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A B S T R A C T

The collaborative design of the timetable and dynamic-capacity allocation plan of emerging
modular vehicles (MVs) is a promising solution to the mismatch between supply and demand
in public transportation studies; however, such efforts are subject to high-level dynamics and
uncertainty inherent in operating environments. In this study, we focus on the timetabling
and dynamic-capacity allocation problem of MVs within the context of distributionally robust
optimization under time-dependent demand uncertainty. The dynamic capacity refers to the
number of modular units (MUs) comprising an MV can be potentially changed at different
times and stops. A Wasserstein distance-based ambiguity set with a time-dependent and
station-wise perturbation parameter is adopted to incorporate all potential distributions within
a 1-Wasserstein distance for addressing the uncertainty of passenger demand. Further, a
data-driven distributionally robust optimization model that considers time-varying capacity
is formulated to minimize passenger waiting costs and dispatching costs of operators over
all possible demand distributions within the ambiguity set. Subsequently, an expansion that
allows for flexible formations of MVs assigned to each trip at each stop is proposed, and this
results in more customized operational plans driven by the passenger demand. To improve the
computational efficiency of realistic problems, we design a customized integer L-shaped method
to exactly solve the models, which incorporates a class of valid equalities to further speed up
the computation. The effectiveness of the proposed approaches in reducing the costs for both
passengers and operators compared with the practical fixed-capacity operations is verified by
real-world case studies based on the operating data of Beijing Bus Line 468. Furthermore, the
superiority of the distributionally robust optimization method in comparison to the stochastic
programming and the robust optimization approaches is demonstrated.

1. Introduction

Current metropolitan public transportation systems employ fixed-capacity vehicles; however, this makes it challenging to match
uneven passenger demand over time and space. This imbalance between supply and demand has led to an excessive number of
vehicles operating during off-peak periods and a shortage of vehicles during peak periods. Fortunately, automated public transport
systems have emerged recently, and they are highly favored owing to their potential to overcome the above-mentioned problems and
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Fig. 1. Modular vehicles designed by the Next Future Transportation Inc. and Ohmio LIFT.

improve the level of service, while minimizing the social costs of public transportation services (Sadrani et al., 2022b). In addition,
the modular vehicle (MV) is an emerging technology that has been proven to be promising by many companies, such as Next Future
Transportation Inc. (NEXT Future Transportation Inc., 2022) and Ohmio LIFT (Ohmio, 2023), and tested in Dubai (Spera, 2016;
NEXT Future Transportation Inc., 2023). The MVs developed by Next Future Transportation Inc. have the following characteristics.
(1) Each MV is comprised of multiple MUs, and the number of MUs contained in an MV is called the formation of that MV in this
study. For example, MVs with formations 2 and 3 are shown in Fig. 1. (2) Each MU is capable of docking with other MUs at speed
on public roads and can be unlocked smoothly at full speed. Additionally, these operations can be performed relying solely on MU’s
own device (NEXT Future Transportation Inc., 2022). (3) It enables passengers to stand and walk from one MU to another during
travel (NEXT Future Transportation Inc., 2018). Since MVs possess vehicle autonomy, they can dynamically adjust the capacity
through the direct physical docking and undocking of MUs at the terminals or at each stop, which is referred to as time-varying
capacity and station-wise docking in Shi and Li (2021) and Chen and Li (2021), respectively. Specifically, if vehicles can only change
formations at terminals, then the capacity is dynamically allocated over time; the capacity becomes dynamic in spatial and temporal
terms if formations can be modified flexibly at each stop. Both these problems are collectively referred to as the dynamic-capacity
allocation problem of modular vehicles in this study.

In the field of mobility and transport, technologies are being emerged at a much faster pace than the methodological adaptation.
These newly deployed tools of transport come with their own assumptions and complexities, which call for new methods to tackle
them. The timetabling and dynamic-capacity allocation (TT-DCA) problem of modular vehicles has naturally become a popular
research area. A majority of the relevant research focuses on optimization methods under deterministic conditions; however, as an
open and complex mega-system, urban public transport (especially bus systems operating on the road) suffers from a considerable
number of uncertainties. Various factors can trigger uncertainties, e.g., weather, signal lights, operating dates, development of other
transportation modes (Ma et al., 2019). Operational plans are drafted a priori (i.e., before passenger demand is realized), and
therefore, it is necessary to consider uncertainties when designing operational plans (e.g., timetables and dynamic-capacity allocation
plans). To the best of our knowledge, Sadrani et al. (2022b) is the most recent research that aims to optimize the service frequency
and vehicle size for automated bus systems under uncertainty by using a stochastic programming (SP) optimization method.
Stochastic programming is a popular method to address problems with uncertainty; it assumes that the probability distribution of
the uncertain parameters is completely known in advance (Liu et al., 2022). The robust optimization (RO) approach is another well-
recognized methodology, which has been commonly used in robust timetabling problem (e.g., Goerigk and Schöbel, 2014; Polinder
et al., 2019). The RO approach restricts the uncertain parameters to a given support set without any distributional assumptions and
performs optimizations for the worst-case scenario over all realizations of that support set. A problem of the RO approach is that it
is too conservative because it focuses only on the worst-case scenario. The most reliable strategy can be generated by applying the
RO approach to the TT-DCA problem of MVs; however, this will simultaneously, and inevitably, lead to wasted capacity because
the demand scenario on which the optimal solution is generated rarely occurs in practice. To sum up, in such systems, we deal with
a great deal of uncertainties. However, classic methods are very restrictive as they heavily rely on the assumptions for the sake of
tractability.

An emerging optimization approach, namely distributionally robust optimization (DRO), is one of the first attempts to release the
already existing problems from restrictive assumptions and shine light on how these methods can be adapted for a larger network of
such autonomous and modular vehicles. Even though the technology of modular vehicles is on the verge of deployment at this “proof
of concept” stage, more realistic models make operationalization of this technology more efficient. DRO lies at the intersection of the
RO and SP methods (Agra and Rodrigues, 2022). The DRO method assumes that information about the probability distribution of
uncertain parameters is partially known, and it portrays all potential distributions by constructing an ambiguity set where the true
distribution is assumed to belong to the ambiguity set. The worst-case expected cost is minimized over the ambiguity set (Delage
and Ye, 2010). Among all types of ambiguity sets, the Wasserstein distance-based ambiguity set has recently become a concern.
This ambiguity set consists of all probability distributions whose Wasserstein distance, representing the distance between any two
distributions, from the nominal distribution, is constrained by a parameter. There are two reasons behind the growing significance of
the Wasserstein distance-based ambiguity set: (i) the Wasserstein distance-based ambiguity set has high practicability, which allows
2
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decision makers to flexibly control the conservativeness of the optimal solutions by adjusting only a single parameter (Agra and
Rodrigues, 2022), and (ii) it shows superior out-of-sample performance. The DRO models based on the Wasserstein distance-based
ambiguity set can integrate numerous sampled data into the optimization model directly, and therefore, they are often referred to as
data-driven DRO methods (Mevissen et al., 2013). The DRO method can mitigate over-conservatism while enhancing the robustness
of the optimal solutions because the precise probability distribution of uncertain parameters is difficult to obtain in real-world
operations; this can help create a trade-off between operators and passengers. Nevertheless, one of its limitations is that, since a set
of probability distributions is considered when employing this method, its models for large-scale problems can be quite challenging
to solve, especially when the uncertainty is of high dimension (Cheramin et al., 2022).

To bridge these gaps, this study explores the application of data-driven DRO to the TT-DCA problem of MVs with time-dependent
ravel times and passenger demands. We focus on uncertain passenger flows and aim to design a robust timetable and dynamic-
apacity allocation plan by optimizing the shifting time of each MV at the first stop, the holding time at each stop, and the
ime-varying and station-wise capacity adjustment strategies. In addition, we provide managerial insights through comparisons
etween the fixed-capacity and dynamic-capacity operations, as well as establish a comparison between SP and RO to explore the
uperiority of DRO. Further, we investigate a decomposition algorithm that can efficiently derive high-quality solutions. The tight
oupling between the timetable, and the station-wise and time-varying capacity adjustment strategies of MVs, are decomposed,
hich helps reduce computational intensity.

.1. Literature review

We briefly review studies that are most relevant to our work, including the timetabling and vehicle scheduling with variable
apacity in a heterogeneous fleet, timetabling and dynamic-capacity allocation of MVs in automated public transport systems, and
he DRO method.

Over the past few decades, a considerable amount of research has focused on the conventional demand-oriented timetabling
roblem with a fixed bus capacity to better match the available supply with passenger demand (e.g., Newell and Potts, 1964;
ánchez-Martíneza et al., 2016; Robenek et al., 2016; Wang et al., 2017; Gkiotsalitis and Alesiani, 2019; Wu et al., 2019; Liu
t al., 2021; Zhang et al., 2021a). However, most of these studies base their conclusions on the ideal assumption that travel times
nd/or passenger demand are static and/or deterministic. Recently, several studies have focused on the timetabling and vehicle
cheduling problem with variable capacity in a heterogeneous fleet, aiming to enhance the matching of supply and demand and
ecrease the waste of capacity. The variable capacity in a heterogeneous fleet refers to a fleet of vehicles with multiple sizes. The
apacity of each vehicle is fixed but can be different from the others. The potential of operating various sizes of vehicles during
ifferent periods to suit the passenger demand at that time has already been demonstrated by Liu and Ceder (2016), Peña et al.
2019), Visentini et al. (2019), and Tang et al. (2023). For example, Liu and Ceder (2016) formulated a two-objective mathematical
odel for the collaborative optimization of timetables and vehicle sizes, where one objective is to minimize the load discrepancy

rom a desired occupancy level on vehicles and the other is to minimize the total waiting time of passengers. The results reveal
hat, through the proposed collaborative optimization method, the two objective values can both be reduced compared with those
f the current timetables. Nevertheless, passengers are also typically unevenly distributed spatially. Matching spatially unbalanced
assenger flows is challenging because the inability to alter the formations of en-route vehicles in the aforementioned heterogeneous
leet with multiple vehicle sizes during operations.

Fortunately, the emerging MV technology show considerable potential towards achieving station-wise and time-varying capacities
y allowing vehicles to be disassembled and assembled at specific stations. Compared to the fleet with multiple vehicle sizes, MVs
rovide a greater flexibility for adjusting the capacity of individual vehicle by adding or removing MUs quickly. With MVs, it
s possible to optimize the formation of each vehicle based on the unevenly distributed passenger flows in spatial and temporal
erms. Moreover, MVs offer the advantage of flexible utilization of MUs across different lines due to the convenience of docking
nd undocking at stops and during traveling. For example, one MU in an MV can be undocked at a transfer stop, and then utilized
y another line with higher passenger demand that serves this stop. These flexibilities allow for the efficient allocation of vehicles
ased on demand and reduce operating costs. The advanced advantages of MV technology have garnered significant attention from
esearchers. Recent studies have started concentrating on the demand-oriented TT-DCA problem of MVs to strike balance between
osts incurred by both passengers and operators. For example, Chen et al. (2019) proposed a mixed-integer linear programming
MILP) model based on the discrete modeling method, wherein the decisions include whether to dispatch a train at each discrete
ime point and what formation of MVs to dispatch. Moreover, the authors designed a customized dynamic programming (DP)
lgorithm with an efficient set of inequalities to speed up computation. Furthermore, Chen et al. (2020) developed a continuum
pproximation (CA) model based on the continuous modeling method for determining the formation and departure times of each
V considering that the discrete modeling approach will definitely increase computational difficulty. Dai et al. (2020) proposed

n integer nonlinear programming model to balance the trade-off between the operating costs and costs of increased passenger
aiting times by considering the joint design problem of the bus dispatch headway and capacity for transit systems operating with
ixed human-driven and autonomous buses. With the aim of increasing the number of served trip requests and decreasing the

otal vehicles-miles-traveled, Zhang et al. (2020) formulated two ILP models for the problem by utilizing MVs to serve the first-
nd last-mile trips. Further, Shi and Li (2021) established an MILP model for the joint design problem of departure frequency and
ormation of MVs, which can be solved efficiently using the DP algorithm. Considering stochastic travel times and 15-min-dependent
3

emand, Sadrani et al. (2022b) proposed a nonlinear programming (NLP) model to determine the service frequency and vehicle size
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in automated bus systems. The authors designed a full enumeration (FE) algorithm that can incorporate the Monte Carlo simulation
(MCS) approach to obtain a high-quality globally optimal solution.

All the aforementioned studies permit the assembly and disassembly of MVs only at the terminals. Furthermore, some recent
tudies have enabled the station-wise docking of MVs: vehicles can now change their formations at specific stations along the line
o better meet passenger demand with temporally dynamic and spatially uneven characteristics. Chen and Li (2021) formulated a
iscrete-time-based MILP model that permitted modular vehicles to adjust their formations flexibly by docking and undocking at
ach station. The theoretical properties were investigated, and a tailored branch-and-bound (B & B) algorithm was proposed to speed
p the computation. Chen et al. (2022) employed the CA approach to model this problem for obtaining a dynamic-capacity operating
lan more efficiently. A realistic passenger dynamic evolution process was integrated into their CA approach. Further, Tian et al.
2022) proposed a mixed-integer nonlinear programming formulation to determine the location and maximum capacity of these
tations, as well as the optimal operational strategy of station-wise dynamic formations over space and time by assuming that
he formations of MVs can be adjusted flexibly at intermediate special stations that can perform assembly/disassembly operations.
able 1 summarizes the detailed characteristics of the most related studies with respect to the TT-DCA problem.

In the DRO approach, one key aspect is the design of an ambiguity set appropriate to the problem. In the last decade, theoretical
esearch on the DRO approach, which includes ambiguity sets, has progressed at a remarkable pace. We recommend readers
ollow Rahimian and Mehrotra (2019) for an up-to-date and thorough review of the theoretical aspects of DRO. Further, the DRO
pproach has been successfully applied in certain engineering fields to solve the inventory problem (Ardestani-Jaafari and Delage,
016), hub location problem (Liu et al., 2019), disaster relief problem (Shehadeh and Tucker, 2020), and so on. Earlier research
ocused on moment-based ambiguity sets, which have poor convergence. Therefore, the recent research has actively focused on
iscrepancy-based ambiguity sets, particularly on the Wasserstein distance-based ambiguity set. For example, Zhang et al. (2021b)
ormulated a DRO model with the Wasserstein distance-based ambiguity set in response to the vehicle routing problem with time
indows. They designed two algorithms (branch-and-cut algorithm and a meta-heuristic algorithm) for large-scale cases. Agra and
odrigues (2022) proposed a two-stage DRO formulation to address the berth allocation problem under uncertain handling times;

his was integrated with the Wasserstein distance-based ambiguity set. To the best of our knowledge, studies on the application of
he advanced DRO method to the urban public transport timetabling problem remain limited.

In summary, the timetabling problem of traditional buses is a popular research topic, and many mathematical formulations and
olutions have been explored. Given the emergence of MVs in automated bus systems, the TT-DCA problem has become a new
esearch topic in recent years. However, an in-depth analysis of the collaborative optimization of multiple dynamic operational
trategies remains lacking because of the complexity of formulating coupling relations between stochastic and/or time-dependent
arameters. For example, time-varying connections between travel times and passenger demand at 1-min time granularity, station-
ise capacity, and station-varying headway need to be considered to make precise decisions on the flexible-capacity allocation
lan. Furthermore, the relevant mathematical models are typically solved using simulation-based or heuristic algorithms because
f the complexity of data-driven DRO problems. Recent studies (e.g., Gkiotsalitis and Alesiani, 2019; Sadrani et al., 2022b) have
onsidered the timetabling problem under stochastic conditions. However, these studies consider uncertain passenger demand as an
nvariant value within 15 min or 1 h, and the capacity is fixed among all stops along the line. Therefore, extended methodologies
hat can help take decisions regarding the capacity of each MV at each stop are subject to further research. In addition, studies on
he TT-DCA problem of MVs have primarily focused on the transit corridor, and thus, the departure frequency and dynamic vehicle
ormations are key decision variables. Other strategies that have been tested to effectively mitigate the ‘‘bus-bunching’’ (too small
eadway) phenomenon, such as holding at stops, have rarely been decided simultaneously.

.2. Contributions of this paper

This paper contributes to the literature by formulating data-driven DRO models for the TT-DCA problem of MVs, which consider
eal-world operating characteristics of bus systems (i.e., time-dependent travel times, uncertain and time-dependent passenger
emand), to search for optimal robust (1) time-varying and station-wise capacity allocation plans of MVs, and (2) the corresponding
imetables. The decisions involve employing strategies in the tactical phase that can provide a scientific basis for subsequent decisions
e.g., the acquisitions of vehicles or MUs) to offer high-quality and high-reliability services. The objective is minimizing the worst-
ase expectation with respect to the costs of passengers and operators over all distributions residing within an ambiguity set, while
mproving the dynamic match between capacity and demand. Further, this study provides an efficient decomposition-based branch-
nd-cut algorithm for solving the proposed formulations to the optimum. The main contributions of this study to the literature are
ummarized as follows.

∙ We integrate the timetabling and dynamic-capacity allocation problem of MVs in automated bus systems into data-driven DRO
models. These models employ the Wasserstein distance-based ambiguity set, allowing us to more accurately account for the uncertain
and time-dependent passenger demand. By incorporating these factors, our approach contributes to a more realistic depiction of the
investigated problem.

∙ We design a customized integer L-shaped method based on theoretical findings to solve our formulated models. Further, a
amily of problem-based valid equalities is proposed to further speed up the solution process.

∙ Extensive numerical experiments are conducted based on the operational data of Beijing Bus Line 468 to demonstrate the
ffectiveness and superiority of our proposed models and the exact algorithm. Computational results show that our methodologies
4

ffer considerable improvements compared with the state-of-the-art solver and practical operational plans with the fixed capacity.
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Table 1
Summary of the most related recent studies.

Studies System
type

Uncertain
passenger
demand

Dynamic capacity
adjustment strategy

Solution method Decision variables

Sánchez-Martíneza
et al. (2016)

Bus corridor % % Rolling-horizon
optimization algorithm

Holding times

Wang et al. (2017) Bus corridor % % Simulation-based
algorithm

Departure frequency

Chen et al. (2019) Transit
shuttle

% MUs docked/undocked
at terminals

Customized DP
algorithm

(i) Time-varying formations and
(ii) departure frequency

Gkiotsalitis and Alesiani
(2019)

Bus corridor " % Genetic algorithm (i) Headway and (ii) dwell time

Wu et al. (2019) Bus corridor % % Heuristic algorithm (i) Headway and (ii) slack time

Chen et al. (2020) Transit
shuttle

% MUs docked/undocked
at terminals

Analytical solution (i) Time-varying formations and
(ii) departure frequency

Dai et al. (2020) Bus corridor % MUs docked/undocked
at terminals and
fixed-capacity buses

Analytical solution (i) Time-varying formations,
(ii) departure frequency, and
(iii) number of dispatches

Zhang et al. (2021a) Bus corridor % % Constrained
compass search
algorithm

(i) Departure frequency
and (ii) holding times

Shi and Li (2021) Transit
corridor

% MUs docked/undocked
at terminals

Customized DP
algorithm

(i) Time-dependent formations,
(ii) departure frequency, and
(iii) number of dispatches

Chen and Li (2021) Transit
corridor

% MUs docked/undocked
at each stop

Customized B & B
algorithm

(i) Departure frequency and
(ii) station-wise and time-varying
formations

Chen et al. (2022) Transit
corridor

% MUs docked/undocked
at each stop

Analytical solution (i) Departure frequency and
(ii) station-wise and time-varying
formations

Sadrani et al. (2022a) Bus Corridor % Multiple
vehicle sizes

Simulation-based
algorithm

(i) Departure frequency and
(ii) vehicle types

Sadrani et al. (2022b) Bus Corridor % Multiple
vehicle sizes

FE algorithm (i) Departure frequency and
(ii) vehicle types

Tian et al. (2022) Transit
corridor

% MUs docked/undocked
at specially designed
stops

Surrogate
optimization algorithm

(i) Locations and capacities of the
stations capable
of assembly/disassembly operations and
(ii) station-wise and time-varying
formations

This paper Bus corridor " MUs docked/undocked
at each stop

Customized integer
L-shaped algorithm

(i) Shifting time of each MV at the first
stop,
(ii) station-wise and time-varying
formations,
and (iii) holding times

a The check mark (") indicates that the parameter or the dynamic capacity adjustment strategy is considered in the corresponding study.
b The cross (%) represents that the parameter or the dynamic capacity adjustment strategy is not considered in the corresponding study.

The remainder of this paper is organized as follows. Section 2 provides a specific description of the robust TT-DCA problem of
MVs with time-dependent travel times and passenger demand. In Section 3, we formally propose different mathematical formulations
for the problem of interest, which enable MUs to be docked/undocked at terminals or at each stop, respectively. In Section 4, we
present a customized integer-L-shaped algorithm for solving these models. Section 5 describes extensive real-world case studies.
Finally, we briefly summarize the approaches and findings in Section 6 and provide suggestions for future research.

2. Problem description

Fig. 2 illustrates the investigated problem. An automated bus line with || stops is considered in this study. We denote the set of
stops as  ∶= {1, 2,… , ||}, and we use 𝑖, 𝑖′, and 𝑖′′ to index each passing stop. Let  ∶= {1, 2,… , ||} denote a set of trips that needs
to be scheduled during the study time horizon. Each trip would depart from stop 1 to stop || and stop at each stop. To facilitate the
5

scheduling process, a single MV is assigned to undertake each trip, equipped with 𝑞 MUs. Here, 𝑞 ∈  ∶= {1, 2,… , ||} represents the
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Fig. 2. Problem illustration.

number of MUs that composes an MV, i.e., the formation of the corresponding MV. Additionally, the capacity of the MV equipped
with 𝑞 MUs is denoted as 𝐶𝑞 . We assume that the minimum headway at each stop is ℎ𝑚𝑖𝑛 to ensure operational safety. Travel
times between two adjacent stops are considered to be time-dependent for accurately depicting the characteristics of real-world
operations. To facilitate modeling, we discretize the study time horizon into a finite number of time intervals  ∶= {1, 2,… , | |},
each with duration 𝛥. Dynamic passenger demand is also taken into account for accurate decision-making on the time-varying and
station-wise capacity of MVs to reduce costs (e.g., purchase costs, operating costs, and maintenance costs). It is well known that
passenger demand in urban transit systems is time-dependent and uncertain. The time-dependent characteristic refers to the different
arrival rates at different time intervals on the same day; the uncertain feature means that arrival rates at the same time interval
can be stochastic and may vary from day to day. For example, the black and gray personal markers are used in Fig. 2 to represent
arrival rates on the first day and the second day to indicate the stochastic feature, which are time-dependent on each day. To depict
these features, two time-dependent parameters, i.e., the stochastic arrival rate at stop 𝑖 and time interval 𝑡 and the proportion of
passengers arriving at stop 𝑖, who aim to travel from stop 𝑖 to stop 𝑗 at time interval 𝑡, are introduced in this study, denoted as 𝜇𝑖,𝑡
and 𝛿𝑖,𝑗,𝑡, respectively.

Different from conventional bus systems, in the investigated automated bus systems with MVs, vehicles are able to change their
formations, i.e., to add or remove MUs, with little additional time. The setup time is quite short and can be disregarded. Besides,
each MU can rely on its own device for decoupling and coupling (NEXT Future Transportation Inc., 2022). For the dynamic-capacity
allocation of MVs, we first consider that there is only one unique formation of the MV assigned to trip 𝑘 at stops along the line,
whereas the formations of MVs among various trips can differ. Next, we extend it to a more general approach that allows the MUs to
be decoupled or/and coupled at each stop, i.e., the formation of an MV can be changed at each stop in accordance with the spatio-
temporal imbalanced passenger demand when it undertakes a trip. Let 𝑥𝑘,𝑞 denote a binary variable that takes the value of 1 when the
MV assigned to trip 𝑘 consists of 𝑞 MUs. As shown in Fig. 3(a), the formation of the MV assigned to trip 𝑘 differs from the formation
of the MV assigned to trip 𝑘+1. However, it remains the same at any stop along the line during the trip, i.e., ∑𝑞∈ 𝑥𝑘,𝑞 = 1,∀𝑘 ∈ .
In contrast, in Fig. 3(b), the formation of the MV assigned to trip 𝑘 (i.e., 𝑥𝑘,𝑖,𝑞 , for any 𝑘 ∈ , 𝑖 ∈ , 𝑞 ∈ ) could be different not
only from 𝑘 + 1 but also from any stop 𝑖 ∈  to further match the space–time uneven passengers, as highlighted in the rectangles.
Thus, an integrated optimization formulation of timetables and dynamic-capacity allocation plans, providing reliable services under
uncertain passenger demand, with the objective of achieving a trade-off between the waiting costs of passengers and the operating
costs of operators is proposed in this paper. Core decisions are the shifting time of each trip at the first stop, holding time of each
trip at each stop, and dynamic vehicle formations assigned to each trip. Station-varying headway varies to better reflect the actual
operations of buses on the road. Further, we adopt the data-driven DRO approach with the Wasserstein distance-based ambiguity set,
which enhances the quality of decisions (mitigating the conservativeness of RO) of the robust operational plans of MVs by utilizing
more distributional information of uncertain parameters mined from massive historical data (e.g., AFC data), while improving the
reliability of decisions (enabling a more adequate use of distributional information compared with SP). We introduce the time-
dependent stochastic perturbation parameter 𝜃𝑖,𝑡 for any stop 𝑖 ∈  and time interval 𝑡 ∈  into the Wasserstein distance-based
ambiguity set, in order to capture the time-varying statistical properties of the uncertain passenger demand in massive amounts of
data. Through this designed ambiguity set in conjunction with the problem characteristics, our formulations can provide a solid
foundation for developing operational strategies with high reliability and the most suitable operational plans among diverse time
periods with different passenger volumes.

Next, we make the following assumptions to reflect the general operations of automated bus systems and rigorously formulate
the described problem into mathematical models.
6
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̃

Fig. 3. An illustration of the investigated dynamic capacity allocation.

Assumption 1. We assume that in-service MVs are required to dwell at each stop. Similar assumptions have been adopted in
previous studies (e.g., Sánchez-Martíneza et al., 2016; Zhang et al., 2021a).

Assumption 2. Following Chen and Li (2021), we assume that emerging automation technologies will enable MVs to change their
formations with little extra time.

Assumption 3. Following Newell (1971) and Chen and Li (2021), we assume the number of MUs is sufficient in the depot. The
fleet size can be determined after solving the investigated TT-DCA problem in the planning stage, and MUs can be procured based
on the optimal solutions.

Assumption 4. We assume that passengers are permitted to redistribute within MUs to complete their journeys, as in previous
studies related to the optimization problem of MVs (e.g., Tian et al., 2022; Hannoun and Menéndez, 2022). This is consistent with
the service provided by NEXT Future Transportation Inc., which enables passengers to stand and walk from one MU to another during
travel (NEXT Future Transportation Inc., 2018). Specifically, before the MV assigned to each trip arrives at every stop, in-vehicle
passengers will walk to the corresponding MU, such as the MU that is about to be decoupled, or the MU that is continuing to move
forward, in order to exit or continue to take this MV.

3. Mathematical formulations

In this section, we first introduce all the used notations in Section 3.1. Next, we introduce two SP models for the TT-DCA
problem, which will be expanded by adopting a data-driven DRO approach. More specifically, in Section 3.2, an SP formulation is
developed with the time-varying capacity. The extended form is then presented, which allows the MVs assigned to trips to change
their formations at each stop. Finally, two novel data-driven DRO formulations are proposed and their connections with the RO and
SP models are described in Section 3.3.

3.1. Notations

Throughout this paper, vectors are denoted by bold letters and R𝑛 represents the set of real vectors with 𝑛 components,
e.g., 𝐱 ∈ R𝑛. For clarity, a tilde is employed to represent the random parameter 𝐱̃, which has a probability distribution P, namely
𝐱 ∼ P. EP[𝐟 (𝐱̃)] represents the expectation of the random variable 𝐟 (𝐱̃) under the probability distribution P, where 𝐟 (𝐱̃) is the function:
R𝑛 ↦ R𝑚. Furthermore, distributional ambiguity is modeled by an ambiguity set, which is denoted as  . In addition, we denote
the Dirac distribution as 𝛿𝛉, which concentrates the unit mass at 𝛉 ∈ R𝑚. To formulate the model rigorously, five sets of decision
variables are defined as follows:

𝑟𝑘,𝑖,𝑡 = 1, if MV k has not departed from stop 𝑖 at time interval 𝑡; = 0, otherwise.
𝑥𝑘,𝑞 = 1, if the number of MUs in the MV assigned to trip 𝑘 is 𝑞; = 0, otherwise.
𝑥𝑘,𝑖,𝑞 = 1, if the number of MUs in the MV assigned to trip 𝑘 at stop 𝑖 is 𝑞; = 0, otherwise.
𝛼𝑘 ∶ Shifting time of the MV assigned to trip 𝑘 at the first stop.
𝑡ℎ𝑘,𝑖 ∶ Holding time of the MV assigned to trip 𝑘 at stop 𝑖.
Besides, Table 2 summarizes the symbols, notations, and the other variables used in this study.
7
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Table 2
List of notations.

Notation Detailed definition

Set

 Set of stops,  = {1, 2,… , ||}
 Set of trips,  = {1, 2,… , ||}
 Set of time intervals,  = {1, 2,… , | |}
𝑡 Set of time intervals before and at time interval 𝑡, 𝑡 = {1, 2,… , 𝑡}, 𝑡 ⊂  , let 0 = ∅
 Set of the number of MUs that can be contained in an MV,  = {1, 2,… , ||}

Indices

𝑖, 𝑖′ , 𝑖′′ Indices of stops, 𝑖, 𝑖′ , 𝑖′′ ∈ 
𝑘 Index of trips, 𝑘 ∈ 
𝑡 Index of time intervals, 𝑡 ∈ 
𝑞 Index of the number of MUs in an MV, 𝑞 ∈ 

Parameters

𝛥 Duration of each time interval
𝛼𝑘 The maximum forward shifting time of the MV assigned to trip 𝑘 at the first stop
𝛼𝑘 The maximum backward shifting time of the MV assigned to trip 𝑘 at the first stop
ℎ𝑚𝑖𝑛 The minimum headway between any two adjacent trips
𝑡
𝑎
𝑘,1 Original scheduled arrival time of the MV assigned to trip 𝑘 at the first stop, i.e., stop 1
𝑡𝑟𝑘,𝑖 Travel time of the MV assigned to trip 𝑘 from stop 𝑖 to stop 𝑖 + 1

𝑡𝑝𝑘,𝑖 Dwell time of the MV assigned to trip 𝑘 at stop 𝑖

𝛽𝑘,𝑖 Maximum holding time of the MV assigned to trip 𝑘 at stop 𝑖
𝜇𝑖,𝑡 Uncertain passenger arrival rate at stop 𝑖 and time interval 𝑡
𝜇𝑖,𝑡 Nominal passenger demand arriving at stop 𝑖 on time interval 𝑡
𝜇̌𝑖,𝑡 Deviation from the nominal passenger demand arriving at stop 𝑖 on time interval 𝑡

𝜃𝑖,𝑡 Stochastic perturbation parameter related to passenger demand arriving at stop 𝑖 on time interval 𝑡
𝛿𝑖,𝑖′ ,𝑡 Time-dependent ratio of passengers arriving at stop 𝑖 with destination 𝑖′ at time interval 𝑡
𝜏𝑖,𝑡 Time-dependent travel times from stops 𝑖 to 𝑖 + 1 when MVs depart stop 𝑖 at time interval 𝑡
𝜗𝑞 Operating costs of dispatching an MV equipped with 𝑞 MUs to undertake a whole trip
𝜗𝑞 Operating costs of utilizing an MV equipped with 𝑞 MUs at each stop
𝐶𝑞 Capacity of the MV equipped with 𝑞 MUs
𝜗𝑇 The equivalent monetary value of unit waiting time of passengers (unit:$)
𝜗𝐹 Fixed energy cost of dispatching MVs (unit:$)
𝜗𝑉 Positive coefficient related to the operating costs of MVs (unit:$)
𝑤1 , 𝑤2 Weights in the objective function

Variables

𝑝𝑤𝑘,𝑖,𝑡 Number of passengers arriving at stop 𝑖 on time interval 𝑡 and waiting for the MV assigned to trip 𝑘

𝑝𝑤𝑐
𝑘,𝑖,𝑡 Total number of passengers waiting for the MV assigned to trip 𝑘 at stop 𝑖 and time interval 𝑡

𝑝𝑏𝑘,𝑖 Number of passengers boarding the MV assigned to trip 𝑘 at stop 𝑖

𝑝𝑎𝑘,𝑖 Number of passengers alighting the MV assigned to trip 𝑘 at stop 𝑖

𝑝𝑜𝑛𝑘,𝑖 Number of passengers on the MV assigned to trip 𝑘 when it leaves stop 𝑖

𝑡𝑎𝑘,𝑖 Arrival time of the MV assigned to trip 𝑘 at stop 𝑖

𝑡𝑑𝑘,𝑖 Departure time of the MV assigned to trip 𝑘 from stop 𝑖
𝑒𝑘,𝑖,𝑡 Binary indicator, 𝑒𝑘,𝑖,𝑡 = 1 if time interval 𝑡 belongs to the headway between MVs assigned to trips 𝑘 − 1 and 𝑘

at stop 𝑖; 𝑒𝑘,𝑖,𝑡 = 0, otherwise
𝑙𝑘,𝑖,𝑡 Binary indicator, 𝑙𝑘,𝑖,𝑡 = 1 if the MV assigned to trip 𝑘 leaves stop 𝑖 exactly at time interval 𝑡; 𝑙𝑘,𝑖,𝑡 = 0, otherwise
𝑍𝑤𝑎𝑖𝑡 Total waiting costs of passengers
𝑍𝑀𝑉 Total operating costs of operators
𝑍 Weighted sum of total waiting and operating costs

3.2. Stochastic programming models

We assume that the uncertain demand arriving at each stop 𝑖 on each time interval 𝑡 depends on nominal passenger flows and
a random perturbation 𝜇𝑖,𝑡 = 𝜇𝑖,𝑡 + 𝜃𝑖,𝑡 ⋅ 𝜇̌𝑖,𝑡,∀𝑖 ∈ , 𝑡 ∈  . To be specific, 𝜇𝑖,𝑡 represents the nominal passenger demand arriving at
stop 𝑖 on time interval 𝑡, whose value is the minimum demand at the corresponding stop and time interval among all historical
data. 𝜇̌𝑖,𝑡 represents the deviation from the nominal demand. 𝜃𝑖,𝑡 represents the stochastic perturbation parameter. Based on the
aforementioned foundations, we first formulate an SP model considering the time-varying capacity, for the case in which the
information of the probability distribution is completely known. Most constraints of this model are the basis of the subsequent
DRO formulations.

3.2.1. Stochastic programming formulation considering the time-varying capacity

(1) Three classes of binary variables associated with MV operations. Motivated by Niu and Zhou (2013), three binary variables
8
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Fig. 4. Illustration of binary stage variables.

connections between the time-dependent travel times and departure times of MVs assigned to trips, as well as the couplings between
these MVs and passengers. More specifically, 𝑟𝑘,𝑖,𝑡 represents a non-increasing departure indicator, whose time intervals related to
the ‘‘1’’ indicate that the MV assigned to trip 𝑘 has not departed from stop 𝑖. 𝑒𝑘,𝑖,𝑡 represents the headway indicator, and the time
intervals associated with ‘‘1’’ represent the headway between the MVs assigned to trips 𝑘 − 1 and 𝑘 at stop 𝑖, ∀𝑘 ∈ ∖{1}, 𝑖 ∈ .
For the first trip, i.e., 𝑘 = 1, the values of 𝑒𝑘,𝑖,𝑡 equal to those of 𝑟𝑘,𝑖,𝑡 at each stop 𝑖 ∈  on each time interval 𝑡 ∈  . Travel times
between stop 𝑖 and stop 𝑖 + 1 are time-dependent and related to the departure time of the MV assigned to trip 𝑘 at stop 𝑖. 𝑙𝑘,𝑖,𝑡 is
the indicator of the departure time, and the value equals 1 if the MV assigned to trip 𝑘 leaves stop 𝑖 at time interval 𝑡. For clarity,
an intuitive example is shown in Fig. 4. It can be seen that, the MV assigned to trip 𝑘 departs from stop 𝑖 at time interval 3, which
is highlighted by a rectangle in 𝑙𝑘,𝑖,𝑡. Moreover, the headway between the MVs assigned to trip 𝑘 and 𝑘 + 1 is at time intervals 3,
4, 5, and 6, as marked by the rectangle in 𝑒𝑘,𝑖,𝑡. Next, the properties of these three variables are further discussed, along with the
applications in modeling MV operations and the evolution of passenger dynamics.

Property 1. Binary variables are subject to the following constraints:

𝑟𝑘,𝑖,𝑡+1 ≤ 𝑟𝑘,𝑖,𝑡, ∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  ∖{| |}. (1)

𝑡𝑑𝑘,𝑖 = 𝛥(1 +
∑

𝑡∈
𝑟𝑘,𝑖,𝑡), ∀𝑘 ∈ , 𝑖 ∈ . (2)

𝑒𝑘,𝑖,𝑡 =

{

𝑟𝑘,𝑖,𝑡, 𝑘 = 1
𝑟𝑘,𝑖,𝑡 − 𝑟𝑘−1,𝑖,𝑡, 𝑘 ∈ ∖{1},

∀𝑖 ∈ , 𝑡 ∈  . (3)

𝑙𝑘,𝑖,𝑡 =

{

1 − 𝑟𝑘,𝑖,𝑡, 𝑡 = 1
𝑟𝑘,𝑖,𝑡−1 − 𝑟𝑘,𝑖,𝑡, 𝑡 ∈  ∖{1},

∀𝑘 ∈ , 𝑖 ∈ . (4)

𝑟𝑘,𝑖,𝑡, 𝑒𝑘,𝑖,𝑡, 𝑙𝑘,𝑖,𝑡 ∈ {0, 1}, ∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  . (5)

Constraints (1) guarantee the non-increasing property of the binary variable 𝑟𝑘,𝑖,𝑡. The connection between this binary variable
and real-valued departure time is represented by constraints (2). Constraints (3) describes the relationship between binary variables
𝑟𝑘,𝑖,𝑡 and 𝑒𝑘,𝑖,𝑡. In addition, we consider the dynamic travel times between two adjacent stops, whose values depend on the departure
times of the MVs assigned to trips at each stop. Thus, the exact time interval of the departure time is crucial, and it cannot be
characterized by 𝑟𝑘,𝑖,𝑡. We only need to evaluate the ‘‘change point’’ of 𝑟𝑘,𝑖,𝑡 to obtain the exact departure time because of the non-
increasing property of 𝑟𝑘,𝑖,𝑡, i.e., the change point is the one where the difference between two adjacent 𝑟𝑘,𝑖,𝑡 is equal to 1, formulated
as constraints (4). These binary variables provide considerable convenience for constructing linear models, the domains of which
are defined in constraints (5).

Example 1. As illustrated in Fig. 5, the MVs assigned to trips 1 and 2 depart from stop 1 at time intervals 2 and 4, so the values
of (𝑟𝑘,𝑖,𝑡)|𝑘=1,𝑖=1,𝑡∈ and (𝑟𝑘,𝑖,𝑡)|𝑘=2,𝑖=1,𝑡∈ are (1, 0, 0, . . . , 0) and (1, 1, 1, 0, 0, . . . , 0), respectively. On this basis, the values of
(𝑒𝑘,𝑖,𝑡)|𝑘=1,𝑖=1,𝑡∈ and (𝑒𝑘,𝑖,𝑡)|𝑘=2,𝑖=1,𝑡∈ are (1, 0, 0, . . . , 0) and (0, 1, 1, . . . , 0) through constraints (3), which indicate the original
headway of the first vehicle (i.e., the MV assigned to trip 1) is time interval 1, and the headway between the MVs assigned to
trips 1 and 2 is time intervals 2 and 3. Moreover, the values of (𝑙𝑘,𝑖,𝑡)|𝑘=1,𝑖=1,𝑡∈ and (𝑙𝑘,𝑖,𝑡)|𝑘=2,𝑖=1,𝑡∈ can be calculated according to
constraints (4), as highlighted by rectangles in 𝑙𝑘,𝑖,𝑡, which will later be used to identify the corresponding time-dependent travel
9
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Fig. 5. Illustration of the relations among binary variables.

Property 2. Coupling between the dynamic travel and departure times of MVs assigned to trips can be expressed as follows:

𝑡𝑟𝑘,𝑖 =
∑

𝑡∈
𝜏𝑖,𝑡 ⋅ 𝑙𝑘,𝑖,𝑡, ∀𝑘 ∈ , 𝑖 ∈ ∖{||}. (6)

Example 2. For the sake of clarity, we still use the above example for illustrative purposes. Suppose that when MVs assigned to
trips leave stop 1 at different time intervals, the corresponding travel times between stops 1 and 2 are 2, 3, 2, 4, 2, 3, 4, 2, 2,
respectively. As illustrated in Fig. 6, when MVs assigned to trips 1 and 2 depart from stop 1 at time intervals 2 and 4, the travel
times can be calculated according to constraints (6). For example, the travel time from stops 1 to 2 of MV assigned to trip 1, namely
𝑡𝑟1,1, equals to ∑

𝑡∈ 𝜏1,𝑡 ⋅ 𝑙1,1,𝑡 = 𝜏1,2 ⋅ 𝑙1,1,2 +
∑

𝑡∈ ∖{2} 𝜏1,𝑡 ⋅ 𝑙1,1,𝑡 = 3 ⋅ 1 + 0 = 3.

Property 3. Coupling between MVs assigned to trips and passenger dynamics can be formulated as follows:

𝑝𝑤𝑘,𝑖,𝑡 = 𝜇𝑖,𝑡 ⋅ 𝑒𝑘,𝑖,𝑡, ∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  . (7)

𝑝𝑤𝑐
𝑘,𝑖,𝑡 = 𝑒𝑘,𝑖,𝑡 ⋅

∑

𝜍∈𝑡

𝑝𝑤𝑘,𝑖,𝜍 = 𝑒𝑘,𝑖,𝑡
∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑒𝑘,𝑖,𝜍 , ∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  . (8)

Stochastic passenger demand is a two-dimensional input parameter related to time intervals and stops, i.e., 𝜇𝑖,𝑡 ∈ R||×| |. Key
constraints (7) and (8) are proposed to facilitate the tracking of the cooperative dynamic evolution of MVs assigned to trips and
passenger demand. The number of passengers who newly arrive at stop 𝑖 at time interval 𝑡 and wait for the MV assigned to trip 𝑘,
namely 𝐩𝐰 = {𝑝𝑤𝑘,𝑖,𝑡,∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  } ∈ R||×||×| |, can be obtained by constraints (7). In addition, constraints (8) describe the
total number of passengers waiting for the MV assigned to trip 𝑘 at stop 𝑖 on time interval 𝑡, i.e., 𝐩𝐰𝐜 = {𝑝𝑤𝑐

𝑘,𝑖,𝑡,∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  } ∈
R||×||×| |.

Example 3. As illustrated in Fig. 7, the realization of passenger demand is 1, 2, 3 at the first three time intervals, respectively.
Following the previous examples, we still assume that the MV assigned to trip 1 departs from stop 1 at time interval 2, while the
MV assigned to trip 2 leaves at time interval 4. Consequently, passengers arriving at time interval 1 can board the MV assigned to
trip 1, whereas passengers arriving at time intervals 2 and 3 have to board the later one. In other words, the passengers waiting
for an MV assigned to a specific trip arrive during the intervals between its departure and the departure of the MV assigned to the
previous trip. Additionally, the number of passengers waiting for this MV will turn to zero once it departs.

For instance, as shown in Fig. 7, the passengers waiting for the MV assigned to trip 1 are those who arrive at the first time interval,
because this MV will depart at the second time interval. After the departure of this MV, passengers will no longer wait for this trip;
instead, they will await the MVs assigned to the other trips. Based on constraints (7) and (8), the number of passengers waiting for
the MV assigned to trip 1 at the first time interval is calculated by 𝑝𝑤𝑐 = 𝑒 ⋅𝑒 ⋅𝜇 = 1 ⋅1 ⋅1 = 1. However, for subsequent time
10
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Fig. 6. Illustration of the coupling between the time-dependent travel times and the departure times of trips.

Fig. 7. Illustration of the coupling between trips and passengers.

intervals, this value is 0 due to 𝑒1,1,𝑡 = 0 for each 𝑡 in  ∖{1}, e.g., 𝑝𝑤𝑐
1,1,2 = 𝑒1,1,2 ⋅(𝑒1,1,1 ⋅𝜇1,1+𝑒1,1,2 ⋅𝜇1,2) = 0 ⋅(1 ⋅1+0 ⋅2) = 0. Besides, the

MV assigned to trip 2 departs at time interval 4. Consequently, the passengers waiting for this MV are those arriving at the second
and third time intervals. Therefore, at the first time interval, the number of passengers waiting for the MV assigned to trip 2 is 0
(i.e., 𝑝𝑤𝑐

2,1,1 = 𝑒2,1,1 ⋅ 𝑒2,1,1 ⋅𝜇2,1 = 0 ⋅0 ⋅1 = 0). At the time interval 2, this number is calculated by 𝑝𝑤𝑐
2,1,2 = 𝑒2,1,2 ⋅ (𝑒2,1,1 ⋅𝜇2,1+ 𝑒2,1,2 ⋅𝜇2,2) =

1⋅(0⋅1+1⋅2) = 2. Then, this number at time interval 3 turns to 𝑝𝑤𝑐
2,1,3 = 𝑒2,1,3 ⋅(𝑒2,1,1 ⋅𝜇2,1+𝑒2,1,2 ⋅𝜇2,2+𝑒2,1,3 ⋅𝜇2,3) = 1⋅(0⋅1+1⋅2+1⋅3) = 5. For

subsequent time intervals, the number of passengers waiting for the MV assigned to trip 2 is 0 since 𝑝𝑤𝑐
2,1,𝑡 = 0,∀𝑡 ∈ {4, 5, 6, 7,… , | |}.
11
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(2) Constraints associated with MV operations. The selection of vehicle formations (i.e., the number of MUs in each MV), arrival
at stops, departure from the stops and running between stops are the basic processes of the dynamic evolution of the vehicle status;
they can be formulated as follows:

𝑡𝑎𝑘,𝑖 =

{

𝑡𝑎𝑘,1 + 𝛼𝑘, 𝑖 = 1
𝑡𝑑𝑘,𝑖−1 + 𝑡𝑟𝑘,𝑖−1, ∀𝑖 ∈ ∖{1},

∀𝑘 ∈ . (9)

𝑡𝑑𝑘,𝑖 = 𝑡𝑎𝑘,𝑖 + 𝑡𝑝𝑘,𝑖 + 𝑡ℎ𝑘,𝑖, ∀𝑖 ∈ , 𝑘 ∈ . (10)

𝑡𝑑𝑘+1,𝑖 − 𝑡𝑑𝑘,𝑖 ≥ ℎ𝑚𝑖𝑛, ∀𝑘 ∈ ∖{||}, 𝑖 ∈ . (11)

𝛼𝑘 ≤ 𝛼𝑘 ≤ 𝛼𝑘, ∀𝑘 ∈ . (12)

0 ≤ 𝑡ℎ𝑘,𝑖 ≤ 𝛽𝑘,𝑖, ∀𝑘 ∈ , 𝑖 ∈ . (13)

Constraints (9) and (10) are used to track the real-valued arrival and departure times of the MV assigned to each trip, respectively.
Further, the arrival time at the first stop of the MV assigned to each trip is the pre-given original scheduled arrival time plus the
shifting time; the arrival time at the subsequent stops is the sum of the departure time at the previous stop and the corresponding
travel time between stops. The time-dependent travel time between two adjacent stops 𝑖 and 𝑖 + 1 of the MV assigned to each trip
epends on its departure time at stop 𝑖, as discussed and formulated in Properties 1 and 2. The departure time of the MV assigned
o each trip at each stop is related to the arrival, dwell, and holding times at this stop. The holding strategy is imposed to adjust the
well time in a flexible manner. Further, constraints (11) are formulated to ensure that the minimum headway of two continuous
Vs assigned to trips at the same stop can guarantee the operational safety and avoid the ‘‘bus bunching’’ phenomenon. Constraints

12) and (13) specify the limitations of the shifting and holding times.

3) Constraints related to passenger movements. The set of constraints related to passenger movements, i.e., waiting, boarding and
lighting behaviors, are formulated as constraints (7)–(8) in Property 3, and the following constraints (14)–(15). Constraints (7) and
8) describe the waiting passengers at each time interval, and the cumulative waiting passengers. Constraints (14) indicate that, the
umber of alighting passengers at stop 𝑖 is the number of boarding passengers multiplied by the time-dependent ratio of passengers
rriving at stop 𝑖′ to destination 𝑖 at time interval 𝑡. Constraints (15) define the number of passengers boarding the MV assigned to
rip 𝑘 at stop 𝑖.

𝑝𝑎𝑘,𝑖 =
∑

𝑖′≤𝑖,𝑖′∈

∑

𝑡∈
𝛿𝑖′ ,𝑖,𝑡 ⋅ 𝑝

𝑤
𝑘,𝑖′ ,𝑡, ∀𝑘 ∈ , 𝑖 ∈ . (14)

𝑝𝑏𝑘,𝑖 =
∑

𝑡∈
𝜇𝑖,𝑡 ⋅ 𝑒𝑘,𝑖,𝑡 ∀𝑘 ∈ , 𝑖 ∈ . (15)

4) Constraints associated with vehicle capacity. The set of constraints associated with vehicle capacity and the number of in-
ehicle passengers are formulated as constraints (16)–(19). Constraints (16) describe the dynamics of the occupied capacity of the
V assigned to trip 𝑘 when it leaves stop 𝑖, i.e., the number of in-vehicle passengers. Constraints (17) are imposed to ensure that

he number of in-vehicle passengers does not exceed the maximum capacity to guarantee operational safety. Constraints (18) ensure
hat the formation of the MV assigned to each trip is unique. Furthermore, constraints (19) set the binary domain of the variables
elated to vehicle formation.

𝑝𝑜𝑛𝑘,𝑖 =

{

𝑝𝑏𝑘,𝑖, 𝑖 = 1
𝑝𝑜𝑛𝑘,𝑖−1 − 𝑝𝑎𝑘,𝑖 + 𝑝𝑏𝑘,𝑖, ∀𝑖 ∈ ∖{1},

∀𝑘 ∈ . (16)

𝑝𝑜𝑛𝑘,𝑖 ≤
∑

𝑞∈
𝐶𝑞 ⋅ 𝑥𝑘,𝑞 , ∀𝑘 ∈ , 𝑖 ∈ . (17)

∑

𝑞∈
𝑥𝑘,𝑞 = 1, ∀𝑘 ∈ . (18)

𝑥𝑘,𝑞 ∈ {0, 1}, ∀𝑘 ∈ , 𝑞 ∈ . (19)

(5) Objective function. The study aims to achieve a balance between the costs of passengers and operators from a system perspective
by adjusting the timetables to match the time-dependent passenger demand and by dispatching the appropriate numbers of MUs in
each MV to reduce operating costs. Therefore, the objective function can be formulated as follows:

𝑍 = 𝑤1 ⋅𝑍𝑤𝑎𝑖𝑡 +𝑤2 ⋅𝑍𝑀𝑉 , (20)

where 𝑤1 and 𝑤2 represent the weight coefficients, 𝑍𝑤𝑎𝑖𝑡 represents the total waiting costs of passengers, and 𝑍𝑀𝑉 represents the
total operating costs of the operators.
12
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∙ Total waiting costs of passengers
The number of passengers waiting for the MV assigned to trip 𝑘 ∈  at stop 𝑖 ∈  in time interval 𝑡 ∈  is derived from

constraints (8), i.e., 𝑝𝑤𝑐
𝑘,𝑖,𝑡. Thus, the corresponding waiting time of passengers can be obtained by multiplying the number of waiting

passengers by the unit duration of the time interval (i.e., 𝛥 ⋅ 𝑝𝑤𝑐
𝑘,𝑖,𝑡). Subsequently, by multiplying the equivalent monetary value of

unit waiting time (denoted as 𝜗𝑇 ), the total waiting costs of passengers can be expressed as follows:

𝑍𝑤𝑎𝑖𝑡 = 𝛥 ⋅ 𝜗𝑇 ⋅
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈
𝑝𝑤𝑐
𝑘,𝑖,𝑡. (21)

Remark 1. In this study, we evaluate passengers’ costs by considering the total waiting costs, which can be calculated based on the
waiting time of passengers. This metric is widely utilized in the single-line timetabling field for assessing service quality. However,
it is worth noting that transfer times are not taken into account in this study, since we specifically focus on the single-line problem.

Lemma 1. Constraint (21) exhibits nonlinearity because of the presence of the nonlinear term 𝑝𝑤𝑐
𝑘,𝑖,𝑡 derived from constraints (8), which can

be equivalently reformulated as follows:

𝑍𝑤𝑎𝑖𝑡 = 𝛥 ⋅ 𝜗𝑇 ⋅
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 , (22)

where 𝐯 ∈ R||×||×| |×| | is an auxiliary binary vector. The motivations behind the linearization are twofold. Firstly, by linearizing this
nonlinear constraint, the proposed model can be transformed into an MILP formulation, which has the potential for enhanced computational
efficiency and enables more efficient solution methods in theory. Secondly, the dual information of this constraint is essential for formulating
the subsequent DRO model.

Proof. First, by integrating constraints (8) and (21), we have

𝑍𝑤𝑎𝑖𝑡 = 𝛥 ⋅ 𝜗𝑇 ⋅
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈
𝑒𝑘,𝑖,𝑡

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑒𝑘,𝑖,𝜍 . (23)

We note that constraint (23) is nonlinear, leading to mathematical models that are difficult to be solved by commercial solvers or
exact algorithms. Thus, an auxiliary variable, i.e., 𝑣𝑘,𝑖,𝑡1 ,𝑡2 = 𝑒𝑘,𝑖,𝑡1 ⋅ 𝑒𝑘,𝑖,𝑡2 , is then introduced here to linearize constraint (23):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑘,𝑖,𝑡1 ,𝑡2 ≤ 𝑒𝑘,𝑖,𝑡1
𝑣𝑘,𝑖,𝑡1 ,𝑡2 ≤ 𝑒𝑘,𝑖,𝑡2
𝑣𝑘,𝑖,𝑡1 ,𝑡2 ≥ 𝑒𝑘,𝑖,𝑡1 + 𝑒𝑘,𝑖,𝑡2 − 1
𝑣𝑘,𝑖,𝑡1 ,𝑡2 ∈ {0, 1}

, ∀𝑘 ∈ , 𝑖 ∈ , 𝑡1 ∈  , 𝑡2 ∈ 𝑡1 , (24)

then, by replacing 𝑒𝑘,𝑖,𝑡 with 𝑣𝑘,𝑖,𝑡,𝜍 for all 𝜍 ∈ 𝑡, the nonlinear constraint (21) can be equivalently transformed into the following
linear form

𝑍𝑤𝑎𝑖𝑡 = 𝛥 ⋅ 𝜗𝑇 ⋅
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 ,

which completes the proof. □

∙ Total operating costs of operators
Referring to Chen et al. (2019), the total operating costs can be formulated as follows

𝑍𝑀𝑉 =
∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑞 , (25)

where 𝜗𝑞 = 𝜗𝐹 + 𝜗𝑉 ⋅ (𝐶𝑞)𝜀, 𝜗𝐹 represents the fixed operating costs, and 𝜗𝑉 is the positive coefficient related to the operating costs,
and power index 𝜀 ≤ 1. The first component of 𝜗𝑞 (i.e., 𝜗𝐹 ) represents the fixed operating costs incurred once an MV is dispatched. In
addition, given that 𝜀 ≤ 1, the second component of 𝜗𝑞 have a marginally reducing effect even though they increase monotonically
with the number of MUs in the MV.

(6) MILP formulation for the stochastic TT-DCA problem with time-varying capacity. Based on the above constraints and assuming
that the distribution of the stochastic perturbation parameter 𝛉 ∶= [𝜃1,1,… , 𝜃

||,| |

]T (denoted by P𝜃) is completely known, we can
construct the following SP formulation:

{

min
𝐲∈

EP[𝑍(𝐲, 𝛉)]

s.t. Constraints (1)–(7), (9)–(20), (22), (24)–(25),
(26)

where the decision vector 𝐲 ∶= (α, 𝐭ℎ, 𝐫, 𝐱), and  represents the feasible region of the decision variables. Sample average
approximation (SAA) is a natural method for handling SP models. Past realizations of random variables at each sample 𝑛 can be
obtained (i.e., 𝛉̂ | ) by employing a finite set of 𝑁 samples, and the empirical probability distribution of each sample is 1∕𝑁 .
13
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The MILP formulation for the TT-DCA problem of MVs under stochastic demand with time-varying capacity (SP-TVC) can be expressed
as follows:

[SP − TVC]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
𝐲∈

1
𝑁

𝑁
∑

𝑛=1
𝑍(𝐲, θ̂𝑛)

s.t. Constraints (1)–(7), (9)–(20), (22), (24)–(25).

(27)

.2.2. Extensions of the proposed model enabling the time-varying and station-wise capacity
In reality, passenger demand is not only time-dependent but also spatially uneven. If we dynamically adjust the formations of

Vs assigned to trips based on the demand at each stop in each time interval, the operating costs can be reduced further. Besides,
onsidering that the technology of docking and undocking at each stop has already been realized in the MVs developed by NEXT
uture Transportation Inc., we extend the aforementioned SP-TVC model to a more general formulation, which additionally allows
he MUs to be decoupled or/and coupled at each stop. In the SP-TVC model without considering the station-wise capacity, the
ehicle-related decision variable is 𝑥𝑘,𝑞 for any 𝑘 ∈ , 𝑞 ∈ ; this represents that the number of MUs in MV 𝑘 equal to 𝑞. However,
nce we consider that the formation of the MV assigned to trip 𝑘 can be changed at each stop 𝑖 ∈  flexibly, the above-mentioned
ehicle-related decision variable should be revised to a new notation 𝑥𝑘,𝑖,𝑞 , which is called the vehicle-station-related formation
ariable. The new decision variable 𝑥𝑘,𝑖,𝑞 indicates that the number of MUs in the MV assigned to trip 𝑘 at stop 𝑖 is 𝑞. Then, the
perating costs defined in constraint (25) should be reformulated as

𝑍𝑀𝑉 =
∑

𝑖∈

∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑖,𝑞 , (28)

here 𝜗𝑞 refers to the station-wise operating cost, i.e., the operating costs of utilizing an MV equipped with 𝑞 MUs at each stop,

nd 𝜗𝑞 =
𝜗𝑞
||

.
In this new formulation, we also need to revise the limitations on the number of in-vehicle passengers and the formations for

ensuring that the number of in-vehicle passengers does not exceed the capacity and that the formation of the MV assigned to each
trip is unique at every stop. Subsequently, the related constraints (17)–(19) should be replaced by the following constraints:

𝑝𝑜𝑛𝑘,𝑖 ≤
∑

𝑞∈
𝐶𝑞 ⋅ 𝑥𝑘,𝑖,𝑞 , ∀𝑘 ∈ , 𝑖 ∈ . (29)

∑

𝑞∈
𝑥𝑘,𝑖,𝑞 = 1, ∀𝑘 ∈ , 𝑖 ∈ . (30)

𝑥𝑘,𝑖,𝑞 ∈ {0, 1}, ∀𝑘 ∈ , 𝑖 ∈ , 𝑞 ∈ . (31)

The SP model for the TT-DCA problem (SP-TVSWC) when considering the time-varying and station-wise capacity based on the
P-TVC model can be expressed as

[SP − TVSWC]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
𝐲∈

1
𝑁

𝑁
∑

𝑛=1
𝑍(𝐲, θ̂𝑛)

s.t. Constraints (1)–(7), (9)–(16), (20), (22), (24), (28)–(31).

(32)

emark 2. The proposed model can be easily reformulated in various ways to suit the real-world operational needs of public
ransport systems. For example, we can employ 𝑡𝑟𝑘,𝑖 = 𝑡𝑟𝑘+1,𝑖,∀𝑘 ∈ ∖{||}, 𝑖 ∈ ∖{||} to simplify the dynamics of the running time
n each section.

.3. Distributionally robust formulations

The proposed SP models for the TT-DCA problem assume exact prior knowledge of the probability distribution of uncertain
assenger demand. However, this assumption does not hold in practical problems because passenger demand may be uncertain
ecause of many unpredictable factors such as weather conditions. We further propose data-driven DRO formulations that aim to
ptimize the expected value of a function for the worst probability distribution in an ambiguity set. We assume that the distribution
f the random perturbation variables belongs to an ambiguity set based on the Wasserstein distance, and this is one of the most
idely used distance metrics for constructing statistical distance-based ambiguity sets. We employ this ambiguity set because of two

easons: (1) It facilitates the translation of a computationally intractable DRO model into a computable reformulation in various real-
orld applications. (2) This set is straightforward for decision making, and it enables the decision maker to control the robustness
f the optimal solutions by simply adjusting a single non-negative parameter.
14
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In the following analyses, we first design a customized Wasserstein distance-based ambiguity set with time-dependent and
tation-wise perturbation variables to characterize the dynamics of the passenger demand at each stop at each time interval and its
robability distributions. Subsequently, new linear forms of the objective functions in SP-TVC (27) and SP-TVSWC (32) are obtained,
nd we deal with the constraints with a right-hand uncertainty.

1) Wasserstein distance-based ambiguity set with time-dependent and station-wise perturbation parameters. The Wasserstein
distance between the two probability distributions represents the optimal transport cost of moving from one to the other. The
definition of the Wasserstein metric 𝑑W, first proposed by Kantorovich and Rubinshtein (1958), can be expressed as follows

𝑑W
(

P1,P2
)

∶= inf
{

∫𝛯2
‖

‖

𝛉1 − 𝛉2‖‖𝛱
(

d𝛉1, d𝛉2
)

∶ 𝛱 is a joint distribution of 𝛉1 and 𝛉2
with marginals P1 and P2, respectively

}

,

in which ‖⋅‖ denotes an 1-norm on R𝑚 in this study.
Accordingly, we consider the following Wasserstein ambiguity set to exploit the information embedded in historical data

𝜌(P̂𝑁 ) ∶=
{

P ∈ (𝛯)|𝑑W(P, P̂𝑁 ) ≤ 𝜌
}

,

where 𝛯 represents the support set, and space (𝛯) includes all possible probability distributions supported on 𝛯. 𝜌(P̂𝑁 ) can be
considered a Wasserstein ball centered at the empirical distribution that contains all probability distributions P within radius 𝜌.
Radius 𝜌 reflects the difference between the empirical distribution of the uncertainty and the true distribution.

Remark 3. When 𝜌 is set to a sufficiently large number, the ambiguity set can be considered to contain all probability distributions
on support 𝛯, and then, DRO coincides with RO. In contrast, the ambiguity set contains only one distribution when 𝜌 equals zero,
and DRO coincides with SP.

Moreover, empirical distribution P̂𝑁 can be constructed using the historical data set {𝛉̂1, 𝛉̂2,… , 𝛉̂𝑁}, i.e.,

P̂𝑁 ∶= 1
𝑁

𝑁
∑

𝑛=1
𝛿𝛉̂𝑛 .

The perturbation parameter 𝛉 in each sample is both time-dependent and station-wise to portray the dynamic and spatially
nbalanced nature of this parameter.

2) Reformulation of objective functions. We propose two DRO models with the objective of minimizing the worst-case expected
value, which considers time-varying capacity and time-varying and station-wise capacity, respectively, to obtain a robust timetable
and a robust dynamic-capacity allocation plan to mitigate the impact of uncertain passenger demand. The objective functions of
these two models can be expressed in a unified manner as

min
𝐲∈

sup
P∈𝜌(P̂𝑁 )

EP[𝑍(𝐱, 𝛉)], (33)

where the inner sup{⋅} determines the worst-case evaluation of the weighted objective over all distributions contained in the
Wasserstein ball 𝜌(P̂𝑁 ). The DRO formulations aim to find the optimal timetables and dynamic-capacity allocation plans to ensure
acceptable performance, even in the worst-case scenario. However, the inner sup{⋅} problem is an infinite-dimensional optimization
problem because of the existence of infinite probability distributions in the Wasserstein ball, and it is therefore computationally
intractable. Next, the equivalent computationally tractable form of the problem (33) is obtained.

Proposition 1. First, we construct the objective function of the DRO model by considering the time-varying capacity. In this study, we
adopted the polyhedral support set proposed by Bertsimas and Sim (2004) to control the conservativeness of our model. In other words,
suppose that the support set of random variable 𝛉 is a bounded polyhedron: 𝛯 = {𝛉 ∣ 𝐀𝛉 ≤ 𝐛} = {

∑

||
𝑖=1 𝜃𝑖,𝑡 ≤ 𝛤𝑡,

∑

| |

𝑡=1 𝜃𝑖,𝑡 ≤ 𝛬𝑖, 0 ≤ 𝜃𝑖,𝑡 ≤ 1}.
We denote the vector 𝛉 = [𝜃1,1, 𝜃1,2,… , 𝜃𝑖,𝑡,… , 𝜃

||,| |

]T, which captures the values of 𝜃 corresponding to different combinations of indices
𝑖 and 𝑡. In the 𝑛th sample of the historical data, the vector 𝛉̂𝑛 is formed as [𝜃̂𝑛,1,1, 𝜃̂𝑛,1,2,… , 𝜃̂𝑛,𝑖,𝑡,… 𝜃̂𝑛,||,| |

]T. To simplify the subsequent
derivation of the dual form, we redefine the indices of 𝜃𝑖,𝑡 using a new index 𝑗 that ranges from 1 to || × | |. Specifically, we define
 = {1, 2,… , 𝑗,… , | |}, where 𝑗 = (𝑖 − 1) | | + 𝑡, | | = || × | |. By doing so, 𝛉 and 𝛉̂𝑛 can be reshaped as 𝛉 = [𝜃1, 𝜃2,… , 𝜃𝑗 ,… 𝜃

| |

]T

and 𝛉̂𝑛 = [𝜃̂𝑛,1, 𝜃̂𝑛,2,… , 𝜃̂𝑛,𝑗 ,… 𝜃̂𝑛,| |

]T, respectively. Based on this representation, we have 𝐀 ∈ R𝐷×| |, where 𝐷 refers to the number of
rows of 𝐀.

Decision makers can use the aforementioned support set to balance solution efficiency and robustness by adjusting the values of 𝛤𝑡 and
𝛬𝑖. The value of 𝛤𝑡 determines the number of time intervals for a stop to reach the maximum possible passenger demand in the study horizon;
the value of 𝛬𝑖 determines the maximum number of stops that meet the maximum possible passenger demand at each time interval. Both
values can be estimated by analyzing historical data.

Under the Wasserstein distance-based ambiguity set 𝜌(P̂𝑁 ) and polyhedral support set 𝛯, the equivalent linear form of the formulation
(33) for the TT-DAC problem with time-varying capacity can be expressed as follows:

inf
𝐯,𝐱,𝜎,𝐜,𝝀

{

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
(
∑ ∑∑ ∑

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 + 𝜌𝜎 + 1
𝑁

𝑁
∑

𝑐𝑛
)

+𝑤2 ⋅
∑ ∑

𝜗𝑞 ⋅ 𝑥𝑘,𝑞

}

(34)
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A

s.t.
| |

∑

𝑗=1
𝜋𝑗 ⋅ 𝜃̂𝑛,𝑗 +

𝐷
∑

𝑑=1
(𝑏𝑑 −

| |

∑

𝑗=1
𝐴𝑑,𝑗 ⋅ 𝜃̂𝑛,𝑗 )𝜆𝑛,𝑑 ≤ 𝑐𝑛, ∀𝑛 ≤ 𝑁, (35)

𝐷
∑

𝑑=1
𝐴𝑑,𝑗 ⋅ 𝜆𝑛,𝑑 − 𝜋𝑗 ≤ 𝜎, ∀𝑛 ≤ 𝑁, 𝑗 ∈  , (36)

𝜋𝑗 −
𝐷
∑

𝑑=1
𝐴𝑑,𝑗 ⋅ 𝜆𝑛,𝑑 ≤ 𝜎, ∀𝑛 ≤ 𝑁, 𝑗 ∈  , (37)

𝜋𝑗 = 𝜇̌𝑖,𝑡
∑

𝑘∈

∑

𝑡0∈ ⧵𝑡−1

𝑣𝑘,𝑖,𝑡0 ,𝑡, ∀𝑖 ∈ , 𝑡 ∈  , 𝑗 = (𝑖 − 1) | | + 𝑡, (38)

𝜆𝑛,𝑑 ≥ 0, ∀𝑛 ≤ 𝑁, 𝑑 ≤ 𝐷. (39)

Proof. First, constraint (22) can be converted to

𝑍𝑤𝑎𝑖𝑡 = 𝛥 ⋅ 𝜗𝑇 ⋅
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍

= 𝛥 ⋅ 𝜗𝑇 ⋅
[

∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

(𝜇𝑖,𝜍 + 𝜃𝑖,𝜍 ⋅ 𝜇̌𝑖,𝜍 ) ⋅ 𝑣𝑘,𝑖,𝑡,𝜍

]

= 𝛥 ⋅ 𝜗𝑇 ⋅
[

∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 +
∑

𝑖∈

∑

𝑡∈
𝜃𝑖,𝑡 ⋅ 𝜇̌𝑖,𝑡

∑

𝑘∈

∑

𝑡0∈ ⧵𝑡−1

𝑣𝑘,𝑖,𝑡0 ,𝑡

]

= 𝛥 ⋅ 𝜗𝑇 ⋅
[

∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 +
∑

𝑖∈

∑

𝑡∈
𝜃𝑖,𝑡 ⋅ 𝜋𝑖,𝑡

]

= 𝛥 ⋅ 𝜗𝑇 ⋅
[

∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 +
∑

𝑗∈
𝜃𝑗 ⋅ 𝜋𝑗

]

, (40)

where 𝜋𝑗 = 𝜋𝑖,𝑡 = 𝜇̌𝑖,𝑡
∑

𝑘∈
∑

𝑡0∈ ⧵𝑡−1 𝑣𝑘,𝑖,𝑡0 ,𝑡,∀𝑗 ∈  .
Then, by substituting constraint (40) into formulation (33), we have

min
𝐲∈Y

sup
P∈𝜌(P̂𝑁 )

EP[𝑍(𝐱, 𝛉)] = min
𝐲∈Y

sup
P∈𝜌(P̂𝑁 )

EP[𝑤1 ⋅𝑍𝑤𝑎𝑖𝑡 +𝑤2 ⋅𝑍𝑀𝑉 ]

= min
𝐲∈Y

{

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 +𝑤2 ⋅
∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑞

+ 𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅ sup
P∈𝜌(P̂𝑁 )

EP

[

∑

𝑗∈
𝜃𝑗 ⋅ 𝜋𝑗

]}

. (41)

ll terms in constraint (41) are in the linear form except for the inner problem, i.e., supP∈𝜌(P̂𝑁 ) EP

[

∑

𝑗∈ 𝜃𝑗 ⋅𝜋𝑗

]

. Further, according
to the derivations in Appendix A, this term can be equivalently transformed into

inf
𝜎,𝐜,𝝀

𝜌𝜎 + 1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛 (42)

s.t.
| |

∑

𝑗=1
𝜃̂𝑛,𝑗 ⋅ 𝜋𝑗 +

𝐷
∑

𝑑=1
(𝑏𝑑 −

| |

∑

𝑗=1
𝐴𝑑,𝑗 ⋅ 𝜃̂𝑛,𝑗 )𝜆𝑛,𝑑 ≤ 𝑐𝑛, ∀𝑛 ≤ 𝑁, (43)

‖

‖

‖

𝐀T𝝀𝑛 − 𝝅‖‖
‖∗

≤ 𝜎, ∀𝑛 ≤ 𝑁, (44)

𝜆𝑛,𝑑 ≥ 0, ∀𝑛 ≤ 𝑁, 𝑑 ≤ 𝐷. (45)

Given that 1-norm is used as the metric in the definition of the Wasserstein distance, its dual norm ‖⋅‖∗ is an ∞-norm. Therefore,
constraints (44) can be reduced to

|

|

|

|

|

|

𝐷
∑

𝑑=1
𝐴𝑑,𝑗 ⋅ 𝜆𝑛,𝑑 − 𝜋𝑗

|

|

|

|

|

|

≤ 𝜎, ∀𝑛 ≤ 𝑁, 𝑗 ∈  . (46)

We can obtain the formulations (34)–(39) by integrating constraints (40)–(46), and the proof of Proposition 1 is thus complete. □

Proposition 2. We then formulate the objective function of the DRO model by considering time-varying and station-wise capacity. The use
of constraint (28) instead of the constraint (25) distinguishes this extended formulation from the aforementioned DRO model in terms of the
objective function. Then, using a similar derivation, we have

inf
𝐫,𝐱,𝜎,𝐜,𝝀

{

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
(
∑ ∑∑ ∑

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 + 𝜌𝜎+
16
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(
t

1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛
)

+𝑤2 ⋅
∑

𝑖∈

∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑖,𝑞

}

s.t. Constraints (35)–(39). (47)

3) Reformulation of constraints with right-hand uncertainties. The following robust constraints are further reformulated to replace
he constraints (17) and (29) to ensure that all passengers can board successfully regardless of the realizations of uncertain demand.

∑

𝑞∈
𝐶𝑞 ⋅ 𝑥𝑘,𝑞 ≥ sup

𝛉∈𝛯
{𝑝𝑜𝑛𝑘,𝑖}, ∀𝑘 ∈ , 𝑖 ∈ . (48)

∑

𝑞∈
𝐶𝑞 ⋅ 𝑥𝑘,𝑖,𝑞 ≥ sup

𝛉∈𝛯
{𝑝𝑜𝑛𝑘,𝑖}, ∀𝑘 ∈ , 𝑖 ∈ . (49)

Notice that the polyhedral support set 𝛯 contains infinite realization of 𝛉, thus, constraints (48) and (49) are still computationally
intractable. In the following, we further explore their linear equivalent forms.

Proposition 3. We first reformulate the related constraints (48) of the DRO model considering the time-varying capacity. Under the
polyhedral support set 𝛯, the equivalent linear form of constraints (48) can be expressed as the following set of constraints:

∑

𝑞∈
𝐶𝑞 ⋅ 𝑥𝑘,𝑞 ≥

∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̄𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 +

𝐷
∑

𝑑=1
𝑏𝑑 ⋅ 𝑔𝑘,𝑖,𝑑 , ∀𝑘 ∈ , 𝑖 ∈ . (50)

𝐷
∑

𝑑=1
𝐴𝑑,(𝑖′′−1)| |+𝑡 ⋅ 𝑔𝑘,𝑖,𝑑 = 𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̌𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡, ∀𝑘 ∈ , 𝑖′′ ≤ 𝑖, 𝑖, 𝑖′′ ∈ , 𝑡 ∈  . (51)

𝐷
∑

𝑑=1
𝐴𝑑,𝑚 ⋅ 𝑔𝑘,𝑖,𝑑 = 0, ∀𝑘 ∈ , 𝑖 ∈ , 𝑚 > 𝑖 | | . (52)

𝑔𝑘,𝑖,𝑑 ≥ 0, ∀𝑘 ∈ , 𝑖 ∈ , 𝑑 ∈ 𝐷. (53)

𝛾𝑖,𝑖′′ ,𝑡 = 1 −
𝑖

∑

𝑖′=𝑖′′
𝛿𝑖′′ ,𝑖′ ,𝑡, ∀𝑖′′ ≤ 𝑖, 𝑖, 𝑖′′ ∈ , 𝑡 ∈  . (54)

Proof. First, by combining the constraints (7) and (15), we have

𝑝𝑏𝑘,𝑖 =
∑

𝑡∈
𝜇𝑖,𝑡 ⋅ 𝑒𝑘,𝑖,𝑡 =

∑

𝑡∈
𝑝𝑤𝑘,𝑖,𝑡, ∀𝑘 ∈ , 𝑖 ∈ .

Then, considering the constraints (14) and (16), the number of passengers on the MV assigned to trip 𝑘 ∈  when it leaves stop
𝑖 ∈  can be recursively calculated as follows:

𝑝𝑜𝑛𝑘,1 = 𝑝𝑏𝑘,1 − 𝑝𝑎𝑘,1 =
∑

𝑡∈
𝑝𝑤𝑘,1,𝑡 −

∑

𝑖′≤1,𝑖′∈

∑

𝑡∈
𝛿𝑖′ ,1,𝑡 ⋅ 𝑝

𝑤
𝑘,𝑖′ ,𝑡 =

∑

𝑡∈
𝑝𝑤𝑘,1,𝑡 −

∑

𝑡∈
𝛿1,1,𝑡 ⋅ 𝑝

𝑤
𝑘,1,𝑡 =

∑

𝑡∈
(1 − 𝛿1,1,𝑡)𝑝𝑤𝑘,1,𝑡,

𝑝𝑜𝑛𝑘,2 = 𝑝𝑜𝑛𝑘,1 + 𝑝𝑏𝑘,2 − 𝑝𝑎𝑘,2 =
∑

𝑡∈

[

(1 − 𝛿1,1,𝑡 − 𝛿1,2,𝑡)𝑝𝑤𝑘,1,𝑡 + (1 − 𝛿2,2,𝑡)𝑝𝑤𝑘,2,𝑡
]

,

𝑝𝑜𝑛𝑘,3 = 𝑝𝑜𝑛𝑘,2 + 𝑝𝑏𝑘,3 − 𝑝𝑎𝑘,3 =
∑

𝑡∈

[

(1 − 𝛿1,1,𝑡 − 𝛿1,2,𝑡 − 𝛿1,3,𝑡)𝑝𝑤𝑘,1,𝑡 + (1 − 𝛿2,2,𝑡 − 𝛿2,3,𝑡)𝑝𝑤𝑘,2,𝑡 + (1 − 𝛿3,3,𝑡)𝑝𝑤𝑘,3,𝑡
]

,

…

𝑝𝑜𝑛𝑘,𝑖 = 𝑝𝑜𝑛𝑘,𝑖−1 + 𝑝𝑏𝑘,𝑖 − 𝑝𝑎𝑘,𝑖

=
∑

𝑡∈

[

(1 −
𝑖

∑

𝑖′=1
𝛿1,𝑖′ ,𝑡)𝑝𝑤𝑘,1,𝑡 + (1 −

𝑖
∑

𝑖′=2
𝛿2,𝑖′ ,𝑡)𝑝𝑤𝑘,2,𝑡 +⋯ + (1 − 𝛿𝑖,𝑖,𝑡)𝑝𝑤𝑘,𝑖,𝑡

]

=
∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
(1 −

𝑖
∑

𝑖′=𝑖′′
𝛿𝑖′′ ,𝑖′ ,𝑡)𝑝𝑤𝑘,𝑖′′ ,𝑡

=
∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
(1 −

𝑖
∑

𝑖′=𝑖′′
𝛿𝑖′′ ,𝑖′ ,𝑡) ⋅ 𝜇𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡.

For clarity, we introduce a new variable 𝛾𝑖,𝑖′′ ,𝑡, ∀𝑡 ∈  , 𝑖′′ ≤ 𝑖, 𝑖, 𝑖′′ ∈ , and let 𝛾𝑖,𝑖′′ ,𝑡 = 1 −
∑𝑖

𝑖′=𝑖′′ 𝛿𝑖′′ ,𝑖′ ,𝑡. Hence, the number of
in-vehicle passengers when the MV assigned to trip 𝑘 ∈  leaves stop 𝑖 ∈  can be expressed as follows:

𝑝𝑜𝑛𝑘,𝑖 =
∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡

=
∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈

(

𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̄𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 + 𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜃𝑖′′ ,𝑡 ⋅ 𝜇̌𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡
)

,∀𝑘 ∈ , 𝑖 ∈ . (55)
17
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Combining constraints (55) with constraints (48), the right hand side of the constraints (48) for each possible combination of a
top and an MV assigned to a trip can be transformed into

sup
𝛉∈𝛯

{

∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈

(

𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̄𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 + 𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜃𝑖′′ ,𝑡 ⋅ 𝜇̌𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡
)

}

=
∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̄𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 + sup

𝛉∈𝛯

{

∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
𝜃𝑖′′ ,𝑡 ⋅ 𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̌𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡

}

. (56)

urther, based on the strong duality theory, the 𝑠𝑢𝑝{⋅} problem in constraints (56) can be reformulated as

inf
𝑔𝑘,𝑖,𝑑∈R+

𝐷
∑

𝑑=1
𝑏𝑑 ⋅ 𝑔𝑘,𝑖,𝑑 , ∀𝑘 ∈ , 𝑖 ∈ ,

s.t.
𝐷
∑

𝑑=1
𝐴𝑑,(𝑖′′−1)| |+𝑡 ⋅ 𝑔𝑘,𝑖,𝑑 = 𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 ⋅ 𝜇̌𝑖′′ ,𝑡, ∀𝑘 ∈ , 𝑖′′ ≤ 𝑖, 𝑖, 𝑖′′ ∈ , 𝑡 ∈  ,

𝐷
∑

𝑑=1
𝐴𝑑,𝑚 ⋅ 𝑔𝑘,𝑖,𝑑 = 0, ∀𝑘 ∈ , 𝑖 ∈ , 𝑚 > 𝑖 | | ,

𝑔𝑘,𝑖,𝑑 ≥ 0, ∀𝑘 ∈ , 𝑖 ∈ , 𝑑 ∈ 𝐷. (57)

Combining with constraints (55)–(57), Proposition 3 holds. □

Finally, the equivalent MILP form of the DRO model considering the time-varying capacity (denoted as DRO-TVC) over the
asserstein distance-based ambiguity set can be expressed based on the above derivations as

[DRO − TVC]

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

inf
𝐫,𝐱,𝜎,𝐜,𝝀,𝐠

{

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
(
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 + 𝜌𝜎+

1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛

)

+𝑤2 ⋅
∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑞

}

s.t. Constraints (1)–(6), (9)–(13), (18)–(19), (24),

(35)–(39), (50)–(54).

(58)

Proposition 4. We propose the linear form of constraints (49) in the DRO formulation, which enables time-varying and station-wise
capacity. Following a derivation similar to that in Proposition 3, we have

⎧

⎪

⎨

⎪

⎩

∑

𝑞∈
𝐶𝑞 ⋅ 𝑥𝑘,𝑖,𝑞 ≥

∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̄𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 +

𝐷
∑

𝑑=1
𝑏𝑑 ⋅ 𝑔𝑘,𝑖,𝑑 ,∀𝑘 ∈ , 𝑖 ∈ 

Constraints (51)–(54).
(59)

In accordance with the preceding analyses, we can construct the following MILP formulation with time-varying and station-wise
capacity over the Wasserstein distance-based ambiguity set (DRO-TVSWC) as

[DRO − TVSWC]

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

inf
𝐫,𝐱,𝜎,𝐜,𝝀,𝐠

{

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
(
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 + 𝜌𝜎+

1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛

)

+𝑤2 ⋅
∑

𝑖∈

∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑖,𝑞

}

s.t. Constraints (1)–(6), (9)–(13), (24), (30)–(31),

(35)–(39), (59).

(60)

emark 4. In the case of 𝜌 = 0, the DRO-TVC (58) and DRO-TVSWC (60) are reduced into the SP models, respectively, namely,
P-TVC (27) and SP-TVSWC (32). Besides, when the value of 𝜌 is large enough, the DRO-TVC (58) and DRO-TVSWC (60) are

equivalent to the traditional robust optimization models (denoted as RO-TVC and RO-TVSWC).

4. Exact soultion method

In theory, our proposed MILP models can be optimally solved using commercial solvers in the case of small-scale problems.
18

However, the size of the problem increases significantly in real-world applications, i.e., more stops and MVs are considered, and
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therefore, the numbers of 0–1 variables grow exponentially, and the complexity of the coupling constraints increases dramatically,
which poses a great challenge for realizing the solutions. To overcome this challenge, an exact decomposition algorithm is developed
to solve the TT-DCA problem under uncertain passenger demand. Roughly speaking, we divide the original problem into two
sub-problems. Following the integer L-sharped algorithm proposed by Laporte and Louveaux (1993), we consider the timetabling
variables as the decisions in the first sub-problem. The dynamic-capacity allocation variables are then regarded as decisions in the
second sub-problem, which depend on the decisions in the first sub-problem. At each iteration, the first sub-problem is solved, after
which the timetabling decisions are fixed in the second sub-problem. Next, the second sub-problem is solved and fed back with
a set of optimality cuts that can be added to the first sub-problem to raise the lower bound. This process is performed iteratively
until a near-optimal solution is obtained. Further, we propose a set of tailored cuts based on the problem properties and design
speed-up procedures to speed up the computation. The framework of our designed algorithm can be applied to the aforementioned
models considering the time-varying capacity, as well as the time-varying and station-wise capacity. We illustrate our proposed
algorithm in this section by solving the DRO-TVC model as an example. The solution process for the DRO-TVSWC model is detailed
in Appendix B.

In Section 4.1, we present the decomposition of DRO-TVC and explore the mathematical theoretical properties to ensure the
easibility and convergence of the algorithm. The customized integer L-shaped method with a set of problem-based cuts is designed in
ection 4.2. Finally, in Section 4.3, we describe the speed-up procedures used to improve the performance of the overall algorithmic
ramework.

.1. Decomposition of the DRO-TVC model

Theoretically, DRO-TVC can be solved efficiently by GUROBI using the built-in B & B or cutting plane methods, since it is a
inear programming formulation. We attempted to use GUROBI to solve the DRO-TVC for a real-world case based on the Beijing bus
ine. Unfortunately, no feasible solution was obtained after computing for more than 2 h. This can be attributed to two reasons: (1)
he numbers of binary decision variables are enormous. (2) The binary decision variables related to the timetable and dynamic
ispatching plans are closely coupled. Motivated by these observations, to obtain high-quality solutions within an acceptable
omputing time, a fundamental idea is to break the tight coupling between the timetable and the dispatching plan. Therefore,
e divide the DRO-TVC into two sub-problems: (1) Determining the decision variables related to timetables (denoted by 𝐫) with the

objective of minimizing the total passenger waiting costs, and (2) using the timetables as an input to optimize the dynamic-capacity
allocation plan (i.e., the number of MUs in each MV, denoted by 𝐱), that is, 𝐫 is the input parameter for the second sub-problem.

Next, we construct the following sub-problems (denoted by SP1 and SP2), i.e.,

[SP1]

⎧

⎪

⎨

⎪

⎩

inf
𝐫,𝜎,𝐜,𝝀,𝐠

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
(
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 + 𝜌𝜎 + 1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛
)

s.t. Constraints (1)–(6), (9)–(13), (24), (35)–(39), (51)–(54).

[SP2]

⎧

⎪

⎨

⎪

⎩

min
𝐫∗ ,𝐱

∑

𝑞∈

∑

𝑘∈
𝜗𝑞 ⋅ 𝑥𝑘,𝑞

s.t. Constraints (18)–(19), (50)–(54).

In the following discussions, we explore the mathematical properties of these sub-problems. For clarity, the SP2 is expressed
s 𝑈 (𝐫∗, 𝐱) = min𝐱{

∑

𝑞∈
∑

𝑘∈ 𝜗𝑞 ⋅ 𝑥𝑘,𝑞|Constraints (18)–(19), (50)–(54)}, where 𝐫∗ refers to the solution of variable 𝐫 obtained by
olving SP1.

emma 2. There exists a finite lower bound 𝐿 = || ⋅ 𝜗𝑞 with 𝑞 = 1 satisfying 𝐿 ≤ 𝑈 (𝐫∗, 𝐱).

roof. In this paper, we do not consider cancelling trips, so that at least || MUs (i.e. each MV only consist of one MU in this case)
re required. On this basis, considering a scenario with relatively smaller passenger demand, where one MU is sufficient to ensure
hat every waiting passenger gets on board, then the lower bound of the total dispatching costs can be calculated as 𝐿 = || ⋅ 𝜗𝑞
ith 𝑞 = 1. Hence, we have 𝑈 (𝐫∗, 𝐱) ≥ || ⋅ 𝜗𝑞 with 𝑞 = 1, which derives the proof. □

.2. Customized integer L-shaped method

Since both of the above subproblems contain integer decision variables, traditional decomposition approaches (e.g. Benders
ecomposition) cannot be applied. In this case, the integer L-shaped method is an useful approach for some MILP formations,
herein all decomposed sub-problems can all be ILP models. Laporte and Louveaux (1993) is the first work that explored this
lgorithm. Subsequently, Angulo et al. (2016) has devoted efforts to make some advances for further improving its computational
erformance. Based on the basic framework of the integer L-shaped method, we develop a customized integer L-shaped method to
ffectively solve the problem under investigation.
19
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First, we propose the following set of tailored cuts to ensure that SP2 can always find a feasible vehicle dispatching solution,
.e., the dynamic-capacity allocation plan of MVs assigned to trips, with each timetable generated by SP1. This can prevent
nefficiencies caused by the impossibility.

sup
𝛉∈𝛯

{𝑝𝑜𝑛𝑘,𝑖} ≤ 𝐶
||, ∀𝑘 ∈ , 𝑖 ∈ . (61)

For clarify, we present a straightforward demonstration of the validity of inequalities (61) in the following. If the MV assigned to
a trip that departs the stop with in-vehicle passengers exceeding the maximum capacity (i.e., the capacity of the vehicle with the
maximum number of MUs), there would be no feasible dispatching solution that can satisfy the constraints (48).

Further, like Proposition 3, constraints (61) can be equivalently transformed into the following linear form

∑

𝑡∈

∑

𝑖′′≤𝑖,𝑖′′∈
𝛾𝑖,𝑖′′ ,𝑡 ⋅ 𝜇̄𝑖′′ ,𝑡 ⋅ 𝑒𝑘,𝑖′′ ,𝑡 +

𝐷
∑

𝑑=1
𝑏𝑑 ⋅ 𝑔𝑘,𝑖,𝑑 ≤ 𝐶

||, ∀𝑘 ∈ , 𝑖 ∈ , (62)

which is then employed as one of the constraints of SP1.

Next, we reformulate the first sub-problem (i.e., SP1) using the integer L-shaped method. To incorporate the information of MP2
into MP1, we successively add the optimality cuts proposed by Laporte and Louveaux (1993) and Angulo et al. (2016) into MP1.
Specifically, the optimality cut proposed by Laporte and Louveaux (1993) can be formulated for the explored problem as follows

𝜂 ≥ (𝑈 (𝐫∗, 𝐱) − 𝐿)
(

∑

𝑟𝑘,𝑖,𝑡∈ 𝐻(𝑟∗)
𝑟𝑘,𝑖,𝑡 −

∑

𝑟𝑘,𝑖,𝑡∉ 𝐻(𝑟∗)
𝑟𝑘,𝑖,𝑡 − |

|

𝐻(𝑟∗)|
|

)

+ 𝑈 (𝐫∗, 𝐱), (63)

here 𝜂 represents the estimated value of 𝑈 (𝐫, 𝐱), and 𝐻(𝑟∗) = {𝑟𝑘,𝑖,𝑡|𝑟𝑘,𝑖,𝑡 = 1}. Moreover, 𝐿 represents the lower bound of 𝑈 (𝐫, 𝐱),
whose values can be set based on Lemma 2. It is worth clarifying that the optimality cut (63) is added only when 𝜂 < 𝑈 (𝐫, 𝐱). Since
the aforementioned optimality cuts are not tight for solutions other than 𝐫∗, we further employ the following continuous L-shaped
optimality cut proposed by Angulo et al. (2016), that is,

𝜂 ≥ 𝐬(𝐫 − 𝐫∗) + 𝑈𝐿𝑃 (𝐫∗, 𝐱), (64)

where 𝐬 represents the subgradient vector of 𝑈 (𝐫, 𝐱) at 𝐫∗, and 𝑈𝐿𝑃 (𝐫∗, 𝐱) represents the continuous relaxation of 𝑈 (𝐫∗, 𝐱) that resets
the binary variable 𝑥𝑘,𝑞 as a continuous variable. The subgradient L-shaped optimality cut (64) is not necessarily required for the
convergence of the L-shaped method; however, it enhances the computing performance of this algorithm.

Finally, we reformulate SP1 based on the above analyses and construct the current problem (CP) at each node of the
branch-and-cut search tree as

[CP]

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

inf
𝐫,𝐱,𝜎,𝐜,𝝀,𝐠,𝜂

𝑤1 ⋅ 𝛥 ⋅ 𝜗𝑇 ⋅
(

∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝜇𝑖,𝜍 ⋅ 𝑣𝑘,𝑖,𝑡,𝜍 + 𝜌𝜎 + 1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛

)

+ 𝜂

s.t. 𝜂 ≥ (𝑈 (𝐫∗, 𝐱) − 𝐿)
(

∑

(𝑘,𝑖,𝑡)∈𝐻(𝑟∗)
𝑟𝑘,𝑖,𝑡 −

∑

(𝑘,𝑖,𝑡)∉𝐻(𝑟∗)
𝑟𝑘,𝑖,𝑡 − |

|

𝐻(𝑟∗)|
|

)

+ 𝑈 (𝐫∗, 𝐱).

𝜂 ≥ 𝐬(𝐫 − 𝐫∗) + 𝑈𝐿𝑃 (𝐫∗, 𝐱).
Constraints (1)–(6), (9)–(13), (24), (35)–(39), (50)–(54), (62).

(65)

In summary, the main procedure of our designed decomposition-based branch-and-cut algorithm for DRO-TVC can be briefly
resented as follows: (1) Relax CP (65) by discarding constraints (5) and solving it to the optimum. It is worth noting that no
ptimality cut or subgradient cut has been generated yet. (2) Determine whether to continue solving. If the stopping criteria are
atisfied, the algorithm is stopped. Otherwise, we select a 𝑟𝑘,𝑖,𝑡 ∉ {0, 1} and then branch at this node. (3) Repeat the previous step
ntil an integer solution 𝐫∗ is obtained. In this process, it is necessary to determine whether to add the optimality cuts (63) and
64).

In the specific implementation, we construct a branch-and-cut search tree using the state-of-the-art commercial solver GUROBI.
he subgradient cut (64) and optimality cut (63) are added to the CP step-by-step using the lazy constraint callback function.
uring the search process, the callback function is executed at the node where the relaxed CP is solved to the optimum, or a new
IP incumbent is found. The pseudocode of the proposed decomposition-based branch-and-cut algorithm is presented as Algorithm

.

20
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Algorithm 1 The integer L-shaped method for the DRO-DCA model.
1: Initialization: Input the lower bound 𝐿 of the subproblem, root node of the relaxed current

problem. Create an empty list of nodes and put the root node into that list. Set the minimum gap
𝜖, upper bound UB = +∞ and lower bound LB = 𝐿. Let Gap = (𝑈𝐵 − 𝐿𝐵)∕𝑈𝐵.

2: While Gap ≤ 𝜖 do
3: if the node list is empty then
4: break.
5: else
6: Select a pendent node from the node list;
7: Solve the CP corresponding to the selected node;
8: if the CP is infeasible then
9: Fathom the current node and go to line 3;
10: else
11: Let (𝐫∗, 𝜂∗) be the optimal solution of the CP;
12: if 𝑍𝑤𝑎𝑖𝑡(𝐫∗) + 𝜂∗ ≥ UB then
13: Fathom the current node and go to line 3;
14: if some variables in 𝐫 are non-binary then
15: Select and branch a non-binary variable. Delete the current node and append the new

two branch nodes to the pendent node list. go to line 3;
16: else
17: Compute the linear relaxation of 𝑈 (𝐫, 𝐱) and get the corresponding optimal

objective value ULP;
18: if ULP > 𝜂∗

19: Add the corresponding subgradient cut (64) to CP and go to line 7;
20: else
21: Call GUROBI to solve the subproblem 𝑈 (𝐫∗, 𝐱), denote the optimal value as 𝑈0.
22: if 𝑍𝑤𝑎𝑖𝑡(𝐫∗) + 𝑈0 < UB
23: Update UB = 𝑍𝑤𝑎𝑖𝑡(𝐫∗) + 𝑈0
24: end if
25: if 𝑈0 < 𝜂∗

26: Add the corresponding integer optimality cut (63) to CP and go to line 7.
27: end if
28: end if
29: end if
30: end if
31: end if
32: end if
33: end while
Output: The optimal solution of DRO-OPMV.

4.3. Family of problem-based valid equalities

To further improve the computational efficiency, we propose the following valid equalities related to ‘‘time window’’ to narrow
he searching space of CP considering the restrictions of adjustments related to timetables.

roposition 5. The following constraints

𝑟𝑘,𝑖,𝑡 =

{

1, 1 ≤ 𝑡 ≤ 𝜁
𝑘,𝑖

0, 𝜁𝑘,𝑖 ≤ 𝑡 ≤ | | ,
∀𝑘 ∈ , 𝑖 ∈ , (66)

are a family of valid equalities for the set of feasible solutions of DRO-TVC, where 𝜁
𝑘,𝑖

and 𝜁𝑘,𝑖 represent the earliest and latest departure
times of the MV assigned to trip 𝑘 leaving stop 𝑖, respectively.

Proof. First of all, according to constraints (10), we have

𝑡𝑑𝑘,1 = 𝑡𝑎𝑘,1 + 𝑡𝑝𝑘,1 + 𝑡ℎ𝑘,1

𝑡𝑑𝑘,2 = 𝑡𝑎𝑘,2 + 𝑡𝑝𝑘,2 + 𝑡ℎ𝑘,2 = 𝑡𝑎𝑘,1 + 𝑡𝑟𝑘,1 +
2
∑

𝑖′=1
(𝑡𝑝𝑘,𝑖′ + 𝑡ℎ𝑘,𝑖′ )

...
21
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𝑡𝑑𝑘,𝑖 = 𝑡𝑎𝑘,𝑖 + 𝑡𝑝𝑘,𝑖 + 𝑡ℎ𝑘,𝑖 = 𝑡𝑎𝑘,1 +
𝑖−1
∑

𝑖′=1
𝑡𝑟𝑘,1 +

𝑖
∑

𝑖′=1
(𝑡𝑝𝑘,𝑖′ + 𝑡ℎ𝑘,𝑖′ ).

In real-world operations, buses do not travel at speeds lower than the free-flow speed. Moreover, without a speed control strategy,
rivers choose speed based on real-time traffic conditions rather than deliberately slowing down. Therefore, based on historical data,
ounds on the time-dependent travel times of MV 𝑘 can be obtained by preprocessing prior to optimization, i.e.,

TR𝑚𝑖𝑛
𝑖 ≤ 𝑡𝑟𝑘,𝑖 ≤ TR𝑚𝑎𝑥

𝑖 , (67)

here TR𝑚𝑖𝑛
𝑖 = min𝑡∈ {𝜏𝑖,𝑡}, and TR𝑚𝑎𝑥

𝑖 = max𝑡∈ {𝜏𝑖,𝑡}
Further, combining the inequalities (67) with constraints associated with the adjustment of shifting and holding times,

.e., constraints (12) and (13), the bounds of 𝑡𝑑𝑘,𝑖 can be further formulated as

𝜁
𝑘,𝑖

≤ 𝑡𝑑𝑘,𝑖 ≤ 𝜁𝑘,𝑖, ∀𝑘 ∈ , 𝑖 ∈ , (68)

here 𝜁
𝑘,𝑖

= 𝑡0𝑘,1 + 𝛼𝑘 +
∑𝑖−1

𝑖′=1 TR𝑚𝑖𝑛
𝑖′ , and 𝜁𝑘,𝑖 = 𝑡0𝑘,1 + 𝛼𝑘 +

∑𝑖−1
𝑖′=1 TR𝑚𝑎𝑥

𝑖′ +
∑𝑖

𝑖′=1 𝛽𝑘,𝑖′ .
To sum up, on the one hand, constraints (68) indicate that the MV assigned to trip 𝑘 is unlikely to depart from stop 𝑖 before

ime interval 𝜁
𝑘,𝑖

or after time interval 𝜁𝑘,𝑖. On the other hand, the binary indicator 𝑟𝑘,𝑖,𝑡 is defined as equal to 1 if the MV assigned
to trip 𝑘 has not depart from stop 𝑖 before time interval 𝑡, and 0, otherwise. Hence, Proposition 5 holds. The proof is complete. □

emark 5. We need to mention that, the problem-based valid equalities (66) are also employed in the following benchmark
xperiments, which are directly solved by GUROBI.

. Numerical experiments

In this section, we report extensive computational results with the four main goals: (1) to investigate the effectiveness of the
ustomized decomposition algorithm; (2) to explore the benefits of enabling the time-varying and station-wise capacity; (3) to
nalyze the superiority of the DRO approach; and (4) to evaluate the impact of the Wasserstein radius on the robustness of optimal
olutions.

The utilized parameter settings are described in Section 5.1. Section 5.2 compares the performance of the proposed solution
ethodologies (i.e., GUROBI and our proposed algorithm) for solving the DRO models. Section 5.3 compares the optimal solutions
nder the two dynamic-capacity allocation strategies in detail, and Section 5.4 contrasts the DRO solutions with stochastic solutions
n the out-of-sample dataset. Finally, Section 5.5 compares the performance of the DRO, SP, and RO formulations under various
asserstein radius to support the operators when they select the parameters in accordance with the practical situations. The

xperiments were implemented in Python on a Windows 11 personal computer with 12th Gen Intel(R) Core(TM) i7-12700H and
2 GB RAM.

.1. Case description and parameter settings

In this case study, we tested our models and the solution method using data collected from the Bus Line 468 in Beijing, which
as 18 stops with a total length of approximately 12.9 km, as shown in Fig. 8. Bus Line 468 links residential communities and
public transport hub, and it connects Beijing Metro lines 1 and 6; therefore, it has a relatively high passenger demand during

eak periods. Operational data on the working days in September 2018 are used in this case study. We adopted the data-processing
ethod proposed in Zhang et al. (2021a) to obtain the dynamic travel times between two adjacent stops and the time-dependent

rrival rates of passengers at each stop. Besides, the dynamic passenger demand data can also be obtained using advanced forecasting
echniques (Yan et al., 2022). Further, we considered the minimum arrival rate at each stop and each time interval as the nominal
alue (i.e., 𝜇𝑖,𝑡) and the difference between the maximum and minimum values as the deviation at each time interval (i.e., 𝜇̌𝑖,𝑡)
o depict the randomness of passenger demand. Thus, the realized values of 𝜃𝑖,𝑡 for 𝑖 ∈ , 𝑡 ∈  , i.e., the uncertain perturbation
f passenger demand at each stop on the time interval in each sample (i.e., one working day) can be derived simultaneously. In
ig. 9, we demonstrate the processing results with respect to the aforementioned parameters in each time interval (with 1-min
uration) from 5:30 AM to 23:00 PM. The travel times and passenger arrival rates are significantly dynamic, and the latter is
articularly characterized in our proposed Wasserstein distance-based ambiguous set with time-dependent fluctuations. Moreover,
emand exhibits a clear uncertainty, particularly during peak hours.

We selected 7:00 AM to 10:00 AM as the study time horizon, which contains the entire morning peak period and a portion
f the off-peak hours. The duration of each time interval is 1 min. For the marginal dispatching costs, we follow the mechanism
roposed by Zhang et al. (2018) and Chen et al. (2019), where the value is equal to 0.59($). The fixed cost is set as 19.12($)
ollowing Dai et al. (2020). In addition, the monetary value of the unit waiting time is 0.8($/minute) according to Chen et al.
2019). For the number of MUs in an MV, the standards provided by the dynamic autonomous road transit (DART) in Singapore
https://www.tum-create.edu.sg/) are referenced. The capacity of each MU is 30 passengers, and one MV can be composed of a
aximum of 10 MUs. However, considering the limited road resources on the Bus Line 468 in Beijing, the maximum number of
Us is set to five in this study. The aim of this study is to generate service-oriented data-driven robust timetables and dynamic

ispatching plans; therefore, the weight associated with passenger benefits (i.e., 𝑤 ) is set to 2, whereas 𝑤 = 1. In addition, the
22
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Fig. 8. Illustration of Bus Line 468 in Beijing.
Source: Gaode Maps.

Fig. 9. Illustrations of the average travel times of all samples and arrival rates among different samples.

values of the parameters 𝛽
𝑘
, 𝛤𝑖, and 𝛬𝑖 are set according to the historical data; 𝛼𝑘, 𝛼𝑘, and 𝛽𝑘 are 2, -2, and 2 min, respectively.

A termination condition was considered in the following numerical experiments to balance the solution quality and computational
time; i.e., the computation could be terminated when the relative gap is no greater than 5%. For the results reported in Sections
5.2, 5.3, and 5.4, the parameter 𝜌 is set as 1, whereas it is varied in Section 5.5.
23



Transportation Research Part C 155 (2023) 104314D. Xia et al.

w
r
n

Table 3
Performance comparison between the Benchmark and the proposed algorithm for solving DRO-TVC.
(|| , || , | |) Solution method Best upper bound Best lower bound Relative gap (%) Computing time (s)

(5, 3, 50) GUROBI 472.733 455.840 3.57 1.34
Integer L-shaped method 470.778 448.030 4.83 2.12

(10, 10, 110) GUROBI 3398.466 3227.464 4.99 87.28
Integer L-shaped method 3362.86 3197.531 4.92 60.71

(10, 12, 120) GUROBI 4159.263 3988.015 4.12 24.89
Integer L-shaped method 4193.788 3985.153 4.97 102.31

(10, 15, 140) GUROBI 5120.827 4890.739 4.49 713.38
Integer L-shaped method 5032.374 4796.788 4.68 282.28

(15, 10, 130) GUROBI 4320.044 4263.892 1.30 1995.83
Integer L-shaped method 4365.543 4205.518 3.67 432.32

(15, 12, 150) GUROBI 5642.315 5369.172 4.84 3142.47
Integer L-shaped method 5593.654 5344.061 4.46 630.71

(15, 15, 160) GUROBI 6755.381 6426.691 4.87 1860.55
Integer L-shaped method 6589.074 6302.527 4.35 1115.05

(18, 10, 150) GUROBI 4729.405 4411.610 6.72 7200.00
Integer L-shaped method 4530.301 4306.826 4.97 905.94

(18, 12, 160) GUROBI 9421.677 5543.441 41.20 7200.00
Integer L-shaped method 5709.350 5447.774 4.58 1207.67

(18, 15, 180) GUROBI – – – 7200.00
Integer L-shaped method 6862.426 6534.242 4.78 2512.75

1 The bolded metrics indicate that our proposed algorithm outperforms GUROBI in both relative gap and computing time.

Table 4
Performance comparison between the Benchmark and the proposed algorithm for solving DRO-TVSWC.
(|| , || , | |) Solution method Best upper bound Best lower bound Relative gap (%) Computing time (s)

(5, 3, 50) GUROBI 457.518 435.787 4.75 1.38
Integer L-shaped method 455.504 436.233 4.23 3.36

(10, 10, 110) GUROBI 3302.799 3140.988 4.90 136.38
Integer L-shaped method 3231.517 3084.098 4.56 76.16

(10, 12, 120) GUROBI 4140.01 3942.276 4.78 204.56
Integer L-shaped method 4051.273 3861.519 4.68 128.31

(10, 15, 140) GUROBI 5433.686 5237.488 3.61 379.87
Integer L-shaped method 5317.386 5106.982 3.96 978.21

(15, 10, 130) GUROBI 4203.554 4155.274 1.15 1900.37
Integer L-shaped method 4248.171 4058.048 4.48 400.23

(15, 12, 150) GUROBI 5473.516 5237.384 4.31 3059.65
Integer L-shaped method 5342.299 5141.377 3.76 1045.31

(15, 15, 160) GUROBI 6400.694 6288.512 1.75 4940
Integer L-shaped method 6430.039 6110.227 4.97 630.36

(18, 10, 150) GUROBI 4506.3577 4280.43737 5.00 4442.32
Integer L-shaped method 4429.398 4218.527 4.76 1374.29

(18, 12, 160) GUROBI 9524.614 5396.208 43.30 7200.00
Integer L-shaped method 5552.899 5276.046 4.99 1663.34

(18, 15, 180) GUROBI – – – 7200.00
Integer L-shaped method 6728.546 6393.676 4.98 5235.25

1 The bolded metrics indicate that our proposed algorithm outperforms GUROBI in both relative gap and computing time.

5.2. Performance comparison between different solution methods

We focus on the evaluation of the performance of the proposed integer L-shaped algorithm in this subsection. To this end,
e consider the state-of-the-art solver GUROBI as a benchmark for solving the DRO-TVC and DRO-TVSWC models. Based on

eal-world operating data, we generate a total of 10 instances by presetting the different combinations of parameters (i.e., the
umbers of stops ||, trips ||, and time intervals | |). In particular, we take || = {3, 10, 12, 15}, || = {5, 10, 15, 18} and

| | = {50, 110, 120, 130, 140, 150, 160, 180} into account. Considering that it is challenging to solve large-scale cases using GUROBI,
we set the maximum computing time based on the scale of the instances.

Tables 3 and 4 provide detailed comparative results for solving the DRO-TVC and DRO-TVSWC models, respectively. We report
the specific problem size, solution method, best bounds, relative gap (i.e., the gap between the lower and upper objective bound),
24

and computing time of each instance. From the experimental results in Tables 3 and 4, we conclude that GUROBI is an efficient
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Fig. 10. Convergence trends of the upper bounds and lower bounds with respect to the objective values on instance with (|| , || , | |) = (15, 12, 150).

Table 5
Performance comparison between the proposed algorithm and the combined solution method in solving DRO-TVC with a time limit of 120 min.
(|| , || , | |) Solution method Best upper bound Best lower bound Relative gap (%) Computing time (s)

(18, 15, 180) Integer L-shaped method 6862.426 6534.242 4.78 2512.75
Integer L-shaped method + GUROBI 6862.426 6534.242 4.78 7200.00

Table 6
Performance comparison between the proposed algorithm and the combined solution method in solving DRO-TVSWC with a time limit of 120 min.
(|| , || , | |) Solution method Best upper bound Best lower bound Relative gap (%) Computing time (s)

(18, 15, 180) Integer L-shaped method 6728.546 6393.676 4.98 5235.25
Integer L-shaped method + GUROBI 6728.546 6393.676 4.98 7200.00

solver only for small-scale instances (e.g., (|| , || , | |) = (5, 3, 50) and (10, 12, 120)). However, the superiority of the integer L-
shaped algorithm with respect to GUROBI becomes more clear with an increase in the size of the problem. For example, for
(|| , || , | |) = (10, 10, 110), the integer L-shaped algorithm can find an approximate optimal solution with a relative gap of 4.92%
within 61 s for DRO-TVC and a near-optimal solution with a gap of 4.56% after 76.16 seconds’ computation for DRO-TVSWC.
In contrast, GUROBI requires 87.28 and 136.38 s to generate solutions with larger gaps. In this relatively small-scale problem, the
difference in performance is not significant. Nevertheless, for (|| , || , | |) = (18, 15, 180), our proposed algorithm can find solutions
in 2512.75 and 5235.25 s with gaps below 5%, whereas GUROBI cannot even find a feasible solution after 7200 s of computation
for both models; this demonstrates the effectiveness of our decomposition algorithm with problem-based cuts when dealing with
large-scale problems that occur frequently in practice. In addition, we observe that the optimal lower bound obtained by the integer
L-shaped algorithm is slightly inferior to that of GUROBI; however, the difference between the upper bounds of the two is relatively
small, and sometimes, the upper bound of the integer L-shaped algorithm is even better than that of GUROBI.

Next, we present the convergence trends of the upper bounds and lower bounds of the objective function values for GUROBI
and the proposed integer L-shaped method. The convergence trends for these cases are similar, and therefore, for brevity, only the
results of DRO-TVC and DRO-TVSWC with (|| , || , | |) = (15, 12, 150) are shown in Fig. 10. These results provide the following
observations: (1) The proposed integer L-shaped method can find a better first feasible solution than that of GUROBI, which is close
to the near-optimal solution obtained at the termination of the computation. (2) Although the lower bound obtained by the integer
L-shaped algorithm is not satisfactory at the beginning, the rate of improvement of the lower bound is more desirable. (3) It is
difficult to improve the lower bound during the B & B search process used by GUROBI and to find a feasible solution when the
problem scale is relatively large. (4) The convergence rate of GUROBI is slower than that of the proposed integer L-shaped method,
especially for large-scale instances. In conclusion, the proposed integer L-shaped algorithm clearly outperforms GUROBI in terms of
computational efficiency, optimal bounds, and convergence speed, especially for a large problem size.

Besides, we are particularly interested in combining the integer L-shaped algorithm with GUROBI. We have conducted a set of
experiments for both two DRO models to evaluate the effectiveness of this combined solution method. Specifically, we have selected
solutions with a gap of less than 5% obtained from the integer L-shaped method and fed them into GUROBI. Additionally, we have
incorporated the lower bound derived from the integer L-shaped method into GUROBI to speed up computations. Tables 5 and 6
report the results of solving the two DRO models, where “Integer L-shaped method + GUROBI” represents this combined approach.
It can be seen that GUROBI cannot find a better solution for both models after two-hour computations. To sum up, the combined
solution method does not yield any noticeable enhancements in our study.

Remark 6. To verify the effectiveness of the proposed algorithm in other passenger flow scenarios, the other dataset of passenger
25

flow was randomly generated. The experimental results of DRO-TVC are shown in Table 9 and Fig. 17 (see Appendix C). It can
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Fig. 11. Comparison of the vehicle dispatching plans.

Table 7
Performance comparison of DRO-TVC and DRO-TVSWC with different dynamic-capacity allocation strategies.

Model Objective value (unit: $) Total number of utilized MUs

Waiting costs of passengers Operating costs of operators

DRO-TVC 3707.411 930.566 81
DRO-TVSWC 3736.678 749.858 44
Objective improvement (%) −0.789 19.419 45.679

be seen that our proposed integer L-shaped algorithm is superior in different sets of passenger flow scenarios, proving its wider
applicability.

5.3. Comparison between different dynamic-capacity allocation strategies

In this subsection, we focus on evaluating performance of timetabling using three capacity allocation strategies. The first strategy
nvolves static (fixed) capacity allocation plans, the second strategy involves dynamically adjusting the capacity of MVs assigned
o different trips considering the time-varying capacity, and the third strategy involves enabling the time-varying and station-wise
apacity. For this set of experiments, we use the practical existing operational plan, which is based on a uniform headway and a
ixed formation (i.e, the aforementioned first strategy), as our benchmark. The operating strategies adopted in the benchmark is the
ost common plans used in practice (Ceder, 2016).

Fig. 11 shows the number of MUs in the MV assigned to each trip and the departure time at the first stop of the MV assigned to
ach trip. It can be seen that the number of utilized MUs with static (fixed) capacity allocation plans is the largest. This is expected
ecause the train capacity in this case cannot be adjusted to the time-dependent and spatially uneven passenger demand, which leads
o a waste of redundant capacity. Further, Table 7 compares the performances of DRO-TVC and DRO-TVSWC in detail. These results
ield two observations: (1) With the time-varying and station-wise capacity allocation strategy, the operating costs and the number
f utilized MUs are evidently reduced (by approximately 20% and 46%, respectively) compared with the strategy with only the
ime-varying capacity. The results reveal the benefits of enabling MUs to be docked/undocked at each stop for dispatching vehicles
riven by passenger demand. (2) The time-varying and station-wise capacity strategy results in an increase of approximately 0.8%
n the objective value with respect to the waiting costs of passengers.

In addition, we are interested in the vehicle congestion during operation. The following indices

ACF𝑘 = 1
||

∑

𝑖∈

sup𝛉∈𝛯{𝑝𝑜𝑛𝑘,𝑖}
∑

𝑞∈ 𝜗𝑞 ⋅ 𝑥𝑘,𝑞
,∀𝑘 ∈ , (69)

MCF𝑘 = max
𝑖∈

{ sup𝛉∈𝛯{𝑝𝑜𝑛𝑘,𝑖}
∑

𝑞∈ 𝜗𝑞 ⋅ 𝑥𝑘,𝑞

}

,∀𝑘 ∈ , (70)

are employed to explore the average and maximum congestion of vehicles during operation, respectively. More precisely, ACF𝑘
represents the average full-loading rate of MV assigned to trip 𝑘, which reflects the average level of the in-vehicle congestion in the
worst-case scenario, and MCF𝑘 represents the maximum level of in-vehicle congestion of MV 𝑘. A heat map is plotted to visualize
the average and maximum levels of in-vehicle congestion in Fig. 12(a). A more reddish shade implies a greater level of congestion,
whereas a bluer shade indicates little congestion and considerable wasted capacity. An ideal level in terms of passengers would
therefore be blue, whereas the desired situation for operators would be on the red side, but not too red, and it may lie between the
colors represented by values between 0.8 and 1. The results shown in Fig. 12 help us conclude the following.
26
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Fig. 12. Comparison of the maximum and average congestion among three strategies.

(a) Under the operational plan with fixed capacity, the maximum level of congestion (i.e., MCF-FC) for some MVs would exceed 1,
e.g., the MVs assigned to trips 9 and 15. This can result in passengers being stranded and unable to board the expected MVs assigned
to trips, especially in the case of regular epidemic prevention and control, which will significantly reduce their satisfaction. Further,
the average levels of congestion (i.e., ACF-FC) are all less than 0.5 during the first 5 trips, indicating the serious waste of capacity.
This can be primarily attributed to there being lower demand during this period, whereas the capacity is fixed.

(b) Through the robust collaborative optimization of timetables and the dynamic-capacity allocation strategy with time-varying
capacity, the maximum levels of congestion (i.e., MCF-TVC) of MVs are all between 0.75 and 1, which ensure that all waiting
passengers can leave on the desired MVs. Further, compared with the operational plan with fixed capacity, it has a smaller range of
variations in the MCF and ACF with a more stable capacity occupancy. Moreover, this demonstrates that the time-varying capacity
can dynamically match time-dependent demand. These facts (e.g., a fewer number of in-service MUs, a more comfortable level of
congestion, and a guarantee of being able to board the desired MVs) support that our proposed dynamic-capacity allocation approach
can reduce the operating costs for operators while providing passengers with high-quality services.

(c) The results of DRO-TVSWC, which enables the time-varying and station-wise capacity, remain at the top in terms of the
maximum and average levels of congestion. The maximum and average levels of congestion of each vehicle largely remained at
approximately 1 and 0.8, respectively. These results indicate that, compared with the solutions obtained with fixed capacity and
timetables, our proposed method of integrating the timetabling and the time-varying and station-wise capacity can provide more
effective and flexible solutions where the majority of MVs assigned to trips can be well matched to the time-dependent and unevenly
distributed passenger demand at each stop. In addition, it is worth noting that our method is able to reduce the redundancy of
capacity when passenger demand is lower. For example, in the first four trips, our solution yields improved average full-loading
rates of MVs assigned to trips. In practice, operators may profit from the observed improvements.

Moreover, we compare the computational results with respect to the congestion of the MV assigned to each trip. Considering the
stop Kangjiagou as an example, a detailed comparison of the in-vehicle and waiting passengers in the worst-case scenario with the
three strategies is displayed in Fig. 13(a) and Fig. 13(b), respectively. Specifically, the first strategy is using the fixed timetable with
even headway and fixed capacity; the second one is the integrated optimization of timetabling and time-varying capacity; and the
last one is the integration of timetabling and station-wise capacity. In other words, the timetables and allocation plans of capacity
in all three solutions are different from each other. From the results depicted in Fig. 13(a), it can be observed that the maximum
number of in-vehicle passengers has decreased, which highlights the reduction of the maximum congestion in vehicles and leads to
improved travel comfort. Besides, Fig. 13(b) reports the number of passengers waiting for trips at this stop. It can be seen that the
maximum number of waiting passengers has also decreased, illustrating a reduction in passenger bunching at this stop, and thereby
improving operational safety. Further, this again demonstrates that it is greatly beneficial to consider dynamic capacity in practical
operations. In addition, another interesting observation is that the in-vehicle passengers shown in Fig. 13(a) are reduced compared
to the fixed-capacity solution. The main reason is that the worst-case perturbation parameter with respect to passenger demand
is closely related to both the timetables and dynamic-capacity allocation plans. When using different strategies to optimize these
two aspects simultaneously, the worst-case perturbation parameter at a specific stop and time interval may be different, since the
uncertainty set of the random variable is a bounded polyhedron. Furthermore, according to Proposition 3, the number of in-vehicle
passengers varies with the realizations of the worst-case passenger demand among different strategies.

5.4. Out-of-sample performance of DRO-TVC and SP-TVC

The investigated robust TT-DCA problem is oriented towards long-term planning at the tactical level. After deriving a data-driven
robust timetable and dynamic-capacity allocation plan, its robustness should be evaluated in various scenarios that may appear in
27
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Fig. 13. Comparison of in-vehicle and waiting passengers at stop Kangjiagou among three strategies.

practical operations. Therefore, we now compare the out-of-sample performance of the DRO and SP methods by taking the related
models (27) and (58) with the time-varying capacity allocation strategy as an illustration. In this subsection, we adopt the out-of-
sample simulation testing procedure proposed by Shehadeh and Tucker (2020). Considering that the degree of disturbance of the
external environment on the public transportation system varies at different times in practical operations, we use a time-varying
perturbation parameter 𝜙(𝑡) to vary the parameter 𝑢𝑖,𝑡 (i.e., the passenger arrival rate) as

𝑢′𝑖,𝑡 = 𝑢𝑖,𝑡 ⋅ 𝜙(𝑡),∀𝑖 ∈ , 𝑡 ∈  ,

where 𝜙(𝑡) ∼ 𝑈 [(1−𝛱), (1+𝛱)], i.e., 𝜙(𝑡) obeys a uniform distribution, and 𝛱 represents the perturbation of the passenger demand.
Thus, new passenger demand scenarios can be conducted to characterize the uncertain and dynamic environments in real-world
operations. Specifically, the realization of the passenger arrival rate on a typical day is randomly selected as the benchmark, and then
a new dataset including 𝑁 ′ out-of-sample scenarios can be constructed by computing 𝑢′𝑖,𝑡 = 𝑢𝑖,𝑡 ⋅𝜙(𝑡) at each stop and time interval. In
our implementation, datasets with different sizes, i.e., 𝑁 ′ ∈ {10, 30, 50, 100, 300, 1000}, are generated with different perturbations in
demand, that is, 𝛱 ∈ {0.05, 0.10.0.15, 0.20}, to evaluate the out-of-sample performance of DRO-OPMV and SP-OPMV among various
cases. Then, we solve problems (27) and (58) by using all historical data to obtain the solutions 𝐲̂𝑑𝑟𝑜 and 𝐲̂𝑠𝑜, respectively. Finally,
the out-of-sample performances 𝑍𝑜𝑢𝑡(𝐲̂𝑑𝑟𝑜) and 𝑍𝑜𝑢𝑡(𝐲̂𝑠𝑜) are computed and compared.

Fig. 14 depicts the median and area between the upper and lower quartiles of the out-of-sample performance. Note that the upper
and lower boundary of the shaded area correspond to the upper and lower quartiles of the out-of-sample performance, respectively.
Theoretically, the lower the boundary, the better is the model performance. These results suggest that DRO-TVC has better upper
and lower quartiles than SP-TVC among all out-of-sample scenarios. In addition, DRO-OPMV has better out-of-sample performance
with respect to the median value. For both DRO-TVC and SP-TVC, the performance remains the best when the size of the dataset is
small (i.e., 𝑁 = 30 or 𝑁 = 50).

We further compare the out-of-sample performance of the DRO-TVC and the SP-TVC in detail. The comparative results of the
statistical indicators are similar under different 𝛱 , and therefore, we only present the results of instances when 𝛱 = 0.1. Table 8
illustrates the mean value, standard deviation and median values of the out-of-sample performance for different sample sizes. It can
be observed that the average performance of the two methods tends to stabilize with an increase in the sample size, and DRO-TVC
outperforms than SP-TVC in all cases. Further, the robustness of the solutions obtained by DRO-TVC and SP-TVC both decreases with
an increase in the sample size; however, DRO-TVC still outperforms SP-TVC. Based on the above observations, we conclude that (1)
in most cases, the solutions obtained by DRO-TVC are more effective than those obtained by SP-TVC in out-of-sample experiments,
and (2) the DRO-TVC model is more robust than the SP-TVC model. These observations demonstrate that DRO-TVC can generate
more efficient and reliable solutions than SP-TVC. The superior performance of the DRO-TVC also reflects the value of formulating
a data-driven metric-based distributional ambiguity for passenger demand.

5.5. Sensitivity analysis of the Wasserstein radius 𝜌

Recall that one advantage of the Wasserstein distance-based ambiguity set is its ability to enable decision-makers to control the
obustness of solutions by adjusting the Wasserstein radius parameter. Hence, we perform an analysis of the impact of the variation
n the parameters on the obtained robust solutions via two sets of experiments. To be specific, we first use statistical methods to
nalyze a better setting of the parameter 𝜌, i.e., the radius of the Wasserstein ball, because its value may lead to extensively different

out-of-sample performance of DRO-TVC according to Mohajerin Esfahani and Kuhn (2018). The optimal objectives of the DRO, SP,
and RO solutions are then compared to demonstrate the superiority of the DRO-TVC model.

There are several methods for estimating the optimal radius of the Wasserstein ball (readers are referred to Mohajerin Esfahani
and Kuhn, 2018; Zhou et al., 2020). In this study, we adopted the holdout and 𝑘-fold cross-validation approach that can provide
28
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Fig. 14. Out-of-sample performance comparison among various 𝛱 of DRO-TVC and SP-TVC.

Table 8
Out-of-sample performance comparison between the DRO-TVC and SP-TVC with 𝛱 = 0.1.
𝑁 Model Mean value Standard deviation Range value

10 DRO-TVC 7061.724 862.884 2652.745
SP-TVC 7248.232 823.311 2560.040

30 DRO-TVC 6573.188 1025.676 3773.849
SP-TVC 6726.381 1049.201 3862.936

50 DRO-TVC 6760.523 948.894 3796.409
SP-TVC 6911.596 958.890 3887.237

100 DRO-TVC 6864.716 992.100 3838.539
SP-TVC 7018.427 1018.084 3917.495

300 DRO-TVC 6707.349 998.745 3901.860
SP-TVC 6858.051 1008.844 3992.608

1000 DRO-TVC 6779.612 972.498 3907.831
SP-TVC 6936.462 988.876 3993.457

1 The bolded metrics indicate that DRO-TVC outperforms SP-TVC.

a more comprehensive analysis and generate a setting of 𝜌 with better out-of-sample performance according to Mohajerin Esfahani
and Kuhn (2018). Specifically, first, we denote the historical dataset by 𝛩 = {𝛉̂1, 𝛉̂2,… , 𝛉̂𝑁}. The historical dataset is then divided
into a testing set 𝛩1 of size 𝑁1 and a training set 𝛩2 of size 𝑁0 = 𝑁 −𝑁1; the evaluative index of the out-of-sample performance
can be formulated as

𝑍𝑜𝑢𝑡(𝐲̂𝑁 (𝜌)) = 1
𝑁0

∑

𝛉̂𝑛∈𝛩1

𝑍(𝐲̂𝑁 (𝜌), 𝛉̂𝑛), (71)

where 𝐲̂𝑁 (𝜌) represents the solution obtained using only the training dataset. We provide the pseudocode of the holdout method for
DRO-TVC in Algorithm 2 (see Appendix D). The cross-validation method is shown in Algorithm 3 and it is implemented based on
Algorithm 2 (see Appendix D). In our implementation, the historical dataset is divided into three subsets, and the candidate value
of 𝜌 is selected from the set 𝑃 = {0, 0.0001, 0.001, 0.01, 0.1, 1, 10}. Fig. 15 visualizes the out-of-sample performance of the solutions
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Fig. 15. Out-of-sample performance of 𝑘-fold cross validation.

Fig. 16. Computational results under different 𝜌.

obtained by Algorithm 3 under different values of 𝜌. Clearly, the DRO-TVC model has the best out-of-sample performance when the
value of 𝜌 equals to 1 for the various training and test datasets.

Next, we explore the impact of 𝜌 on the optimal objectives. Fig. 16 shows that the objective value increase with an increase
in 𝜌. This is consistent with the theory because a larger value of 𝜌 indicates that more probability distributions are covered in the
Wasserstein ball, which implies that the DRO-TVC is more conservative. Further, as discussed in Remark 4, DRO-TVC (58) with
𝜌 = 1 is reduced to SP-TVC (27) when 𝜌 = 0; and it is approximately equivalent to the traditional robust optimization model
RO-TVC when 𝜌 = 10000. As can be observed from Fig. 16, the objective values decreases by 2.71% from 𝜌 = 1 to 𝜌 = 0. However,
the objective value increases by more than 142% as 𝜌 = 1 increases to 𝜌 = 10000. These results suggest that DRO-TVC can address
the challenges of probability distributions that are not precisely available in practice at a smaller cost compared with the stochastic
programming method, while obtaining a more reliable solution. Compared with the traditional robust optimization method, DRO-
TVC can significantly reduce its over-conservativeness and achieve more efficient solutions. The in-sample and out-of-sample
performances of the model are satisfactory when 𝜌 = 1.

6. Conclusions and future research

To improve the operational efficiency and reliability of urban public transportation, this paper proposes a data-driven distri-
butionally robust optimization approach to collaboratively optimize the timetable and dynamic-capacity allocation plans of MVs,
which takes into account dynamic and uncertain passenger demand, as well as time-dependent travel times. By extracting relevant
information from historical data, we construct a Wasserstein distance-based ambiguity set with time-dependent and station-wise
perturbation parameter to characterize the uncertain and dynamic operating environment in practice. Subsequently, a data-driven
distributionally robust optimization model with time-varying capacity allocation strategy is proposed to minimize the waiting costs
of passengers and operating costs of operators. Further, the proposed model is extended to a more general version that enables
the time-varying and station-wise capacity. A series of mathematical properties are proven in order to obtain the computationally
tractable version of the proposed DRO models. Since real-world instances require a significant number of variables to be described,
we designed a customized integer L-shaped algorithm with a set of problem-based valid equalities. Finally, a series of numerical
experiments are conducted based on real-world operational data of Beijing Bus Line 468. The computational results indicate the
30



Transportation Research Part C 155 (2023) 104314D. Xia et al.

o
M
p
a
s
t
w
p

u
c
t
a
e
b
o

C

w
v

proposed algorithm can quickly find high-quality solutions of small-scale problems and outperforms the state-of-the-art commercial
solver GUROBI in terms of quality and efficiency for solving large-scale problems.

Our computational results demonstrate the practical benefits of enabling dynamic-capacity allocation strategies for reducing
perational costs, especially when the time-varying and station-wise capacity of modular vehicles is taken into account. By enabling
Us to be docked/undocked at each stop along the investigated bus line, a good trade-off can be achieved between the costs of

assengers and operators, where the number of utilized MUs and the operating costs are significantly reduced by approximately 20%
nd 46%, compared with the optimized plan with only time-varying capacity. The comparison results with the practical operation
trategies considering the static capacity indicate a considerable improvement in the match between supply and demand. Meanwhile,
he results obtained show that the in-sample performance of the distributionally robust optimization method is very competitive
hen compared with the robust optimization approach, whereas its out-of-sample performance outperforms that of the stochastic
rogramming approach.

Future research can be conducted in the following aspects. (1) We constructed a metric-based ambiguity set to describe the
ncertainty of passenger demand in this study. Therefore, in the future, other ambiguity sets such as moment-based ambiguity sets
an be designed for performance comparison. (2) Storing MUs at stops with limited space and rerouting MUs to the stops where
hey are needed are two problems that can arise when considering the time-varying and station-wise capacity on a single line. In
ddition, the number of required MUs may be higher compared to the number of MUs actually used, which can lead to an inaccurate
stimation of the corresponding operating costs through the solutions obtained by the proposed approaches on a single line. It would
e interesting to explore the problems investigated in this study at the network level, and take passengers’ traveling time consisting
f waiting time, in-vehicle time and transfer time into account.
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Appendix A. Proof of Proposition 1

Denote 𝑓 (𝛉) =
∑

𝑗∈ 𝜃𝑗 ⋅ 𝜋𝑗 . Obviously, 𝑓 (𝛉) is a convex function. According to Theorem 4.2 proposed in Mohajerin Esfahani and

Kuhn (2018), supP∈𝜌(P̂𝑁 ) EP

[

∑

𝑗∈ 𝜃𝑗 ⋅ 𝜋𝑗

]

equals the optimal value of the following finite convex program:

inf
𝜎,𝒄,𝝌 ,𝝇

𝜌𝜎 + 1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛 (72)

s.t. [−𝑓 ] ∗ (𝝌𝑛 − 𝝇𝑛) + 𝑔𝛯 (𝝇𝑛) − ⟨𝝌𝑛, 𝛉̂𝑛⟩ ≤ 𝑐𝑛, ∀𝑛 ≤ 𝑁, (73)
‖

‖

𝝌𝑛
‖

‖∗ ≤ 𝜎, ∀𝑛 ≤ 𝑁, (74)

here [−𝑓 ] ∗ (𝝌𝑛−𝝇𝑛) denote the conjugate of −𝑓 evaluated at (𝝌𝑛−𝝇𝑛), 𝑔𝛯 (𝝇𝑛) is the support function of 𝛯, and 𝑐𝑛 are the auxiliary
ariables

According to the definition of the conjugate operator, we can derive

[−𝑓 ] ∗ (𝝌𝑛 − 𝝇𝑛) = sup
𝜃
⟨𝝌𝑛 − 𝝇𝑛, 𝛉⟩ + ⟨𝝅, 𝛉⟩ =

{

0, if 𝝌𝑛 − 𝝇𝑛 = −𝝅,
∞, otherwise (75)

Then, based on the definition of the support function, we can derive

𝑔𝛯 (𝝇𝑛) =

{

sup
𝛉
⟨𝝇𝑛, 𝛉⟩

=

{

inf
𝝀≥0

⟨𝝀𝑛,𝐛⟩
𝑇

(76)
31

s.t. 𝐀𝛉 ≤ 𝐛. s.t. 𝐀 𝝀𝑛 = 𝝇𝑛.
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Fig. 17. Convergence trends of experiments for DRO-TVC with the generated data set.

The left-hand side of constraints (73) can be converted to

[−𝑓 ] ∗ (𝝌𝑛 − 𝝇𝑛) + 𝑔𝛯 (𝝇𝑛) − ⟨𝝌𝑛, 𝛉̂𝑛⟩ = ⟨𝝀𝑛,𝐛⟩ − ⟨𝝇𝑛 − 𝝅, 𝛉̂𝑛⟩
= ⟨𝝀𝑛,𝐛⟩ + ⟨𝝅, 𝛉̂𝑛⟩ − ⟨𝐀𝑇 𝝀𝑛, 𝛉̂𝑛⟩
= ⟨𝝀𝑛,𝐛⟩ + ⟨𝝅, 𝛉̂𝑛⟩ − ⟨𝝀𝑛,𝐀𝛉̂𝑛⟩
= ⟨𝝅, 𝛉̂𝑛⟩ + ⟨𝝀𝑛,𝐛 − 𝐀𝛉̂𝑛⟩

=
𝐽
∑

𝑗=1
𝜃̂𝑛,𝑗 ⋅ 𝜋𝑗 +

𝐷
∑

𝑑=1
(𝑏𝑑 −

𝐽
∑

𝑗=1
𝐴𝑑,𝑗 ⋅ 𝜃̂𝑛,𝑗 )𝜆𝑛,𝑑

Since 𝝌𝑛 = 𝝇𝑛 − 𝝅 = 𝐀𝑇 𝝀𝑛 − 𝝅, constraints (74) can be replaced by
‖

‖

‖

𝐀T𝝀𝑛 − 𝝅‖‖
‖∗

≤ 𝜎, ∀𝑛 ≤ 𝑁.

Appendix B. The integer L-shaped method for DRO-TVSWC

Similarly, we construct the current problem as follows:

[CPS]

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

inf
𝐫,𝐱,𝜎,𝐜,𝝀,𝐠,𝜂

𝑤1 ⋅ 𝛥𝑡 ⋅ 𝜗
𝑇 ⋅

(
∑

𝑘∈

∑

𝑖∈

∑

𝑡∈

∑

𝜍∈𝑡

𝑣𝑘,𝑖,𝑡,𝜍 ⋅ 𝜇𝑖,𝜍 + 𝜌𝜎 + 1
𝑁

𝑁
∑

𝑛=1
𝑐𝑛
)

+ 𝜂

s.t. 𝜂 ≥ (𝑈 (𝐫∗, 𝐱) − 𝐿)
(

∑

(𝑘,𝑖,𝑡)∈ 𝐻(𝑟∗)
𝑟𝑘,𝑖,𝑡 −

∑

(𝑘,𝑖,𝑡)∉ 𝐻(𝑟∗)
𝑟𝑘,𝑖,𝑡 − |

|

𝐻(𝑟∗)|
|

)

+ 𝑈 (𝐫∗, 𝐱).

𝜂 ≥ 𝐬(𝐫 − 𝐫∗) + 𝑈𝐿𝑃 (𝐫∗, 𝐱).
Constraints (1)–(6), (9)–(13), (24), (35)–(39), (59), (62).

For the sake of simplicity, denote 𝑈𝑆 (𝐫, 𝐱) = min𝑥𝑘,𝑖,𝑞 {
∑

𝑖∈
∑

𝑞∈
∑

𝑘∈ 𝜗𝑞 ⋅ 𝑥𝑘,𝑖,𝑞|Constraints (30)–(31), (59)}. Next, we replace CP
and 𝑈 (𝐫, 𝐱) in Algorithm 1 with CP𝑆 and 𝑈𝑆 (𝐫, 𝐱) to obtain the tailored integer L-shaped algorithm for the DRO-TVSWC problem.

Appendix C. Comparison of results between the benchmark and the proposed algorithm based on generated data

We generated a data set to further validate the effectiveness of the proposed algorithm on different data sets. Table 9 provide
detailed comparative results for solving the DRO-TVC on the generated data set. Further, Fig. 17 depicts the convergence trends for
some selected cases.

Appendix D. 𝒌-fold cross validation method

By following Mohajerin Esfahani and Kuhn (2018), we first propose the holdout method for DRO-TVC. The detailed procedures
32

are shown as follows
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Table 9
Comparison of results between the Benchmark and the proposed algorithm on the generated data set.
Instancea Solution method Best upper bound Best lower bound Relative gap (unit: %) Computing time (unit: s)

In_5_3_50 Gurobi 365.014 348.599 4.5 1.71
Integer L-shaped method 358.464 343.465 4.18 4.41

In_10_10_110 Gurobi 2421.878 2340.388 3.36 76.57
Integer L-shaped method 2428.213 2317.889 4.54 62.71

In_10_12_120 Gurobi 3133.760 3026.326 3.43 93.22
Integer L-shaped method 3103.182 2963.377 4.51 74.75

In_10_15_140 Gurobi 4204.071 4036.633 3.98 248.00
Integer L-shaped method 4168.45 3998.195 4.08 220.00

In_15_10_130 Gurobi 3242.484 3093.785 4.59 2227.93
Integer L-shaped method 3203.693 3043.74 4.99 329.12

In_15_12_150 Gurobi 4114.608 4002.187 2.73 2577.45
Integer L-shaped method 4143.206 3938.713 4.94 854.32

In_15_15_160 Gurobi 9111.324 4856.397 46.70 3600.00
Integer L-shaped method 5063.687 4811.038 4.99 1209.76

In_18_10_150 Gurobi 6655.857 3213.289 51.70 3600.00
Integer L-shaped method 3332.72 3167.135 4.97 1628.03

In_18_12_160 Gurobi 8314.553 4151.29 50.10 7200.00
Integer L-shaped method 4303.769 4105.175 4.61 1644.49

In_18_15_180 Gurobi – – – 7200.00
Integer L-shaped method 5247.437 4988.254 4.94 2863.77

aThe specific description of each instance is ‘‘In_No. Stop_No. Bus_No. time interval’’, e.g., ‘‘In_5_3_50’’ represents this instance considering 5 stops, 3 buses and
50 time intervals.

Algorithm 2 Holdout method for DRO-TVC.
Step 1: Input testing dataset 𝛩1 and training dataset 𝛩2 . Create a finite candidate set 𝑃 = {𝜌1, 𝜌2, ..., 𝜌𝑚, ..., 𝜌𝑀}. Initial the
optimal radius 𝜌𝑜𝑝𝑡 = 0 and minimum value of out-of sample performance 𝑍𝑚𝑖𝑛

𝑜𝑢𝑡 = +∞, then go to Step 2.
Step 2: If 𝑃 is not empty, select a 𝜌𝑚 and remove it from 𝑃 ; go to Step 3. Otherwise, return 𝜌𝑜𝑝𝑡 and stop.
Step 3: Run algorithm 1 to solve DRO-TVC by only using the training dataset and get solution 𝐲̂𝑁 (𝜌𝑚), then go to Step 3.
Step 4: Calculate 𝑍𝑜𝑢𝑡(𝐲̂𝑁 (𝜌𝑚)). If 𝑍𝑜𝑢𝑡(𝐲̂𝑁 (𝜌𝑚)) < 𝑍𝑚𝑖𝑛

𝑜𝑢𝑡 , let 𝑍𝑚𝑖𝑛
𝑜𝑢𝑡 = 𝑍𝑜𝑢𝑡(𝐲̂𝑁 (𝜌𝑚)) and let 𝜌𝑜𝑝𝑡 = 𝜌𝑚. Then return to step 2.

Then, 𝑘-fold cross validation method is proposed based on the holdout method. The specific procedure of this method is as follows

Algorithm 3 𝑘-fold cross validation.
Step 1: Let 𝑙 = 0. Divide the historical dataset into k subsets 𝑆1, 𝑆2, ., , , 𝑆𝑘 and go to step 2.
Step 2: If 𝑙 ≤ 𝑘, let the subset 𝑆𝑙 obtained in step 1 as the test dataset, and the remaining subset as the training dataset; go
to Step 3. Otherwise, go to Step 4.
Step 3: Run algorithm 2 and get the optimal radius 𝜌𝑙 of 𝑙 holdout runs. Let 𝑙 = 𝑙 + 1, then go to Step 2.
Step 4: Calculate 𝜌𝑏𝑒𝑠𝑡 = (1∕𝑁)

∑

𝑙≤𝑘 𝜌𝑙 and output this value, stop.

References

Agra, A., Rodrigues, F., 2022. Distributionally robust optimization for the berth allocation problem under uncertainty. Transp. Res. B 164, 1–24.
Angulo, G., Ahmed, S., Dey, S., 2016. Improving the integer L-shaped method. INFORMS J. Comput. 28 (3), 483–499.
Ardestani-Jaafari, A., Delage, E., 2016. Robust optimization of sums of piecewise linear functions with application to inventory problems. Oper. Res. 64, 474–494.
Bertsimas, D., Sim, M., 2004. The price of robustness. Oper. Res. 52 (1), 35–53.
Ceder, A., 2016. Public Transit Planning and Operation: Modeling, Practice and Behavior. CRC Press, Boca Raton, FL.
Chen, Z., Li, X., 2021. Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method. Transp. Res. E

152 (2021), 102388.
hen, Z., Li, X., Qu, X., 2022. A continuous model for designing corridor systems with modular autonomous vehicles enabling station-wise docking. Transp. Sci.

56 (1), 1–30.
hen, Z., Li, X., Zhou, X., 2019. Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method. Transp.

Res. B 122, 1–19.
hen, Z., Li, X., Zhou, X., 2020. Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method. Transp.

Res. B 132, 76–100.
heramin, M., Cheng, J., Jiang, R., Pan, K., 2022. Computationally efficient approximations for distributionally robust optimization under Moment and Wasserstein

ambiguity. INFORMS J. Comput. 34 (3), 1768–1794.
ai, Z., Liu, X.C., Chen, X., Ma, X., 2020. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: A dynamic

programming approach. Transp. Res. C 114, 598–619.
33

http://refhub.elsevier.com/S0968-090X(23)00303-0/sb1
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb2
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb3
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb4
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb5
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb6
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb6
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb6
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb7
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb7
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb7
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb8
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb8
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb8
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb9
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb9
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb9
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb10
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb10
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb10
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb11
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb11
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb11


Transportation Research Part C 155 (2023) 104314D. Xia et al.

H
K
L
L
L

L

L
M
M
M

N
N
N
N
N

N
O
P

P
R
R
S

S

S
S

S
S

T

T

V

W

W

Y

Z
Z

Z

Z
Z

Delage, E., Ye, Y., 2010. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58 (3), 596–612.
Gkiotsalitis, K., Alesiani, F., 2019. Robust timetable optimization for bus lines subject to resource and regulatory constraints. Transp. Res. E 128, 30–51.
Goerigk, M., Schöbel, A., 2014. Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Comput. Oper.

Res. 52, 1–15.
announ, G., Menéndez, M., 2022. Modular vehicle technology for emergency medical services. Transp. Res. C 140 (2022), 103694.
antorovich, L., Rubinshtein, S., 1958. On a space of totally additive functions. Vestnik St. Petersburg Univ.: Math. 13 (7), 52–59.
aporte, G., Louveaux, F., 1993. The integer L-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13 (3), 133–142.
iu, T., Ceder, A., 2016. Synchronization of public transport timetabling with multiple vehicle types. Transp. Res. Rec. 2539 (1), 84–93.
iu, K., Li, Q., Zhang, Z., 2019. Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance

constraints. Transp. Res. B 119, 79–101.
iu, X., Liu, X., Zhang, X., Zhou, Y., Chen, J., Ma, X., 2022. Optimal location planning of electric bus charging stations with integrated photovoltaic and energy

storage system. Comput.-Aided Civ. Infrastruct. Eng. http://dx.doi.org/10.1111/mice.12935.
iu, X., Qu, X., Ma, X., 2021. Optimizing electric bus charging infrastructure considering power matching and seasonality. Transp. Res. D 100, 103057.
a, X., Zhang, X., Li, X., Wang, X., Zhao, X., 2019. Impacts of free-floating bikesharing system on public transit ridership. Transp. Res. D 76, 100–110.
evissen, M., Ragnoli, E., Yu, J., 2013. Data-driven distributionally robust polynomial optimization. Adv. Neural Inf. Process. Syst. 26, 37–45.
ohajerin Esfahani, P., Kuhn, D., 2018. Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable

reformulations. Math. Program. 171 (1), 115–166.
ewell, G., 1971. Dispatching policies for a transportation route. Transp. Sci. 5 (1), 91–105.
ewell, G., Potts, R., 1964. Maintaining a bus schedule. In: Australian Road Research Board (ARRB) Conference, 2nd. pp. 388–393.
EXT Future Transportation Inc., 2018. NEXT future transportation - Intro. Accessed May 20, 2023, https://www.youtube.com/watch?v=j6L3DCpGg5w.
EXT Future Transportation Inc., 2022. NEXT is now. Accessed October 6, 2022, https://www.next-future-mobility.com/.
EXT Future Transportation Inc., 2023. Dubai experiments the future of transportation, with NEXT. Accessed May 20, 2023, https://www.next-future-

mobility.com/post/dubai-with-next-experiments-with-the-future-of-transportation.
iu, H., Zhou, X., 2013. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transp. Res. C 36, 212–230.
hmio, 2023. Our vehicles and technology. Accessed June 8, 2023, https://ohmio.com/our-vehicles-and-technology.
eña, D., Tchernykh, A., Nesmachnow, S., Massobrio, R., Feoktistov, A., Bychkov, I., Radchenko, G., Drozdov, A.Y., Garichev, S.N., 2019. Operating cost and

quality of service optimization for multi-vehicle-type timetabling for urban bus systems. J. Parallel Distrib. Comput. 133, 272–285.
olinder, G., Breugem, T., Dollevoet, T., Maróti, G., 2019. An adjustable robust optimization approach for periodic timetabling. Transp. Res. B 128, 50–68.
ahimian, H., Mehrotra, S., 2019. Distributionally Robust Optimization: A Review. Technical report, arXiv preprint, arXiv:1908.05659.
obenek, T., Maknoon, Y., Azadeh, S., Chen, J., Bierlaire, M., 2016. Passenger centric train timetabling problem. Transp. Res. B 89, 107–126.
adrani, M., Tirachini, A., Antoniou, C., 2022a. Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model

formulation and solution approaches. European J. Oper. Res. 299, 263–282.
adrani, M., Tirachini, A., Antoniou, C., 2022b. Optimization of service frequency and vehicle size for automated bus systems with crowding externalities and

travel time stochasticity. Transp. Res. C 143, 103793.
ánchez-Martíneza, G., Koutsopoulosa, H., Wilsona, N., 2016. Real-time holding control for high-frequency transit with dynamics. Transp. Res. B 83, 1–19.
hehadeh, K., Tucker, E., 2020. A distributionally robust optimization approach for location and inventory prepositioning of disaster relief supplies. arXiv preprint,

arXiv:2012.05387.
hi, X., Li, X., 2021. Operations design of modular vehicles on an oversaturated corridor with first-in, first-out passenger queueing. Transp. Sci. 55 (5), 1187–1205.
pera, E., 2016. CAREEM to bring driverless transportation solutions to the MENA region through partnership with NEXT future transportation. Accessed June

8, 2023, from https://www.linkedin.com/pulse/careem-bring-driverless-transportation-solutions-mena-emmanuele-spera/.
ang, C., Ge, Y., Xue, H., Ceder, A., Wang, X., 2023. Optimal selection of vehicle types for an electric bus route with shifting departure times. Int. J. Sustain.

Transp. http://dx.doi.org/10.1080/15568318.2022.216107.
ian, Q., Lin, Y., Wang, D., Liu, Y., 2022. Planning for modular-vehicle transit service system: Model formulation and solution methods. Transp. Res. C 138

(2022), 103627.
isentini, M., Araújo, O., Borenstein, D., Kummer, A., 2019. Exploiting the timetabling flexibility in the context of the vehicle scheduling problem with

heterogeneous fleet. Pesqui. Oper. 39, 85–108.
ang, Y., Zhang, D., Hu, L., Yang, Y., Lee, L., 2017. A data-driven and optimal bus scheduling model with time-dependent traffic and demand. IEEE Trans.

Intell. Transp. Syst. 18 (9), 2443–2452.
u, W., Liu, R., Jin, W., Ma, C., 2019. Stochastic bus schedule coordination considering demand assignment and rerouting of passengers. Transp. Res. B 121,

275–303.
an, H., Ma, X., Pu, Z., 2022. Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Trans. Intell. Transp. Syst. 23 (11),

22386–22399.
hang, A., Kang, J.E., Axhausen, K., Kwon, C., 2018. Multi-day activity-travel pattern sampling based on single-day data. Transp. Res. C 89, 96–112.
hang, Z., Tafreshian, A., Masoud, Neda, 2020. Modular transit: Using autonomy and modularity to improve performance in public transportation. Transp. Res.

E 141, 102033.
hang, W., Xia, D., Liu, T., Fu, Y., Ma, J., 2021a. Optimization of single-line bus timetables considering time-dependent travel times: A case study of Beijing,

China. Comput. Ind. Eng. 158, 107444.
hang, Y., Zhang, Z., Lim, A., Sim, M., 2021b. Robust data-driven vehicle routing with time windows. Oper. Res. 69 (2), 469–485.
hou, A., Yang, M., Wang, M., Zhang, Y., 2020. A linear programming approximation of distributionally robust chance-constrained dispatch with Wasserstein

distance. IEEE Trans. Power Syst. 35 (5), 3366–3377.
34

http://refhub.elsevier.com/S0968-090X(23)00303-0/sb12
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb13
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb14
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb14
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb14
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb15
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb16
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb17
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb18
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb19
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb19
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb19
http://dx.doi.org/10.1111/mice.12935
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb21
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb22
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb23
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb24
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb24
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb24
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb25
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb26
https://www.youtube.com/watch?v=j6L3DCpGg5w
https://www.next-future-mobility.com/
https://www.next-future-mobility.com/post/dubai-with-next-experiments-with-the-future-of-transportation
https://www.next-future-mobility.com/post/dubai-with-next-experiments-with-the-future-of-transportation
https://www.next-future-mobility.com/post/dubai-with-next-experiments-with-the-future-of-transportation
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb30
https://ohmio.com/our-vehicles-and-technology
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb32
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb32
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb32
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb33
http://arxiv.org/abs/1908.05659
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb35
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb36
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb36
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb36
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb37
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb37
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb37
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb38
http://arxiv.org/abs/2012.05387
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb40
https://www.linkedin.com/pulse/careem-bring-driverless-transportation-solutions-mena-emmanuele-spera/
http://dx.doi.org/10.1080/15568318.2022.216107
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb43
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb43
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb43
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb44
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb44
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb44
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb45
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb45
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb45
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb46
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb46
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb46
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb47
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb47
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb47
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb48
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb49
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb49
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb49
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb50
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb50
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb50
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb51
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb52
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb52
http://refhub.elsevier.com/S0968-090X(23)00303-0/sb52

	Data-driven distributionally robust timetabling and dynamic-capacity allocation for automated bus systems with modular vehicles
	Introduction
	Literature review
	Contributions of this paper

	Problem description
	Mathematical formulations
	Notations
	Stochastic Programming Models
	Stochastic Programming Formulation Considering the Time-varying Capacity
	Extensions of the proposed model enabling the time-varying and station-wise capacity

	Distributionally robust formulations

	Exact soultion method
	Decomposition of the DRO-TVC model
	Customized integer L-shaped method
	Family of problem-based valid equalities

	Numerical experiments
	Case description and parameter settings
	Performance comparison between different solution methods
	Comparison between different dynamic-capacity allocation strategies
	Out-of-sample performance of DRO-TVC and SP-TVC
	Sensitivity analysis of the Wasserstein radius ρ

	Conclusions and future research
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A.  Proof of Proposition 1 
	Appendix B. The integer L-shaped method for DRO-TVSWC
	Appendix C. Comparison of results between the Benchmark and the proposed algorithm based on generated data
	Appendix D. k-fold cross validation method
	References




