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ABSTRACT
Evolutionary algorithms have been successfully applied to attack
Physically Unclonable Functions (PUFs). CMA-ES is recognized as
the most powerful option for a type of attack called the reliability
attack. In this paper, we take a step back and systematically evaluate
several metaheuristics for the challenge-response pair-based attack
on strong PUFs. Our results confirm that CMA-ES has the best
performance, but we note several other algorithms with similar
performance while having smaller computational costs.

CCS CONCEPTS
•Mathematics of computing→ Evolutionary algorithms; •
Security and privacy → Hardware attacks and countermeasures.

KEYWORDS
Metaheuristics, Physically Unclonable Functions, CMA-ES, CRP

ACM Reference Format:
Carlos Coello Coello, Marko Durasevic, Domagoj Jakobovic, Marina Krcek,
Luca Mariot, and Stjepan Picek. 2023. Modeling Strong Physically Unclon-
able Functions with Metaheuristics. In Genetic and Evolutionary Compu-
tation Conference Companion (GECCO ’23 Companion), July 15–19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3583133.3590699

1 INTRODUCTION
Physically Unclonable Functions (PUFs) are (partly) disordered
physical systems that can be challenged with external stimuli upon
which they react with the corresponding responses. Those responses
will depend on the nanoscale structural disorder present in the PUFs.
When supplied with the same challenge, no two PUFs will give
the same response. While the name suggests that a PUF cannot be
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cloned, numerous results have shown that various artificial intelli-
gence techniques could easily model its behavior. Rührmair et al.
provided the first results showing it is possible to model PUFs [15].
The authors evaluate “various machine learning techniques, includ-
ing Logistic Regression and Evolution Strategies.” They showed
that both techniques work well, but with evolution strategies, they
managed to break specific problem instances that were not break-
able with logistic regression. In the following years, the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [9] became the
dominant option for attacking PUFs with EAs, especially concern-
ing the reliability attack. For instance, G. Becker used CMA-ES to
break a specific type of PUF called XOR PUF, where the author
broke commercial PUF-based RFID tags [1]. Interestingly, while
CMA-ES performed well, there was little (or no) research investi-
gating whether other metaheuristics perform comparably or how
difficult it is to tune such algorithms.

2 PHYSICALLY UNCLONABLE FUNCTIONS
PUFs use inherent manufacturing differences within every phys-
ical object to give each instance a unique identity. A PUF can be
queriedwith challenges to receive a number of responses (challenge-
response pairs - CRP).

Arbiter PUFs (APUFs) consist of one or more chains of 2-bit
multiplexers pairs with identical layouts. Each multiplexer pair is
denoted as a stage, with 𝑛 stages in a single chain. A single input
signal is introduced to the first stage to both the bottom and top
multiplexer in the pair. The chain is fed a control signal of 𝑛 bits
called a challenge, where each bit determines whether the two
input signals in that stage would be switched (crossed over by
the multiplexer) or not. In ideal conditions, the input signal would
propagate at the same speed through each stage, and both the lower
and upper signals would arrive at the arbiter (at the end of the
chain) simultaneously. Due to manufacturing inconsistencies, each
multiplexer delay is slightly different, and the top and bottom input
signals are not synchronized. At the end of the chain, the arbiter
determines which signal arrived earlier and forms the response (0
or 1). The response of a PUF is determined by the delay difference
between the top and bottom input signal, which is, in turn, the
sum of delay differences of the individual stages. An APUF with
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𝑛 challenges consists of 𝑛 + 1 stages, as the last stage is due to the
arbiter.

To increase the resistance of APUFs against machine learning
attacks, it is possible to add nonlinear elements to the PUF de-
sign. One standard method to do so is the so-called XOR APUF
design [17]. In a 𝑘-XOR APUF, 𝑘 Arbiter PUFs are placed on the
chip. Each of the Arbiter PUFs receives the same challenges, and
the responses of the 𝑘 PUFs are XORed to build the final response
bits.

CRP-based Attack. When attacking a PUF, it is often not nec-
essary to reach very high accuracy, and any prediction accuracy
significantly higher than 50% can be considered a successful at-
tack [6]. To efficiently model a PUF, one tries to determine the
delay vector𝑤 = (𝑤1, . . . ,𝑤𝑛+1) that models the delay differences
in each stage. Lim et al. proposed a linear additive model that cap-
tures the APUF behavior where we require the map 𝑓 (𝑐) = 𝜙 of
the applied challenge 𝑐 of length 𝑛 to a feature vector 𝜙 of length
𝑛+1 [14]. The product of the feature vector and delay vector decides
which signal came first, and based on this, what is the response bit
𝑟 :

𝜙𝑖 =

𝑘∏
𝑙=𝑖

(−1)𝑐𝑙 , for 1 ≤ 𝑖 ≤ 𝑘. (1)

𝑟 =

{
1 if ®𝑤 ®𝜙𝑇 < 0
0 if ®𝑤 ®𝜙𝑇 > 0.

(2)

The research community explored various algorithms for mod-
eling attacks, both from the EA and machine learning domains. For
more details, we refer interested readers to [5].

Reliability Attack. Due to added nonlinearity, attacking XOR
APUFs is more difficult than attacking APUFs. To make the attack
easier, it is also possible to consider the reliability of a response,
i.e., how often the PUF evaluates to the same response bit for a
given challenge [7].1 The main idea of the reliability attack is to
make repeated measurements for the same challenge and observe
which response bits are stable and which sometimes flip. Then, if
the response for a given challenge is unstable, it is likely that the
corresponding delay difference is close to zero [1].

3 METHODOLOGY
In a CRP-based attack, the attacker tries to infer the delay vector that
adequately describes the PUF under consideration. The obvious
choice for the solution encoding is a floating-point vector that
models the target device behavior. For an XOR APUF will have
𝑘 × (𝑛 + 1) floating-point values.

From the attacker’s perspective, the optimization goal is to pre-
dict as many correct responses as possible, given a set of challenges.
The model optimization is performed on the learning set of CRPs,
while the generalization capability is evaluated on a separate test
set. Therefore, our simple fitness function minimizes the number
of errors, that is, wrongly predicted responses:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠. (3)

1While using reliability, the attack in [7] did not apply it to XOR APUFs.

The attacks are simulated on a number of PUF sizes in increasing
complexity. Therefore XOR APUFs of sizes 4× 16, 4× 32, and 4× 64
are considered, which are commonly found in available devices.

The learning set for every PUF size is devised in the following
manner: we randomly create ten independent PUFs and generate
corresponding learning sets with varying numbers of CRPs, ranging
from 2 000 to 250 000. Every algorithm is applied to each of the ten
instances in five runs, which results in 50 independent runs. The
reason for using ten different PUF instances is to reduce the bias
that could arise from experimenting on a single PUF only. All the
PUFs are instantiated by randomly generating their delay vectors
using a normal distribution with parameters N(0, 1), following
the existing literature. The test set is produced with the same PUF
instances used in the learning phase but with different challenge-
response pairs. Each PUF instance will have a single test set, and
solutions obtained on all five runs will be tested on that same set.
Unlike the learning sets, all the test sets have the same size of 1 000
CRPs.

We applied the following algorithms to this problem: artificial
immune system algorithm (AIS) [2], clonal selection algorithm
(CLONALG) [4], covariance matrix adaptation ES (CMA-ES) [10],
differential evolution (DE) [16], a generational genetic algorithm
with roulette wheel selection (RW), and a steady-state genetic al-
gorithm with tournament selection (SST) [8]. Besides these algo-
rithms, evolution strategy (ES) [3], particle swarm optimization
(PSO) [13], artificial bee colony (ABC) [12], and elimination genetic
algorithm [11] were also tested. However, due to their poor per-
formance during the parameter tuning procedure, they were not
considered in further experiments. The algorithmic descriptions are
omitted to save space, but their definitions and available parameters
can be found on the used library website: http://ecf.zemris.fer.hr/.

4 EXPERIMENTAL RESULTS
Table 1 shows the results obtained for different XORAPUF instances.
It is clear that even for the simplest instance, many algorithms have
trouble achieving a low error rate. In many cases, the algorithms
perform only slightly better than random estimation. A larger num-
ber of CRPs with these problem instances is necessary to achieve
better results. However, even this is not enough to guarantee good
performance; this is best seen with the 4×64 instance, where only
CMA-ES obtained acceptable accuracy.

Figure 1 shows the violin plots of the results obtained for the
XOR APUF instance (4×64). The figures show that all algorithms
except CMA-ES achieve poor results. In all cases the performance
on the learning set deteriorates as the number of CRPs increases,
but the performance on the test set usually remains similar. This
indicates that it is more difficult for the algorithms to learn the
correct configuration from the given instances and that the results
on the training set are misleading if not enough CRPs are used.

To investigate the correlation between training and test sets’
performance, we select CMA-ES and calculate the correlation be-
tween its performance in the training and test sets using Spearman’s
rank correlation coefficient. The results of these tests are shown
in Table 2. The table shows almost no correlation on the smallest
learning sets for all PUF instances. However, as the number of CRPs
increases, so does the correlation.
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(a) AIS.
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(b) CLONALG.
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(c) CMA-ES.
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(d) DE.

Figure 1: Violin plots of the results obtained for each algorithm across all executions for 4×64 XOR APUFs.

(a) 4×16, 2 000 CRP. (b) 4×16, 250 000 CRP. (c) 4×32, 2 000 CRP.

(d) 4×32, 250 000 CRP. (e) 4×64, 2 000 CRP. (f) 4×64, 250 000 CRP.

Figure 2: Scatter plots outlining different correlation levels for CMA-ES and various XOR APUF instances.

Figure 2 shows scatter plots for CMA-ES when optimizing dif-
ferent PUF instances and using the smallest and largest number of
CRPs. The x-axis represents the error obtained on the training set,
while the y-axis represents the error obtained on the test set. In
the case of the 4×16 instance, it can be observed that for 2 000 CRP,
there is little correlation between the results obtained on both sets.

When the number of CRPs increases, a much better correlation can
be achieved. For the 4×64 instance, it should be noted that, although
the images look similar, the results are much better correlated for
the larger number of CRPs, due to a number of runs obtaining a
very low error, all concentrated in the lower-left corner of the plot.
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Table 1: Lowest errors obtained by different XOR APUFs on
the test set.

PUF CRP Method

AIS CLONALG CMA-ES DE RW SST

4×16

2 000 468 460 27 222 409 463
10 000 451 456 0 162 213 28
50 000 166 14 0 131 160 9
250 000 32 13 0 139 165 4

4×32

2 000 470 466 472 468 474 469
10 000 457 474 455 312 435 464
50 000 463 478 0 292 345 471
250 000 200 52 0 266 341 11

4×64

2 000 471 460 462 456 472 459
10 000 429 422 362 451 431 427
50 000 451 467 471 461 475 470
250 000 454 472 0 423 469 468

Table 2: Results of the Spearman test for the CMA-ES algo-
rithm.

PUF CRP

2 000 10 000 50 000 250 000

4×16 0.157 0.961 0.962 0.989
4×32 -0.201 0.396 0.836 0.764
4×64 -0.026 0.224 0.016 0.803

We hypothesize that CMA-ES is a more successful algorithm as
it has adaptive parameters that can respond to the dynamics of the
convergence process. Still, once the problem instances become too
large, even CMA-ES cannot adapt sufficiently to benefit from the
adaptive parameters unless we use many CRPs.

The performance of the algorithms is closely related to the num-
ber of CRPs. For APUFs, the algorithms can perform quite well even
with a relatively small number (e.g., 2 000 CRPs). However, as soon
as XOR APUFs are considered, such a number of CRPs - except for
the simplest problem instance - is no longer sufficient to achieve
satisfactory results. Even more, if too small a number of CRPs is
used, the algorithms achieve performance that is slightly better
than random estimation. Therefore, it is of utmost importance to
use a sufficiently large number of CRPs in training sets to obtain
configurations that generalize well.

While CMA-ES performs the best in general, based on our results,
we would not recommend this algorithm for APUF cases where
the number of CRPs is low as we see overfitting and the runtime
is not favorable compared to other tested algorithms. Instead, we
recommend using the RW algorithm in such cases. FOR XOR APUF,
there does not seem to be an acceptable alternative to CMA-ES
among the tested algorithms. Still, even CMA-ES struggles with
more difficult problem instances. We recommend using as large as
possible number of CRPs but also test the algorithm performance
multiple times as we notice the performance varies significantly.

5 CONCLUSIONS
We observe that the main condition for a successful attack is the
size of the training set. What is more, there is a correlation between
the performance on the training and test sets: if the performance
on the training set is good, it will also be good for the test set.
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