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Abstract
This paper investigates the full variance–covariance (VC)matrix of two high-resolution regional quasi-geoid models, utilizing
a spherical radial basis function parameterization. Model parameters were estimated using weighted least-squares techniques
and variance component estimation (VCE) for data weighting. The first model, known as the “RCR model,” is computed
through the remove–compute–restore method, incorporating various local gravity and radar altimeter datasets. The second
model, the “combined model,” includes the GOCO05s satellite-only global geopotential model as an additional dataset with
a full-noise VC matrix. Validation of the noise VC matrix scaling for each quasi-geoid model is achieved by comparing
observed and formal noise standard deviations of differences between geometric and gravimetric height anomalies at GPS
height markers in the Netherlands. Analysis of the noise VC matrix of height anomalies at grid nodes reveals significantly
smaller formal noise standard deviations for the RCRmodel compared to the combined model. This difference is attributed to
VCE assigning larger weights to the GOCO05s dataset, which exhibits greater noise standard deviations for the specific spatial
scales used. Additionally, the formal noise standard deviations of height anomaly differences, relevant for GNSS-heighting,
favor the RCR model. However, the disparity between the two models is smaller than implied by the height anomaly noise
standard deviations. This is due to the combined model’s noise autocorrelation function displaying a longer correlation length
(67km) in contrast to the RCR model’s (17km). Consequently, the combined model exhibits a greater reduction in noise
variance for height anomaly differences relative to white noise compared to the RCR model.

Keywords Local quasi-geoid modelling · Least-squares techniques · Spherical radial basis functions · Multiscale analysis ·
Covariance propagation · Noise variance–covariance matrix · GNSS-levelling

1 Introduction

High-resolution (quasi-)geoid models are commonly used
on national and continental scales to support GNSS level-
ling or to replace national vertical reference surfaces based
on spirit levelling. However, the quality of these models is
often incompletely described, limited to comparisons with
geometric height anomalies from GNSS/levelling at a set
of height markers, or restricted to information about noise
standard deviations based on oversimplified models of noise
in the input datasets and simplifications in the process of
covariance propagation (e.g., Kearsley 1986; Agren 2004;
Voigt et al. 2009; Featherstone et al. 2011; Denker 2013;
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Brown et al. 2018). A full-noise variance–covariance (VC)
matrix of the (quasi-)geoid has not yet been published or
analysed, despite its crucial role in providing a comprehen-
sive description of the quality of a (quasi-)geoid model, and
its importance as a prerequisite for quality control and further
data processing.

In this paper, we aim to address this issue by analysing
the full-noise VCmatrices of two different quasi-geoid mod-
els computed from real data for an area between 2.5◦E and
6.5◦E and 48.5◦N and 56.5◦N, which includes the Nether-
lands mainland, continental shelf and Wadden islands. The
first solution was computed using the traditional remove–
compute–restore (RCR) technique and is referred here to
as the RCR solution. The second solution used a satellite-
only global geopotential model (GGM) with a full-noise VC
matrix as an additional dataset alongside the high-resolution
datasets used in the computation of the RCR solution. This
solution is referred to as the combined solution.We estimated
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the model parameters of each solution using weighted least-
squares and variance component estimation (VCE) for data
weighting. We then computed a full-noise VC matrix of the
model parameters using the law of covariance propagation.

Special attention was given to defining the noise VC
matrix of all input datasets, including several high-resolution
datasets such as airborne gravity disturbances, land and ship-
board gravity anomalies, and along-track height anomaly
differences from radar altimeter sea surface heights corrected
for the instantaneous dynamic topography. For terrestrial
gravity anomalies, we extended the functional model by
adding a bias parameter per dataset to account for systematic
and random errors. The methodology of model parameter
estimation for both the RCR and combined solutions was
discussed in Klees et al. (2017, 2018); the pre-processing of
the radar altimeter instantaneous sea surface heights was dis-
cussed in Slobbe (2013), the noise model for height anomaly
differences from reduced radar altimeter sea surface heights
was discussed in Farahani et al. (2017), and the two quasi-
geoid models considered in this study were presented and
analysed in Slobbe et al. (2019).

The remainder of this paper is organised as follows. In
Sect. 2, we briefly present the spherical radial basis func-
tion models of the residual disturbing potential used in
this study and outline the parameter estimation procedure.
While the covariance propagation of the RCR solution is
straightforward, it is not for the combined solution due to
a non-vanishing cross-covariance matrix of the estimated
coarse andfine scalemodel parameters.Wederive the expres-
sion for the cross-covariance matrix in Sect. 3. In Sect. 4, we
summarize the datasets and stochastic models used in this
study. We validate the proper scaling of the two noise VC
matrices of the residual disturbing potential and derived lin-
ear functionals in Sect. 5. Finally, we present the analysis
of the full-noise VC matrices of a set of height anomalies
in Sect. 6. We conclude this paper by summarising the main
findings and discussing the stochastic models of the datasets,
which are elaborated on in Sect. 7.

2 Parameterisation and parameter
estimation

The RCR solution uses a single-scale spherical radial basis
function (SRBF) model of the residual disturbing potential,

TRCR(x) =
Q1∑

q=1

dq,1 Φ1(x, zq,1). (1)

Here, “residual disturbing potential” refers to the difference
between the Earth’s gravitational potential and the sum of
normal gravity potential (regularized GOCO05s model com-

plete to degree 280) and RTM gravitational potential. The
SRBFs {Φ1(x, zq,1) : q = 1 . . . Q1}with centres {zq,1 : q =
1 . . . Q1} were chosen to resolve all wavelengths present in
the data up to the finest scales resolved by the high-resolution
datasets. The model parameters {dq,1 : q = 1 . . . Q1} were
estimated using weighted least-squares and variance com-
ponent estimation (VCE) for data weighting. The estimated
model is

T̂RCR(x) =
Q1∑

q=1

d̂q,1 Φ1(x, zq,1). (2)

Moreover, a full-noise VC matrix of the estimated model
parameters was computed from the noise VC matrices of the
input datasets using the law of covariance propagation.

The combined solution requires the use of a two-scale
SRBF model (cf. Klees et al. 2017),

Tcomb(x) = Tcs(x) + Tfs(x). (3)

Tcs is a low-resolution model representing the coarse scales
and Tfs adds the finer scales which are not resolved by the
coarse-scale model up to the finest scales the high-resolution
datasets allow to resolve. For simplicity, we refer to Tcs and
Tfs as the coarse-scale and fine-scale model, respectively.
The coarse and fine scale model parameters were estimated
sequentially using the methodology in Klees et al. (2017).
First, we restored GOCO05s from degree 151 to 280 to
the estimated model T̂RCR of Eq. (1) with model parameters
{d̂1,q : q = 1 . . . Q1}, applied a low-pass filter, and synthe-
sized height anomalies on a low-resolution N -point Reuter
grid (Reuter 1982) forming the first low-resolution dataset,

ξ1(xi ) =
Q1∑

q=1

d̂q,1 Fi
(
P ∗ Φ1

)
(xi , zq,1), i = 1 . . . N . (4)

Fi is the height anomaly functional evaluated at point xi , P is
the low-pass filter and ∗ is spherical convolution. The associ-
ated noise VC matrix was computed by strictly applying the
law of covariance propagation. The second low-resolution
dataset was computed at the same Reuter grid from the low-
pass-filtered GOCO05s model as

ξ2(xi ) = Fi
(
P ∗ T̂GGM

)
(xi ), i = 1 . . . N , (5)

where T̂GGM is the disturbing potential computed from the
satellite-only GGM, which now is the difference between
the Earth’s gravitational potential and the sum of normal
gravity potential (regularized GOCO05s complete to degree
150) and RTM gravitational potential. To compute the full-
noise VC matrix of this dataset, we first computed the noise
VC matrix of the regularized GOCO05s model from the
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GOCO05s normal equation matrix N and the inverse of the
regularized normal equationmatrix, N−1

λ , as N−1
λ NN−1

λ and
then applied the law of covariance propagation. Second, the
two low-resolution datasets of Eqs. (4) and (5) were used
to estimate the parameters {dq,0 : q = 1 . . . Q0} of a low-
resolution SRBF model of the residual disturbing potential,

Tcs(x) =
Q0∑

q=1

dq,0 Ψ0(x, zq,0), (6)

using weighted least-squares and VCE for data weighting.
Here, Ψ0(·, zq,0) = P ∗ Φ0(·, zq,0) is a low-pass-filtered
SRBF Φ0(·, zq,0) with centre zq,0; the centres {zq,0 : q =
1 . . . Q0} were chosen to resolve all signals present in the
low-resolution datasets. The estimatedmodel and parameters
are denoted T̂cs and {d̂q,0 : q = 1 . . . Q0}, respectively. The
estimated high-resolution model T̂RCR with model parameters
{d̂1,q : q = 1 . . . Q1} was filtered with the high-pass filter
H = I −P , where I is an all-pass filter and P is the low-pass
filter from Eqs. (4) and (5), to provide an estimate of the fine
scales of the residual disturbing potential,

T̂fs(x) =
Q1∑

q=1

d̂q,1

(
H ∗ Φ1

)
(x, zq,1). (7)

Note that the model parameters d0 and d1 were always con-
sidered as deterministic quantities. Hence, when Tikhonov
regularization was applied to the normal matrix, the noise
VCmatrix of the estimated model parameters was computed
as N−1

λ NN−1
λ , where N is the normal matrix and Nλ is the

regularized normal matrix.
The final estimate of the two-scale SRBF model of the

residual disturbing potential follows then from Eq. (3) as

T̂comb(x) = T̂cs(x) + T̂fs(x) (8)

with T̂cs from Eq. (6) and T̂fs from Eq. (7). The interested
reader is referred to Slobbe et al. (2019) for a detailed descrip-
tion of the choice of the SRBFs and the low-pass filter P , the
design of the two SRBF networks, the sequential estimation
of the two-scale SRBF model, and the results of the VCE.

3 Covariance propagation

The noise VCmatrix for any vector F of linear functionals of
the residual disturbingpotential T̂RCR (Eq. (2)) or T̂comb (Eq. (8))
can be obtained using the law of covariance propagation
applied to FT̂RCR and FT̂comb, respectively. While the applica-
tion of this law is straightforward for FT̂RCR, it is necessary
to take into account that the estimates {d̂q,0 : q = 1 . . . Q0}
and {d̂q,1 : q = 1 . . . Q1} are also correlated when applying

the law of covariance propagation to FT̂comb. This correla-
tion arises because the low-resolution dataset {ξ1(xi ) : i =
1 . . . N } (Eq. (4)), which is one of the datasets which enters
the estimation of themodel parameters {dq,0 : q = 1 . . . Q0},
also depends on the estimates {d̂1,q : q = 1 . . . Q1} accord-
ing to Eqs. (1) and (4).

To derive an expression for the cross-covariance matrix
between the two estimates d̂0 and d̂1, we assume that C0 and
C1 denote their noise VC matrices. We define a set of points
{um : m = 1 . . . M}, e.g., the nodes of an equal-angular grid
which covers the domain of the model T̂ . We are interested
in the noise VC matrix of height anomalies

ξ̂ (um) = (Fm T̂comb)(um), m = 1 . . . M, (9)

The height anomalies of Eq. (9) form a M×1 vector ξ̂ . Then,
using Eqs. (3) and (9), we may write

ξ̂ = Ad̂0 + (B1 − B2)d̂1. (10)

A is a M × Q0 matrix, and B1, B2 are M × Q1 matri-
ces. The kth-row of A, B1, B2 comprises the values
{(FkΨ0)(uk, zq,0) : q = 1 . . . Q0}, {(FkΦq,1)(uk) : q =
1 . . . Q1}, and {Fk(P ∗ Φq,1))(uk) : q = 1 . . . Q1}, respec-
tively. This follows directly from Eqs. (6), (7), and (8). The
noiseVCmatrix of the vector ξ̂ results from the lawof covari-
ance propagation applied to Eq. (10):

C
ξ̂

= AC0 AT + (B1 − B2)C1(B1 − B2)
T

+AC0,1(B1 − B2)
T + (B1 − B2)C1,0 AT , (11)

where C0,1 is the cross-covariance matrix between d̂0 and
d̂1 and C1,0 is the cross-covariance matrix between d̂1 and
d̂0. With

Q := AC0,1(B1 − B2)
T , (12)

we can write Eq. (11) as

C
ξ̂

= AC0 AT+(B1−B2)C1(B1−B2)
T+(Q+QT ). (13)

The term C cs := AC0 AT , Cfs := (B1 − B2)C1(B1 −
B2)

T , and C corr := Q + QT is the contribution of the
coarse-scales, the fine-scales, and the covariances between
the parameter vectors d̂0 and d̂1, respectively. To compute
Q ofEq. (12),we need an expression for the cross-covariance
matrix C0,1, and for the latter, we need the observation equa-
tions for the estimation of the coarse-scale model parameters
{dq,0 : q = 1 . . . Q0}. They canbewritten as (cf. Eqs. (4), (5),
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and (6))

E
{ (

ξ1(xi )
ξ2(xi )

)}
=

Q0∑

q=1

dq,0 (FiΨq,0)(xi , zq,0), i = 1 . . . N ,

(14)

or in matrix–vector notation,

E
{ (

ξ1
ξ2

) }
=

(
A1

A1

)
d0 or shortly E{ξ} = Ã d0. (15)

The data vector ξ1 can be written as

ξ1 = D d̂1, (16)

where the i th row of the N × Q1 matrix D comprises the
values {(Fi (P ∗Φ1))(xi , zq,1) : q = 1 . . . Q1}. The elements
of the vector ξ2 are given by Eq. (5). The noise VC matrix
of the vector ξ is

Cξ :=
(
Cξ1 0
0 Cξ2

)
, (17)

where Cξ1 and Cξ2 is the noise VC matrix of the data vector
ξ1 and ξ2, respectively.

Then, the weighted least-squares estimate d̂0 can be writ-
ten as

d̂0 = N−1
λ Ã

T
C−1

ξ ξ = N−1
λ

(
AT
1 C

−1
ξ1

ξ1 + AT
1 C

−1
ξ2

ξ2

)

= N−1
λ

(
AT
1 C

−1
ξ1

D d̂1 + AT
1 C

−1
ξ2

ξ2

)
, (18)

where

Nλ = Ã
T
C−1

ξ Ã + λR =: N + λR, (19)

is the regularised normal matrix associated with the estima-
tion of the coarse-scale model parameter vector d0, R is the
regularisation matrix, and λ is the regularization parameter
(we assume that regularization was applied; if not, λ = 0).
Applying the law of covariance propagation to Eq. (18)
and taking into account that Cov(d̂1, ξ2) = 0 provides the
expression for the cross-covariance matrix C0,1,

C0,1 = N−1
λ AT

1 C
−1
ξ1

D C1. (20)

Whenusing the inversion-free formulationof theweighted
least-squares estimator with regularisation as suggested in
Klees et al. (2018), Eq. (18) has to be replaced with

d̂0 = Ã
T
( Ã Ã

T + Cξ P regCξ + λI)−1 ξ , P reg

= I − Ã( Ã
′
Ã + λ′ I)−1 Ã

T
, (21)

where λ and λ′ are regularization parameters (cf. Klees et al.
(2018) for the details). To derive the expression for the cross-
covariance matrix C0,1 in this case, we define a matrix

S := Ã
T
( Ã Ã

T + Cξ P regCξ + λI)−1, (22)

which allows writing Eq. (21) as

d̂0 = S ξ . (23)

Using the partition

S = (
S1 S2

)
, (24)

where S1 and S2 are Q0 × N matrices, we may write

d̂0 = S1ξ1 + S2ξ2. (25)

Then, the cross-covariance matrix C0,1 follows directly
from Eqs. (16) and (25) as

C0,1 = S1D C1. (26)

Using Eqs. (12) and (26), we can compute the noise VC
matrix C

ξ̂
of Eq. (13).

We would like to emphasize that all noise VC matrices
analysed in this study represent only the effect of random
noise and do not include the bias introduced by applying
regularisation when estimating the parameter vectors d0 and
d1.

4 Datasets and stochastic models

The RCRmodel and the combined model were computed for
a specific area of interest, which is delineated by the red box
in Fig. 1. The figure also displays the different types of local,
high-resolution datasets used in the computation, namely
411, 947along-trackheight anomalydifferences,whichwere
computed from instantaneous sea surface heights from mul-
tiple radar altimeter missions corrected for instantaneous
dynamic topography from a high-resolution hydrodynamic
model (cf. Farahani et al. 2017 for details); 455,335 land sur-
face gravity anomalies; 8205 airborne gravity disturbances;
94,137 shipboard gravity anomalies, and 7179 spatially
interpolated gravity anomalies to fill small areas along the
Dutch and Belgium coast with no data. The GGM dataset,
which is utilized in the computation of the combined model,
is based on the regularized GOCO05s spherical harmonic
model (Mayer-Gürr et al. 2015). As per the data combina-
tion methodology developed in Klees et al. (2017, 2018), the
GGM dataset comprises a set of height anomalies obtained
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from a low-pass-filtered GOCO05s model. The low-pass fil-
ter is the spectral domain analogue of a Tukey filter with
a flat passband from spherical harmonic degrees 2 to 150, a
cosine-tapered transition band fromdegrees 151 to 230, and a
stopband above degrees 230.Hence, T̂cs resolveswavelengths
larger than 160 km at the mid-latitudes of the model domain.
Wavelength between 110 and 160 km are partially in T̂cs and
partially in T̂fs due to the transition band of the low-pass fil-
ter. Further details about the datasets can be found in Slobbe
(2013), Farahani et al. (2017), and Slobbe et al. (2019). The
observation points {xi : i = 1 . . . N } of Eq. (4) and (5),
respectively, are located at the nodes of aReuter gridwith grid
parameter 240 (Reuter 1982). In Fig. 1, they are displayed
as yellow circles marked with a cross. For more information
about this choice, we refer to Slobbe et al. (2019). Finally, all
datasets were corrected for topographic signals using RTM
and harmonic corrections (Forsberg and Tscherning 1981;
Heck and Seitz 2007).

In this study, we have employed stochastic models that
enhance current practices in several ways. Firstly, we have
utilized full-noise VC matrices for the radar altimeter
datasets as described in Farahani et al. (2017). Secondly, we
have applied a full-noise VC matrix for the GGM dataset,
which was derived from the regularized and unregularized
GOCO05s normalmatrices using the law of covariance prop-
agation, as explained in Slobbe et al. (2019). Thirdly, we have
included a bias parameter per land gravity dataset and incor-
porated the 133 statistically significant bias parameters (at a
5% level of significance) in thefinal least-squares adjustment.
This approach aims to account for systematic and random
errors, particularly long-wavelength errors, in the land grav-
ity datasets resulting from issues such asmissing atmospheric
corrections, height datum inconsistencies, and errors in atmo-
spheric and drift corrections. Fourthly, we estimated variance
factors per observation group (i.e., one for land gravity
anomalies,marine gravity anomalies, airborne gravity distur-
bances, interpolated gravity anomalies, and altimeter-based
along-track height anomalies, respectively) when computing
the RCR model parameters {dq,1 : q = 1 . . . Q1}, utiliz-
ingMINQUEMCVCE (Kusche 2003). Lastly, we employed
MINQUE VCE (Rao 1971) to estimate variance factors for
the two coarse scale height anomaly datasets when comput-
ing the model parameters {dq,0 : q = 1 . . . Q0}.

In all other cases,we used diagonal noiseVCmatrices. For
some of the land gravity datasets noise standard deviations
were provided as part of the metadata information, which we
adopted as a-priori values. For gravity datasets without meta-
data information and for the interpolated gravity data, we set
the a priori noise standard deviation to a conservative value
of 2 mGal. The treated the RTM reductions as deterministic
quantities. Future studies may wish to include digital eleva-
tionmodel errors in the stochastic model of reduced datasets.

Fig. 1 Map showing the high-resolution data area, the area of the low-
resolution datasets (dashed yellow line), the domain of the model T̂RCR

(dashed black line), the domain of the model T̂comb (red line), and the
location of the data points: terrestrial gravity anomalies (grey), airborne
gravity disturbances (blue), shipboard gravity anomalies (green), and
radar altimetry data (cyan). The large yellow circlesmarkedwith a cross
show the evaluation points {xi : i = 1 . . . N } of Eqs. (4) and (5)

McCubbine et al. (2017) has provided a framework for doing
so.

5 Validation

Assuming that the noise VC matrices of the input datasets
are accurate and parameterization errors are minimal, the
law of covariance propagation guarantees that the noise VC
matrix of the residual disturbing potential and of any set of
height anomalies computed from it such as the matrix C

ξ̂

of Eq. (13) is accurate. The largest parameterisation errors
are only a few millimeters, and their standard deviation is
significantly lower than the standard deviations of the height
anomalynoise (as shown inKlees et al. (2017)).However, it is
impossible to validate the accuracy of the noise VC matrices
of the input datasets. To assesswhether the noiseVCmatrices
of the height anomalies evaluated at the GPS height mark-
ers are appropriately scaled, we used GPS-levelling data for
the Netherlands. The basic idea was to compare the standard
deviation of the observed differences between gravimetric
and geometric height anomalies with the formal standard
deviation obtained from the noise VC matrices of gravimet-
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ric height anomalies, GPS ellipsoidal heights, and levelled
heights.

The histogram in Fig. 2 illustrates the differences between
geometric and gravimetric height anomalies at 82GPSheight
markers in the Netherlands. The RCR solution exhibits a
standard deviation of 0.66 cm, while the combined solution
has a standard deviation of 0.95 cm. We compared these
values with the values computed from the corresponding
noise covariance matrices. During the adjustment of the GPS
and levelling network, we found noise standard deviations
of approximately 0.5 cm for GPS-ellipsoidal heights and
noise standard deviations ranging between 0.2 and 0.5 cm
for levelled heights. Consequently, the formal noise stan-
dard deviations of geometric height anomalies lie within a
range of 0.54 cm to 0.71 cm. The noise standard deviations
of gravimetric height anomalies at the GPS height markers
fall between 0.07 and 0.44 cm (for the RCR solution) and
0.80 cm to 1.10 cm (for the combined solution) (cf. Fig. 2b,

e). Based on these figures, the formal noise standard devia-
tions of the differences between geometric and gravimetric
height anomalies are between 0.54 and 0.71 cm (for the RCR
solution) and between 0.97 and 1.31 cm (for the combined
solution). The observed standard deviation of 0.66 cm for the
RCR solution falls well within this range, while the observed
standard deviation of 0.95 cm for the combined solution is
slightly outside the interval, but not significantly so. These
findings suggest that there are no significant scaling errors
in the noise VC matrices of height anomalies for either the
RCR solution or the combined solution.

6 Variance–covariance analysis

Figure 4 provides a geographical representation of the noise
standard deviations of the height anomalies and their indi-
vidual components in terms of coarse scales, fine scales, and

Fig. 2 Histogram of the differences between geometric and gravimetric
height anomalies at the 82 GPS height markers in the Netherlands (a,
d); geographic rendition of the differences (b, e), and geographic rendi-

tion of the noise standard deviation of gravimetric height anomalies (c,
f). RCR solution (top row) and combined solution (bottom row). Note
the different color bars in plots (c) and (f)
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Fig. 3 Geographic rendition of height anomaly noise standard deviations of the low-resolution height anomaly datasets ξ1 and ξ2, which enter the
estimation of the coarse scale model parameter vector d0 before MINQUE VCE was applied

coarse/fine scale correlations (the displayed coarse/fine scale
correlations apply to the combined solution). Table 1 presents
some statistics. The fine scale contribution, (I − P) ∗ T̂RCR,
dominates the height anomaly noise variances of the RCR
solution. On average, fine scales account for 73% of the
noise variances, while coarse scales, P ∗ T̂RCR, account for
the remaining 27%. Conversely, for the combined solution,
the coarse scales, T̂cs, account for 98% of the noise variances,
while to fine scales, T̂fs, contribute only 2%. Additionally,
Fig. 4 and Table 1 indicate that the contribution of the
coarse/fine scale correlations to the noise variances of the
combined solution is negligible, accounting for only about
0.05% of the noise variances.

The height anomaly noise SDs in Fig. 4 and Table 1 illus-
trate a significant difference between the RCR and combined
solutions. Specifically, the noise standard deviations of the
coarse scales are much smaller for the RCR solution, aver-
aging just 0.07 cm, as opposed to the combined solution,
where they average 0.96 cm. It is worth noting that the
two low-resolution height anomaly datasets, ξ1 (from the
low-pass-filtered RCR model, see Eq. (4)) and ξ2 (from the
low-pass-filtered GOCO05s mode, see Eq. (5)), which enter
the estimation of the coarse scale model parameter vector d0,
already exhibit large differences in noise standard deviations.
Prior to the application ofMINQUEVCE, these values range
from 0.03 to 0.13 cm for ξ1 and from 2.36 to 2.67 cm for
ξ2 (see Fig. 3 for a geographical representation). MINQUE
VCE scaling increased the noise VC matrix of dataset ξ1

by a factor of 509.9, resulting in noise standard deviations
now ranging from 0.57 to 2.63 cm. Conversely, the noise
VCmatrix of dataset ξ2 was scaled down by a factor of 0.83,
leading to noise standard deviations that now range from2.15
to 2.43 cm.

To better understand this result, it is important to recall
that the design matrices of both datasets are identical and
square (cf. Klees et al. (2017), Klees et al. (2018)). In other
words, if the size of the parameter vector d0 is denoted by
N , then each design matrix has dimensions of N × N . If
the noise VC matrices of both datasets were scaled identity
matrices, the VCE normal matrix would be singular, making
it impossible to estimate variance factors for both datasets
(Amiri-Simkooei, 2007). If the noise VC matrices of both
datasets were diagonal with little variation along the diag-
onal, the VCE normal matrix would be ill-conditioned (as
considered by Slobbe et al. (2019)). The fact that the VCE
normal matrix was well-conditioned and allowed us to esti-
mate two variance factors is due to the fullness of both noise
VC matrices.

We also tested other VCE estimators, but the variance
factors obtained were very similar to those provided by
MINQUE VCE. Therefore, we believe that the most likely
explanation for the VCE result is the different structure of the
noise autocorrelation matrices of the two datasets, which are
shown in Fig 5. The figure indicates that the noise autocor-
relation matrix of datavector ξ2 has more and larger positive
and negative noise autocorrelations compared to datavector
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Fig. 4 Geographic rendition of
height anomaly noise standard
deviations and their contributors
for the RCR solution and the
combined solution. Note the
different colour bars
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Table 1 Statistics of height
anomaly noise standard
deviations (total and
contributors) over the area of
interest

Solution Contributor Min [cm] Max [cm] Mean [cm]

RCR Total 0.03 0.85 0.15

Coarse scales 0.03 0.13 0.07

Fine scales 0.03 0.82 0.13

Coarse/fine scale correlations n/a n/a n/a

Combined Total 0.53 1.58 0.97

Coarse scales 0.53 1.53 0.96

Fine scales 0.03 0.82 0.13

Coarse/fine scale correlations 0.00 0.12 0.03

Note that the statistics for the fine scales are the same for RCR and combined solution

Fig. 5 Autocorrelation matrix of datavector ξ1 of Eq. (4) (a) and ξ2 of Eq. (5) (b), respectively

ξ1, resulting in a stronger weighting of datavector ξ2 relative
to datavector ξ1. However, we cannot exclude the possibility
that other factors contributed to the unexpected VCE result,
such as the extremely high condition number of the a priori
noise VC matrix of datavector ξ2, which required some reg-
ularization to obtain a reasonable solution (as discussed in
detail by Klees et al. (2018)). Unfortunately, to our knowl-
edge, there is currently no method available to verify this.

Figure 6 displays a plot of the height anomaly noise auto-
correlation matrix for the RCR solution and the combined
solution, as well as the autocorrelation matrices of height
anomaly noise associated with the coarse and fine scales,
respectively, at the nodes of an equal-angular grid. It is
important to. note that the term “coarse scales” refers to
the passband of the low-pass filter P , which was a Tukey
filter with a transition band beginning at spherical harmonic
degree 150 (equivalent to about 160 km full wavelength at the
mid-latitudes of the model domain) and ending at spherical
harmonic degree 230 (about 110 km). The half-power-point
effective cut-off frequency is at spherical harmonic degree
180, corresponding to a full wavelength of approximately
135 km at the mid-latitudes of the model domain. The pat-

tern of the autocorrelation matrix for the RCR solution is
dominated by the fine scales, as shown in Fig. 6a and c while
the coarse scales dominate the pattern of the autocorrelation
matrix for the combined solution, as shown in Fig. 6e and d.
This difference can be attributed to the different magnitudes
of the noise variances between coarse and fine scales for each
solution. Specifically, the ratio of fine scale to coarse scale
noise variances is on average 4.4 for the RCR solution, com-
pared to 0.02 for the combined solution. Additionally, Fig. 6
shows that the autocorrelations for the combined solution
frequently switch their sign and decrease slowly, while those
for the RCR solution do not oscillate strongly and decrease
quickly.

A more detailed understanding of the noise autocorrela-
tions can be gained by computing autocorrelation functions.
Figure7a and c show the mean omnidirectional height
anomaly noise autocorrelation function (MOACF) over the
domain of the model T̂comb (indicated by the red box in Fig. 1)
and the 1−σ -scatter about themean for theRCR solution and
the combined solution, respectively. TheMOACF associated
with the combined solution exhibits positive autocorrela-
tions over distances ranging from 0 to 100 km, with quickly
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Fig. 6 Noise autocorrelationmatrices for height anomalies at the nodes
of a 5′52′′ equal-angular grid. Autocorrelation matrix (a, d); coarse-
scale autocorrelation matrix (b, e); fine-scale autocorrelation matrix

(c, f). RCR solution (top row) and combined solution (bottom row).
Note that the fine scale autocorrelation matrix is the same for the RCR
solution and the combined solution by construction

decaying oscillating autocorrelations for larger distances.
For example, beyond a distance of 220 km, the autocorre-
lations drop below 0.10. The scatter about the mean reflects
heterogeneity and anisotropy of the autocorrelations, never
exceeding 15% of the mean.

The MOACF of the RCR solution differs significantly
from that of the combined solution. In particular, the auto-
correlation length is much shorter, approximately 17 km
compared to 67 km for the combined solution, and there
are no oscillations beyond the second zero crossing. Addi-
tionally, the scatter about the mean is significantly larger for
distances below 100 km compared to the combined solution,
indicating stronger heterogeneity and/or anisotropy of the
autocorrelations (see Fig. 7b).

MOACFs can also be computed for sub-areas. An exam-
ple is shown in Fig. 8 for the Netherlands and Belgium. A
comparisonwith Fig. 7a and c indicates that they do not differ
much from the MOACFs over the domain of the model T̂comb

(indicated by the red box in Fig. 1). Likewise, the MOACFs
for the Netherlands and Belgium are very similar, though
the graphs reveal small variations in the location of the first
zero-crossing. For the Netherlands, the first zero crossing
occurs at 110 km (for both RCR and combined solutions),

while for Belgium it is located at 87 km (for the RCR solu-
tion) and 100 km (for the combined solution). Moreover,
slightly larger negative autocorrelations between the first two
zero-crossings are observed for Belgium compared to the
Netherlands (for both RCR and combined solutions).

The autocorrelations of the noise have implications for
GNSS-levelling, as positive values indicate lower noise stan-
dard deviations for height anomaly differences compared to
white noise, and vice versa. Figure9 illustrates the reduction
in percent of the standard deviation of height anomaly differ-
ences abovewhite noise, as a function of the distance between
two points in the Netherlands and Belgium, respectively. The
plot reveals significant reductions in noise standard devi-
ations for the combined solution, and smaller reductions
for the RCR solution, depending on the distance. Table 2
presents the reduction percentages for selected distances.
For example, the combined solution for the Netherlands pro-
vides a reduction of at least 86% for distances not exceeding
10 km. The reduction is still greater than 53% for distances
not exceeding 40 km. Between the first two zero-crossings,
located at about 100 km and 230 km, respectively, there is
a slight degradation due to negative noise autocorrelations,
which does not exceed 15%. Similar results are obtained for
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Fig. 7 Mean omnidirectional autocorrelation function of noise in height anomalies (a) and zoom-in over distances from 0 to 100 km (b) with
scatter (1σ) about the mean. RCR solution (a, b) and combined solution (c, d)

Fig. 8 Mean omnidirectional autocorrelation function for the Netherlands (a, c) and Belgium (b, d) with scatter (1σ ) about the mean. RCR solution
(a, b) and combined solution (c, d)
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Fig. 9 Reduction in percent of the noise standard deviation of height anomaly differences above white noise as function of the distance between
the two points for the Netherlands (a, c) and Belgium (b, d). The bars show the scatter (1σ ) about the mean. RCR solution (a, b) and combined
solution (c, d)

Table 2 Reduction in percent of
the noise standard deviation of
height anomaly differences
above white noise as function of
the distance between the two
points for The Netherlands and
Belgium

Solution Distance 10km (%) 20km (%) 40km (%) 60km (%) 100km (%)

RCR The Netherlands 39 22 11 6 0.8

Belgium 52 37 20 10 −1.6

Combined The Netherlands 86 74 53 34 5

Belgium 85 74 52 32 1

Belgium. The RCR solution shows much smaller reduction
percentages. For instance, over the Netherlands, the reduc-
tion is only 39% for a distance of 10 km and 22% for a
distance of 40 km. For Belgium, the reductions are some-
what larger, but still small compared to those of the combined
solution. Evidently, the use of GOCO05s as one of the noisy
datasets, in combination with a stronger weight assigned to
this dataset compared to the high-resolution datasets byVCE,
is responsible for the more favorable noise autocorrelation
function of the combined solution compared to theRCR solu-
tion.

Instead of expressing the reduction of noise in height
anomaly differences as a percentage, we can also compute
the noise standard deviations directly as a function of the
distance between two points. Figure10 provides an example
of this approach. Over the Netherlands, the combined solu-
tion shows very low noise standard deviations of only a few
millimeters over distances of a few tens of kilometers. How-

ever, they increase with distance, reaching over 1 cm at about
70 km. For the RCR solution, the noise standard deviations
are even smaller, not exceeding 0.2 cm for distances shorter
than 80 km. Similar result are obtained for Belgium.

7 Discussion and conclusions

We conducted an analysis of the full-noise VC matrices for
two regional quasi-geoid models that cover Belgium and
the Netherlands, including the mainland, continental shelf,
and Wadden islands. The official quasi-geoid model of the
Netherlands was computed using the RCR technique from
land, marine, and airborne gravity and radar altimeter data.
The second model used the same datasets as the RCR model
and a satellite-only GGM as an additional noisy dataset.

For the RCR solution, we found that the height anomaly
noise standard deviations range between0.03 cmand0.85 cm
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Fig. 10 Mean noise standard deviation (SD) of height anomaly differences as function of the distance between two points (blue) compared to white
noise (red) for the Netherlands (a, c) and Belgium (b, d). RCR solution (a, b) and combined solution (c, d)

over the domain of the model T̂comb. Fine scales (i.e., wave-
length shorter than about 110 km at mid-latitudes of about
52◦) accounted for about 73% of the noise standard devia-
tions. In contrast, the height anomaly noise standard devi-
ations for the combined solution ranged between 0.53 cm
and 1.58 cm. Here, coarse scales dominated, accounting for
approximately 98% of the noise standard deviations.

Our analysis showed that the noise VC matrix’s struc-
ture for height anomalies is favorable for GNSS-levelling,
especially for the combined solution. The noise standard
deviations of height anomaly differences are significantly
smaller than expected from the height anomaly noise stan-
dard deviations due to positive autocovariances. Height
anomaly differences’ precision improves as the distance
between two points decreases. For the combined solution,
we obtained standard deviations of less than 0.2 cm for dis-
tances below 10 km and less than 0.6 cm for distances below
40 km over the Netherlands mainland. We also found that
the favorable positive autocovariances result from using the
GOCO05s satellite-only GGM as one of the noisy datasets
when computing the combined solution.

Additionally, we observed that the RCR solution provided
ameanomnidirectional height anomalynoise autocorrelation
function with a correlation length that was almost four times
shorter. The benefit of positive noise autocorrelations when
computing height anomaly differences is less pronounced.
Nonetheless, the noise standard deviations of height anomaly

differences were still smaller than those of the combined
solution.

The quality of the full-noise VC matrix of a quasi-geoid
model relies on various factors, including the quality of the
stochastic models, which cannot be validated. In our study,
we made significant efforts to ensure reasonable VC matri-
ces for all involved datasets, especially for the GGM dataset
and the radar altimeter datasets. Additionally, we accounted
for long-wavelength systematic and random errors in the
land gravity datasets through bias parameter estimation. We
employed VCE for weighting among land, marine, airborne,
and interpolated gravity, and radar altimeter datasets, and
when combining them with the GGM dataset. Furthermore,
we strictly followed the law of covariance propagation while
estimating the model parameters.

The most critical simplification in our stochastic model
is neglecting existing noise correlations in land and marine
gravity datasets. This omission could significantly affect
the results of data combination, and provide over-optimistic
noise VC matrices for both the RCR and the combined mod-
els. It is highly probable that noise in shipboard gravity data
is correlated due to errors in the drift and Eötvös corrections,
errors in the connectionwith land gravity stations, and the use
of cross-over adjustment. Although there are no studies on
noise correlations in marine point gravity anomalies, some
studies have been published on noise in marine mean gravity
anomalies. For instance,Monka et al. (1979) analyzed 1◦×1◦
mean free-air gravity anomalies in the North Sea region and
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reported error covariances of 3 mGal2 at distances of 1000 to
2000 km. Weber and Wenzel (1983) analysed 6′ × 10′ mean
free-air sea gravity anomalies in the North Atlantic, North
Sea, and Mediterranean Sea, and reported error covariances
of more than 5 mGal2 at distances up to 100 km and still
3 mGal2 at distances up to 1, 000 km. Noise correlations are
also likely to exist in land gravity data. Nonetheless, even if
noise correlation models exist in the land and marine gravity
datasets, the numerical complexity of utilizing this informa-
tion in the least-squares adjustment is considerable, given the
size of these datasets.

Another way to enhance the stochastic model is by taking
into account any errors in the digital elevation model (DEM)
and the mass densities utilized in the computation of the
RTM reduction. However, as mentioned earlier, it remains
uncertain if such information can be incorporated into the
least-squares adjustment process, as it entails noise correla-
tions across all datasets, leading to even greater numerical
complexity.

Using another satellite-only GGMwhich is provided with
a full-noise VC matrix will change the results for two rea-
sons. Firstly, its noise VC matrix will differ from the one
used in this study. Secondly, the parameters of the low-pass
filter which was used when combining the land, marine,
and airborne gravity and radar altimeter datasets with the
GGM dataset may change. However, it is very likely that the
favourable structure of the noise VCmatrix of height anoma-
lies of the combined solution compared to a RCR solution
will persist for any satellite-only GGM which uses data of
the satellite gravity missions CHAMP, GRACE, GOCE, and
GRACE-FO.

Data availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request.
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