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A B S T R A C T   

Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and do-
mestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to 
mechanical failure, personal operation errors, etc., and induce huge economic property loss, environmental 
damages, and even casualties. However, few models have been developed to describe the evolution process of 
natural gas pipeline leakage accidents (NGPLA) and assess their corresponding consequences and influencing 
factors quantitatively. Therefore, this study aims to propose a comprehensive risk analysis model, named EDIB 
(ET-DEMATEL-ISM-BN) model, which can be employed to analyze the accident evolution process of NGPLA and 
conduct probabilistic risk assessments of NGPLA with the consideration of multiple influencing factors. In the 
proposed integrated model, event tree analysis (ET) is employed to analyze the evolution process of NGPLA 
before the influencing factors of accident evolution can be identified with the help of accident reports. Then, the 
combination of DEMATEL (Decision-making Trial and Evaluation Laboratory) and ISM (Interpretative Structural 
Modeling) is used to determine the relationship among accident evolution events of NGPLA and obtain a hier-
archical network, which can be employed to support the construction of a Bayesian network (BN) model. The 
prior conditional probabilities of the BN model were determined based on the data analysis of 773 accident 
reports or expert judgment with the help of the Dempster-Shafer evidence theory. Finally, the developed BN 
model was used to conduct accident evolution scenario analysis and influencing factor sensitivity analysis with 
respect to secondary accidents (fire, vapor cloud explosion, and asphyxia or poisoning). The results show that 
ignition is the most critical influencing factor leading to secondary accidents. The occurrence time and occur-
rence location of NGPLA mainly affect the efficiency of emergency response and further influence the accident 
consequence. Meanwhile, the weight ranking of economic loss, environmental influence, and casualties on social 
influence is determined with respect to NGPLAs.   

1. Introduction 

Pipeline transportation is one of the most important transportation 
methods for natural gas worldwide. The rapid construction of natural 
gas pipelines promotes international and domestic energy trans-
portation and also stimulates industrialization development. However, 
the safety issues associated with natural gas pipelines are still 

challenging and are receiving more and more public attention. (Kraidi 
et al., 2021). Although pipeline transportation is reported to have a 
lower rate of leakage accidents compared to road transportation, pipe-
line leakage accidents cause more casualties than road transport (Hou 
et al., 2021). This is because natural gas pipelines generally need to pass 
through the areas with high population density, such as the residential 
and commercial areas in cities. Inadequate inspection and maintenance 
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of transportation equipment, poor personnel management, and the in-
fluence of urban geological hazards lead to natural gas pipeline leakage, 
and also possibly trigger secondary accidents (e.g., poisoning, asphyxi-
ation, fires, and explosions), thus inducing catastrophic consequences 
(Pan and Jiang, 2002; Biezma et al., 2020; Chen et al., 2021). Particu-
larly, the construction of natural gas pipelines (NGP) and associated 
safety issues attracted massive attention in China. The construction of 
natural gas pipelines in China is showing a significant increasing trend 
compared with that of liquid fuel pipelines (Gao, 2022). The length of 
natural gas pipelines accounts for more than half of all oil and gas 
pipelines in China (China energy news, 2021). The dominant gas fuel 
consumption has shifted from LPG (Liquefied Petroleum Gas) to LNG 
(Liquefied Natural Gas). The safety of natural gas pipelines has ever been 
an important issue. 

In the last decades, accident analysis models have been proposed and 
employed to investigate natural gas pipeline leakage accidents (NGPLA) 
widely (Yang et al., 2011; Shan et al., 2017). Generally, the ambiguity, 
randomness, and unknowability caused by the accident uncertainty 
must be well addressed to establish the NGPLA prediction/analysis 
models (Wu et al., 2017). In reality, accidents are more often in an in-
termediate state of happening or going to happen. Classical accident 
analysis methods (such as traditional fault trees and event trees) almost 
only set the event states as occurring or not occurring, with the inter-
mediate state ignored, and generally only consider discrete variables, 
with fewer continuous variables considered. This makes it insufficient 
and difficult to describe the dependencies between variables, thus 
limiting the diagnostic and inference capabilities of the classical acci-
dent analysis methods (Martins et al., 2014). Hence, new approaches 
and techniques need to be developed to meet the above-mentioned re-
quirements and describe the accident development and evolution pro-
cess effectively. Bayesian network (BN) is a relatively new approach to 
describing the interdependence between events through directed 
graphs. It diagnoses and deduces the accident consequences based on 
the interdependency between events/nodes and the evidence of the in-
fluence from the nodes (Yuan et al., 2015; Li et al., 2023). BNs are able to 
infer from incomplete, imprecise, or uncertain knowledge and infor-
mation, and also, BNs support setting multiple states for the even-
ts/nodes and updating the state probabilities during the operation 
process (Khanzad et al., 2011). As a result, BNs have been widely used 
for probabilistic risk analysis of various oil & gas pipeline accidents, 
such as urban oil & gas pipeline leakage accidents (Wu et al., 2017; 
Wang et al., 2017; Chang et al., 2018; Zhang et al., 2018; Qiu et al., 
2018; Li et al., 2019), subsea oil & gas pipeline leakage accidents (Li 
et al., 2016, 2022), risk analysis on the operation of pipeline mainte-
nance (Zhu et al., 2019), risk analysis of third-party damage to oil & gas 
pipelines (Cui et al., 2020; Ruiz-Tagle et al., 2022) and reliability 
analysis of pipeline networks/systems (Mokhtar et al., 2016; Chen et al., 
2020; Fan et al., 2022). 

During the development process of a BN model, the network struc-
ture is usually determined by experts with the help of other methods, 
such as fault tree (Sakar et al., 2021) and bow-tie (Khakzad et al., 2013). 
However, there are still gaps in properly employing expert knowledge 
and accident data to support the determination of the network structures 
for BNs. There are some methods available for the analysis of complex 
systems, such as SEM (Structural Equation Modeling), DEMATEL 
(Decision-making Trial and Evaluation Laboratory), and ISM (Interpre-
tative Structural Modeling), which are able to determine the relation-
ships between factors within a system (Huang et al., 2021; He et al, 
2022; Khorasane et al., 2022; Wang et al., 2018a). Those methods are 
also with the potential to support the construction of hierarchical net-
works based on expert knowledge and judgment. Therefore, the com-
bination of DEMATEL and ISM was considered in this study to help the 
construction of BN models. 

Although BN is capable of reasoning and diagnosing under condi-
tions of uncertainty, the element underlying its use for analysis, the 
conditional probability, still needs to be determined by other methods. 

Fuzzy set theory is one of the methods for providing data support with 
the combination of classic accident analysis methods (Badida et al., 
2019; Dong and Yu., 2005; Shahriar et al., 2012). However, fuzzy set 
theory relies on expert knowledge and experience to determine the 
affiliation function, and the expert’s expertise and their consensus 
usually play a crucial role in terms of model accuracy (Ferdous et al., 
2012). This feature leads to conclusions that lack sufficient objectivity 
(Lavasani et al., 2015; Yan et al., 2017). Additionally, the 
Dempster-Shafer evidence theory was widely used to enhance the con-
sistency and credibility in obtaining conditional probabilities of inter-
dependent events based on expert knowledge (Wu et al., 2017; Zhou 
et al., 2020). Although the conditional probability obtained by this 
method is still subjective, it helps to obtain relatively reasonable and 
credible results. In summary, comparing the two methods, this study 
considers the Dempster-Shafer evidence theory to help obtain condi-
tional probabilities. 

In this study, an integrated approach was developed to conduct 
probabilistic risk assessments of NGPLA based on BN. Accident report 
analysis, event tree analysis, DEMATEL, ISM, and expert judgment were 
combined to support the building of a BN model. An event tree (ET) was 
employed to illustrate the evolution process of the NGPLA scenarios. The 
combination of the DEMATEL and the ISM was adopted to support the 
development of the BN model in terms of network structure construc-
tion. Prior conditional probabilities of the nodes in the BN model were 
determined based on the data analysis of 773 accident reports or expert 
judgment with the help of the Dempster-Shafer evidence theory. The 
developed BN model is capable of risk analysis of a variety of NGPLA. 
Additionally, the developed BN model is able to assess the severity of the 
secondary accidents resulting from gas leakage with the consideration of 
the influence of emergency response. The rest of this paper is organized 
as follows. Section 2 illustrates the methodology of the proposed model. 
Section 3 identifies the accident evolution factors associated with 
NGPLA and determines their interrelationships through interviews with 
experts. And then, a BN model was developed and the conditional 
probability tables (CPTs) of the nodes were assigned based on accident 
statistical data or expert judgment with the help of the Dempster-Shafer 
evidence theory. The results obtained by the BN model are presented 
and discussed in Section 4. In Section 5, the proposed approach is 
compared with several typical accident analysis models developed by 
other studies to reveal its strengths and limitations. Finally, conclusions 
and an outlook on future research are given in Section 6. 

2. Methodology 

2.1. Event tree analysis 

ET analysis is a common method of inductive reasoning and analysis. 
In the first step of ET, the NGPLA reports should be collected and 
analyzed. Then, the evolution process of the gas leakage accidents is 
obtained and illustrated by an ET based on the analysis of the accident 
reports. ET derives subsequent events that can be formed from initial 
events (comprising multiple key events) based on the temporal order of 
the accident evolution (Huang et al., 2013). The construction of the ET 
follows three steps: i) identifying the initial event and its subsequent 
events, ii) setting the occurrence states between the initial event and the 
subsequent events, and iii) determining the final consequence of each ET 
path. 

In this study, ET does not describe all critical factors associated with 
gas leakage but only sorts out the accident process. To facilitate the 
construction of the BN model, it is necessary to identify the critical 
underlying events during the accident evolution, as well as the in-
terrelationships between the events. Consequently, DEMATEL and ISM 
are introduced to refine the accident evolution paths derived from the 
ET. 
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2.2. Decision-making trial and evaluation laboratory 

DEMATEL is a system analysis method that uses graphical and matrix 
tools for understanding complex problems in the actual world (Zhang 
et al., 2020). The main objective of this method is to determine the 
influencing relationships between the elements and the position of each 
element inside the investigated system. The specific steps of the 
DEMATEL method are given below. 

Step 1. Identifying the critical factors of accident evolution. 
In this step, the various critical factors associated with the accident 

evolution are identified by reviewing accident reports and research ar-
ticles, and also with the help of expert opinions. Additionally, secondary 
accidents induced by gas leakage under different environmental condi-
tions should be investigated. Therefore, considering the complexity of 
the accident evolution, some similar critical factors are combined in this 
study to simplify the analysis process. At the same time, the identified 
critical influencing factors are denoted by xi (i = 1,2, … …, n) and make 
up the factor set X. 

Step 2. Determining the initial direct influence matrix M. 
This step identifies the associated indicators of the identified critical 

factors in step 1 and quantifies the interrelationships between those 
critical factors. We used the scales 0,1, 2, 3, 4, and 5 to represent the 
range from “no influence” to “very high influence” (Liou., 2015). Experts 
were asked to evaluate whether there was a direct influence relationship 
between factor i and factor j in terms of direction and influence. The 
mean value of all experts’ identical views was derived as an initial direct 
influence matrix M = (aij)n×n. 

Step 3. Determining the normalized direct influence matrix N. 
Normalization is a normal operation for standardizing influence 

factors. The key operation is to take the maximum value as a reference 
value for normalization. Each row of matrix A is summed, and the max- 
value is obtained among these values. This step is represented by Eq. (1). 

Aimax =max

(
∑n

j=1
aij

)

(1) 

After the maximum value is obtained by Eq. (1), the normalization 
direct influence matrix N can be calculated by Eq. (2). 

N =

(
aij

Aimax

)

n×n
(2) 

Step 4. Deriving the comprehensive influence matrix T. 
The self-multiplication of the normalized direct influence matrix 

represents the indirect influence added between the elements. When all 
the indirect influences are added up, the comprehensive influence ma-
trix T is obtained. This step is presented in Eq. (3). 

T =N(I − N)
− 1 (3)  

where I is the identity matrix, (I–N)− 1 is the inverse matrix of (I–N). 

2.3. Interpretative structural modeling 

ISM can illustrate all possible evolutionary paths of the initial event 
and also provide a simplified and hierarchical topology without losing 
the system features. The basic aim of the ISM is to discuss the prior and 
subsequent relationships with factor sets to facilitate the understanding 
of complex system states (Malone, 1975). After the comprehensive in-
fluence matrix is obtained by DEMATEL, the overall influence matrix O 
can be obtained by using the ISM method. The overall influence matrix O 
can be calculated by Eq. (4). After that, other steps of the ISM method 
need to be conducted and are illustrated as follows. 

O= I + T (4) 

Step 1. Developing the accessibility matrix R based on matrix O. 
Within the accessibility matrix, the interrelationship among all ele-

ments is represented by Boolean logic, where 1 indicates relevant and 
0 shows irrelevant. In order to transform the overall influence matrix 
into an adjacency matrix A, a threshold α should be set. The trans-
formation criterion based on the threshold α is illustrated in Eq. (5). 

Aij =

{
1, if Oij ≥ α
0, if Oij＜α (i, j= 1, 2,…, n) (5) 

Once the adjacency matrix is obtained, the accessibility matrix R can 
be obtained by following Eq. (6). Meanwhile, the accessibility set R(i), 
the antecedent set Q(i), and the common set T(i) can be obtained based 
on matrix R according to Eq. (7) to Eq. (9). 

(A + I)(k− 1)
∕= (A + I)k

= (A + I)(k+1)
=R (6)  

R(i)=
{

xi
⃒
⃒xi ∈R,Aij = 1, i= 1,…, n

}
, j= 1,…, n (7)  

Q(i)=
{

xj
⃒
⃒xj ∈R,Aij = 1, j= 1,…, n

}
, i= 1,…, n (8)  

T(i)=R(i) ∩ Q(i), i = 1,…, n (9) 

Step 2. Developing a hierarchy diagram. 
After obtaining set R(i), set Q(i), and set T(i), the factors of each level 

of the ISM model can be determined according to Eq. (9), with the 
determination rule being that some factors are accessibility and others 
are not. After this step, it can determine which factor belongs to which 
level and then combine the accessibility sets of these factors to deter-
mine the links between the factors. Finally, a directed hierarchical to-
pology diagram of those influencing factors can be obtained. 

2.4. Bayesian network 

A BN comprises a directed acyclic graph (DAG) and conditional 
probability tables (CPTs). The directed edges of the DAG represent the 
dependencies between preceding and following events (Wu et al., 2015; 
Tien and Der Kiureghian., 2016). The combination of ET, DEMATEL, 
and ISM provides a preliminary structure (a directed hierarchical to-
pology diagram) for the BN model. However, some modifications should 
still be made in terms of the node types and node states to develop a BN 
model. The CPTs of the child nodes are derived from the prior proba-
bilities of the parent nodes. The conditional probability calculation in-
volves conditional independent and joint probabilities, as indicated in 
Eqs. (10) and (11). 

P(x1, x2,…, xn)=
∏n

i=1
P(xi) (10)  

P(x1, x2,…, xn)=
∏n

i=1
P(xi|parent(xi)) (11)  

where xi is the node; P(xi) is the probability of xi; parent (xi) is the parent 
node of xi; P (xi| parent (xi)) is the CPT of xi; i and n present the number 
of nodes in BN. Sensitivity analysis is widely-used to validate the 
probabilistic parameters of Bayesian networks (Castillo et al., 1997). It is 
done by investigating the effect of small changes in the model prior 
probabilities and conditional probabilities on the posterior probabilities. 
The sensitivity can be calculated as follows: 

SVij =

⎧
⎪⎨

⎪⎩

P
(
xj = 1

⃒
⃒xi = 1

)
− P

(
xj = 1

⃒
⃒xi = 0

)

P
(
xj = 1

⃒
⃒xi = 0

) ,ΔPij ≥ 0

0,ΔPij＜0
, 1≤ j＜ i ≤ n (12)  

where SVij is the sensitivity of the node; xi is the prior event; xj is the 
posterior event;ΔPij = P(xj = 1|xi = 1)-P(xj = 1|xi = 0). 

The final BN model is obtained by using the complete so-called ET- 
DEMATEL-ISM-BN (EDIB) method. In previous studies, sensitivity 
analysis and diagnostic inference (i.e., posterior probabilistic inference) 
were conducted to identify the critical factors (Quan et al., 2017; Wang 
et al., 2019; Chi et al., 2021). Apart from that, accident evolution 
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analysis can also be performed by using the BN model. 

2.5. The overall framework of the EDIB model 

The operational framework of the EDIB model is shown in Fig. 1. The 
development procedure of the proposed model is divided into three 
sections, with the help of ET, DEMATEL-ISM, and BN, respectively. The 
results of each section are given in the following sub-sections. 

3. The EDIB model for NGPLA 

3.1. Event tree analysis 

In this section, the possible accident evolution paths of NGPLs are 
illustrated by an ET (see Fig. 2). The initiating event of the ET is natural 
gas leakage. Then, considering the influence of ignition and confined 
space on the accident evolution, several possible accident evolution 
paths with their corresponding outcomes were determined. 

3.2. Identification of influencing factors associated with accident 
evolution 

ET describes the basic accident evolution process of NGPLAs. How-
ever, it cannot give the environmental conditions and the emergency 
response objects influencing the accident evolution (Zhang et al., 2018). 
As a result, it is necessary to identify influencing factors associated with 
accident evolution with the help of accident report analysis and 
consultation with experienced experts. It should be noted that this study 
mainly investigates the NGPs deployed in the cities rather than the 
long-distance gas transmission pipelines across cities or even countries. 
Thus, the data on 773 nature gas pipeline leakage accidents that 
happened in Chinese cities from April 2013 to April 2022 were collected 
and analyzed. All of the accident data was derived from provincial and 
municipal emergency management departments or the news reported 
from official provincial and municipal media. The offshore pipeline 
accidents and long-distance gas transmission pipeline accidents were 
not collected and considered in this study. After the influencing factors 
were identified based on the accident report analysis, the results were 
verified and revised by four experts (two experts from universities and 
two industry experts from local natural gas companies), who have over 
ten years of working experience related to natural gas pipelines and 
energy transportation. According to the results, there is no obvious 
difference/deviation between the judgments/answers from the four 
experts. Thus, we believe that the survey was considered feasible to 
some extent and can be used to support the model construction. Finally, 
12 influencing factors (including emergency response) that may influ-
ence the evolution process of NGPLAs were identified. The details of the 
identified influencing factors, secondary accidents, and final 

consequences are shown in Table 1. 

3.3. Determining the hierarchical network based on the DEMATEL-ISM 
method 

In this part, the hierarchical structure of the accident evolution 
process was determined by using the DEMATEL-ISM method. The 
identified influencing factors and events in Table 1 were compiled into a 
questionnaire and the four experts were responsible for rating the in-
terrelationships among those influencing factors and events by filling 
the direct influence matrix (as shown in Table 2). Generally, the selec-
tion of experts plays an essential role in ensuring the quality and ra-
tionality of the results derived from expert elicitation (Krueger et al., 
2012). In this study, the respondents who have at least ten years of 
working experience related to natural gas pipelines and energy trans-
portation were regarded as qualified. Two experts from universities and 
two professionals from local natural gas companies who with over ten 
years of working experience were invited to attend this semi-structured 
questionnaire and determine the initial scores. Then, the individual 
opinions of the four experts were combined to eliminate the expert bias 
to some extent. Finally, the normalized direct influence matrix N and the 
comprehensive influence matrix T (as shown in Table 3) can be obtained 
according to Eq. (2) and Eq. (3), respectively. 

To obtain the accessibility matrix, a threshold value α should be 
assigned. Based on the matrix T, we determined a series of candidate 
thresholds (α = 0.15, α = 0.16, and α = 0.20) to generate matrix R by 
using Eq. (5) and Eq. (6). After that, the ISM diagram corresponding to 
each threshold value was obtained from the matrix R. By comparing the 
obtained ISM diagrams and checking the rationality of the ISM structure, 
we finally determined that α = 0.16 was the most suitable threshold 
value due to the inconsistent and irrational ISM diagram structures by 
using α = 0.15 and α = 0.20. Therefore, the accessibility matrix with the 
threshold α = 0.16 is used, as shown in Table 4. 

Then, a hierarchical network diagram was derived based on the 
accessibility matrix to describe the causal relationship and accident 
evolution process of natural gas pipeline leakage accidents. The hier-
archical network diagram comprises nodes and directing arcs, which 
represent the dependency between nodes. To get the final hierarchy 
diagram, two principles were adopted to modify the initial diagram 
(Nadkarni and Shenoy, 2004). One principle is to delete the redundant 
links between factors and reduce the unnecessary complexity of the 
hierarchy diagram. The scoring results and the accessibility matrix 
therefore were re-checked and the redundant links were eliminated. 
Another principle is to ensure that there is no circular path in the hier-
archical network diagram. The initial diagram was modified according 
to the above two principles. In this way, the final hierarchical network 
diagram may be obtained and is presented in Fig. 3. 

It should be noticed that the emergency response node in Fig. 3 

Fig. 1. The framework of the EDIB model.  
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includes many emergency actions (e.g., detecting and reporting the ac-
cident, emergency closing the valve, emergency ventilation, emergency 
repairs, evacuating nearby crowd, power outage and eliminating igni-
tion sources, and isolating the site). Therefore, the emergency response 
node may affect multiple influencing factors/nodes in the hierarchical 

network. Because immediate ignition usually makes it difficult to 
intervene instantly, the influence of emergency response on immediate 
ignition is not considered. By contrast, delayed ignition occurs after a 
period of time of gas leakage and hence, emergency response may in-
fluence the probability of delayed ignitions. Additionally, emergency 
closing pipeline valves, emergency ventilation, and emergency repairs 
can affect leakage strength and gas accumulation. Isolating the site and 
evacuating nearby crowds helps to reduce the number of people getting 
affected by the accident. Therefore, the effects of emergency response on 
such nodes (e.g., delayed ignition, nearby population density, leakage 
strength, and gas accumulation) were considered. 

3.4. The BN model for NGPLA 

In this section, the hierarchical network graph presented in Fig. 3 
was mapped to a BN model by using GeNIe 3.0 (www.bayesfusion.com). 
In order to simplify the structure of the developed BN model, some of the 
nodes in Fig. 3 were integrated into one node by using different states of 
the node. For instance, the fireball or jet fire node, and flash fire node in 
Fig. 3 were integrated into a node named “fire”, with None (N), Fireball 
or jet fire (FBoJF), and Flash fire (FF) states. Similarly, the immediate 
ignition node and delayed ignition node in Fig. 3 were integrated into 
one ignition node (with three states: None (N), Immediate ignition (II), 
and Delayed ignition (DI)) in the BN model. The BN nodes and their state 
settings and definitions are detailed in Table 5. The abbreviations in 

Fig. 2. The ET of natural gas leakage accidents.  

Table 1 
Accident evolution influencing factors or events of NGPLA.  

Symbols Accident evolution influencing 
factors or events 

Symbols Accident evolution 
influencing factors 
or events 

I1 Occurrence time I11 Gas accumulation 
I2 Occurrence location R Emergency 

response 
I3 Pipeline pressure S1 Fireball or jet fire 
I4 Causes of leakage S2 Flash fire 
I5 Immediate ignition S3 Vapor cloud 

explosion 
I6 Delayed ignition S4 Asphyxia or 

poisoning 
I7 Nearby building density C1 Economic losses 
I8 Nearby population density C2 Environmental 

influence 
I9 Leakage strength C3 Casualties 
I10 Confined space C4 Social 

influence   

Table 2 
The direct influence matrix assigned by expert 1.  

M1 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 R S1 S2 S3 S4 C1 C2 C3 C4 

I1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 
I2 0 0 0 0 0 0 4 4 0 4 0 4 0 0 0 0 0 0 0 0 
I3 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
I4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
I5 0 0 0 0 0 0 0 0 0 0 0 0 5 2 3 0 0 0 0 0 
I6 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 
I7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 
I8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 
I9 0 0 0 0 0 0 0 0 0 0 4 0 4 4 0 0 0 0 0 0 
I10 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 
I11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 
R 0 0 0 0 1 4 0 4 4 0 4 0 0 0 0 0 0 0 0 0 
S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 0 
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 4 0 
S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 4 0 
S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 0 
C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Table 5 were also used in the developed BN model. 
The prior probabilities of some nodes (e.g., occurrence time, occur-

rence location, pipeline pressure, causes of leakage, confined space, and 
ignition) were derived from accident statistics, while for some nodes 
that lack statistical data, the prior probabilities were determined by 
expert judgment. To improve the reliability of expert judgment, the 
Dempster-Shafer evidence theory was used to process expert judgment 
in this study. Although Dempster-Shafer evidence theory has its short-
comings (possible huge computation and unreasonable results that 
cannot be ignored), the implementation of the Dempster-Shafer evi-
dence theory helps to improve the reliability of expert judgment by 
fusing different evaluations of experts to obtain comprehensive evalu-
ation distribution intervals. The workflow of implementing Dempster- 
Shafer theory is presented as follows: i) Establish the identification 
framework. The state probability Pi under each combination of condi-
tions in the node is denoted as Pi (i = 1, 2, …, n), and the uncertainty 
state probability is denoted as Θ, which constitutes the state probability 
identification framework U = {P1, …, Pn, Θ} for each combination of 
conditions. ii) Each expert’s judgment is a mass function, denoted as 
Mn(Pi) (n = 1,2,3,4). iii) Calculate the normalization coefficient K, and 
then calculate the combined mass function of Pi with the synthesis rule. 
iiii) Calculate the confidence function and likelihood function according 

to the specific formula, and thus compose the trust space of Pi, and the 
final confidence function is the finalized state probability. Finally, the 
developed BN model is depicted in Fig. 4. 

4. Results 

4.1. Influencing factor analysis 

4.1.1. Sensitivity analysis of influencing factors on secondary accidents 
BN allows a sensitivity analysis of the causal factors to understand 

the degree of influence of each factor on the evolution of the accident. 
The sensitivity analysis was carried out by using the GeNIe 3.0 software 
in this study. An algorithm proposed by Khorasane et al. (2022)Kjaerulff 
and van der Gaag (2000) is implemented by GeNIe 3.0 to perform the 
sensitivity analysis. The sensitivities of 9 influencing factors to the sec-
ondary accidents are shown in Table 6. 

It can be seen from Table 6 that the ignition influences the happening 
of fire and vapor cloud explosion significantly, with sensitivity values of 
8.44e-2 and 0.28 respectively. The reason may be that ignition is one of 
the necessary conditions leading to fire and vapor cloud explosion. Gas 
accumulation has the greatest effect on asphyxiation or poisoning, with 
a sensitivity value of 0.117. The occurrence location (1.29e-2) and 

Table 3 
The comprehensive influence matrix T.  

T I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 R S1 S2 S3 S4 C1 C2 C3 C4 

I1 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.05 0.05 0.00 0.06 0.22 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.02 
I2 0.00 0.00 0.00 0.00 0.02 0.05 0.22 0.27 0.05 0.22 0.10 0.22 0.02 0.02 0.04 0.02 0.08 0.02 0.09 0.04 
I3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.05 0.00 0.05 0.05 0.01 0.01 0.02 0.03 0.03 0.02 
I4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.05 0.00 0.05 0.05 0.01 0.01 0.02 0.03 0.03 0.02 
I5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.14 0.20 0.00 0.12 0.14 0.13 0.09 
I6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.20 0.20 0.00 0.12 0.14 0.13 0.09 
I7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.06 
I8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.05 
I9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.05 0.05 0.11 0.13 0.12 0.08 
I10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.04 0.04 0.02 0.02 0.02 0.01 
I11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.19 0.08 0.10 0.09 0.06 
R 0.00 0.00 0.00 0.00 0.09 0.22 0.00 0.24 0.23 0.00 0.27 0.00 0.11 0.11 0.12 0.05 0.08 0.09 0.15 0.07 
S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.24 0.23 0.16 
S2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.24 0.23 0.15 
S3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.24 0.23 0.15 
S4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.24 0.23 0.16 
C1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 
C2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 
C3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 
C4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

Table 4 
The accessibility matrix R (α = 0.16).  

R I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 R S1 S2 S3 S4 C1 C2 C3 C4 

I1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 
I2 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
I3 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 
I4 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 
I5 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 
I6 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 
I7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 
I8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 
I9 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 
I10 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 
I11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 
R 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 
S1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 
S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 
S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
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confined space (1.1e-2) also have high sensitivity. Gas accumulation 
after natural gas pipeline leakage may induce asphyxia or poisoning. 
Pure methane is non-toxic to humans, and only becomes a simple 
asphyxiant at extremely high concentrations (Zheng et al., 2013). Toxic 
gas, such as tetrahydrothiophene, is usually mixed with methane in 
natural gas pipelines and may induce light poisoning. Asphyxiation or 
poisoning is based on a relatively confined space, and gas accumulation 
is the key event leading to these accidents. The cause of leakages, 
pipeline pressure, and leakage strength have low sensitivities to sec-
ondary accidents, and their sensitivity values are all less than 0.01. The 
reason may be that multiple emergency response actions (detecting and 
reporting the accident, emergency closing the valve, emergency on-site 
repair, emergency ventilation, and eliminating ignition sources, etc.) 
were considered in the proposed model. The intervention of emergency 
response reduces their sensitivities to the secondary accidents. It reflects 
that emergency response may control the adverse effects caused by those 
three influencing factors (cause of leakage, pipeline pressure, and 
leakage strength). It also explains why the emergency response has 
relatively high sensitivities to those three secondary accidents (Fire, 
VCE, and Asphyxiation or Poisoning), with sensitivity values of 8.73e-3, 
2.4e-2, and 3.67e-2 respectively. 

4.1.2. The effects of emergency response 
In this study, the direct dependency between emergency response 

and leakage strength, ignition, gas accumulation, and nearby population 
density was considered, and further, it affects secondary accidents and 
final consequences. The predicted conditional probabilities of each 
affected factor given different states of emergency response (high, me-
dium, and low) are shown in Table 7. It should be noted that the 
emergency response levels mentioned here are determined according to 
the actual response time of the emergency response actions. The three 
states (high, medium, and low) describe the efficiency of the emergency 
response actions after an accident occurs. The relevant descriptions are 
given in the footnotes of Table 5, and the following analysis is performed 
according to this definition. 

As shown in Table 7, the effects of emergency response are obvious. 
A sudden change occurred to the status of each affected factor/event 
when the emergency response shifted from high to medium. The density 
of the nearby population is the most sensitive factor with respect to the 
status of emergency response. When the emergency response state 
changes, the probability of the nearby population density node changes 
with the maximum variations. Particularly, when the emergency 

response state changes from “low” to “medium”, the extremely densely 
populated area (EDP) state decreases sharply from 74.6 to 24.6. It re-
flects that on-site emergency response plays an important role in evac-
uating people nearby the leakage location and further reduce/avoid 
casualties caused by the natural gas pipeline leakage. 

4.1.3. The influence of occurrence time and occurrence location 
It can be seen from Table 6 that the occurrence time and occurrence 

location of NGPLAs have some influence on the happening of secondary 
accidents. One reason is that the efficiency (response time) of emergency 
intervention is associated with the occurrence time and occurrence 
location of the leakage accident according to the developed BN model. 
The time and place of occurrence may shorten the time for an emergency 
response to intervene the natural gas pipeline leakage accidents. This 
relationship/interdependence can be reflected by the simulation results 
of the BN model. As depicted in Fig. 5, the efficiency of emergency 
response is higher during the day (72.9% for ‘high’) than at night (67.3% 
for ‘high’). Similarly, the occurrence location also has an influence on 
the efficiency of emergency response. According to the accident report 
statistics, which were used to obtain the prior probabilities of occur-
rence time and occurrence location in Fig. 4, business zones and resi-
dential districts have an approximate proportion, and the number of 
accidents in these two areas has reached over 85% of the total number of 
accidents. Business zones and residential districts are densely populated 
and built-up areas in the city. Suburban districts are defined as areas in 
the city or on the urban fringe, with lower population density and 
building density than the first two. Because human activities are more 
frequent in business zones and residential districts, more technical fa-
cilities and emergency respondents are allocated in business zones and 
residential districts compared to suburban districts. Thus, the NGPLAs 
are easier to be detected and intervened in business zones and residen-
tial districts. As shown in Fig. 6, the proportion of emergency responses 
with high efficiency reaches 74.5% and 70.2% in business zones and 
residential districts respectively. By contrast, the emergency response 
with high efficiency is 67.9% in suburban areas, which is lower than that 
in commercial and residential areas. 

4.2. Accident scenario analysis-case study 

In this section, a case study is simulated by using the developed BN 
model. The scenario is set based on the case “7⋅4” gas pipeline leakage 
and explosion accident in Songyuan, Jilin in 2017. The configurations of 

Fig. 3. A hierarchical network diagram of NGPLA.  
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the node states are shown in Table 8, and the simulation result is pre-
sented in Table 9.1 

According to the results in Table 9, the node states of economic 

Table 5 
The BN nodes definition of NGPLA.  

Names of nodes Definition of states Definition 

Occurrence timea 1. Daytime (DT): 8.00 a. 
m.–8.00 p.m., 2. Night (N): 
8.00 p.m.–8.00 a.m. the 
next day. 

The time when the pipeline 
leakage accident happened. 

Occurrence 
location 

1. Business zone (BZ), 2. 
Residential district (RD), 
3. Suburban district (SD). 

The location when the pipeline 
leakage accident happened. 

Pipeline pressureb 1.1.6< P ≤ 4.0 (H), 2.0.4<
P ≤ 1.6 (SH), 3.0.01< P ≤
0.4 (M), 4. P < 0.01(L). 

Pressure inside the gas 
pipeline. 

Causes of leakage 1. External damage (ED), 
2. Aging and corrosion 
(AC), 3. Insufficient 
intrinsic safety (IIS), 4. 
Installation and 
maintenance issues (IMI). 

The direct causes of the 
pipeline leakage accidents. 
The classification of causes 
refers to (European gas 
pipeline Incident data Group, 
2020) . 

Ignition 1. None (N), 2. Immediate 
ignition (II), 3. Delayed 
ignition (DI). 

Ignition is one of the necessary 
causes for flames and 
explosions. Immediate 
ignition occurs within 30s 
after the gas release and 
delayed ignition occurs after 
30s (IGEM, 2008). 

Nearby building 
densityc 

1. Level 1 area (L1), 2. 
Level 2 area (L2), 3. Level 
3 area (L3), 4. Level 4 
areas (L4). 

The building density where 
the pipeline is located (North 
China Municipal Engineering 
Design & Research Institute, 
2020). 

Nearby population 
density (NPD, 
Persons/km2)d 

1.4000< NPD (EDP), 
2.2000 < NPD≤4000 (DP), 
3.1000 < NPD≤2000 
(MP), 4. NPD≤1000 (SP). 

Average number of active 
people per km2 where the 
pipeline is located. 

Leakage strength 1. Massive leakage (ML), 2. 
Non-massive leakage 
(NML). 

The strength of gas released 
from the pipeline when the 
pipeline leakage happened. 

Confined space 1. False (F), 2. True (T). Confined or poorly ventilated 
infrastructures near the 
leaking pipelines, which can 
be tunnels, residential 
buildings, etc. 

Gas accumulation 1. False (F), 2. True (T). Gas accumulation 
phenomenon caused by 
confined space and/or weak 
ventilations after gas leakage 
happened. 

Emergency 
responsee 

1. High (H), 2. Medium 
(M), 3. Low (L). 

Various emergency actions (e. 
g., detecting and reporting the 
accident, closing the valve, 
and eliminating ignition 
sources) implemented to 
mitigate accident 
consequences (Zhang et al., 
2018). 

Fire 1. None (N), 2. Fireball or 
jet fire (FBoJF), 3. Flash 
fire (FF). 

Fires caused by gas pipeline 
leakage, including jet fire and 
flash fire. 

Vapor cloud 
explosion 

1. False (F), 2. True (T). Vapor cloud explosion caused 
by delayed ignition and gas 
accumulation after the gas 
pipeline leakage. 

Asphyxia or 
poisoning 

1. None (N), 2. Light 
asphyxia or poisoning 
(LAoP), 3. Severe asphyxia 
or poisoning (SAoP). 

Gas accumulation after natural 
gas pipeline leakage may 
induce asphyxia or poisoning. 
Toxic gas, such as 
tetrahydrothiophene, is 
usually mixed with methane 
and may induce poisoning. 

Economic losses 
(CNY)f 

1. EL ≥ 100 million, 2.50 
million ≤ EL < 100 
million, 3.10 million ≤ EL 
< 50 million, 4. EL < 10 
million. 

Direct economic loss caused by 
the accidents, including the 
costs of dealing with the 
aftermath, the value of the 
destroyed property, etc. ( 
Ministry of Emergency  

Table 5 (continued ) 

Names of nodes Definition of states Definition 

Management of the People’s 
Republic of China, 1986). 

Environmental 
influenceg 

1.100 < FID, 2.100 =
FID<200, 3. FID≥200. 
(Farthest influence 
distance, FID, Meters) 

Environmental influence is 
measured by the farthest 
distance affected by gas 
pipeline leakage or its 
secondary accidents (Dai, 
2020). 

Casualties 
(Persons) 

1.30≤deaths or 
100≤serious injuries, 
2.10≤deaths<30 or 
50≤serious injuries<100, 
3.3≤deaths<10 or 
10≤serious injuries<50, 4. 
Deaths<3 or serious 
injuries<10. 

The number of casualties 
caused by the accident within 
30 days (within 7 days for fire 
accidents) (State Council of 
the People’s Republic of 
China, 2019). 

Social influence 1. Particularly serious 
(PS), 2. Major (M), 3. 
Serious (S), 4. Ordinary 
(O). 

Social influence is used to 
express the influence of the 
accident on the social order 
and is evaluated by measuring 
the three direct consequences 
(casualties, environmental 
influence, and economic 
losses) (Zhang et al., 2018).  

a The states of occurrence time is referred to from (China Meteorological 
Administration, 2015). 

b The grades of pipeline pressure are set according to the ‘code for design of 
urban gas pipeline (2020 Revision)’ (GB 50028–2006) (North China Municipal 
Engineering Design & Research Institute, 2020). H = High, SH = Sub-High, M =
Medium, L = Low. 

c The grades of building density are set according to the ‘code for design of 
urban gas pipeline (2020 Revision)’ (GB 50028–2006) (North China Municipal 
Engineering Design & Research Institute, 2020). Level 1 area: An area with 12 or 
fewer individual buildings for human habitation. Level 2 area: An area with 
more than 12 and less than 80 individual buildings for human habitation. Level 3 
area: An area with 80 or more individual buildings for human habitation. Level 4 
area: Urban centers where buildings of 4 or more stories are common and 
predominant. 

d The node states of the nearby population density are determined according 
to (Mao et al., 2015). The names and abbreviations of the node states are 
“extremely densely populated area (EDP), medium populated area (DP), 
sparsely populated area (MP), and sparsely populated area (SP)”. Data refer to 
the “statistical yearbook of urban construction” (Ministry of Housing and 
Urban-Rural Development of the People’s Republic of China., 2022). 

e In this study, the grades of the emergency response are determined based on 
the response times. By investigating the data from the accident reports, we 
classified the emergency response performance as “high” for the emergency 
response actions (for instance, pipeline rehabilitation) completed within 3 h 
after an accident, as “medium” for completing response actions within 3–6 h, 
and as “low” for completing response actions after more than 6 h. 

f The states of economic losses and casualties are determined based on the 
classification of accident levels in the ‘Report on production safety accident and 
regulations of investigation and treatment’ (State Council of the People’s Re-
public of China, 2019). This is also the basis for determining the social influence 
levels (Wang et al., 2018b). 

g The environmental influence of the NGPLA was expressed and graded in 
terms of the farthest influence range. The grade setting is determined according 
to (Dai, 2020). 

1 The total probability of part of nodes is not equal to 1 in Table 9, which is a 
display error caused by the rounding of node probability by the software and 
does not affect the result analysis. The accident report does not contain infor-
mation about poisoning and asphyxiation, so the calculation results about 
poisoning and asphyxiation do not need to compare with the actual accident 
outcomes and are not given here. 

X.-l. Chen et al.                                                                                                                                                                                                                                 



Journal of Loss Prevention in the Process Industries 83 (2023) 105027

9

losses, casualties, and social influence have the largest probability in-
crease in the “Serious” state. The largest likelihood is the happening of a 
vapor cloud explosion, followed by flash fires. Based on the obtained 

Fig. 4. The BN for NGPLA.  

Table 6 
Sensitivity analysis of influencing factors with respect to secondary accidents.  

Factor Fire VCE Asphyxiation or Poisoning 

Occurrence Time 1.5e-3 4.16e-3 5.89e-3 
Occurrence Location 1.45e-3 5.04e-3 1.29e-2 
Pipeline Pressure 8.12e-3 1.99e-4 1.07e-3 
Causes of Leakages 3.5e-4 1.07e-5 5.99e-6 
Confined Space – 1.52e-3 1.1e-2 
Ignition 8.44e-2 0.28 – 
Leakage Strength 5.84e-3 1.23e-4 5.77e-4 
Gas Accumulation – 7.87e-3 0.117 
Emergency Response 8.73e-3 2.4e-2 3.67e-2  

Table 7 
The conditional probabilities of affected factors given different states of emer-
gency response (%).  

Factors Status of emergency response 

High Medium Low 

Leakage strength [12.2, 87.8] [36.2, 63.8] [38.7, 61.3] 
Ignition [93.8, 0.6, 5.6] [81.8, 1.6, 16.6] [80.4, 1.8, 

17.8] 
Gas accumulation [86.6, 13.4] [57.9, 42.1] [52.5, 47.5] 
Nearby population 

density 
[14.6, 16.8, 24.3, 
44.3] 

[24.6, 26.8, 34.3, 
14.3] 

[74.6, 16.8, 
4.3, 4.3] 

Note: Leakage strength, [ML, NML]; Ignition, [N, II, DI]; Gas accumulation, [F, 
T]; Nearby population density, [EDP, DP, MP, SP]. 

Fig. 5. Correlation between occurrence time and emergency response (The 
high, medium, and low in Fig. 5 are the states of emergency response). 
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results, it can be seen that the severity of the accident is most likely to be 
serious. In the investigation report of this accident, the investigators 
rated the accident as a serious accident according to relevant standards. 
Thus, it is validated that the EDIB model can predict the severity of 
NGPLAs effectively. 

4.3. Social influence analysis 

The influence of accidents on society is complex, and the conse-
quences and causes of accidents will influence social order. Social in-
fluence is a comprehensive evaluation of the consequences of the 
accident. The diagnostic function of BNs is used to infer the posterior 
probabilities of economic losses, environmental influence, and casu-
alties by giving different levels of social influence. This analysis aims to 
determine the weights relationship of the three kinds of consequences 
affecting social influence. The results are presented in Table 10. 

Table 10 shows the posterior probabilities of the different states of 
economic losses, environmental influence, and casualties, under the 
conditions of giving different levels/states of social influence. The pos-
terior probabilities were obtained by using inversion calculation of the 
BN model. By comparing the posterior probabilities with their initial 
probabilities, the sensitivities of economic losses, environmental influ-
ence, and casualties to social influence can be discussed. According to 
Table 10, economic losses and casualties are more sensitive to the states 
of social influence. For example, when the social influence is set as 
“Major”, the “Major” probability of economic loss increases from 4.6% 
(initial value) to 28%. The “Major” probability of casualties increased 
from 5.9% (initial value) to 27.1%. According to the results, economic 
losses are more sensitive to the changes in social influence states 
compared to casualties. By contrast, the environmental influence was 
evaluated by the FID of the secondary accidents and has a lower sensi-
tivity with respect to the changes in social influence states. The reason 
may be that the FID of poisoning and asphyxiation will not exceed 100 m 
generally. Only fires and VCEs have the possibility to cause serious 
environmental influence. Therefore, the weight ranking of the three 
kinds of consequences with respect to social influence is C1 (economic 
losses) > C3 (casualties) > C2 (environmental influence). 

5. Discussions 

5.1. Model comparison 

In this section, we briefly compare the proposed model with similar 
models from other studies and then specify the similarities and differ-
ences. Finally, the strengths and weaknesses of the present model are 
summarized. We compare the methods and research contents of four 
studies (see Table 11). For the sake of illustration, the three models 
developed by other studies are referred to as the FTB model, DSB model, 
and EEB model, respectively. 

Fig. 6. Correlation between occurrence location and emergency response (The 
high, medium, and low in Fig. 6 are the states of emergency response). 

Table 8 
Configurations of the node states in BN.  

Node name Node status 

Occurrence time Daytime 
Occurrence location Residential district 
Pipeline pressure Medium 
Causes of leakage External damage 
Confined space True 
Ignition Delayed ignition 
Nearby building density Level 4 area 
Nearby population density 4000< NPD (EDP) 
Leakage strength Massive leakage 
Gas accumulation True 
Emergency response Medium  

Table 9 
Simulation result based on EDIB model.  

Secondary accident and 
consequence nodes 

Node status Estimated probabilities 
[Degree of increase or 
decrease] 

Fire 1. None (N) 65.8% [-33%] 
2. Flash fire (FF) 34.2% [+33.2%] 
3. Fireball or jet 
fire (FBoJF) 

0.0% [-0.2%] 

Vapor cloud explosion 1. False (F) 32.4% [-63.3%] 
2. True (T) 67.6% [+63.3%] 

Economic losses 1. Particularly 
serious (PS) 

9.2% [+6.3%] 

2. Major (M) 13.5% [+8.9%] 
3. Serious (S) 20% [+12.7%] 
4. Ordinary (O) 57.4% [-24.8%] 

Environmental influence 1. Below 100 m 51.3% [-16%] 
2. From 100 m to 
200 m 

33.6% [+7.4%] 

3. Over 200 m 15.1% [+8.6%] 
Casualties 1. Particularly 

serious 
4.7% [+1.9%] 

2. Major 7.7% [+1.8%] 
3. Serious 11.6% [+2.5%] 
4. Ordinary 76% [-4.2%] 

Social influence 1. Particularly 
serious 

5.1% [+3.0%] 

2. Major 8.1% [+4.7%] 
3. Serious 13.3% [+7.2%] 
4. Ordinary 73.5% [-14.9%]  

Table 10 
Posterior probabilities of economic losses, environmental influence, and casu-
alties by giving different levels of social influence (%).   

Then: 
If the states of social influence is: 

Particularly 
serious (PS) 

Major(M) Serious(S) Ordinary 
(O) 

Economic Losses 
(%). 

[22.3, 20.2, 
21.3, 36.2] 

[15.8, 28, 
10.2, 36] 

[11.5,15.2, 
32.1, 41.2] 

[1.4, 2.6, 
4.7, 91.3] 

Environmental 
Influence (%). 

[53.3, 33.4, 
13.3] 

[55.1, 
32.4, 
12.5] 

[60.8, 29.2, 
10] 

[68.5, 
25.4, 6.1] 

Casualties (%). [17.5, 18.6, 
16.5, 47.4] 

[11.7, 
27.1, 17, 
44.1] 

[9.6, 17.3, 34, 
39.1] 

[1.6, 4, 
6.9, 87.5] 

Note: Economic losses, [PS, M, S, O]; Environmental influence, [Below 100 m, 
From 100 m to 200 m, Over 200 m]; Casualties, [PS, M, S, O]. 
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Among the four models in Table 11, emergency response was 
investigated as an important influencing factor to gas leakage accidents, 
except in the FTB model. Efficient emergency response plays a key role 
in accident mitigation and is widely regarded as a procedural safety 
barrier (Yuan et al., 2022). DSB model investigated the direct influence 
of emergency response on secondary accidents. For instance, the results 
show that effective emergency response reduces the probability of urban 
large-scale fire from 0.481 to 0.095 (Wu et al., 2017). EEB model 
investigated the influence of the emergency response on final accident 
consequences. The results show that the probabilities of economic loss 
“<10 million RMB” are 0.869 and 0.606 respectively, under effective 
and poor emergency response situations (Zhang et al., 2018). In this 
study, the dependency between emergency response efficiency and ac-
cident evolution events (e. g., gas accumulation, ignition, leakage 
strength, and nearby population density) were considered, instead of 
correlating the emergency response to the secondary accidents/accident 
consequences directly. For instance, when emergency response effi-
ciency state changes from “high” to “low”, the probability of gas accu-
mulation increases from 0.134 to 0.475. Then, the gas accumulation 
probability will effect on the probabilities of the secondary accidents 
and further the final consequences. Due to the difference above 
mentioned, the prior estimated probabilities of economic loss and ca-
sualties in the proposed model are different to those in the EEB model 
(DSB model does not provide the initial estimations of economic loss 
probabilities and casualty probabilities, therefore is not compared here). 
For instance, the prior probabilities of the “Ordinary” state of economic 
losses and casualties in the proposed model are 0.851 and 0.822 
respectively. By contrast, those values are 0.713 and 0.662 in the EEB 
model. 

The proposed model sets fire, VCE, and asphyxiation or poisoning as 
secondary accidents, while in the DSB model they are large-area fires, 
pollution spread, and epidemics. In this model, the occurrence 

probability of secondary accidents (without differentiating the node 
states, the probability of the two scenarios is expressed as Ps1%/Ps2%) is 
6.2%/19.6% (Fire), 2.4%/9.7% (VCE) and 13.3%/23.1% (asphyxiation 
or poisoning) when setting up two accident scenarios similar to the DSB 
model. By contrast, the probabilities of secondary accidents in the DSB 
model are 21.1%/37.7% (Pollution spread), 9.48%/48.1% (Large-area 
fire), and 17.8%/10.6% (Epidemics). It’s clear that when the emergency 
response status changes, the changes in secondary accident probability 
in this model are isotropic and generally lower than that of the DSB 
model. However, the DSB model has anisotropic changes in the sec-
ondary accident probabilities. The proposed model divides the second-
ary accidents into three independent nodes, and their probabilities are 
determined by different combinations of events. While the DSB model 
combines the three accidents into one node, which is limited by the 
overall probability of the node, so the above situation occurs. 

5.2. Advantages, limitations and future works 

The proposed EDIB model established an accident evolution analysis 
and risk analysis tool for NGPLAs. This model fully considered the in-
fluence of emergency response on accident evolution and the final 
consequences. The combination of ET and DEMATEL-ISM was used to 
facilitate the determination of the BN model structure. The prior prob-
abilities of some nodes in the BN model were determined by accident 
statistics from 773 accident reports. Additionally, the final social influ-
ence caused by NGPLAs can be predicted based on the assessment of 
economic loss, environmental influence, and human casualties. The 
sensitivity analysis of influencing factors was conducted to identify 
critical factors with respect to NGPLAs. A real accident scenario is 
simulated by using the developed BN model to validate the effectiveness 
of the proposed model. In future research, the EDIB model can be 
applied in other fields to provide support for risk analysis and accident 
evolution analysis of industrial accidents. 

This study combines historical accident data and expert knowledge 
to develop an accident analysis model based on BN. Although a database 
with 773 accident cases was used to help the development of the BN 
model, the amount of data was still limited. As a result, the historical 
accident data was mainly used for influencing factor identification and 
BN node determination. For the dependency analysis of the nodes and 
the determination of the prior probabilities, expert judgment still plays a 
key role. When more and more data become available, future work may 
investigate the combination of historical accident data and expert 
judgment for the determination of the prior probabilities and condi-
tional probabilities in the BN model. 

6. Conclusion 

In this study, a model was developed to conduct accident evolution 
analysis and risk analysis of natural gas pipeline leakage accidents. The 
proposed model integrates ET, DEMATEL, ISM, and BN to investigate the 
accident evolution process of natural gas pipeline leakage accidents with 
the consideration of key influencing factors. A sensitivity analysis was 
performed by using the developed BN to identify the key factors asso-
ciated with secondary accidents. The results show that ignition and 
emergency response have a significant impact on the happening of 
secondary accidents caused by natural gas pipeline leakage. The cause of 
leakage has the least influence on the severity of the secondary acci-
dents. In addition, the occurrence time and occurrence location would 
affect the emergency response efficiency. Based on the accident evolu-
tion analysis, the developed model was applied to simulate a real gas 
pipeline leakage accident that occurred in Songyuan, China. The ob-
tained results are consistent with the real outcomes of the accident. By 
using the diagnostic function of BNs, the weight ranking of economic 
loss, environmental influence, and human casualties on social influence 
caused by natural gas pipeline leakage accidents was determined. The 
results show that economic losses and casualties have more weight with 

Table 11 
Model comparison results.  

Models Methods Research contents 

FTB (Wang 
et al., 
2017) 

Fault tree analysis (FTA) 
and BNs 

System failure probability analysis 
and incident factor sensitivity 
analysis yielded 34 key factors 
leading to the failure of buried urban 
gas pipelines. 

DSB (Wu 
et al., 
2017) 

BNs and Dempster-Shafer 
evidence theory 

Classical natural gas pipeline network 
incidents were analyzed and the 
influence of secondary hazards and 
emergency response on the final 
consequences was investigated. 

EEB (Zhang 
et al., 
2018) 

ET, incident evolution 
diagram (IED), and BNs 

Risk analysis of oil pipeline leakage 
accidents was conducted based on a 
BN model. ET and IED were used to 
facilitate the development of the BN 
model. Decision-making was 
considered in the developed model 
and influencing factor analysis was 
investigated. EEB used the number of 
people affected by an accident as a 
measure of social influence. 

EDIB (This 
paper) 

ET, DEMATEL-ISM, BNs, 
and Dempster-Shafer 
evidence theory 

ET and DEMATEL-ISM were 
combined to facilitate the 
development of a BN model. Accident 
report statistics and Dempster-Shafer 
evidence theory were used to support 
the determination of the CPTs in the 
BN model. A sensitivity analysis of 
influencing factors was conducted 
and an accident scenario analysis was 
implemented to validate the 
feasibility of the proposed model. 
Economic loss, environmental 
influence, and casualties were all 
evaluated to determine the final social 
influence.  
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respect to adverse social influence caused by NGPLAs. 
Although the developed model implements probabilistic analysis of 

NGPLA based on historical accident data and expert knowledge, expert 
judgment still plays a more critical role. As more data become available, 
future work will investigate the combination historical data and expert 
judgment to determine prior probabilities and conditional probabilities. 
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