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A B S T R A C T   

Improper fuel loading decision results in carrying excessive dead weight during flight operation, which will 
burden the airline operation cost and cause extra waste emission. Existing works mainly focused on the post- 
event fuel consumption based on flight trajectory. In this work, a novel deep learning model, called FCPNet, 
is proposed to achieve the fuel consumption prediction (FCP) before the flight departure. Considering the 
influential factors for aircraft performance, the multi-modal information sources, including the planned route, 
weather information, and operation details, are selected as the model input to predict fuel consumption. 
Correspondingly, three modules are innovatively proposed to learn embedding features from multi-modal inputs. 
Based on the planned route, the graph convolutional network is proposed to mine the spatial correlations in the 
non-Eulerian route network. Considering the grid attributes of the weather information, the ConvLSTM is applied 
to learn abstract representations from both the temporal and spatial dimensions, in which the three-dimensional 
convolution neural networks are also designed to fine-tune intermediate feature maps. The fully connected layer 
is also proposed to learn informative features from operation details. Finally, an attention-based fusion network 
is presented to generate the final embedding by considering the unique contributions of the multi-modality 
sources, which are further applied to predict flight fuel consumption. A binary encoding representation is pro-
posed to formulate the FCP task as a multi-binary classification problem. The proposed model is validated on a 
real-world dataset, and the results demonstrate that it outperforms other baselines, i.e., achieving a 6.50% mean 
absolute percentage error, which can practically support the airline operation and global emission control before 
flight departure.    

ACRONYMS 
AttFN attention-based fusion network 
BE binary encoding 
ConvLSTM convolutional LSTM Network 
FC fully connected layer 
FCP fuel consumption prediction 
FRE flight route embedding 
GCN graph convolutional network 
LSTM long short-term memory 
mBC multi-binary classification 
OD origin-destination 

ODE operation detail embedding 
PN prediction network 
WIE weather information embedding 

1. Introduction 

The carbon-neutral is of great importance to the target of global 
temperature control. Currently, transportation-related industries ac-
count for over 30% of the global energy demand and contribute more 
than 20% of the global carbon emission [1]. To be specific, about 11.6% 
of the transportation emissions (2% of global) are generated by the 
operation of the aviation industry, i.e., the top among different 
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transportation modes [2]. With the booming of the global economy, the 
number of passengers for flight traveling will double to 8.2 billion in 
2037 according to the investigation by the International Air Transport 
Association [3]. Thus, it can be seen that optimizing aviation emissions 
is of great potential to achieve the carbon-neutral target, which is also 
able to greatly reduce airline costs. 

For a certain flight, the final total fuel loading is planned by various 
categories, including mission fuel, alternate fuel, reserve fuel, contin-
gency fuel, etc. In general, the International Civil Aviation Organization 
published a series of aviation regulations to support the planning for 
alternate fuel, reserve fuel, and contingency fuel [4]. For instance, the 
alternate fuel must at least meet the requirement of the 45-minute flight 
cruise for safety issues, typically for the landing at an alternative airport. 
As to the mission fuel, the airline operation empirically estimates the 
fuel consumption based on the flight route (total journey and flight 
altitude) before the flight departure. As investigated in [5], due to 
improper fuel loading decisions before flight departure, about 4.5% of 
the total fuel is wasted by carrying “dead weight” of the unused fuel, 
which causes an extra $230 million expense and corresponding carbon 
emissions. 

Considering the aforementioned issues, it is highly required to pro-
vide an accurate flight fuel consumption prediction (FCP) tool that can 
be applied to determine the fuel loading (mainly for mission fuel) before 
the flight departure. The overall goal of the flight fuel consumption 
prediction is to reduce the fuel loading while ensuring flight safety. 
Existing FCP approaches mainly focused on aircraft or engine designs 
[6], flight operations [7], and trajectory simulation [8], in which the 
data-driven mechanism was applied to improve the prediction perfor-
mance. However, almost all those approaches depended on trajectory 
details of the flight operation as a post-analysis tool, which is usually 
intractable and hard to accurately obtain before the flight departure, 
and the prediction models failed to be migrated to a real application. 
Therefore, in this work, we attempt to achieve the FCP task before the 
flight departure to support the fuel loading decisions and hence reduce 
the unnecessary dead weight, which further benefits to saving the 
operational cost of airlines and global waste emissions. 

To this end, a novel approach is proposed to achieve the FCP task 
mainly based on the planned flight route and other multi-source oper-
ational details, called FCPNet. Meanwhile, considering that the weather 
information is a decisive factor in aircraft performance for the fuel 
consumption during the flight cruise [9], the wind velocity is selected as 
an auxiliary input to improve the final performance. In general, the 
flight route for a certain origin-destination (OD) airport pair usually 
shares the same patterns for most operations, but the total amounts of 
fuel consumption for them are extremely different. This result indicates 
that, except for the flight route, the final fuel consumption is also 
influenced by other required information, which is the reason why we 
consider the multi-modality information to enhance the prediction 
performance. Inspired by popular applications of deep learning tech-
niques in the aviation industry [10], in this work, the whole FCP model 
is constructed by neural architectures. 

Considering the different modalities of the flight route, weather in-
formation, and other operation details, three independent neural mod-
ules are designed to learn informative patterns from the raw input 
information. The planned route of the flight is firstly illustrated by a 
route graph, which is further fed into a graph convolutional network 
(GCN)-based architecture to generate an embedding vector. Regarding 
the weather information, the wind velocity is depicted by a 3-dimen-
sional (3D) grid to characterize the influence on the fuel consumption, 
which is also fed into the ConvLSTM-based network to generate an 
embedding by combining it with the temporal dimension. For opera-
tional details, the fully connected (FC) layer-based network is con-
structed to learn informative embeddings to support the prediction task. 
Finally, a fusion module is designed to consider the task-oriented fea-
tures to achieve the final FCP task, in which the attention mechanism is 
proposed to learn desired fusion weights by data-driven optimization. 

To address the high dimension of the input information, a binary 
encoding (BE) representation is proposed to convert the integer-based 
fuel consumption to a binary code (with only 0 and 1). The primary 
purpose is to formulate a smooth model architecture, from a 1-dimen-
sional scalar to a multi-dimensional binary vector. With the proposed 
BE representation, in this work, the FCP task is re-defined as multi- 
binary classification (mBC) tasks, in which both the classification and 
regression loss are integrally considered to optimize the proposed 
model. 

A real-world dataset is built to validate the proposed approach and 
the final results demonstrate that the proposed model is able to achieve 
the flight fuel consumption prediction with considerably higher per-
formance without extra safety issues, i.e., 6.50% MAPE (mean absolute 
percentage error). All in all, the contribution of this work is summarized 
as follows:  

1) A deep learning-based model, called FCPNet, is proposed to predict 
fuel consumption to support the fuel loading decisions before flight 
departure. The proposed model can achieve comparable perfor-
mance only based on the planned route information, and the per-
formance can be significantly enhanced by considering the multi- 
modality inputs.  

2) Considering the multi-modalities of the input data, the GCN- and 
ConvLSTM-based networks are designed to learn informative pat-
terns from flight route sequence and weather information, which 
further supports the final prediction task.  

3) An attention-based fusion module is proposed to learn task-oriented 
features for the fuel consumption prediction task, which clarifies the 
contributions of the multi-modality data from both the modality and 
embedding dimension by different flight operations.  

4) A binary encoding representation is proposed to prevent the sharp 
output dimension reduction of the regression task, which further 
enhances the model convergence and training ability. The FCP task is 
finally achieved by an mBC-related task with both classification and 
regression loss.  

5) Extensive experiments are conducted to validate the proposed 
approach on a real-world dataset, and the underlying patterns of 
different modules are also confirmed by experiments. 

The rest of this work is organized as follows. The related works about 
the research topic are reviewed in Section 2. The details of the proposed 
framework are provided in Section 3. In Section 4, we list the experi-
mental configurations for validating the proposed approach. The 
experimental results are reported and discussed in Section 5. Finally, 
this paper is concluded in Section 6. 

2. Related works 

2.1. Fuel consumption prediction 

With the booming of the civil aviation industry, the fuel consumption 
prediction task is attracting increasing research attention from all over 
the world, but it is still an emerging field for academic research. The 
early-stage works were reviewed in [11], concerning data, method and 
research topics. The fuel consumption for the flight in the uplift phase 
was explored to achieve the target of landing with empty waste fuel for 
US civil aviation [12]. The flight gate-in fuel consumption was studied to 
measure the predictability of the civil aviation system, which further 
considered the operational cost reduction for several airlines [5]. The 
fuel consumption prediction was also studied for low-cost airlines 
considering the flight delay [13]. Based on the aircraft performance, the 
artificial neural network was applied to estimate the fuel consumption 
for a certain aircraft [14]. Similarly, the fuel flow dynamics were 
introduced to guide the modeling of fuel consumption using a 
data-driven mechanism [6]. Specifically, the data-driven model was also 
proposed to predict the fuel burn for the climb and approach phases 
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considering aircraft engines [15]. As a post-analysis, the flight operation 
quality assurance (FOQA) data was used to estimate the fuel consump-
tion as a data fitting problem [16], a similar research in [17] based on 
onboard flight data recorder (FDR). A neural network-based approach 
was proposed to predict flight delay and fuel consumption [4]. The 
trajectory simulation technique was applied to predict the fuel estima-
tion by considering the OD airport pairs and aircraft type [8], and the 
final performance is impacted by the accuracy of the trajectory predic-
tion. The ensemble learning was applied to achieve the fuel burn pre-
diction and uncertainty estimation, which is further able to improve fuel 
efficiency and also reduce operation cost [18]. Except for air transport, 
the FCP task is a hot research topic in ground transport, including fuel 
evaluation for mixed traffic [19] and energy-oriented lane-change 
strategy [20], which can provide successful cases to this study. 

In summary, existing related works achieve the fuel consumption 
task based on the aircraft performance and post-flight trajectory, serving 
as the post-analysis tool for airline operations. However, to effectively 
support the decision of the fuel loading for airlines, it is highly required 
to determine the fuel consumption before the flight departure. Existing 
tools failed to achieve a desired performance since the flight trajectory is 
usually intractable and hard to accurately obtain before the flight de-
parture, which further inspires us to reconsider the FCP task for pre- 
departure implementation. 

2.2. Deep learning-related techniques 

In this section, the related techniques of deep learning approaches 
for transportation research are reviewed. Deep learning-based models 
were widely studied to address the ground and aviation transportation 
issues [21,22]. The convolution neural network (CNN) was proposed to 
achieve the ground traffic flow prediction [23]. Meanwhile, considering 
the temporal transition patterns of the traffic data, the recurrent neural 
network (RNN) was applied to predict the traffic characteristic from the 
perspective of temporal modeling, including gate recurrent unit and 
long short-term memory [24]. Lately, inspired by the nature of the road 
network, the GCN-based network was proposed to mine abstract rep-
resentations in a non-Eulerian space [25], supporting the final traffic 
prediction task. Similarly, the temporal modeling was also integrated 
into GCN models to consider both the temporal and spatial correlations, 
and hence generates the temporal GCN model (TGCN) [26]. The CNN 
and LSTM blocks were also combined to learn temporal and spatial 
patterns to achieve the traffic prediction task in an integrated manner 
[10]. 

In general, the multi-source data was utilized to achieve the final 
prediction task in transportation research fields, such as the weather or 
prior rules [27], etc. The multi-modal fusion strategy was studied to 
enhance the detection performance in surveillance scenes using deep 
learning techniques [28]. As to speech recognition, visual information 
was usually selected as the auxiliary feature to improve the model per-
formance [29]. The attention mechanism was proposed to learn 
task-specific weights for different inputs or components. The attention 
modules were firstly designed to achieve natural language processing 
tasks, such as the Transformer [30]. The squeeze-and-excitation network 
[31], i.e., SENet, was designed to guide the model to focus on desired 
feature channels to improve the computer vision task. The convolutional 
block attention module [32] was designed to capture the channel and 
spatial attentions, which can be integrated into various neural archi-
tectures to obtain performance improvements. The attention mechanism 
was also applied to enhance the performance of the traffic prediction 
tasks [33]. A dynamic multi-modal fusion strategy was studied to 
adaptively consider multi-modal features across several tasks [34]. 

3. Methodology 

3.1. The proposed framework 

In this work, we attempt to achieve the FCP task to support the fuel 
loading decisions for airline operations before the flight departure. In 
general, the available information for a pre-departure flight comprises 
the planned route, weather information, and required operation details. 
Considering the data representation of the three kinds of information, 
the multi-path architecture is designed to process the multi-modality 
information, in which corresponding neural networks are applied to 
extract informative features to support the prediction task. In this work, 
the whole model is implemented by deep neural networks, including a 
GCN-based flight route embedding (FRE) network, ConvLSTM-based 
weather information embedding (WIE) network, FC-based operation 
detail embedding (ODE) network, and an attention-based fusion 
network (AttFN), and an FC-based prediction network (PN). The whole 
architecture of the proposed model is sketched in Fig. 1, and each 
module can be briefly described as follows: 

a) FRE module: the primary purpose of this module is to learn infor-
mative features from the planned route of a given flight. Considering 
the graph nature of the route network, the GCN block serves as the 
fundamental block, which is able to cope with the pattern specific-
ities of a non-Eulerian space. The node-level features are extracted 
from GCNs to finally generate an embedding vector.  

b) WIE module: this module aims to mine the significant features from 
the temporal weather information on certain airspaces and flight 
routes. Considering the input representation, the ConvLSTM block is 
applied to generate compressed feature maps from the 3D grid data. 
The 3D convolutional operation (3D-Conv) is also introduced to 
compress the data dimension by the data-driven mechanism. The 
final output is expected to be a compact embedding to represent the 
overall temporal and spatial correlations of weather information on 
fuel consumption.  

c) ODE module: this module focuses on extracting influential patterns 
from operation details denoted by multi-dimensional indicators. As 
the operation details of a flight involve different kinds of informa-
tion, in the module, the FC layers are densely appended to generate a 
modality-related embedding. 

d) AttFN module: considering the specificities of different input mo-
dalities, the independent embeddings generated from three modules 
may not be optimal for the final task. To extract high-level task- 
oriented representations, a feature fusion network is innovatively 
designed to refine the generated embeddings, in which the attention 
mechanism is applied to learn weights for both modality and 
embedding correlations. 

e) PN module: the attentive embeddings generated by the aforemen-
tioned four blocks are further fed into the FC-based prediction 
network to estimate the fuel consumption for a given flight. 

In general, the planned flight route for a certain O-D pair usually 
shares the same patterns for most operations, but the total amounts of 
fuel consumption for them are extremely different. This indicates that, 
except for the flight route, the fuel consumption is also influenced by 
other required information, which is the reason why we consider the 
multi-modal information to enhance the prediction performance. In 
summary, the proposed model takes both the static (FRE and ODE) and 
dynamic (WIE) factors to achieve the FCP task. The neural architecture 
is designed to process the corresponding data organization in this work, 
i.e., GNN for route network, ConvLSTM for sequential weather images 
and FC for discrete vectors. Meanwhile, to learn discriminative patterns 
on input samples, an attention-based multi-modal fusion is innovatively 
designed to extract fine-grained features to support the FCK task. 
Mathematically, the inference rules of the proposed model can be briefly 
described as (1–3), described as an embedding, fusion and prediction 
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procedure. The Efre, Ewie and Eode denotes the intermediate embeddings 
generated by corresponding modules, respectively. The AttE is the 
attentive embeddings with attention mechanism, and the final FCP is 
achieved by the PN network. 

Efre = FRE(Xr),Ewie = WIE(Xw),Eode = ODE(Xo) (1)  

AttE = AttFN
(
Efre,Ewie,Eode

)
(2)  

FCP = PN(AttE) (3)  

3.2. Model inputs 

Before the flight departure, the available information consists of the 
planned flight route, predicted weather information, and operation de-
tails. The model inputs are described as follows: 

3.2.1. The flight route 
For the flight operation, the flight management system predicts its 

trajectory profiles based on the planned route. In general, the details 
consist of the flyover positions, altitude, speed, time, travel distance 
(based on departure airport), and flying status, as shown below: 

F = [lon, lat, alt, speed, time, dis, sta]T (4) 

The flight route determines the global trajectory of the flight oper-
ation, including the flight distance, flight time, flight profile (altitude), 
etc., which are primary trajectory-related contributors to fuel con-
sumption. By referring to the ground transportation system, the planned 
flight route is illustrated by a graph (called route graph), in which the 
waypoints and corresponding connecting routes are regarded as the 
node and edge of the graph, respectively. 

A route graph is denoted by G = (V,E,A). The V is a finite set with N 
nodes, i.e., waypoints in this work. E saves the edges (route segments) 
connecting different nodes, and A denotes the adjacent matrix to illus-
trate the graph attributes. The element of the adjacent matrix aij ∈ A is 
defined as below, which i, j ∈ V denotes the graph node, and dij is the 
distance between the node i and j. 

aij =

{
exp
(
− dij

)
eij ∈ E

0 eij ∕∈ E (5) 

Considering the flight route, the proposed model can be regarded as 
an OD-wise implementation, in which the attributes of the flight route 
are dependent on the waypoint-level information. Based on the flight 

operation, some typically planned routes are designed for a certain OD 
pair, which provides a solid foundation for building a route graph and 
further supports the training for the proposed model. Finally, the input 
of the flight route modality is with the shape of (N, |F|), where |F| is the 
feature dimension. 

3.2.2. The weather information 
The weather information is critical to the real-time flight operation, 

concerning route planning, flight profile, and the impacts on aircraft 
performance. Generally, in the mentioned factors, route planning and 
profile optimization are regarded as the pre-disposition strategy, which 
is ultimately reflected in the change of the flight path, and further relates 
to the aircraft performance. Given the planned route before the flight 
departure, the fuel consumption of the flight operation is determined by 
the fuel consumption per distance (miles or kilometers) based on aircraft 
performance caused by the influence of the weather information, typi-
cally the wind velocity. 

In this work, certain airspace is firstly illustrated as a 3D grid, as 
shown in Fig. 2. The three dimensions denote the longitude, latitude, 
and altitude, respectively. For a certain time-step, the wind velocity is 
further represented as a vector for each grid: 

v =
(

vt
x, v

t
y

)
(6)  

where t is the time instant. The v⋅
x and v⋅

y are the velocity projection on 
the longitude and latitude dimensions, respectively. A positive v⋅

x in-
dicates that the wind is from west to east, and a negative for east to west. 

Fig. 1. The model architecture of the proposed FCPNet.  

Fig. 2. The representation of the wind velocity.  
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The v⋅
y follows similar rules. It can be seen that the wind velocity is a kind 

of temporal and spatial related pattern on the flight route, which pro-
vides influential factors to the FCP task for certain airspaces or routes at 
a given time instant. 

Finally, considering the temporal characteristics of the flight oper-
ation, the input shape of the weather information in this work is rep-
resented by: 

Wea = (T, Z,X,Y, 2) (7)  

where T is the time span corresponding to the flight operations. Z, X and 
Y are the shape of the altitude, longitude, and latitude of the airspace 
grid, respectively. Referring to Eq. (6), the number of dimensions for the 
wind velocity v is 2 in this work. 

3.2.3. The operation details 
As a pre-departure prediction task, the flight-level related informa-

tion, i.e., operational details, should also be considered to estimate the 
fuel consumption. The operational details include general information 
about the flight operation, such as the aircraft type, the departure and 
destination airports, the flight date, etc., which are primary plan-related 
contributors to fuel consumption. 

As listed in Table 1, each indicator is represented by a one-hot vector, 
i.e., the operation details are concatenated as a 54-dimensional one-hot 
vector, with the option of only 0 or 1. Details can be found below:  

a) AT is the aircraft type, denoting the overall aircraft performance with 
respect to different real-time factors during the flight operation, such 
as A320, B747, etc. Currently, a total of 13 aircraft types are in our 
dataset.  

b) ADEP and ADES concern the airport class for the departure and 
destination, respectively. The airport class is divided into four cate-
gories in China. In general, the airport class indicates the traffic 
density, which further relates to the flight profile and flight time, etc.  

c) DoW denotes the day of the week, i.e., 7-dimension. Since the flight 
schedule is weekly executed in China, the DoW is expected to 
represent global traffic flow patterns for certain OD pairs by 
considering multi-modality sources.  

d) Similar to the DoW, the clock label implies the global traffic flow in a 
day, i.e., peak hours.  

e) The holiday flag shows whether the flight date is a holiday or not, 
which further impacts the traffic density. In general, the traffic 
density during the holiday is much higher than that on the other 
days. 

3.3. Model architecture 

3.3.1. The FRE module 
As illustrated before, the input of the FRE module is a route graph 

that represents the planned route of a flight in a non-Eulerian space. 
Inspired by this fact, the graph neural network (GNN) is naturally 
selected as the basic block in this module. Meanwhile, since the spatial 
correlations of the waypoint position in the 3D earth space play a sig-
nificant role in depicting the flight path, the convolutional operation is 
also integrated into the GNN block to formulate the GCN block, as listed 

below. 

FO = δ
(
D̃

− 0.5
ÃD̃

− 0.5
FIΘ

)

Ã = A + IN , D̃ii =
∑

j
Ãij

(8)  

where FI ∈ ℜN×C and FO ∈ ℜN×F are the input and output feature, 
respectively, and here C and F denote the feature dimension and filter 
number. Θ ∈ ℜC×F is the learnable weights. D̃ is the graph degree matrix 
with the addition of self-loops. Ã is the is the graph adjacency matrix 
with the addition of self-loops, which can be obtained based on the 
adjacent matrix A and identity matrix IN. Specifically, the elements in D̃ 
can be calculated using the sum operation on the corresponding row in 
Ã. 

As shown in Fig. 1(a), the FRE module is constructed by stacking 
GCN layers, in which the PReLU serves as the activation function. The 
node-level features are generated by GCN layers to imply the graph 
representations, which is finally converted into the embedding vector to 
support the fusion operation with other information modality. 

3.3.2. The WIE module 
Considering that the input is the grid-based data with both the 

temporal and 3D spatial dimensions, the ConvLSTM block is applied to 
construct the WIE module in this work. Learning from other related 
works [10], the ConvLSTM block has the ability to mine salient transi-
tion patterns from both the temporal and spatial dimensions in an in-
tegral manner, which is particularly important to process temporal and 
spatial data, such as the weather information. In this work, the 
ConvLSTM block is able to convert the large-scale wind velocity into a 
compatible high-level representation, which denotes the influence of 
weather information on aircraft performance to support the prediction 
task. The inference rules of the ConvLSTM block are shown below: 

It = f
(
Wix ∗ xt + Wih ∗ ht− 1 + Wic ⊙ Ct− 1 + bi

)

Ft = f
(
Wfx ∗ xt + Wfh ∗ ht− 1 + Wfc ⊙ Ct− 1 + bf

) (9)  

Ct = Ft ⊙ Ct− 1 + It ⊙ g
(
Wcx ∗ xt +Wch ∗ ht− 1 + bc

)
(10)  

Ot = f
(
Wox ∗ xt +Woh ∗ ht− 1 +Woc ⊙ Ct + bo

)
(11)  

ht = Ot ⊙ g(Ct) (12)  

where the It, Ft , Ct, Ot, and ht are the hidden features of the input gate, 
forget gate, cell, output gate, and the hidden unit, respectively. t is the 
time instant. xt is the input feature, and b⋅ is the learnable bias for 
different blocks. W⋅ is the learnable weight between two certain blocks, 
e.g., Wic is the weight matrix for the information flow from the input 
gate and the cell. f and g denote activation functions. ∗ and ⊙ are the 
convolutional and element-wise product operations, respectively. 

In addition, to fine-tune the extracted features, the 3D convolutional 
operation is followed by each ConvLSTM block, which aims to retain 
informative patterns and compress the data dimension to enhance the 
model training. Finally, the extracted feature maps are squeezed into an 
embedding vector that is expected to represent the impacts of the wind 
velocity on the flight route, which have a salient influence on the FCP 
task. 

3.3.3. The AttFN module 
In this work, the FCP task is achieved by capturing the underlying 

patterns from different kinds of input information with certain modal-
ities. Three independent modules are designed to learn informative 
features from different modalities, in which the embedding vectors are 
generated to support the final prediction task. It is well received that the 
unique contributions in a multi-modality system should be considered to 
understand the data patterns for enhancing the final performance. To 
this end, a fusion network is designed to recalibrate the embeddings 

Table 1 
Indicators for operation details.  

Indicators Description #Dimension 

AT The representations of overall performance based on 
the aircraft type 

13 

ADEP The class for the departure airport 4 
ADES The class for the destination airport 4 
DoW Day of week 7 
Clock Hour of day 24 
Holiday Holiday flag 2  
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from different inputs, which finally generates an attentive embedding 
for the subsequent module. Considering the diversities of the multi- 
modality data, the attention mechanism is proposed to optimize the 
feature weights in a learnable manner. Facing the representations of the 
multi-modality inputs, in this work, two parallel paths are dedicatedly 
developed to generate an optimal embedding to support the final task, as 
shown below:  

a) modality attention: this path is to consider certain contributions of 
different inputs information by learning modality attention weights, 
i.e., inter-modality. This path is expected to capture the importance 
of different inputs (modality) on the condition of different data 
patterns and distributions, and an optimal convergence is expected 
to be reached by the data-driven mechanism.  

b) embedding attention: this path is to consider contributions of feature 
dimensions for each modality by learning embedding attention 
weights, i.e., intra-modality. This path is mainly to ensure the 
robustness of the calibrated feature embedding, which prevents the 
representation collapse caused by any local feature perturbation.  

c) feature embedding: finally, the attentive embedding is generated by 
combining the input features, modality attention weights, and 
embedding attention weights using the operation of the element 
product. 

Given the inputs Efre, Ewie and Eode, the inference rules of the 
attention-based fusion are in (13), and the final embedding is generated 
by (14) and (15): 
[
αfre, αwie,αode

]
= MA

(
Efre,Ewie,Eode

)

[
βfre, βwie, βode

]
= EA

(
Efre,Ewie,Eode

) (13)  

Ẽfre = αfreβfreEfre

Ẽwie = αwieβwieEwie
Ẽode = αodeβodeEode

(14)  

AttE = concat
(
Ẽfre, Ẽwie, Ẽode

)
(15) 

In this context, the MA and EA are the modality attention and 
embedding attention, respectively. The α• is a scalar representing the 
modality weight for each input, while β• is the embedding weight with 
the same shape E•. The refined embedding of each modality is obtained 
by the element-wise product of the input and weight (modality and 
embedding) in a parallel manner. The final output embedding is 
formulated by concatenating the attentive embedding for each modality, 
which will be fed into the PN network for the prediction task. 

3.3.4. The ODE and PN module 
In the proposed model, the ODE module is to generate an embedding 

from the flight-level operation details. Since the input is organized as a 
one-hot vector, the ODE module is fully built based on the FC layers. As 
shown in (16), Xo is input flight-level operation details described in 
Table 1, SFC(•) denotes the inference rules of the stacked FC layers, with 
the ReLU as the activation function for each layer. 

Eode = SFC(Xo) (16) 

Finally, the PN network serves as a predictor to map the abstract 
high-level representations into the expected fuel consumption for a 
certain flight. As in (17), the FC layer takes the embedding vector 
generated by the AttFN module as input, followed by a Sigmoid acti-
vation function to predict the output fuel consumption. 

FCP = Sigmoid(FC(AttE)) (17)  

3.4. Model output 

As illustrated before, instead of a single scalar for denoting the fuel 
consumption of a certain flight, in this work, binary encoding is 

proposed to represent the final output using the binary numerical sys-
tem. In this work, the integer-based fuel consumption is converted into 
the binary, which serves as the model output for the training and eval-
uation. The motivation of the BE representation is to prevent a sharp 
dimension reduction from the embedding feature to a scalar output (e.g., 
from 64 to 1), which further benefits to achieving an efficient and 
effective model convergence. By analyzing the fuel consumption in the 
dataset, a total of 16-bit binary is applied to denote the output, in which 
each bit can only be 0 or 1. For instance, the scalar 12,600 is denoted by 
“0011 0001 0011 1000″ using the BE representation. 

Intuitively, by outputting the BE values, the traditional regression 
task is not suitable for this framework due to its data attributes (from 
float to binary). As shown in Fig. 3, for the integer-based representation, 
the output of the proposed model is a scalar, in which the training loss 
can be easily measured by regression-related factors for a single digit. 
For the BE representation, the outputs of the proposed model are 
sequential bits with different weights, in which each bit can only be 0 or 
1. The prediction task of the proposed model is to determine the value of 
each bit, by classifying the outputs into the two available classes, i.e., the 
binary classification task. Finally, for the whole BE representation, the 
training loss is measured by combining all the binary classification losses 
in a bitwise manner. 

To this end, an innovatively mBC mechanism is proposed to address 
this issue by redefining the FCP task as a multi-binary classification task. 
The goal of the model training is to predict the binary code (0 or 1) for 
each bit, which can be implemented by multiple binary classification 
tasks. To conduct the error measurement, the sigmoid activation is 
applied to the final layer to ensure that all the outputs are from 0 to 1. A 
bit less than 0.5 is regarded as binary 0, otherwise, set to binary 1. 

3.5. Training loss 

By defining the FCP task as multiple binary classification tasks, the 
binary cross-entropy is naturally selected as the loss function. The mBC 
loss can be illustrated as (18), in which K is the total bit of the BE rep-
resentation, 16 in this work. BCE denotes the binary cross-entropy loss. 
The yb

k and ŷb
k are the BE of the ground truth and the prediction for a 

certain sample, respectively. 

λC =
∑K

k=1
BCE

(
yb

k , ŷb
k

)
(18) 

Considering the attributes of the binary numerical system, the 
weights of different bits make great contributions to the loss evaluation, 
as shown below: 

For instance, the weight of the highest bit is 215, while the lowest bit 
is only 20. Based on the mBC loss, the λC between the “0011 0001 0011 
1000″ (decimal in 12,600) and “1011 0001 0011 1000″ (decimal in 
45,368) is the same as that between the “0011 0001 0011 1000″ (deci-
mal in 12,600) and “0011 0001 0011 1001″ (decimal in 12,601), i.e., 
1.7269. 

However, their corresponding integer-based errors are 32,7682 and 
1, respectively, which shows a large error deviation in this context. This 
fact will inevitably confuse the model training, and further impact the 
model performance. 

Based on the aforementioned analysis, the Mean Squared Error 
(MSE) is also selected as a part of the loss function to prevent high-bit 
prediction errors. As listed in (19), the y and ŷ are the decimal of the 
ground truth and the prediction for a certain sample, respectively. 

λR = MSE(y − ŷ) (19) 

Finally, the loss of the proposed FCP model is defined as: 

λ = λC + ωλR (20)  

where the ω is a balance factor between the two kinds of loss, and we 
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manually set it to 0.001 based on generated loss during model training. 
The final loss considers both the classification loss and the typical 
regression loss to achieve the FCP task, which is expected to enhance the 
model convergence and finally improve the prediction performance. 

4. Experimental configurations 

4.1. Data descriptions 

To validate the proposed approach, a real-world dataset is built by 
preparing multi-source information from air traffic control (ATC) cen-
ters, airlines, etc. The data period is from 2017/01/01 to 2017/12/31. 
The airline records relate to the Hong Kong-based flights, consisting of 
the actual departure and arrival time, fuel loadings, and actual fuel 
consumption of each flight, etc. A total of three OD pairs are selected as 
the cases in this work, involving Chengdu (ZUUU), Beijing (ZBAA), and 
Shanghai (ZSPD), which are representative airports in China. 

The required data items of the flight route were collected from a real 
national ATC system, including the operation details. The resolution of 
the gridded wind velocity is 0.25◦ for the horizontal plane (longitude 
and latitude), while in the altitude dimension, the raw data is pre-
processed to match the standard flight levels published by the Civil 
Aviation Administration of China (CAAC). The time interval of the 
weather information is 10-minute. The airport level is categorized by 
related CAAC regulations, i.e., a total of 45 flight levels in China. 

As to the flight-related information, the nodes of the graph based on 
flight routes for the ZUUU, ZBAA, and ZSPD are 20, 22, and 16, 
respectively. The average flight time for the ZUUU, ZBAA, and ZSPD are 
about 166, 218, and 165 minutes, respectively. As to fleet mix for the 
flight operation, since the three OD pairs are median-distance airlines, 
the main models are Airbus aircraft, including A320, A321, and A33* 
series (such as 33C, 33H, and 33R). To simplify the aircraft classes, we 
categorize the fleet mix into A32* and A33* series, which are further 
applied to evaluate the prediction performance based on different 
aircraft models. The number of A32* models for ZUUU, ZBAA, and ZSPD 
are 48.1%, 22.5%, and 47.2%, respectively, while the remaining flights 
are operated on the A33* model. It can be seen that the A33* model is a 
preferred option for flights between ZBAA and VHHH due to the higher 
traffic demands in Beijing, China. In general, the average flight time for 
A33* aircraft is longer than that of the A32* model. Based on afore-
mentioned descriptions, a sample data is presented as below:  

DATE: 2017/01/01; FLIGHT: HDA825; ADEP: ZUUU; ADES: VHHH; AT: 321; 
TIME_DEP:00_11; TIME_ARR:02_40; ROUTE: ZUUU/CTU/BHS/ZYG/…/VIBOS/ 
ZUH/VHHH; AFC: 5900.  

Except the notations in Table 1, the TIME_DEP and TIME_ARR denote 
the actual time of the flight departure and arrival, respectively. The 
ROUTE saves the waypoint sequence split by “/”, whose detailed in-
formation can be extracted from base data of the airport. The AFC is the 
actual fuel consumption (in kilogram) for the flight operation. 

Some noisy samples are removed from the raw dataset due to missing 
items, outliers, etc. All items of the input data are normalized by the 

min-max operation based on their attributes. After the pre-processing 
steps, a total of 684, 2305, and 3457 samples are for ZUUU, ZBAA, 
and ZSPD, respectively. All the samples for each flight are randomly 
divided into two subsets to conduct the comparative experiments. 
Firstly, limited by the total number of samples in the dataset, we 
randomly select 90% of the total samples to construct the training 
dataset to ensure sufficient training samples in this context. The rest 
10% of the samples are regarded as the evaluation dataset to report the 
model performance. No validation dataset is designed due to limited 
samples in this dataset. Alternatively, the training procedure is per-
formed with fixed epochs to optimize the proposed model. The trainable 
hyper-parameters are saved at the end of each epoch for further evalu-
ation. In this work, all the reported metrics are tested on the evaluation 
dataset (10%) using the saved model parameters. 

4.2. Implementation details 

The proposed model is implemented using the open-source deep 
learning framework PyTorch 1.3.1. The training server is equipped with 
2 Intel Core i7–6800 K processors, 2 NVIDIA GeForce GTX 2080Ti GPUs, 
128-GB memory, and an Ubuntu 16.04 operating system. 

During the model training, the Adam optimizer is applied to fit the 
model parameters. The initial learning rate is 0.01 and will be multiplied 
by 0.9 every 20 epochs. The batch size is set to 16. All the training 
samples are shuffled to improve model robustness. The total training 
epochs are set to 100 to perform the training procedure. Due to limited 
training samples, we attempt to design a lightweight and efficient ar-
chitecture to enhance the prediction performance and prevent the 
overfitting problem. In the early stage, we investigate the influence of 
different hyper-parameter options on determining prediction perfor-
mance. The resulting configurations of the proposed architecture are 
summarized as follows: 

A total of two GCN layers with 16 neurons are configured to 
construct the FRE module. For the WIE module, a total of 16 filters are 
for 3D-Conv, and the kernel size is (3, 3, 2) with a stride of 3. The input 
length of the ConvLSTM operations covers flight duration and is deter-
mined by the update interval of the weather information. The convo-
lution operation in the ConvLSTM block is with 16 filters, kernel size of 
(3, 3), and stride of 3. The final ConvLSTM block only generates the 
features of the last step to support the following embedding. For the ODE 
module, a total of two FC layers are designed, with 32 and 16 neurons. 
The dimension of the embedding vector for the FRE, WIE and ODE 
modules are 64, 64, and 16, respectively. For the AttFN module, two 
hidden FC layers with 4 neurons are designed for modality attention, 
while hidden FC layers with 64 neurons are for embedding attention. 
The output dimension of the PN network is the bit number of the BE 
representation, i.e., 16 in this work. 

4.3. Evaluation metrics 

The performance evaluation is conducted based on the decimal- 
based fuel consumption between the prediction and ground truth. The 
following metrics, including the root mean squared error (RMSE), mean 

Fig. 3. The comparison between BCE and MSE loss.  
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absolute error (MAE), and MAPE, are selected to evaluate the model 
performance: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1
(yi − ŷi)

2

√

(21)  

MAE =
1
m

∑m

i=1
|(yi − ŷi)| (22)  

MAPE = 100% ×

(
1
m
∑m

i=1

⃒
⃒
⃒
⃒
(yi − ŷi)

yi

⃒
⃒
⃒
⃒

)

(23)  

where m is the number of test samples, and the yi and ŷi are the real and 
prediction result for the i − th sample, respectively. Since the fuel 
loading decision is safety-critical for airline operations, the risk indicator 
(RI) is also introduced to evaluate the applicability of FCP approaches. 
The equation is shown below, where rfi denotes the reserve fuel for the i 
− th sample. 

RI =
1
m
∑m

i=1
Ri,Ri =

{
1 (ŷi − yi)〈rfi
0 else (24)  

4.4. Baseline models 

In this work, several baselines are also designed to further confirm 
the performance superiority of the proposed model. Based on the task 
specificities, the regression approaches are selected as baseline models. 
The primary criteria are to confirm the technical improvements of the 
proposed approach, considering the time series (RNN-based) and graph 
(GCN-based) nature of the flight route and other required information 
using deep architecture. Learning from related works in this work, the 
following baselines are selected to conduct the comparative experi-
ments, as shown below:  

a) LASSO [35]: least absolute shrinkage and selection operator. As in 
[4], it is a commonly used method for regression with high dimen-
sional features, which is formulated based on least squares models 
with L1 regularization.  

b) DNN [6]: i.e., deep neural networks-based model. FC layers are 
applied to construct this baseline. All the inputs are encoded into a 
1D vector, including the flight route, weather information, and 
operational details. A total of 5 hidden layers are designed with 128, 
64, 32, 16, and 8 neurons. 

c) GNN [26]: GNN layers are applied to build this model, whose orig-
inal input is the same as the proposed approach. The weather in-
formation is also embedded into the input feature by averaging the 
3D grid data based on the waypoint positions.  

d) LSTM [27]: the core block is LSTM in this baseline, in which the input 
features are the same as that of the GNN model. A total of two LSTM 
layers are designed with 16 and 8 neurons, where an FC layer serves 
as a predictor. 

5. Results and discussions 

5.1. Overall performance 

With the aforementioned experimental configurations, the proposed 
approach and baselines are trained and evaluated on the same test 
dataset. The performance in terms of given measurements is reported in 
Table 2. 

From the experimental results, we can see that the proposed 
approach achieves the best performance among all the approaches. In 
general, thanks to the ability to model the non-linear features, the neural 
architectures yield higher prediction accuracy. The LASSO model suffers 
from the poorest performance due to the complex patterns of the high- 

dimensional input features for the FCP task. As to the deep learning 
models, the DNN model fails to obtain the desired performance since no 
certain blocks are explicitly designed to capture the spatial and temporal 
correlations. The results obtained by the two approaches are also infe-
rior to the real fuel prediction from the current system. 

As can be seen from the results, the LSTM and GNN models reach 
higher accuracy due to their designs for learning temporal and spatial 
patterns, respectively. Specifically, the GNN model obtains better per-
formance, which proves that the graph spatial correlations play a more 
important role in predicting fuel consumption based on the flight route 
(rather than temporal dependencies). Finally, the proposed model har-
vests the best performance, with only 6.50% MAPE for the pre-departure 
fuel loading decision. It can be attributed that dedicated modules are 
designed for the proposed model to capture required underlying pat-
terns from the input features to the fuel consumption. 

In this experiment, we also consider the prediction accuracy for 
different OD flight pairs to check the model generalization. As shown in 
Fig. 4, the distributions of predicted MAPE measurements for each OD 
pair are organized as a boxplot, in which they are generally similar to 
each other, indicating that the proposed model can be properly gener-
alized to different cases for further improving its applicability. It can also 
be seen that compared to the flights from ZUUU, the flight pairs 
departing from the ZBAA and ZSPD suffers from larger prediction error, 
which can be attributed that the fluctuance factors of the flight flow 
caused by busy traffic situations impact the transition patterns of the 
FCP task in the two airports and corresponding flight routes. As analyzed 
from the flight schedule, the ZSPD airport is a trunk base for most in-
ternational flights, which injects more uncertainties (outside the China 
mainland) into the traffic system and hence reduces the model accuracy. 
To be specific, we further investigate the underlying causes of the pre-
diction results, as shown as follows:  

a) It can be seen that some outliners are in the prediction results, as 
shown in the stars in Fig. 4. By considering the input information, we 
find that almost all the outliner predictions are caused by flight re- 
routing with different flight environments, such as the flight pro-
file, weather information, etc. In the FCP task, the flight re-routing is 
expected to result in minor samples in the dataset, which hence de-
grades the performance of the data-driven models. In addition, they 
are also the primary contributors to inducing RI.  

b) Furthermore, the results located in the upper quartile in the boxplot 
are also considered to analyze the main contributors to the perfor-
mance deviation. Based on the detailed information of the flight 
operation, we find that the rerouting, weather information, flight 
time and are the top-3 factors for the larger prediction error. This 
result also confirms the motivation of feeding the multi-modality 
inputs into the proposed model, i.e., flight route, weather informa-
tion, and operational details. 

In addition, the MAPE measurements for different OD pairs catego-
rized by aircraft models are also considered to evaluate the prediction 
performance. As shown in Fig. 5, for all three OD pairs, the prediction 
performance for the A32* aircraft model is higher than that of the A33*. 
In general, flight operation with A33* indicates higher traffic demands 

Table 2 
Performance of different approaches.   

RMSE MAE MAPE (%) RI 

Real1 1322.4 1021.5 7.76 0.000 
LASSO 1526.5 1228.7 10.26 0.035 
DNN 1450.7 1159.4 9.75 0.029 
LSTM 1335.3 1049.7 8.13 0.021 
GNN 1290.2 1012.9 7.61 0.018 
FCPNet* 1053.4 837.1 6.50 0.009  

1 The results are obtained by collecting data items from tools of current airline 
operation. 
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for certain OD pairs, which incorporates more uncertainties for the 
prediction task, such as aircraft performance, flight profile, etc. As 
analyzed from the raw data, we found that the gaps of the fuel con-
sumption between the A32* and A33* for all OD pairs are about 2%, 
which also validates the motivation for considering the multi-modality 
inputs in this work. 

5.2. Ablation study 

5.2.1. Validation for architecture improvements 
In this section, ablation studies are also conducted to focus on the 

efficacy of different modules for processing multi-modal information, 
which is expected to provide a better understanding. The experiments 
are conducted based on the paths from each basic module to the pro-
posed model, in which two primary categories (with and without AttFN) 
are designed to validate each module, as shown in Table 3. 

As to experiments 1–4, different combinations of multi-modality 

Fig. 4. The distribution flight-wise prediction accuracy for different OD pairs.  

Fig. 5. The performance for different OD pairs categorized by aircraft models.  

Table 3 
Performance of ablation studies.  

No. FRE WIE ODE AttFN RMSE MAE MAPE (%) RI 

1 ✓    1300.9 1016.2 7.81 0.021 
2 ✓ ✓   1233.4 990.7 7.50 0.015 
3 ✓  ✓  1284.5 1004.3 7.72 0.016 
4 ✓ ✓ ✓  1171.4 940.0 7.21 0.010 
5 ✓   ✓ 1279.9 1003.5 7.73 0.018 
6 ✓ ✓  ✓ 1181.1 946.9 7.26 0.010 
7 ✓  ✓ ✓ 1254.7 978.2 7.50 0.015 
8 ✓ ✓ ✓ ✓ 1053.4 831.1 6.50 0.009  
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information are fed into the proposed model. The FRE module serves as 
a baseline, which is similar to the GNN model with only flight route 
information. From the results, we can see that each module provides 
desired performance improvements, and the prediction MAPE reduces 
from 7.81% to 7.21%. To be specific, based on the essential input (i.e., 
FRE), the WIE obtains higher accuracy than that of the ODE module, 
benefiting from the significant influence of weather information on 
aircraft performance during flight operation. Most importantly, the 
proposed model with only the FRE module has the ability to outperform 
some baselines, which indicates that the proposed model can achieve the 
FCP task with the desired performance solely based on planned route 
information. 

The best performance can be obtained by combining all the three 
modules proposed in this work (with multi-modality information), 
which also achieves a higher RI performance. With the same input in-
formation, experiments 2 and 3 achieve higher prediction accuracy than 
that of the GNN baseline (as shown in Table 2), which indicates that the 
explicit designs for capturing spatial and temporal correlations provide 
significant contributions to enhancing the final FCP performance. 

From experiments 5–8, the AttFN module is further validated by 
combining it with different input combinations. It can be seen that the 
AttFN can contribute accuracy improvements for all the input combi-
nations. Specifically, more improvements can be obtained with the 
increasing of the input modality, and thus the AttFN only yields mar-
ginal improvement with the FRE module. The results in experiments 6 
and 7 share similar trends with those of experiments 2 and 3, i.e., the 
WIE module harvests higher performance improvement than that of the 
ODE module. 

Finally, the most prominent accuracy improvement resulting from 
the AttFN module is reached by the proposed model with all three kinds 
of input information, i.e., about 0.71% absolute MAPE gains. The results 
confirm the effectiveness of the attention mechanism for selecting 
required task-oriented features from a cluster of intermediate feature 
maps. 

Based on the aforementioned ablation studies, it can be concluded 
that all the proposed modules play a desired role in improving the final 
accuracy, which supports the motivation of the proposed model, i.e., 
considering multi-modality inputs by leveraging the attention mecha-
nism to learn informative features with dedicated weights. 

5.2.2. Validation for BE and loss function 
In this section, we mainly focus on validating the proposed BE rep-

resentation and related loss combination. In the designed experiments, 
the full model architecture is applied to achieve the FCP task, with only 
the modification of the model output. The results are reported in 
Table 4, in which the two categories are listed, i.e., the integer output is 
the typical regression problem, while the BE output is a classification 
problem. 

As can be seen from the results that the BE representation achieves 
higher performance than that of the integer representation, in terms of 
both four measurements. As to the BE representation, a total of three 
experiments are conducted to confirm the final performance with 
different loss functions. As reported in the results, the proposed loss 
combination (BCE and MSE) achieves higher performance compared to 
the results obtained by a single loss. The BE results based on MSE loss are 
not reported here since we fail to achieve a model convergence, which 
can be attributed to the difference between the mBC mechanism 

(classification task) and the MSE loss (regression task). 
It is also noted that the BE representation with only BCE loss suffers 

an inferior RI, which is important to the safety-critical task in this work. 
By analyzing the experimental results, we found that the incorrect pre-
dictions on the high-weighted bits are the primary contributor to the 
larger RI, which cannot be optimized by the classification-only loss 
function, as illustrated before. In conclusion, the results with larger RI 
also support our motivation to apply a combined loss of (BCE and MSE), 
which is also an indispensable design for the FCP task. 

5.3. Discussions 

5.3.1. The weather impact 
Once a flight takes off, the weather near the planned route plays a 

decisive role in the future flight operation. In this section, we further 
analyze the weather impacts for the FCP task by visualizing the heatmap 
of the last layer in the WIE module. As shown in Fig. 6, the activations of 
the feature map in different areas are visualized using third-party tools. 
Except for some noisy points, the proposed model mainly focuses on the 
route of the flight OD pair, indicating that the weather changes in those 
areas contribute higher impacts on the fuel consumption for flight 
operation. This also confirms the efficacy of the attention mechanism for 
learning informative patterns from certain input features or patches. In 
general, the learned attention weights are particularly higher around the 
departure and landing airport, which can be attributed to that for the 
actual flight operation, most congestions and intervene are occurred in 
terminal airspaces (near the airport) due to dense traffic situations. The 
mentioned traffic operations may lead to a flight delay or re-route, and 
finally impact the accuracy of the FCP task. It can also be concluded that 
a global traffic flow situation for certain airspaces should be considered 
to further improve the prediction accuracy. 

5.3.2. Flight time 
In this section, we consider the relationship between the total flight 

time and the prediction error in MAPE. As shown in Fig. 7, for a certain 
flight, a longer flight time possibly indicates higher uncertainties caused 
by real-time factors, such as traffic congestion or traffic flow control, 
which breaks the plannability and predictability, thus suffering from 
high errors. This trend is confirmed by all three cases, i.e., longer flight 
time suffers from larger prediction errors due to real-time unpredictable 
factors. 

Meanwhile, among different flights, the proposed model harvests 
better performance for the OD pair with longer flight time, i.e., as the red 
line in Fig. 7, for the 170-minute flight time, the ZBAA flights obtain 
about 4% MAPE, while ZUUU and ZSPD flights yield only 7% MAPE. As 
well known, for a flight with a longer duration, its cruise time accounts 
for a higher percentage of the total time since the departure and landing 
time are generally consistent for all flights. Thus, the proposed model 
achieves higher performance since the fuel consumption for the stable 
motion state in the cruise phase is easy to predict. 

5.3.3. Pre- and post-departure analysis 
In this section, an extra experiment is conducted to compare the 

performance of the proposed approach (pre-departure) with a post- 
analysis approach. Unlike the pre-departure prediction in this work, 
the post-flight analysis achieves the FCP task after the flight operation 
based on real collected trajectories. The comparative approach is 
implemented by referring to [4]. 

The final experimental results are listed in Fig. 8. Compared to the 
baseline, the proposed model fails to provide a comparable accuracy for 
the prediction before flight departure, but it also can provide promising 
improvement based on the current airline practice. This fact mainly 
indicates that the comparative model can capture the required under-
lying patterns of the FCP task since it is driven by real collected trajec-
tories, which currently serve as a post-event analysis tool. 

Fortunately, the proposed approach has the ability to predict the fuel 

Table 4 
Performance of BE and loss function.  

Output Loss RMSE MAE MAPE (%) RI 

Integer MSE 1071.8 840.4 6.57 0.009 
BE BCE 1064.6 837.4 6.54 0.012 

MSE – – – – 
Proposed* 1053.4 831.1 6.50 0.009  
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consumption before the flight departure based on the planned route and 
other required information, which practically supports the decision of 
the fuel loading for the airline operation. Based on the proposed 
approach, more proper fuel loading decisions can be made to control the 
“dead weight” of the flight, which further reduces the fuel consumption 
(also saves the airline cost) and achieves the global carbon-neutral 
target. 

6. Conclusions 

In this work, to reduce waste emissions and airline costs, a novel 
deep learning model, called FCPNet, is proposed to predict fuel con-
sumption, which further supports the fuel loading decision before the 
flight departure. A real-world dataset is built to validate the proposed 
model by collecting multi-modality information from a national ATC 

system, airlines, etc. The results of extensive experiments demonstrate 
that the proposed model outperforms other baselines in terms of four 
measurements. In addition, the efficacy and effectiveness of the pro-
posed multi-modality modules are also separately confirmed by several 
ablation studies. Most importantly, the proposed model is able to ach-
ieve acceptable performance for the pre-departure prediction task with 
only the planned route. 

In the future, more advanced neural architectures also deserve to be 
considered to process multi-modality information. We also plan to 
introduce more operational information (such as flight delay, and the 
traffic flow) to enhance the model performance. 
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