides load opti-

mizations through operator placement. Madsen et al. [23] propose

ALBIC, a stream processing optimizer, that unifies reconfiguration

problems, such as load balancing and operation placement, and

addresses it as a mixed integer linear program optimization. Finally,

Cardellini et al. [3] propose a two-layered hierarchical architecture,

EDF, that enhances a stream processing engine with autoscaling

capabilities.

These works address reconfiguration problems over a cluster of nodes
where multiple streaming queries run. However, they only focus
on cluster level reconfigurations and do not deal with imbalanced
parallel operators of a specific query due to skewed workloads.

Load-balancing for joining streams. A significant mass of work

focuses specifically on join operations. Both [11] and [16] propose

new dataflow multi-way join operators. Gu et al. [16] employs two

routing algorithms that achieve load balancing without affecting

the completeness of the results through data replication. On the

other hand, ElSeidy et al. [11] focus on providing minimal state

relocation costs while keeping at balance the trade-off between

migration costs and the costs of not having optimal data distri-

bution. Using a different architecture, [35] describes a ring model

of multi-way window-based join operators that is based on time

slicing and record propagation. Qiu et al. [28] introduces a stream-

ing variation of the HyperCube algorithm [1] for static multi-way

joins. BiStream [22] leverages a new model based on managing

the computational cluster as a bipartite graph to scale out or down

depending on the current workload.

In summary, these works do not optimize unnecessary comparisons
and load balancing for the special case of similarity joins.

5 APPROACH OVERVIEW
In this paper, we propose S

3
J, an adaptive method that enables

efficient similarity joins over streams in a distributed share-nothing

environment through a novel partition-aware load balancing paired

with a stream partitioning scheme that can tackle the general met-

ric space streaming similarity join problem. Figure 1 presents the

workflow of our proposed approach, assuming two input streams.

The similarity join pipeline employs a workflow of four key opera-

tors, executed in a loop (also depicted in Figure 1):

(a) space partitioning (Section 6), where the ingested data (the

yellow squares and the green circles, corresponding, in this

example, to two streams) is partitioned to two partitions

(the highlighted blue and highlighted orange region), each

assigned to one worker;

(b) workset formulation (Section 7), which divides the previously

created local partitioning of the data at each worker into

smaller sub-partitions (the worksets), to facilitate a more

efficient load balancing;

(c) similarity computation (Section 7.7), where the workers lever-
age the formed sub-partitions to independently compute the

results, without further coordination, and, finally;

(d) load balancing (Section 8), which relies on statistics collected

from the previous steps to re-partition the data by reassign-

ing some worksets to different workers, in order to reduce

load imbalance at the workers.

The key statistics driving the load balancing policy include the

join output and the side outputs from the workset formulation

operators. Particularly, when load imbalance exceeds a threshold

configured by the application, the load balancing scheme computes

a new distribution of the existing worksets based on the existing

distribution and a migration minimization policy and employs the

new distribution to the available workers without the need to create

new partitions or worksets. For example, in Figure 1, the distribu-

tion of the load is imbalanced between workers 1 and 2. Thus, the

load balancing strategy exchanges workset W2 from worker 1 with
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workset W1 from worker 2 to balance their load. The new distribu-

tion of the worksets is communicated to the workset formulation

operators to ensure the correct routing of future records.

6 SPACE PARTITIONING

Our partitioning scheme aims to distribute the data among the

available workers so that: (a) the computational load is evenly dis-

tributed across the workers, and (b) data duplication is reduced. In

this work, we focus on providing adaptivity to streaming similarity

joins through an efficient load-balancing scheme and a fine-grained

partitioning scheme. Therefore, we adapt and extend the previously-

proposed inner-outer partitioning paradigm, described in Section 2.

In particular, we introduce two layers of partitioning: (a) partition-

ing the data into coarse partitions, and (b) breaking each partition

into smaller worksets, which can be independently handled by each

worker. In this section, we describe shortly our first partitioning

layer, space partitioning.

6.1 Space partitions

To create our fine-grained worksets, we need to distribute our

incoming records to our workers. However, we cannot divide the

load arbitrarily. We need to ensure that possibly similar records are

co-located to the same worker so that we will not have two workers

creating similar worksets. In such a case, we would risk losing

matches or duplicating every record belonging to these worksets.

Therefore, we opt to divide the incoming records into inner and

outer partitions, adapting the inner-outer paradigm, in order to

create space partitions. Formally, the space partition 𝑆𝑃𝑖 of a centroid
𝑐𝑖 is the pair of inner partition 𝐼𝑖 and outer partition 𝑂𝑖 of 𝑐𝑖 .

6.2 Selecting Centroids

Selecting the right centroids for the space partitions is not a triv-

ial task. A common approach employs a random sampling of the

data under processing to select partition centroids [7, 36]. However,

none of these techniques is applicable in the case of streams, as

they all require an extra pass over the data. In addition, historical

streaming data could serve as a source of candidate centroids, but

those would be obsolete in the case of concept drift. In this paper,

we opt for a simple approach: we randomly generate our partition

centroids based on the expected space coverage. More specifically,

after randomly selecting a set of partition centroids, we initialize

our space partitioning instances by providing each one a copy of

the available centroids. Each centroid is assigned to a downstream

worker of our set of workers. For each incoming record, our parti-

tioner instances calculate the distances to the centroids. Based on

the provided Definitions 1 & 2, an incoming record is assigned to

the inner partition of the closest centroid and to the outer partitions

of the centroids that satisfy the Criterion 1.

6.3 Avoiding duplicate comparisons

According to the inner-outer partitioning paradigm, records that

belong to neighbouring inner partitions can potentially be members

of the corresponding outer partitions. Depending on how similarity

comparisons are resolved, such a case would lead to the same candi-

date pair of records being evaluated twice, i.e., potentially by two dif-

ferent nodes. Figure 2(b) shows such an example. Record 𝑟1 belongs
to the inner partition 𝐼1 and to the outer partition𝑂2, while record 𝑟2
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Figure 2: (a) Paradigm’s similarity computations workflow.

(b) Example with a duplicate evaluation of a candidate pair.

belongs to the inner partition 𝐼2 and to the outer partition𝑂1. There-

fore, the pair (𝑟1, 𝑟2) is evaluated for both pair of partitions 𝑃1 and
𝑃2 (𝑃1 : 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑟1 ∈ 𝐼1, 𝑟2 ∈ 𝑂1), 𝑃2 : 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑟1 ∈ 𝑂2, 𝑟2 ∈ 𝐼2)).
To avoid these redundant comparisons and maintain duplicate-

free results, we adopt the same routing criterion employed by

ClusterJoin[7] and MR-MAPSS[36] to decide whether a record

should be included in a neighbouring outer partition of a space

partition or not.

7 WORKSET FORMULATION

After dividing the incoming records based on their position in the

input space, the workset formulation operation takes place in each

of the responsible workers. In this step, we attempt to create self-

contained, minimal worksets on top of which we will perform all

our similarity comparisons. We define a workset as follows:

Definition 7. The 𝑖𝑡ℎ workset𝑊𝑗,𝑖 of a space partition 𝑃 𝑗 has a

centroid 𝑐 𝑗,𝑖 assigned to it, and it consists of an inner set 𝐼𝑆 𝑗,𝑖 , an
outer set 𝑂𝑆 𝑗,𝑖 , and a set of outliers 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑗,𝑖 .

Similarly to the inner and outer partitions of the previous stage,

inner sets are disjoint while outer sets can overlap with outer sets

of other worksets, and they can contain records from inner sets or

outliers’ sets of multiple other worksets. The outliers’ sets are also

disjoint. In the following, we discuss the workflow of the workset

formulation operator. We present how an incoming record is han-

dled, and we provide all necessary definitions. We explain how we

select new centroids and the concept of outliers.

7.1 Step 1: Deciding Inner vs. Outer Partition

For each incoming record received from workset formulation op-

erator, we first compute the distances from all existing workset

centroids in order to use them in the following steps. Then we need

to specify if the record belongs to the inner or the outer partition of

the space partition worker is responsible for. Records that belong

to the outer partition can only participate in the outer sets of our

worksets, while inner records must also be assigned to an inner set

of a workset. If the received record is an outer record, we can move

directly to step 5 (Section 7.5).

7.2 Step 2: Assign to an Inner Set

For each incoming record that belongs to the inner partition, we

first need to identify the workset whose inner set will contain it.

Each record is assigned to at most one inner set. We decide whether

a record should be assigned to the inner set of a workset based on

the following definition of inner sets.
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Figure 3: Workset Formulation Workflow

Definition 8 (Inner Set). The inner set 𝐼𝑆 𝑗,𝑖 of the workset cen-
troid 𝑐 𝑗,𝑖 contains all records which are in a distance less than half

the provided threshold from 𝑐 𝑗,𝑖 , i.e.,

𝐼𝑆 𝑗,𝑖 = {𝑥 |𝑑𝑖𝑠𝑡 (𝑥, 𝑐 𝑗,𝑖 ) ≤ 𝑡/2}, (4)

where 𝑑𝑖𝑠𝑡 () is the employed distance metric, and 𝑡 is the provided

threshold.

If we manage to assign the incoming record to an existing work-

set, we can move to step 5. Otherwise, if the incoming record cannot

be assigned to the inner set of any of the existing worksets, we

check in step 3 if we can create a new workset to assign it to.

7.3 Step 3: Creating NewWorksets
In order to create a new workset, we first need to select an appro-

priate centroid for it.

Selecting workset centroids. To select the workset centroids,

our strategy differs significantly from the random selection of a

fixed number of centroids employed in the space partitioning stage.

Without knowing the exact distribution of incoming records in

the future, it is very difficult to cover all input space with a fixed

number of centroids. Therefore, we opt to select centroids on the

fly as we process the data. In this way, we can naturally adapt to

occurring concept drifts.

In more details, only records that belong to the inner partition

of each space partition can be selected as workset centroids. If an

incoming record 𝑠 cannot be assigned to the inner set of any of

the existing worksets, we check if we can create a new workset

with 𝑠 as its centroid. Since the inner sets of all worksets must be

disjoint, 𝑠 must be at a greater distance than the provided threshold

from any other centroid. Otherwise, there would be at least two

worksets whose inner sets would have some overlap. Therefore, to

select an incoming record 𝑠 as a new centroid, it must satisfy the

following criterion:

Criterion 2 (Workset Centroid Selection). An incoming
record 𝑠 is selected as a workset centroid if and only if it is in distance
greater than the provided threshold from all existing centroids, i.e.,
𝑠 is a centroid ⇐⇒ 𝑑𝑖𝑠𝑡 (𝑠, 𝑐𝑖 ) > 𝑡,∀𝑐𝑖 ∈ 𝐶 , where 𝑑𝑖𝑠𝑡 () is the
employed distance metric, 𝑡 is the provided threshold, and 𝐶 is the set
of existing workset centroids.

7.4 Step 4: Labeling Outliers
If an incoming record 𝑠 neither belongs to an existing group nor

can be selected as a centroid itself, it is labeled as an outlier.

Definition 9 (Outliers).We define as outliers 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 the set of

incoming records that are within greater than half the provided

threshold but less than a threshold distance from all existing cen-

troids, i.e.,

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = {𝑜 | 𝑡/2 < 𝑑𝑖𝑠𝑡 (𝑜, 𝑐𝑖 ) ≤ 𝑡, ∀𝑐𝑖 ∈ 𝐶}, (5)

where 𝑑𝑖𝑠𝑡 () is the employed distance metric, 𝑡 is the provided

threshold, and 𝐶 is the set of existing group centroids.

We assign each outlier to an existing workset based on a prox-

imity criterion, i.e., each outlier is assigned to the outlier set of the

workset whose centroid is the closest to it.

7.5 Step 5: Assign to Outer Sets
All incoming records are assigned to none, one or more outer sets of

existing worksets based on the provided similarity threshold. More

specifically, we decide if an existing record should be included to

an outer set based on the following definition.

Definition 10 (Outer Set). The outer set𝑂𝑆𝑖, 𝑗 of centroid 𝑐𝑖, 𝑗 con-
tains all records which are within a distance greater than half the

provided threshold and less than twice the provided threshold, i.e.,

𝑂𝑆 𝑗,𝑖 = {𝑥 |𝑡/2 < 𝑑𝑖𝑠𝑡 (𝑥, 𝑐 𝑗,𝑖 ) ≤ 2 × 𝑡} (6)

where 𝑑𝑖𝑠𝑡 () is the employed distance metric, and 𝑡 is the provided

threshold.

To ensure the completeness of our final output, all outer partition

records are stored to be compared to new occurring centroids when

a new workset is created.

Routing criterion. Similarly to the space partitioning stage, in

workset formulation we also employ a routing criterion to decide

on routing records to the outer sets of worksets. The reasoning

behind this decision is again to avoid considering the same pairs of

records in two different worksets. However, due to the dynamic way

of creating our worksets we cannot employ the same criterion as

in the space partitioning stage. That is because the aforementioned

criterion considers all worksets known a priori. Therefore we opt for

the simplest solution of routing records to the outer sets of aworkset

only if the id of the workset is smaller than the id of the workset

whose inner set contains the record. Of course, as also discussed

in [36], this routing scheme results in a skewed distribution of the

computation load to the worksets with the smaller ids. We try to

compensate for our decision through our load balancing scheme

discussed later on.

Although the worksets are created within a space partition that

is assigned to a specific worker, they can be distributed to any of the

available workers for the downstream operation of the similarity

computations. As a policy, we assign every newly created workset
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to the same worker that it was created, in order to avoid shuffling

overhead. However, the ability to later re-assign a workset to any

available worker is crucial for our load balancing scheme discussed

later.

7.6 Set Boundaries in Metric Space
Based on the metric space properties, the bounds for the inner

and outer sets of a workset are carefully chosen to ensure the

correctness of the final output and, at the same time, avoid as much

as possible unnecessary similarity comparisons. For our inner sets, a

bound of half the provided threshold is the maximum bound which

can ensure that all records participating in an inner set are at a

distance of at most the desired threshold. Thus it allows us to avoid

performing the actual comparisons to determine those matches.

On the other hand, the selected bounds for outer sets consider the

existence of outliers and ensure the desired completeness of the

final output while attempting to keep the number of computations

as low as possible. Both bounds can be trivially proven using the

metric space’s triangle inequality property.

7.7 Similarity Computations
By creating worksets inside each space partition, we confine our

comparisons and minimize the number of similarity computations

performed. We can decide which similarity computations to per-

form by considering the type of the incoming records, e.g., an inner,

outer, or outlier record.

When the incoming records belong to the inner set, we can

immediately emit as matches all possible pairs of our incoming

records and the other records of this inner set in our state. Yet, we

still need to perform the comparisons with the records in the outer

set of the workset as well as with the outliers assigned to workset.

In the case of an incoming record that belongs to the outer set of

a workset, this record needs to be compared against all records in

the inner set of the workset and the outliers’ set assigned to it. The

case of an incoming outlier record is the most expensive since it

needs to be compared against all other records of the workset.

8 ADAPTIVE WORKSET BALANCING
In the streaming context, it is important that the algorithm adapts

to the incoming streams such that it continuously maintains good

load-balancing properties. In this section, we discuss our approach

to adaptively load-balance the worksets at runtime. Four main

factors make the load balancing for similarity joins challenging:

𝑖) the quadratic complexity of the similarity join problem, 𝑖𝑖) low
latency requirements, 𝑖𝑖𝑖) the zero knowledge of data distributions

before execution, and 𝑖𝑣) the volatile nature of streams that can

lead to concept drift.

Similarity Joins are CPU-bound.Our early experiments showed

that the similarity computation is the heaviest task of our pipeline,

i.e., similarity joins are CPU-bound. In the rest of this section, we

propose an approach that takes into account the existing parti-

tioning scheme and reduces the load imbalance by reassigning

worksets to similarity computation operators. More specifically, the

goal of the balancing of worksets is to load balance the similarity

computations across a set of workers.

8.1 Migrating Worksets W/O Repartitioning
The workset formulation algorithm (Section 7) aims at forming self-

contained worksets in each partition, i.e., the worksets are the unit

of computation, and any given workset is sufficient to produce the

similar pairs of the records assigned to those worksets. We opted for

creating self-contained worksets in order to be able to move them

across workers without very complex state migration procedures:

intuitively, a given workset that incurs very high computation cost

can be moved to a worker that is less loaded.

As a result, the worksets can be easily redistributed to the avail-

able workers to reduce load imbalance without influencing the

completeness and correctness of the join results. At the same time,

balancing through reassigning only specific worksets ensures that

we have to migrate only specific parts of an operator’s state. In short,
by minimizing load imbalance, we minimize state migration and

network costs. This allows us to achieve low response latency while

adapting to streaming load spikes and stream concept drifts. In what

follows, we define the problem of load balancing by redistributing

worksets on the fly across the available workers.

Definition 11 (Load balancing based onworksets). Assume the

set 𝑅𝑡1 = {𝑟 |𝑟 ∈ 𝐴 or 𝑟 ∈ 𝐵, 𝑎𝑛𝑑 𝑟 = (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑟𝑒𝑐𝑜𝑟𝑑)} of
streaming records received until the timestamp 𝑡1, a set of worksets

𝑊𝑆𝑡1 that contain the streaming records 𝑅𝑡1 and a set of workers

𝑁 . Each worker is assigned a subset of𝑊𝑆𝑡1 , e.g. the worker 𝑛 is

assigned the subset𝑊𝑆𝑛𝑡1
. Let 𝐿𝑛𝑡1

(𝑊𝑆𝑛𝑡1
) be the workload of worker

𝑛 at timestamp 𝑡1 based on its currently assigned subset of worksets

𝑊𝑆𝑛𝑡1
. Let 𝐷𝐼𝑡1 =

∑ | 𝐿𝑛𝑡1 (𝑊𝑆𝑛𝑡1
) −𝐿𝑎𝑣𝑔𝑡1

| be the degree of imbalance

regarding the distribution of workload on our set of workers𝑁 . Find

a new optimal distribution of worksets to workers that minimizes

the degree of imbalance 𝐷𝐼 and the migration cost to reach this

optimal distribution from the current distribution.

8.2 Workset-Balancing vs. Job-Scheduling
Recall that our worksets compose our most fine-grained data par-

titions and, at the same time, self-contained computational units.

Therefore, it is possible to think of a workset as a computation job

over a certain period of time. This observation allows us to link

our load-balancing problem to the classic job-scheduling problem

across multiple processors. However, the classic definition of job

scheduling cannot be directly applied to a streaming setting.

There is a multitude of work on job scheduling for computational

grids and multi-processor settings [4, 14, 15, 30, 39]. Specifically,

the job rescheduling flavor of the problem [2, 6] could be adapted

to our workset load balancing problem. This can be achieved as

follows: each workset𝑊𝑗,𝑖 can be seen as a job 𝐽 𝑗,𝑖 with specific

load 𝐿𝑊𝑗,𝑖
and migration cost based on its size in bytes𝑀𝑊𝑗,𝑖

, i.e.,

𝑊𝑗,𝑖 ≡ 𝐽𝑖 (𝐿𝑊𝑗,𝑖
, 𝑀𝑊𝑗,𝑖

). Every similarity computation operator can

be seen as a processor, with the primary objective becoming the

minimization of the degree of imbalance. Note that the job reschedul-
ing problem, and thus our load balancing problem as well, is NP-

hard [2, 6]. Due to its NP-hardness, all existing algorithms for the

job-rescheduling problem are approximations. Similarly, in the fol-

lowing, we devise a greedy workset balancing algorithm.

8.3 The Workset Balancing Algorithm
Our workset balancing algorithm (listed in Algorithm 1) optimizes

for the desired load imbalance measure. The algorithm takes as
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input a set of overloaded workers, a set of underloaded workers,

and the average load, i.e., the target load across all workers. The

algorithm starts by going over all overloaded workers. For each of

them, if it contains one or more worksets with a load higher than

the average worker load, we flag the workset with the highest load

as irremovable (line 5). Since these worksets have a greater load
than the average load of workers, moving them will not alleviate

the load imbalance.

For all worksets in overloaded workers that are not flagged as

irremovable, we calculate the benefit of removing the workset from

the worker it currently resides in. If the benefit is positive, we add

the workset to a priority queue, sorted descending on benefit. After

processing all worksets, we pick the workset with the maximum

benefit from the priority queue that is not yet included in the ignore

list (a list initialized as empty and populated during the algorithm)

and flag it as the best workset (Lines 8-17). The next step is to find

an underloaded worker that can accept this workset. Therefore,

for each underloaded worker, we calculate the benefit of adding

the chosen workset to that worker and assign it to the worker

that brings the maximum benefit. If there is no worker that has a

positive benefit, we append the chosen workset in an ignore list

(Lines 18-30). This procedure is repeated until there is no candidate

workset left to be removed from the overloaded workers (Line 32).

Migration Costs. There have been efforts to formulate a concrete

migration cost model [27, 40]. In the context of streaming similarity

joins, several factors affect the migration cost: a) stopping and

restarting the streaming job, b) calculating the new partitioning, c)

updating the existing state, and d) moving the repartitioned data to

the workers based on the new partitioning. In this work, we only

consider c) and d) and leave a) and b) for future work. Since our

workers share the same resources, only the size of the worksets we

move affects the migration cost. The benefit function calculates the

benefit as the difference in the degree of imbalance (DI), defined in

Definition 11, between the current workset distribution and the one

occurring after a workset move. In order to include migration cost

in our algorithm’s model, we subtract from the calculated benefit

the workset size multiplied by a user-provided factor to negatively

affect the calculated benefit that will be taken into account.

Gathering Statistics.Notice that our workset balancing algorithm
requires as input a collection of statistics. By monitoring the main

pipeline, we measure the load and the latency for each worker, and

the size and the load of the worksets assigned to each worker. All

statistics are collected over an application-specified monitoring

window. The algorithm requires an extra step of categorizing the

workers as underloaded or overloaded based on the desired average

load of a worker, which, however, takes negligible time, even for

networks involving tens of thousands of workers.

9 EXPERIMENTS
9.1 Performance Metrics
Previous works [8, 21, 38] in streaming similarity joins try to adapt

existing metrics to stream processing use cases. However, to accu-

rately evaluate the performance of streaming solutions, we need

to employ performance metrics that adhere to the requirements of

streaming workloads. For example, using the total runtime duration

of a streaming similarity join operation as in [8, 38], is not suitable

Algorithm 1 Workset Balancing Algorithm

Require: set of overloaded workers𝑂 , set of underloaded workers

𝑈 , average load 𝐿𝑎𝑣𝑔
Ensure: load balanced distribution 𝐷𝑛𝑒𝑤 of worksets to workers

1: ignore_list← []
2: best← 𝑛𝑢𝑙𝑙

3: over_benefits← priorityQueue(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 : benefit)
4: under_benefits← priorityQueue(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 : benefit)
5: irremovables← find_irremovables(𝑂, 𝐿𝑎𝑣𝑔)
6: repeat
7: for 𝑜 ∈ 𝑂 do
8: for workset𝑤 ∈𝑊𝑜 do
9: benefit← calculate_removal_benefit(𝑤,𝑊𝑜 )
10: if benefit > 0 and 𝑤 ∉ irremovables then
11: over_benefits.put({benefit,𝑤})
12: end if
13: end for
14: end for
15: repeat
16: best← over_benefits.pop()
17: until best ∉ ignore_list or best is 𝑛𝑢𝑙𝑙

18: if best is not 𝑛𝑢𝑙𝑙 then
19: for 𝑢 ∈ 𝑈 do
20: benefit← calculate_addition_benefit(𝑤,𝑊𝑢 )
21: under_benefits.put({benefit, 𝑢})
22: end for
23: repeat
24: optimal← under_benefits.pop()
25: until compute_load(optimal, 𝑢) < 𝐿𝑎𝑣𝑔

or optimal is 𝑛𝑢𝑙𝑙

26: if optimal is not 𝑛𝑢𝑙𝑙 then
27: assign_workset(best, optimal)
28: else
29: ignore_list.append(best)

30: end if
31: end if
32: until best is 𝑛𝑢𝑙𝑙

for a practical application involving unbounded data streams.While

[21] provides a more interesting per-timestamp runtime measure-

ment of the actual similarity join computation, this does not include

an end-to-end performance measurement of the pipeline.

We argue that tuple latency is a more suitable metric since it is

strongly connected to the natural requirement of stream processing

for real-time results. We employ as tuple latency the processing-

time latency in windowed join operators from [19]. The processing-
time latency of a joined pair of tuples in a streaming similarity join

is defined as the interval between the maximum ingestion time of

the involved tuples and its emission time from the output sink.

A common metric in the existing literature is the duplication
ratio of data partitioning. The duplication ratio is defined as the

average number of times a tuple is duplicated across the available

partitions. The duplication ratio shows the impact that the parti-

tioning scheme has on the input size. Therefore it also provides

valuable insights into the additional memory and storage resources
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Figure 4: 99% latency percentile perworker for varying selectivities. Each line represents a singleworker (in this case, 5workers
total). Incoming ratio 4000 records per sec, Parallelism: 5, Uniform distribution.

needed to apply our partitioning. The higher the duplication ratio

is, the more redundant information is transmitted and stored.

Since the goal of this line of work is to reduce the number of

computations performed, we also employ a comparisons ratio. We

define the comparisons ratio as the total number of performed sim-
ilarity computations over the number of joined pairs. This metric

allows for efficiency comparisons between the solutions.

9.2 Datasets
In order to evaluate our proposed solution thoroughly and to un-

derstand its limitations, we perform an experimental evaluation

over synthetic datasets of various configurations.

Synthetic stream generators. We employ synthetic data to in-

vestigate in depth the performance of both our partitioning and

load balancing scheme under fully-controlled conditions. In par-

ticular, we implemented a set of configurable stream generators

to provide streams of different velocities with records of varying

dimensionality that follow different probability distributions.

9.3 Experimental Setup
The experiments are conducted on a 3-node Kubernetes cluster

with AMD EPYC 7H12 2.60GHz CPUs. We configure an Apache

Flink cluster with a single job manager and a dynamic set of task

managers based on the parallelism of the running job. The job

manager and the task managers are deployed with 2 CPUs and

16GB of memory each. Apache Kafka is used as the source and

the sink of the Flink job. All generators feed the similarity join job

through Kafka. Minio is used as a state backend for Flink and as

file storage for complementary data. We employ vectors as input

values and angular distance as our metric for all experiments. We

evaluate our load balancing and partitioning scheme based on the

aforementioned metrics. Since Flink does not provide any online

mechanism for state migration, to perform our load balancing, we

stop the job with a savepoint, alter the savepoint based on the new

workset distribution using the state processor API, and restart the

job with the new savepoint.

9.4 Baseline: ClusterJoin
There is no native stream processing solution that performs simi-

larity joins. Therefore, we opt to adapt ClusterJoin to a streaming

environment, and we include it in our experiments as a baseline.

ClusterJoin follows the inner-outer-paradigms and resembles our

space partitioning layer. However, it partitions the data into multi-

ple virtual partitions, which it later assigns to workers, in contrast

to our one space partition per worker design. For our experiments,

we configure ClusterJoin to use 500 virtual partitions as suggested

in the original work [7]. For these virtual partitions, we select cen-

troids like we select centroids for our space partitioning layer.

9.5 Partitioning Performance
In what follows, we present S

3
J’s performance over synthetic data

streamswith various properties.We first investigate how our stream

partitioning performs against join queries of different selectivities.

Then we experiment with different levels of parallelism. For both

experiments, we use synthetic data streams whose records follow a

uniform distribution. In this set of experiments, we do not impose

any load balancing.

9.5.1 Varying selectivities. In this first series of experiments, we

focus on the correlation between the performance of our stream

partitioning and the imposed query’s selectivity. Although most

of the existing literature targets various similarity thresholds, we

opt for join selectivity since it better describes the properties of the

join query.

We vary the selectivity through the similarity threshold while

keeping the rest of the parameters the same. For the experiment

depicted in Figure 4, we consider two streams of records of 2D

values that follow the uniform distribution. Both streams have a

rate of 2000 incoming records per second, which results in 4000

records per second total input rate, and a duration of five minutes.

A tumbling window of 1 minute of processing time is employed,

and the similarity job has a parallelism of 5. In this low parallelism

setting, the partitioning scheme struggles to partition the data
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Figure 5: 99% latency percentile per worker for varying parallelism. Each line represents a single worker (in this case, 5, 10,
and 15 workers accordingly). Incoming ratio 8000 records per sec, Selectivity: 0.1%, Uniform distribution.

evenly across the nodes for high-selectivity queries, while for low-

selectivity queries, it provides real-time latency results.

In comparison to our baseline, ClusterJoin, we observe a signifi-

cant performance improvement both in high and low selectivities.

In the case of the 1% selectivity experiment, the input rate is not sus-

tainable for either approach. However, S
3
J outperforms ClusterJoin

significantly. First of all, we manage to retain a higher processing

throughput of 6000 records per second on average, while Cluster-

Join is throttled to only 4000 records per second on average. As

a result, we finish processing all records 200 seconds earlier than

ClusterJoin. S
3
J reaches max latency after more than 40 seconds

while ClusterJoin maxes out at 15 seconds. Notice, however, that

this is a side effect of using the ingestion time in order to measure

latency and Flink’s backpressure mechanism. Although the load

is unsustainable, backpressure does not reach the source opera-

tors for S
3
J, and the ingestion rate matches the input rate. As a

result, records remain in S
3
J’s pipeline longer. On the other hand,

the backpressure is much higher in ClusterJoin and reaches the

source operators resulting in a drop in ingestion rate. The same

also holds for the 0.5% selectivity experiment. In the experiment of

low selectivity of 0.1%, in contrast to ClusterJoin, S
3
J manages to

retain a sub-second latency and provide real-time results.

For these experiments, we also measure the duplication ratio. Ta-

ble 2 summarises our findings. S
3
J manages to keep the duplication

ratio around 2x for all experiments and selectivities. On the other

hand, ClusterJoin’s duplication ratio grows fast as the selectivity is

increased. S
3
J’s fine-grained worksets manage to partition the data

more efficiently than the random virtual partitions of the adapted

ClusterJoin. The lower duplication ratio results in less network

traffic and fewer comparisons to be performed.

The comparisons ratio showcases the efficiency of S
3
J. As Table 2

shows, S
3
J for high to medium selectivities manages to keep the

numbers of performed similarity computations below 2x the num-

ber of joined pairs. Compared to ClusterJoin, for all selectivities S
3
J

has a better comparisons ratio by 4x to 5x.

Table 2: Effects of selectivity on duplication ratio and com-
parisons reduction.

Duplication Ratio Comparisons ratio
Selectivity S3J ClusterJoin S3J ClusterJoin

10% 1,96 Timeout 1,58 Timeout

5% 1,96 Timeout 1,65 Timeout

1% 1,94 6,17 1,77 9,70

0.5% 1,97 3,53 1,95 11,16

0.1% 1,92 1,49 5,82 24,51

9.5.2 Varying parallelism. The parallelism of the job, i.e., the num-

ber of available workers, is another important parameter. We con-

sider again a pair of 2D streams whose values follow the uniform

distribution. However, we choose a low selectivity query and a

higher incoming ratio of 4000 records per stream per second (8000

records per second in total). The streams have a duration of 5 min-

utes, and the processing happens in windows of 5 minutes. Figure

5 presents the effect of parallelism on the performance of our parti-

tioning solution. The results show that our partitioning can leverage

higher parallelism effectively and provide real-time latency results.

Compared to ClusterJoin, S
3
J manages to scale much more ef-

ficiently. Even with the lowest parallelism, it manages to keep

relatively low latencies and handle the entire load without a trail-

ing lag. On the other hand, ClusterJoin needs almost double the

time to process the entire load and has significantly worse latency

performance. As we increase parallelism, in contrast to ClusterJoin,

S
3
J manages to harness the additional resources to achieve low

latency near real-time results.

The measurement of the duplication ratio suggests that higher

parallelism leads to higher record duplication for S
3
J. Based on

Table 3, the duplication ratio of S
3
J grows slowly as we add more

workers. This growth is mainly attributed to the increase in space

partitions as more workers are added. Actually, our second layer of

partitioning, i.e., the workset formulation, manages to even reduce
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some of the duplicate records produced from the space partitioning

layer. On the other hand, ClusterJoin’s duplication ratio is unaf-

fected by the increase in parallelism. This is due to the fact that

ClusterJoin partitions the incoming records based on its virtual

partitions and not the number of available workers.

The comparisons ratio showcases that S
3
J also benefits from

parallelism in terms of comparisons performed. As Table 3 shows,

S
3
J effectively reduces the number of performed comparisons as

the parallelism increases. This behaviour is related to the number

of the workset centroids assigned to each space partition. As paral-

lelism increases, more space partitions are employed, resulting in

fewer worksets per space partition and, thus, fewer unnecessary

comparisons per incoming record.

Table 3: Effects of parallelism to duplication ratio and com-
parisons reduction.

Duplication Ratio Comparisons ratio
Parallelism S3J ClusterJoin S3J ClusterJoin

5 1,96 1,49 4,48 20,36

10 2,12 1,49 3,16 20,36

15 2,37 1,49 2,93 20,36

20 2,62 1,49 2,65 20,36

9.6 Benefits of Load Balancing
Our experiments on the effectiveness of our partitioning scheme

(Figures 4 & 5) showcased that the performance of S
3
J can be im-

proved by effectively balancing the load. In Section 8, we propose a

novel approach that addresses the balancing problem as a workset

balancing problem. In Figure 6, we show how this load balancing

approach, on top of our partitioning scheme, can benefit the per-

formance of the similarity join task. The experiment involves two

streams following a uniform distribution with a total input rate of

8000 records per second. The selectivity is set to 0.1%, and for the

simplicity of the presentation, a parallelism of 5 is selected. The

processing is happening in windows of 1 minute. This configura-

tion is similar to the experiment (top left) with a parallelism of 5

from Figure 5. We perform load balancing at the beginning of each

window.

Our load balancing scheme positively affects the performance of

the similarity join job. First of all, the load balancing scheme progres-

sively manages to reduce the maximum latency within each win-

dow. Within 3 windows of processing, the load balancing scheme

reduces the maximum latency from 3 seconds in the first window

(0-60s) and 3.5 seconds in the second window (60-120s) to roughly

2 seconds in the last window (180-240s). At the same time, the

load balancing scheme successfully involves all available workers

in the processing. In Figure 5 (top left), where no load balancing

is employed, there is a worker (green line) that roughly receives

any load throughout the experiment. We can identify the same

behavior during the first window (0-60s) of the load balancing as

well. However, after the first balancing action, the worker receives

worksets that have an evidently high load and participates actively

in the processing. Of course, we can also identify some limitations

of our approach. Although the load balancing scheme manages to

bring 4 out of 5 workers to similar loads, a worker still has a higher

load than the rest (blue line). Responsible for this behavior is a big,
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Figure 6: 99% latency percentile per worker. Each line repre-
sents a single worker (in this case, 5 workers in total). Uni-
form distribution, Incoming ratio 8000 records per sec, Se-
lectivity: 0.1%, Parallelism: 5.

heavily loaded workset. As we describe in section 8, we flag big

worksets with a load higher than the average load of the workers

as irremovable, and we do not consider them for the load balancing.

In future work, we plan to divide these big worksets into smaller

ones which we can then consider for load balancing.

9.7 Summary of experiments
Our experiments show that the partitioning scheme of S

3
J can

retain sub-second latency for low selectivities even with low paral-

lelism. S
3
J’s partitioning can handle high selectivities significantly

more efficiently than the baseline and retain a higher processing

throughput for unsustainable input rates. It can scale efficiently

with increasing parallelism and leverages better than the baseline

the available resources. In terms of duplication, S
3
J retains an al-

most constant ratio of 2x as the selectivity increases, in contrast to

the baseline. As parallelism increases, the duplication ratio of S
3
J

increases, but at a slower rate. As far as comparisons reduction is

concerned, S
3
J manages to drastically reduce the performed com-

parisons, primarily thanks to its workset concept (Section 7) that

allows S
3
J to emit pairs of records belonging to the same inner set

without actually performing the similarity computation. The load

balancing scheme manages to redistribute well the worksets and

their load to the workers. This results in gradually reducing the

maximum latency as well as equally involving all workers in the

processing of the load, increasing their utilization.

10 CONCLUSIONS
Current approaches for distributed streaming similarity joins are

tailored solutions to specific problems and are unable to adapt to

concept drift or load imbalance. We presented S
3
J, a generic ap-

proach for distributed streaming similarity joins that tackles the

problem in the general metric space and applies load balancing to

adapt to load imbalances while reducing the number of computa-

tions through smart partitioning that enables the load balancing

technique. Our empirical evaluation suggests that S
3
J can adapt

efficiently to load imbalances, scales effectively as the parallelism

increases without enforcing high duplication overhead, reduces

the unnecessary similarity computations, and enables low latency

similarity join results for low selectivity queries.
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