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A B S T R A C T

The trips of a high-frequency urban rail line are typically planned with the aim of achieving
even time headways. This results in reliable services for each urban rail line, where successive
trips have the same time headway. Maintaining even time headways for each service line has
significant advantages for the passengers of the line, but it might result in safety issues, vehicle
bunching, and increased transfer times at a common corridor served by multiple urban rail
lines. This study investigates the problem of urban rail corridor coordination and develops
an exact optimization method for coordinating the vehicle trips of different lines that serve
stations along a joint corridor. The proposed formulation is a non-convex mathematical program
which is reformulated as a mixed-integer quadratic program with a convex objective function.
A branch-and-bound algorithm coupled with the Active-set method is proposed for solving the
model to global optimality. Results from a toy network and a case study of the light rail service
in The Hague, The Netherlands, demonstrate the improvement potential of time headways at a
common corridor, while accounting for the effect on the variation of time headways at isolated
segments of the individual service lines.

. Introduction

Public transport services are planned at the strategic, tactical and operational level. At the strategic level, decisions are made
bout the location of stations and the routes of the service lines that can form broader mobility hubs (Murray, 2001; Arnold et al.,
004; Limbourg and Jourquin, 2009; Medina et al., 2013; Schöbel, 2012; Canca et al., 2019; Horjus et al., 2022; Wang and Liu, 2022;
eurs et al., 2023). At the tactical level, the pre-determined public transport network and passenger demand are used to set the

requencies of the service lines and provide a first estimation of the number of required vehicles to operate the service (Cadarso et al.,
013; Szeto and Jiang, 2014; Sun and Szeto, 2019; Gkiotsalitis and Cats, 2018). With the frequency settings stage, one determines the
umber of performed trips per line on an hourly basis. Determining the line frequencies, the next step is to schedule the dispatching
ime of each trip for each one of the service lines. These dispatching time decisions define the timetable of the service line (Parbo
t al., 2014; Liu and Ceder, 2016; Gkiotsalitis and Alesiani, 2019). When determining the dispatching times, typical objectives are
he even distribution of trips over time to maintain an even headway between successive trips (Gkiotsalitis and Cats, 2020) or the
dherence to an even in-vehicle load at the maximum loading point of the line while considering time-dependent passenger arrival
ate fluctuations (Ceder, 2016).
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This study focuses on the timetabling phase of service lines, and in particular on the coordination of different service lines
hat share a common corridor. This service coordination problem often arises in light rail and metro services operating in urban
egions, where different lines and line branches merge into a high-capacity public transport corridor serving a high demand area.
here is limited knowledge on how to plan services for this prevalent network configuration as becomes apparent from our review
f the literature in the following section (Sørensen and Longva, 2011; Liu and Ceder, 2016; Liu et al., 2021). Unlike problems
hat try to synchronize the arrival of vehicles of different lines at a common stop to facilitate passenger transfers, the problem of
orridor coordination requires to maintain an even headway among trips that use the same corridor to mitigate bunching of vehicles
rom all lines operating along the corridor. This affects passengers traveling within the high-demand corridor as well as rail traffic
e.g., maintaining a minimum safety gap between successive trips).

The importance of managing the flow of vehicles in common public transport corridors becomes apparent when a delay of a
ehicle results in a domino effect, where trains from other service lines have to wait for their turn to enter the corridor resulting in
he propagation of delays in several service lines (Szymański et al., 2018). In these situations, it is important to maintain an even
eadway among successive trains traversing the corridor and thereby minimize the impacts of disturbances during operations. Unlike
he case of transfer synchronization problems, the problem of corridor coordination does not seek to achieve as many simultaneous
rrivals of trains to the corridor as possible. Conversely, we aim at maintaining a sufficient headway between successive passes
f vehicles. This, however, is not a trivial task because vehicle-trips from different lines have different frequencies and there are
ine-specific restrictions related to rolling stock circulation and scheduling constraints at specific stations (Orth et al., 2012) that
ight conflict with the objectives of the corridor coordination process.

To this end, we develop a train corridor coordination approach which considers the constraints of individual service lines
elated to vehicle circulation and pre-determined dispatching time ranges. We formulate, solve and apply the urban rail corridor
oordination problem by means of an exact method. The contributions of this study are fourfold:

• we develop a mathematical program for the corridor coordination problem
• we prove that the corridor coordination problem is non-convex and we introduce linearizations to reformulate it as a

mixed-integer quadratic program
• we develop a branch-and-bound based algorithm coupled with the Active-set method and prove that our solution method

guarantees the computation of a globally optimal solution
• we demonstrate the potential impact of the proposed corridor coordination using data from the light rail service in The Hague,

The Netherlands

The remainder of the study is structured as follows. In Section 2 we provide a literature review of timetabling and transfer
oordination/synchronization problems. In Section 3 we develop the mathematical program of the corridor coordination problem.
n Section 4 we present the exact solution method, which is based on branch-and-bound and the Active-set method. Section 5
rovides a demonstration of the model in a toy network to facilitate the reproduction of our model. Section 6 presents the results
f our case study in The Hague. Finally, Section 7 concludes our study.

. Literature review

.1. Timetabling

.1.1. Timetabling models for bus services
A distinct line of works in timetable optimization strives to ensure that the dispatching times of trips are evenly-spaced

hroughout the day. For instance, Ceder (2011), Ceder et al. (2013) strive to achieve a desired even-load level for all vehicles
t their maximum loading point by determining trip dispatching times that do not deviate significantly from the desired even
eadway. Similarly, Daduna and Voß (1995) and Shafahi and Khani (2010) generated timetables with evenly-spaced dispatching
imes incorporating the additional objective of synchronizing passenger transfers.

Many works, especially on the scheduling of bus services, consider stochastic dwell times in the problem formulation during
he optimization process. One example of such works is the work of Wu et al. (2015) which assumes stochastic bus travel times
o calculate slack times at transfer stops and improve the synchronization of timetables. Studies on operational control have also
onsidered stochastic travel times. For example, Xuan et al. (2011) used stochastic travel times to derive dynamic bus holding
trategies and improve adherence to the planned schedule, and Hickman (2001) developed an analytical bus holding model that
onsiders stochastic link travel times and boardings/alightings. These works use a typical probability distribution that approximates
he stochastic nature of travel times and find a solution by solving a stochastic optimization problem.

.1.2. Timetabling models for rail services
Unlike bus services, timetabling works of urban rail and train services consider typically fixed travel times and dwell times (Gkiot-

alitis and Cats, 2020). This is especially the case in services that have a pre-defined time set for the opening and closing of doors.
his does not mean, however, that all train services can maintain fixed dwell times (D’Acierno et al., 2017; Kuipers et al., 2021;
eloni et al., 2021).

From the works in traditional timetabling, there are several approaches that couple the timetabling problem with the frequency
etting problem (Furth and Wilson, 1981; Peeters and Kroon, 2001; Ávila-Torres et al., 2018; Silva-Soto and Ibarra-Rojas, 2021) or
he timetabling problem with the vehicle scheduling problem (Ceder, 2011; Ibarra-Rojas et al., 2014; Schmid and Ehmke, 2015;
2
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Fonseca et al., 2018). Nevertheless, scheduling methods do not consider the impact of the determined timetables on vehicle flow in
a common corridor of the public transport network. This shortcoming is the main focus of this study which develops a model for
coordinating the trips of multiple urban rail lines at a common corridor.

2.2. Transfer synchronization

2.2.1. Transfer synchronization at the tactical planning stage
Public transport transfer synchronization aims to coordinate the arrival and departure times of vehicles from different lines

t shared transfer stations so as to facilitate passenger transfers. It can be achieved through coordinated timetabling at the
actical planning level and real-time vehicle scheduling at the operational control level (see the survey papers of Liu et al. (2021)
nd Gkiotsalitis et al. (2022), respectively).

Coordinated timetabling at the tactical planning stage is one of the most cost-effective approaches in increasing public
ransport transfer synchronization because it only requires minor modifications of the service timetable without the need of
erforming infrastructure investments. It has been widely studied in the transportation research and operations research communities
e.g., Daduna et al., 1995; Ceder et al., 2001; Kwan and Chang, 2008; Shafahi and Khani, 2010; Ibarra-Rojas et al., 2014; Wu
t al., 2016; Gkiotsalitis and Maslekar, 2018; Yin et al., 2021). Different solution approaches have been developed, including using
euristic rules, analytical models, mathematical programming models, and simulation approaches (Liu et al., 2021). Recent studies
n public transport transfer synchronization mostly utilize mathematical programming approaches since they can generate more
ealistic and optimally coordinated timetables that can be directly applied into practice. Various optimization objectives have been
onsidered in previous studies, such as minimizing the total transfer waiting time (Daduna et al., 1995; Wong et al., 2008; Shafahi
nd Khani, 2010), maximizing the number of simultaneous arrivals of vehicles at transfer stations (Ceder et al., 2001), minimizing
total passenger dissatisfaction index (Kwan and Chang, 2008), maximizing the number of passengers benefited from coordinated

ransfers (Ibarra-Rojas et al., 2014), maximizing the number of successful transfer connections (Tian and Niu, 2019), and maximizing
he number of successful transfers for last/first train service (Yang et al., 2018; Huang et al., 2021). However, few studies have
onsidered optimizing the arrival time gap between vehicles from different lines in a shared travel corridor (i.e., Canca et al.,
016), which is important for ensuring the safe operation of trains in a railway corridor and the evenly distributed passenger
aiting times along that corridor. A relevant work in this direction is the approach of Canca et al. (2016), which proposed a mixed

nteger nonlinear programming (MINLP) model to determine optimal line frequencies and capacities in dense railway rapid transit
etworks in which typically several lines can run over the same open tracks. Given a certain demand matrix, the model determines
he most appropriate frequency and train capacity for each line taking into account infrastructure capacity constraints, allocating
ines to tracks while assigning passengers to lines.

.2.2. Transfer synchronization at the operational control stage
At the operational control level, some near real-time control strategies, such as vehicle holding, stop-skipping, short-turning,

peed change, rescheduling and rerouting, are employed to increase the actual occurrences of synchronized transfers (Gkiotsalitis
t al., 2022). To the best of our knowledge, only a few real-time control studies have considered optimizing the public transport
ransfer synchronization in a shared travel corridor (e.g., Hadas and Ceder, 2008, 2010; Wu et al., 2021). However, these studies
ainly focused on increasing the encounter probability between public transport vehicles, either normal buses (Hadas and Ceder,
008, 2010) or autonomous modular vehicles (Wu et al., 2021), in order to facilitate passenger transfers. They did not consider the
inimum time gap between vehicles required for the safe operation in a travel corridor and the possibility of maintaining evenly
istributed headways between the trips of different lines operating in that corridor.

To bridge this research gap, this study proposes a new mathematical programming model to optimize the coordination of trains
rom different service lines in a shared travel corridor. Our model can help maintain an even headway among trains that use the
ame corridor so as to keep a safe operation gap as well as reducing vehicle bunching.

. Urban rail corridor coordination problem

We define the Urban Rail Corridor Coordination problem (URCCP) as follows. Given a train corridor consisting of at least two
onsecutive stations which are served by at least two urban rail lines, modify the dispatching times of the trips of the lines so that
he arrival times of trains from different lines at the stations of that corridor are as close as possible to pre-defined target time
eadway values.

From now on, the train corridor which meets this property will be referred to as joint corridor or common corridor. In this problem
definition, the rail lines may operate also outside the joint corridor or serve only small parts of the corridor, as long as they do not
intersect with other lines outside of the joint corridor. In case they do, an additional weak assumption stating that they do not need
to synchronize their services at these exterior points is needed.

In addition, the pre-defined target headway values at the stations of the joint corridor may be defined in such a way that the time
headways between trips of different lines that pass through the stations of the joint corridor are as evenly distributed as possible at
each station of the corridor. This can provide an advantage compared to the case of only meeting a planned safety distance between
successive trips at the stations of the joint corridor, because it ensures a relatively even distribution of vehicles passing at a station.
This aspect is important if one wants to improve uneven vehicle arrivals and crowdedness levels at the platforms of train stations
3

since applying real-time control measures to mitigate the uneven vehicle arrivals at stations (vehicle bunching) is a considerable



Transportation Research Part E 178 (2023) 103265K. Gkiotsalitis et al.
Fig. 1. Example network.

problem in public transport operations (Daganzo, 2009; Bartholdi III. and Eisenstein, 2012; Schmöcker et al., 2016; Gkiotsalitis and
Van Berkum, 2020b). Finally, stations of the joint corridor with higher passenger boarding levels may receive priority compared to
stations with lower passenger boarding levels because the coordination of train arrivals at the former stations might have higher
importance.

An example of such network is presented in Fig. 1, where lines 1, 2, and 3 jointly serve stations 5 and 6 that form a common
corridor.

In addition to the above, our model is based on the following assumptions:

1. there is a pre-determined time for door opening and closing at urban rail lines; thus, dwell times do not depend on the
passenger demand levels.

2. as we operate at the tactical planning level, inter-station travel times are considered to be fixed and their values are estimated
from historical data.

3. lines do not intersect with other lines that are not operating in the joint corridor.

At the remainder of this section, we present the sets, parameters, variables, the formulation, and the reformulation of our urban
rail corridor coordination model.

3.1. Sets

We consider an unordered set of train lines 𝐾 = {1,… , |𝐾|}. These train lines have a set of train stations 𝑆 = {1,… , |𝑆|}. Each
train line 𝑘 ∈ 𝐾 has an ordered set of train stations 𝑆𝑘 which is a subset of 𝑆, 𝑆𝑘 ⊂ 𝑆. That is, 𝑆𝑘1 is the first station of each train
line 𝑘 ∈ 𝐾. There is also a set of train trips 𝑁 = {1,… , |𝑁|} that are assigned to the train lines.

3.2. Parameters

We consider column vector 𝜷 = [𝛽1,… , 𝛽
|𝑁|

]⊺, where 𝛽𝑖 ∈ 𝐾 indicates the train line to which trip 𝑖 is assigned to. In addition,
we consider the following parameters (see Table 1). Note that because the total travel time of a trip 𝜏𝑖 is known (parameter), if we
know the latest possible dispatching time of the next trip operated by the same train we can trivially compute the latest possible
dispatching time of trip 𝑖 (𝜔𝑖) by subtracting 𝜏𝑖 from the latest possible dispatching time of the next trip. In addition, the target
headways at a station of the joint corridor may be defined such that the time headway between successive trips at that station are
as evenly distributed as possible. For instance, if we have 4 lines where each one has a dispatching time headway of 10 min and
they all pass by the same station, this station can have a target headway of 10 min/4 lines = 2.5 min. If another station of the joint
corridor is served by 3 lines, then this station can have a target headway of 10 min/3 lines ≃ 3.33 min.

3.3. Variables

Our variables include 𝐀 = {𝑎𝑠𝑖 }, where 𝑎𝑠𝑖 indicates the arrival time of trip 𝑖 ∈ 𝑁 at station 𝑠 ∈ 𝑆. They also include 𝐃 = {𝑑𝑠𝑖 },
𝑠

4

where 𝑑𝑖 denotes the departure time of trip 𝑖 ∈ 𝑁 from station 𝑠 ∈ 𝑆. Finally, they include the |𝑁|-valued column vector 𝐱 = {𝑥𝑖},
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Table 1
Parameters.
𝑃 = {𝑝𝑘𝑖𝑗} {0, 1} indicator parameters, where 𝑝𝑘𝑖𝑗 = 1 if trips 𝑖 and 𝑗 are

successive trips of line 𝑘 ∈ 𝐾.
𝜞 = {𝛾𝑠𝑖 } {0, 1} indicator parameters, where 𝛾𝑘𝑖 = 1 if trip 𝑖 serves train

station 𝑠 ∈ 𝑆.
𝜫 = {𝜋𝑘𝑖𝑗} {0, 1} indicator parameters, where 𝜋𝑘𝑖𝑗 = 1 if trips 𝑖 and 𝑗 are

trips of line 𝑘 ∈ 𝐾 that are successively operated by the
same train.

𝑇 = {𝑡𝑠𝑖 } travel time of trip 𝑖 from station 𝑠 − 1 to station 𝑠 where
𝑠 − 1 ∈ 𝑆𝑘 , 𝑠 ∈ 𝑆𝑘 and 𝑘 = 𝛽𝑖. If 𝑠 ∉ 𝑆𝑘 then 𝑡𝑠𝑖 can take the
value of any arbitrary finite number.

𝝉 = {𝜏𝑖} total travel time of trip 𝑖, until its vehicle is ready to
perform the next trip.

𝛿 safety distance among successive trains (a scalar).
𝑉 = {𝑣𝑘} minimum allowed dispatching time headway between

successive train-trips of line 𝑘 ∈ 𝐾
𝑈 = {𝑢𝑘} maximum allowed dispatching time headway between

successive train-trips of line 𝑘 ∈ 𝐾
𝐻 = {ℎ𝑠𝑖𝑗} target headway between trips 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 ≠ 𝑖 at stop

𝑠 ∈ 𝑆
𝜼 = {𝜂𝑠𝑖 } dwell time of trip 𝑖 at stop 𝑠 ∈ 𝑆
𝜱 = {𝜙𝑠𝑖𝑗} {0, 1} indicator parameters, where 𝜙𝑠𝑖𝑗 = 1 if there is a target

headway between trips 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 ≠ 𝑖 at station 𝑠 ∈ 𝑆,
and 0 otherwise.

𝜳 = {𝜓𝑠
𝑖𝑗} weight factor parameters with non-negative values indicating

the importance of meeting the target headway between trips
𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 ≠ 𝑖 at stop 𝑠 ∈ 𝑆.

𝜴 = {𝜔𝑖} latest possible dispatching time for each trip 𝑖 ∈ 𝑁 to avoid
schedule sliding.

𝑀 a very large positive real number (a scalar).

where 𝑥𝑖 ∈ R≥0 is the dispatching time of train trip 𝑖 ∈ 𝑁 .

.4. Feasible region

Reckon that 𝑆𝑘1 is the first station of all trips operating in line 𝑘. Because trip 𝑖 is assigned to line 𝛽𝑖, we can set 𝑠′𝑖 ← 𝑆𝛽𝑖1 ,
indicating the first station of each trip 𝑖 ∈ 𝑁 . The departure time of each trip 𝑖 from its first station is then:

𝑑
𝑠′𝑖
𝑖 = 𝑥𝑖 ∀𝑖 ∈ 𝑁 (1)

The arrival time of each trip 𝑖 at station 𝑠 is given by:

𝑎𝑠𝑖 = 𝛾𝑠𝑖 (𝑡
𝑠
𝑖 + 𝑑

𝑠−1
𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆 ⧵ {𝑠′𝑖} (2)

and the departure time of each trip 𝑖 from station 𝑠 ≠ 𝑠′𝑖 is:

𝑑𝑠𝑖 = 𝛾𝑠𝑖 (𝑎
𝑠
𝑖 + 𝜂

𝑠
𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆 ⧵ {𝑠′𝑖} (3)

Note that if trip 𝑖 does not serve station 𝑠, then 𝑎𝑠𝑖 = 𝑑𝑠𝑖 = 0 because 𝛾𝑠𝑖 = 0. If we have two successive trips 𝑖, 𝑗 of line 𝑘, then
they should be dispatched within a lower and upper time headway [𝑣𝑘, 𝑢𝑘]. This is enforced by the following inequality constraints:

𝑝𝑘𝑖𝑗𝑣𝑘 ≤ 𝑝𝑘𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) ≤ 𝑢𝑘 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾

(dispatching headway constraints) (4)

Note that if trips 𝑖, 𝑗 are not successive or one of them is not assigned to line 𝑘, then the inequality constraint is satisfied because
𝑝𝑘𝑖𝑗 = 0 and 𝑢𝑘 ∈ R≥0. The dispatching headway constraints are imposed to every line and guarantee that the regularity of lines will
ot be altered considerably, since headways will remain within a pre-determined range. This range is introduced in our model to
ttain a balance between the loss of regularity of individual lines and the improved coordination at common corridors.

In addition, we have safety gap constraints upon the arrival of vehicle trips at stations. For a safety gap 𝛿, the following inequality
constraints are enforced:

𝛾𝑠𝑖 𝛾
𝑠
𝑗 ‖𝑎

𝑠
𝑖 − 𝑎

𝑠
𝑗‖ ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆
5

(safety gap constraints upon arrival at stations) (5)
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Notice that if either trip 𝑖 or 𝑗 does not serve station 𝑠, the equality constraint is satisfied because 𝛾𝑠𝑖 𝛾
𝑠
𝑗 = 0. Note that ‖ ⋅ ‖1 is

he 𝑙1 norm which is equivalent to the absolute value |𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 | because 𝑎𝑠𝑖 , 𝑎

𝑠
𝑗 are scalars. Similarly, we impose safety gap constraints

pon the departure of vehicle trips from stations:

𝛾𝑠𝑖 𝛾
𝑠
𝑗 ‖𝑑

𝑠
𝑖 − 𝑑

𝑠
𝑗 ‖ ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆

(safety gap constraints upon departure from stations) (6)

The definition of the safety gap constraints at the station level assumes that a station has a single platform and the incoming
rack of the successive trips is the same. In case of multiple tracks and platforms, the safety gap constraints may be applied at the
latform level.

Trips 𝑖, 𝑗 that are successive trips of line 𝑘 operated by the same vehicle should also satisfy the vehicle circulation constraints
expressed as:

𝑥𝑗 ≥ 𝜋𝑘𝑖𝑗 (𝑥𝑖 + 𝜏𝑖) ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑗 ≠ 𝑖, 𝑘 ∈ 𝐾 (vehicle circulation constraints) (7)

Finally, we cannot allow a trip to be dispatched with a considerable delay because this will result in schedule sliding, resulting
in the delayed dispatching of subsequent trip operated by the same vehicle. This is enforced by the following constraints:

𝑥𝑖 ≤ 𝜔𝑖 ∀𝑖 ∈ 𝑁 (schedule sliding constraints) (8)

3.5. Objective function

The objective of our problem is to coordinate the vehicle trips when serving stations along the joint corridor. If there is a target
(ideal) time headway ℎ𝑠 at every station then for every pair of trips that serve the station we seek to minimize the squared difference:

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
)2

Notice that we use the squared difference of the actual time headway 𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 and the target headway ℎ𝑠 instead of the absolute

ifference ‖(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
‖ in order to overpenalize significant deviations from ℎ𝑠 since:

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
)2

> ‖(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
‖ for ‖(𝑎𝑠𝑖 − 𝑎

𝑠
𝑗 ) − ℎ

𝑠
‖ > 1

One should strive to pursue the target headways between trips 𝑖, 𝑗 that might belong to different lines, but serve the joint corridor
tation 𝑠 in a successive order. This is achieved by using {0, 1} indicator parameter 𝜙𝑠𝑖𝑗 which is equal to 1 if there is a target headway
etween trips 𝑖 and 𝑗 at station 𝑠, and 0 if there is not (i.e., station 𝑠 is not a joint corridor station, or trips 𝑖, 𝑗 are not successive,
r one of the two trips does not serve station 𝑠). Finally, meeting the target headway between a pair of trips 𝑖, 𝑗 at station 𝑠 might
e more important due to higher passenger demand compared to another pair of trips 𝑖′, 𝑗′ at 𝑠 or at another station 𝑠′. This is
ccounted for by using weight factors 𝜓𝑠𝑖𝑗 that attain a larger value when the importance of meeting that target headway due to
igher passenger demand is higher. This yields the following objective function:

𝑓 (𝐀) ≐
∑

𝑠∈𝑆

∑

𝑖∈𝑁

∑

𝑗∈𝑁⧵{𝑖}
𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
𝑖𝑗

)2
(9)

hich is a 𝐶2 continuous and scalar-valued function, where 𝑓 ∶ R|𝑁|×|𝐾| → R≥0. Note that the objective function uses the squared
eviation between the headways and their target values instead of the absolute deviation because the former overpenalizes large
eviations from the target headway. This is a favorable property, because the absolute deviation focuses only on the deviation from
he target headway and does not balance the headway deviation among trips (Newell, 1974; Trompet et al., 2011; Gkiotsalitis and
an Berkum, 2020a).

Closing, we note that by focusing only on the coordination of the arrival times of trains at the stations of the common corridor,
e may neglect the transfer synchronization of lines that serve the common corridor at their exterior transfer points. If some of these
xterior transfers are important and justify their synchronization in the expense of the coordination of trip arrival times at the joint
orridor, one could add additional terms in the objective function to account for these transfer synchronizations. In more detail, if
train trip 𝑖 that serves the joint corridor needs to have an arrival time as close as possible to the arrival time of another trip 𝜌

t a transfer station 𝑠′ which is outside of the common corridor, then one can add the term (𝑎𝑠′𝑖 − 𝑎𝑠′𝜌 )
2 to the objective function to

ccount for a synchronized transfer. This can be performed for all transfers that need to be synchronized at exterior transfer stations
nd are not part of the joint corridor by simply adding similar terms to the objective function. The importance of each one of these
ransfer synchronizations can be regulated by multiplying the term (𝑎𝑠′𝑖 − 𝑎𝑠′𝜌 )

2 of each one of them by a weight factor which can
take values in [0,+∞), where a value of 0 implies no importance and a very large value implies that this transfer is more important
6

than the coordination of line 𝑖 in the joint corridor.
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3.6. Mathematical program

Before introducing the mathematical program, note that the schedule sliding constraints (8) and the vehicle circulation
onstraints (7) can potentially be in conflict, thereby resulting in an empty feasible set. Indeed, if we require from a vehicle-trip

to be dispatched before a pre-defined time 𝜔𝑖, there might be no vehicle to operate that trip. For this reason, the schedule sliding
onstraint is relaxed. From a hard constraint, it becomes a soft constraint which is included in the objective function by means of
penalty term:

∑

𝑖∈𝑁
𝑀 max(𝑥𝑖 − 𝜔𝑖, 0)

hich adds a significant penalty each time a dispatching time 𝑥𝑖 is greater than 𝜔𝑖. The updated objective function which takes into
consideration this penalty term is:

𝑓 (𝐀, 𝐱) ≐
∑

𝑠∈𝑆

∑

𝑖∈𝑁

∑

𝑗∈𝑁⧵{𝑖}
𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
𝑖𝑗

)2
+
∑

𝑖∈𝑁
𝑀 max(𝑥𝑖 − 𝜔𝑖, 0) (10)

which is still 𝐶2 and twice differentiable. The resulting mathematical program  is:

() ∶

minimize
𝐀,𝐃,𝐱

∑

𝑠∈𝑆

∑

𝑖∈𝑁

∑

𝑗∈𝑁⧵{𝑖}
𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
𝑖𝑗

)2
+
∑

𝑖∈𝑁
𝑀 max(𝑥𝑖 − 𝜔𝑖, 0) (11)

subject to: 𝑑𝑠
′
𝑖
𝑖 = 𝑥𝑖 ∀𝑖 ∈ 𝑁 (12)

𝑎𝑠𝑖 = 𝛾𝑠𝑖 (𝑡
𝑠
𝑖 + 𝑑

𝑠−1
𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆 ⧵ {𝑠′𝑖} (13)

𝑑𝑠𝑖 = 𝛾𝑠𝑖 (𝑎
𝑠
𝑖 + 𝜂

𝑠
𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆 ⧵ {𝑠′𝑖} (14)

𝑝𝑘𝑖𝑗𝑣𝑘 ≤ 𝑝𝑘𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) ≤ 𝑢𝑘 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾 (15)

𝛾𝑠𝑖 𝛾
𝑠
𝑗 ‖𝑎

𝑠
𝑖 − 𝑎

𝑠
𝑗‖ ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (16)

𝛾𝑠𝑖 𝛾
𝑠
𝑗 ‖𝑑

𝑠
𝑖 − 𝑑

𝑠
𝑗 ‖ ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (17)

𝑥𝑗 ≥ 𝜋𝑘𝑖𝑗 (𝑥𝑖 + 𝜏𝑖) ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑗 ≠ 𝑖, 𝑘 ∈ 𝐾 (18)

𝐱 ∈ R|𝑁|

≥0 ,𝐀 ∈ R|𝑁|×|𝑆|
≥0 ,𝐃 ∈ R|𝑁|×|𝑆|

≥0 (19)

is a compact continuous program because its constraints do not increase exponentially with the size of the problem. It has
𝑁|+2|𝑁||𝑆| continuous variables, |𝑁|+2|𝑁||𝑆| equality constraints, and 2|𝑁|

2
|𝐾|+2|𝑁|

2
|𝑆|+|𝑁|+2|𝑁||𝑆| inequality constraints.

sing the Big-Oh asymptotic notation we can express these as 𝑂(|𝑁||𝑆|), 𝑂(|𝑁||𝑆|), and 𝑂(|𝑁|

2
|𝑆| + |𝑁|

2
|𝐾|), respectively.

heorem 3.1.  is a nonlinear and nonconvex minimization problem.

roof.

𝛾𝑠𝑖 𝛾
𝑠
𝑗 ‖𝑎

𝑠
𝑖 − 𝑎

𝑠
𝑗‖ ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ⇒

⎧

⎪

⎨

⎪

⎩

𝛾𝑠𝑖 𝛾
𝑠
𝑗 (𝑎

𝑠
𝑖 − 𝑎

𝑠
𝑗 ) ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿

or
−𝛾𝑠𝑖 𝛾

𝑠
𝑗 (𝑎

𝑠
𝑖 − 𝑎

𝑠
𝑗 ) ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿

Thus, the feasible region has a gap and it is non-convex. The expressions also make it impossible for both to simultaneously
old true. Finally,  is nonlinear because it has a quadratic and a max term in the objective function, and it also has the nonlinear
onstraints (16) and (17). ■

.7. Linearizations

Because the minimization problem is nonlinear and noncovex, we proceed with a series of linearizations that make it possible to
btain a globally optimal solution of the problem. This comes at a price, however, because (i) we make the program less compact
y introducing more variables and constraints, and (ii) we introduce binary variables that turn the continuous formulation of  into
mixed-integer one. First, the absolute terms in Eqs. (16)–(17) are transformed into affine constraints by replacing

‖𝑎𝑠𝑖 − 𝑎
𝑠
𝑗‖

ith

𝑟𝑠𝑖𝑗 ≥ 𝑎𝑠𝑖 − 𝑎
𝑠
𝑗

𝑠 𝑠 𝑠
7

𝑟𝑖𝑗 ≥ −(𝑎𝑖 − 𝑎𝑗 )
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𝑟𝑠𝑖𝑗 ≤ 𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 +𝑀𝜉𝑠𝑖𝑗

𝑟𝑠𝑖𝑗 ≤ −(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) +𝑀(1 − 𝜉𝑠𝑖𝑗 )

and

‖𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 ‖

with

�̄�𝑠𝑖𝑗 ≥ 𝑑𝑠𝑖 − 𝑑
𝑠
𝑗

�̄�𝑠𝑖𝑗 ≥ −(𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 )

�̄�𝑠𝑖𝑗 ≤ 𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 +𝑀𝜉𝑠𝑖𝑗

�̄�𝑠𝑖𝑗 ≤ −(𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 ) +𝑀(1 − 𝜉𝑠𝑖𝑗 )

where 𝜉𝑠𝑖𝑗 , 𝜉
𝑠
𝑖𝑗 ∈ {0, 1} and 𝑟𝑠𝑖𝑗 , �̄�

𝑠
𝑖𝑗 ∈ R are newly introduced variables. Note that we have to introduce the binary variables 𝜉𝑠𝑖𝑗 , 𝜉

𝑠
𝑖𝑗

because of the gap in the feasible region, even if this makes the problem mixed-integer resulting in a significant computational
increase compared to its continuous version. At the same time, however, the continuous relaxation of the new mixed-integer
formulation that is presented below guarantees global optimality, as we will later see in Theorem 4.1.

The linearized mathematical program ̃ is presented below. In this program we replace Eqs. (16)–(17) with (25)–(34). We also
replace the nonlinear penalty term of the objective function:

∑

𝑖∈𝑁
𝑀 max(𝑥𝑖 − 𝜔𝑖, 0)

by introducing new continuous variables 𝐜 = [𝑐1,… , 𝑐
|𝑁|

]⊺ and inequality constraints (36)–(37):

(̃) ∶

minimize
𝐀,𝐃,𝐱,𝐫,�̄�,𝝃,�̄�,𝐜

∑

𝑠∈𝑆

∑

𝑖∈𝑁

∑

𝑗∈𝑁⧵{𝑖}
𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
𝑖𝑗

)2
+
∑

𝑖∈𝑁
𝑐𝑖 (20)

subject to: 𝑑𝑠
′
𝑖
𝑖 = 𝑥𝑖 ∀𝑖 ∈ 𝑁 (21)

𝑎𝑠𝑖 = 𝛾𝑠𝑖 (𝑡
𝑠
𝑖 + 𝑑

𝑠−1
𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆 ⧵ {𝑠′𝑖} (22)

𝑑𝑠𝑖 = 𝛾𝑠𝑖 (𝑎
𝑠
𝑖 + 𝜂

𝑠
𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆 ⧵ {𝑠′𝑖} (23)

𝑝𝑘𝑖𝑗𝑣𝑘 ≤ 𝑝𝑘𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) ≤ 𝑢𝑘 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾 (24)

𝛾𝑠𝑖 𝛾
𝑠
𝑗 𝑟
𝑠
𝑖𝑗 ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (25)

𝑟𝑠𝑖𝑗 ≥ 𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (26)

𝑟𝑠𝑖𝑗 ≥ −(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (27)

𝑟𝑠𝑖𝑗 ≤ 𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 +𝑀𝜉𝑠𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (28)

𝑟𝑠𝑖𝑗 ≤ −(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) +𝑀(1 − 𝜉𝑠𝑖𝑗 ) ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (29)

𝛾𝑠𝑖 𝛾
𝑠
𝑗 �̄�
𝑠
𝑖𝑗 ≥ 𝛾𝑠𝑖 𝛾

𝑠
𝑗 𝛿 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (30)

�̄�𝑠𝑖𝑗 ≥ 𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (31)

�̄�𝑠𝑖𝑗 ≥ −(𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 ) ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (32)

�̄�𝑠𝑖𝑗 ≤ 𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 +𝑀𝜉𝑠𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (33)

�̄�𝑠𝑖𝑗 ≤ −(𝑑𝑠𝑖 − 𝑑
𝑠
𝑗 ) +𝑀(1 − 𝜉𝑠𝑖𝑗 ) ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆 (34)

𝑥𝑗 ≥ 𝜋𝑘𝑖𝑗 (𝑥𝑖 + 𝜏𝑖) ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∣ 𝑗 ≠ 𝑖, 𝑘 ∈ 𝐾 (35)

𝑐𝑖 ≥ 𝑥𝑖 − 𝜔𝑖 ∀𝑖 ∈ 𝑁 (36)

𝑐𝑖 ≥ 0 ∀𝑖 ∈ 𝑁 (37)

𝐱 ∈ R𝑁≥0,𝐀 ∈ R|𝑁|×|𝑆|
≥0 ,𝐃 ∈ R|𝑁|×|𝑆|

≥0

𝐜 ∈ R|𝑁|, 𝝃, �̄� ∈ {0, 1}|𝑁|×|𝑁|×|𝑆|, 𝐫, �̄� ∈ R|𝑁|×|𝑁|×|𝑆| (38)

Program (̃) is a linearized version of () because its feasible region consists of affine functions. This provides significant
8

advantages and, as we will later see, allows us to find a globally optimal solution. To perform these linearizations we had to increase
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the size of the problem as follows: (̃) has |𝑁|+2|𝑁|

2
|𝑆| additional continuous variables, 2|𝑁|

2
|𝑆| new binary variables which make

he formulation mixed-integer, and 8|𝑁|

2
|𝑆|+2|𝑁| additional inequality constraints. We can see this as the additional computational

price we need to pay for guaranteeing global optimality. Summarizing, using the Big-Oh asymptotic notation the size of (̃) is
(|𝑁|

2
|𝑆|) continuous variables, 𝑂(|𝑁|

2
|𝑆|) binary variables, 𝑂(|𝑁|

2
|𝑆| + |𝑁|

2
|𝐾|) inequality constraints, and 𝑂(|𝑁||𝑆|) equality

onstraints. Compared to program (), the increase in size when |𝑁|, |𝑆|, |𝐾| → +∞ comes from the binary and the continuous
ariables.

We note here that to avoid changing the order of trip arrivals at the joint corridor, one might also add the constraints:

𝜙𝑠𝑖𝑗𝑎
𝑠
𝑖 ≤ 𝜙𝑠𝑖𝑗𝑎

𝑠
𝑗 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑗 ≠ 𝑖,∀𝑠 ∈ 𝑆 (39)

nd

𝜙𝑠𝑖𝑗𝑑
𝑠
𝑖 ≤ 𝜙𝑠𝑖𝑗𝑑

𝑠
𝑗 ∀𝑖, 𝑗 ∈ 𝑁 ∣ 𝑗 ≠ 𝑖,∀𝑠 ∈ 𝑆 (40)

. Solution method

.1. An active set method for the relaxed inequality QP

Consider the continuous relaxation of (̃), renamed as (̃rel.). (̃rel.) has the same formulation as (̃), but the integralities
, �̄� ∈ {0, 1}|𝑁|×|𝑁|×|𝑆| are now replaced by 𝝃, �̄� ∈ R|𝑁| and 0 ≤ 𝝃 ≤ 1, 0 ≤ �̄� ≤ 1. This allows all variables to take real values.
he solution of (̃rel.) provides a lower bound to the solution of the mixed-integer (̃). This can be exploited by solving (̃rel.)

teratively with the addition of inequality constraints (i.e., with Branch and Bound (B&B)) resulting in finding the solution of (̃). In
act, if (̃rel.) can be solved to global optimality, we can guarantee that we can find the globally optimal solution of (̃) with B&B.

(̃rel.) is a continuous inequality QP. In the following theorem we examine the behavior of (̃rel.) and we prove its convexity.

heorem 4.1. (̃rel.) can be solved to global optimality.

roof. The feasible region (̃rel.) consists of affine equality and inequality constraints. Thus, it forms a polyhedron and it is a convex
et. In addition, let us consider the scalar-valued function:

𝑔𝑠𝑖𝑗 (𝑎
𝑠
𝑖 , 𝑎

𝑠
𝑗 ) ∶= 𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

(

(𝑎𝑠𝑖 − 𝑎
𝑠
𝑗 ) − ℎ

𝑠
)2

The Hessian matrix of this function is:

𝐇 =

⎡

⎢

⎢

⎢

⎣

𝜕2𝑔𝑠𝑖𝑗
𝜕(𝑎𝑠𝑖 )

2

𝜕2𝑔𝑠𝑖𝑗
𝜕𝑎𝑠𝑖 𝑎

𝑠
𝑗

𝜕2𝑔𝑠𝑖𝑗
𝜕𝑎𝑠𝑗𝑎

𝑠
𝑖

𝜕2𝑔𝑠𝑖𝑗
𝜕(𝑎𝑠𝑗 )

2

⎤

⎥

⎥

⎥

⎦

=

[

2𝜙𝑠𝑖𝑗𝜓
𝑠
𝑖𝑗 −2𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

−2𝜙𝑠𝑖𝑗𝜓
𝑠
𝑖𝑗 2𝜙𝑠𝑖𝑗𝜓

𝑠
𝑖𝑗

]

ith eigenvalues 𝑒1 = 0 and 𝑒2 = 4𝜙𝑠𝑖𝑗𝜓
𝑠
𝑖𝑗 ≥ 0. Because the eigenvalues are non-negative, 𝑔𝑠𝑖𝑗 is convex and the objective function of

̃rel.) is convex as the sum of convex functions:
∑

𝑠∈𝑆

∑

𝑖∈𝑁

∑

𝑗∈𝑁⧵{𝑖}
𝑔𝑠𝑖𝑗 (𝑎

𝑠
𝑖 , 𝑎

𝑠
𝑗 ) +

∑

𝑖∈𝑁
𝑐𝑖

Thus, (̃rel.) is convex and any locally optimal solution is a globally optimal solution. ■

orollary 4.1.1. Strong Duality holds for (̃rel.).

roof. (̃rel.) is convex and its equality and inequality constraints are affine functions. Thus, the revised Slater’s constraint
ualifications condition, which is sufficient for Strong Duality, holds (Slater, 2014). Ergo, a finite optimal solution of our primal
roblem has the same objective function value as the optimal solution of the dual problem:

sup
𝝂≥0,𝝀

inf
𝐱
(𝐱, 𝜆, 𝜈)

where (𝐱,𝝀, 𝝂) is the Lagrangian of the primal with dual variables 𝝀 associated to equality constraints and 𝝂 associated to inequality
constraints. ■

The continuous relaxation can be solved in polynomial time with the active set method. The active set method for solving
inequality QPs starts by finding a feasible point during an initial phase and then finds iterates that remain feasible while steadily
9
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decreasing the objective function by solving a sequence of equality-constrained QPs. Without loss of generality, let us collect all
variables 𝐱 ∈ R𝑁≥0,𝐀 ∈ R|𝑁|×|𝑆|

≥0 ,𝐍 ∈ R|𝑁|×|𝑆|
≥0 , 𝐜 ∈ R|𝑁|, 𝝃, �̄� ∈ {0, 1}|𝑁|×|𝑁|×|𝑆|, 𝐫, �̄� ∈ R|𝑁|×|𝑁|×|𝑆| of (̃rel.) into column vector 𝐲. Let

lso  be the feasible region of (̃rel.) which is comprised of equality and inequality constraints in the form of affine functions.
inally, let  be the set of equality constraints and  the set of inequality constraints of (̃rel.). Then, we have that:

𝑐𝑖(𝐲) = 0 ∀𝑖 ∈ 

𝑐𝑖(𝐲) ≤ 0 ∀𝑖 ∈ 

here 𝑐𝑖(𝐲) are the affine functions of the problem’s constraints.
The active set at any feasible point 𝐲∗ ∈  of (̃rel.) is the set (𝐲∗) which is the union of the set of all equality constraints 

nd the subset of inequality constraints  for which 𝑐𝑖(𝐲∗) = 0. That is, (𝐲∗) =  ∪ {𝑖 ∈  ∣ 𝑐𝑖(𝐲∗𝑖 ) = 0}. It now follows that if
n oracle informs us that the optimal solution 𝐲∗ of (̃rel.) has active set (𝐲∗), then we can solve the inequality QP of (̃rel.) as an
quality-constrained QP by considering only the equality constraints in the active set since all other constraints would be inactive.
his is the essence of this iterative numerical optimization method which is based on the following steps:

1. start from a feasible solution 𝐲𝑘 of the inequality QP where 𝑘 = 0 and find its active set (𝐲𝑘). Note here that 𝑘 refers to the
iteration number of the active-set method and is not to be confused with the symbol used to for the train lines.

2. find the next iterate 𝐲𝑘+1 = 𝐲𝑘 + 𝜶𝑘𝐩𝑘 where 𝐩𝑘 is the step direction and 𝜶𝑘 the step length
3. terminate when finding an optimal 𝐲𝑘+1

The first question is how to find an initial feasible solution 𝐲𝑘 for 𝑘 = 0. Because this solution does not need to be optimal
nd all constraints are affine functions, if (̃rel.) is not infeasible we can easily find a feasible solution. To do so, we would have
o turn (̃rel.) into a Phase I linear program by removing the nonlinear objective function of the problem and replacing it with a
inear objective function of artificial slack variables. This Phase I linear program can be easily solved with simplex to obtain a basic
easible solution which will also be a feasible (but not necessarily optimal) solution of (̃rel.).

The second question is how to find the step direction 𝐩𝑘 to update 𝐲𝑘. This is achieved by solving (̃rel.) as an equality-constrained
P at the active set (𝐲𝑘) after replacing 𝐲 by 𝐲𝑘 + 𝐩:

min
𝐩

𝑓 (𝐲𝑘 + 𝐩)

s.t. 𝑐𝑖(𝐲𝑘 + 𝐩) = 0 ∀𝑖 ∈ 

𝑐𝑖(𝐲𝑘 + 𝐩) = 0 ∀𝑖 ∈  ∩(𝐲𝑘)

here 𝑓 is the quadratic objective function in Eq. (20). The solution 𝐩𝑘 of this equality-constrained QP can be easily obtained by
he null-space method (Gould et al., 2001).

Based on the optimal value of the step length 𝐩𝑘, we have five cases.
Case 1: suppose that the optimal 𝐩𝑘 is equal to 0 and the KKT multipliers of 𝝁𝑘 ≥ 0. Then, we can terminate the active set

lgorithm because we have reached an optimal solution with 𝐲𝑘+1 = 𝐲𝑘.
Case 2: suppose that the optimal 𝐩𝑘 is equal to 0, but some components of 𝝁𝑘 are negative. Then, we remove the most negative

omponent from the active set (𝐲𝑘) and we solve again the problem to obtain a new 𝐩𝑘,𝝀𝑘,𝝁𝑘.
Case 3: suppose that the optimal 𝐩𝑘 ≠ 0. We then need to decide how far we will move in the direction of 𝐩𝑘 to maintain

easibility while reducing the objective function value. For this we choose step length 𝜶𝑘 ∈ [0, 1] to be the largest value for which
ll constraints are satisfied for 𝐲𝑘+1 = 𝐲𝑘 + 𝜶𝑘𝐩𝑘. This 𝜶𝑘 is defined based on what happens to the inactive constraints at iteration 𝑘
nd it is obtained from:

𝜶𝑘 = min{1,
𝐛𝑖 − 𝐚⊺𝑖 𝐲𝑘
𝐚⊺𝑖 𝐩𝑘

, ∀𝑖 ∉ (𝐲𝑘) and 𝐚⊺𝑖 𝐩𝑘 < 0}

Observe that if 𝜶𝑘 < 1, then 𝜶𝑘 =
𝐛𝑖−𝐚

⊺
𝑖 𝐲𝑘

𝐚⊺𝑖 𝐩𝑘
for some 𝑖 ∉ (𝐲𝑘) with 𝐚⊺𝑖 𝐩𝑘 < 0. Then, we update the active set (𝐲𝑘+1) = (𝐲𝑘) ∪ 𝑖

y making constraint 𝑖 active.
Case 4: suppose that the optimal 𝐩𝑘 ≠ 0 and 𝜶𝑘 = 1. Then, there is no inequality constraint which becomes active in the direction

f 𝐩𝑘, and thus 𝐲𝑘+1 = 𝐲𝑘 + 𝐩𝑘.
Case 5: suppose that the optimal 𝐩𝑘 ≠ 0 and 𝜶𝑘 = 0. Then, we have a constraint 𝑖 which was active at 𝐲𝑘 but we did not include

t in the active set (𝐲𝑘). Thus, we include it now and solve again the problem of determining 𝐩𝑘,𝝀𝑘,𝝁𝑘.
10

The steps of the active set method are presented in Alg. 1.
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Algorithm 1 Active Set method for inequality QP

1: set 𝑘 = 0 and start from a feasible solution y𝑘 of the inequality QP (̃rel.) with the use of linear programming
2: find the active set (y𝑘) of the feasible solution y𝑘
3: solve (̃rel.) as an equality-constrained QP at the active set (y𝑘) after replacing y by y𝑘 + p:

min
p

𝑓 (y𝑘 + p)

s.t. 𝑐𝑖(y𝑘 + p) = 0 ∀𝑖 ∈ 

𝑐𝑖(y𝑘 + p) = 0 ∀𝑖 ∈  ∩(y𝑘)

4: if p𝑘 = 0 and the KKT multipliers 𝝁𝑘 ≥ 0 then
5: terminate because solution y𝑘 is optimal.
6: end if
7: if p𝑘 = 0, but some components of 𝝁𝑘 are negative then
8: Remove the most negative component from the active set (y𝑘) and solve again the equality-constrained QP to obtain a new

p𝑘,𝝀𝑘,𝝁𝑘.
9: end if

10: if p𝑘 ≠ 0 compute 𝜶𝑘 = min{1,
b𝑖−a

⊺
𝑖 y𝑘

a⊺𝑖 p𝑘
, ∀𝑖 ∉ (y𝑘) and a⊺𝑖 p𝑘 < 0} then

11: if 𝛼𝑘 = 1 then
12: Set y𝑘+1 = y𝑘 + p𝑘, (y𝑘+1) = (y𝑘), and solve again the equality-constrained QP.
13: end if
14: if 𝛼𝑘 = 0 then
15: Select inequality constraint 𝑖 ∈𝑀 ⧵(y𝑘) for which a⊺𝑖 p𝑘 > 0 and 𝑏𝑖 = a

⊺
𝑖 y𝑘

16: Set y𝑘+1 = y𝑘 and (y𝑘+1) = (y𝑘) ∪ {𝑖} and solve again the equality-constrained QP.
17: end if
18: if 0 < 𝛼𝑘 < 1 then
19: Select 𝑖 ∈𝑀 ⧵(y𝑘) with a⊺𝑖 p𝑘 > 0 for which 𝛼𝑘 =

𝑏𝑖−a
⊺
𝑖 y𝑘

a⊺𝑖 p𝑘
.

20: Set y𝑘+1 = y𝑘 + 𝛼𝑘p𝑘 and (y𝑘+1) = (y𝑘) ∪ {𝑖} and solve again the equality-constrained QP.
21: end if
22: end if

4.2. Obtain an exact solution of (̃) with branch and bound

In the previous subsection we proved that the continuous relaxation of (̃), denoted as (̃rel.), can be solved to global optimality
nd one can employ the active set method to compute a globally optimal solution. However, the globally optimal solution of (̃rel.)
s merely a lower bound of (̃) and not its globally optimal solution. Hereby, we propose a Branch and Bound (B&B) solution method
o derive the globally optimal solution of (̃). B&B was proposed by Ailsa Land and Alison Doig in 1960 for mixed-integer linear
rogramming (Land and Doig, 1960).

B&B is a more clever search technique compared to exhaustive enumeration (brute force) because it searches the solution space
ore efficiently, typically requiring to solve considerably fewer sub-problems than the brute force method. We should note, though,

hat the running time of B&B is still exponential at the worst-case scenario. Although B&B is not a polynomial time algorithm, it
an perform well in practical applications bringing significant benefits compared to naive exact methods, such as the exhaustive
numeration.

(̃) is a mixed-integer QP with binary and continuous variables. We start implementing B&B with iteration 𝑘 = 0 by solving the
ontinuous relaxation of (̃), denoted as (̃rel.). Solving this continuous relaxation with the active-set method will give us solution
0 with performance 𝑓 (𝐲0), where 𝑓 is the quadratic objective function in Eq. (20). Solution 𝐲0 is a globally optimal solution of
̃rel.) and a lower bound of (̃). Let 𝐿0 = 𝑓 (𝐲0) denote this lower bound. Let also 𝑈0 = +∞ denote the upper bound of (̃).

With B&B we perform iterations until the lower and upper bound of (̃) are equal, denoting that we have found the globally
ptimal solution of (̃). The upper bound value 𝑈0 can be updated every time we find a feasible solution of (̃) with better
erformance. If, for instance, solution 𝐲0 happens to be a feasible solution of (̃), then 𝑈0 = 𝑓 (𝐲0), and because 𝐿0 = 𝑈0 the
&B algorithm terminates with 𝐲0 as the globally optimal solution. If 𝐲0 is not a feasible solution of (̃), then we proceed to the
ext iteration 𝑘 = 𝑘+1. Each iteration populates the B&B tree where every leaf node of the tree represents an optimization problem.
nitially, we have leaf node 0 representing problem (̃rel.), which is the root of the B&B tree. From the B&B tree we have the candidate
ist  = {0} of the leaf nodes from which we have not performed branching.

At iteration 𝑘 we select the leaf node from the candidate list  that has the smallest lower bound value and we generate two
ub-problems (branching). Because at 𝑘 = 1 we have only one problem in the candidate list, we select leaf node 0 representing
̃rel.) and we generate two sub-problems by selecting one binary variable that had a continuous value in the solution 𝐲0. In the
irst sub-problem the value of this variable is set to 0 and in the second to 1. These two sub-problems (1 and 2) form two new leaf
odes and are subsequently solved with the active set method to derive their optimal solutions (𝐲 and 𝐲 ), and their lower bound
11
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Fig. 2. Toy network.

alues 𝐿1 = 𝑓 (𝐲1) and 𝐿2 = 𝑓 (𝐲2). If any of the solutions 𝐲1 and 𝐲2 is a feasible solution to (̃), then we update the upper bound. If,
or instance, 𝐲1 is a feasible solution to (̃), then 𝑈𝑘 = 𝑓 (𝐲1). If this is the case, we can start the pruning phase where we remove
ll leaf nodes from  for which their lower bound values are greater than 𝑈𝑘 since they cannot be globally optimal solutions. This
teration terminates by removing leaf node 0 from  since we branched out from this leaf node.

The iterations continue in a similar manner by finding the leaf node in  with the smallest lower bound value, creating two
ub-problems, solving them with the active-set method to derive their solutions and lower bounds, checking if any of the two
olutions is feasible to (̃) with performance lower than 𝑈𝑘 and updating 𝑈𝑘 accordingly, and pruning leaf nodes from  that have
higher lower bound value than 𝑈𝑘. With this branching and pruning the algorithm terminates in an iteration where the smallest

ower bound of all leaf nodes in  is equal to the upper bound value. The algorithmic steps are presented in Alg. 2.

Algorithm 2 B&B approach

1: solve the convex continuous relaxation (̃rel.) of the original problem (̃) to compute 𝐿0 with the active-set method. If this
solution is feasible for the original problem, then 𝑈0 = 𝐿0. Otherwise, set 𝑈0 = +∞

2: Set 𝑘 = 0 and 𝐿𝑘 = 𝐿0, 𝑈𝑘 = 𝑈0
3: initialize candidate list  = {0} which contains all leaf nodes from which we have not performed branching
4: repeat
5: from the leaf node in  with the smallest lower bound, generate two sub-problems by fixing the values of one of the binary

variables 𝝃, �̄� ∈ {0, 1}|𝑁|×|𝑁|×|𝑆| to 0 and 1 (branching)
6: for the two generated sub-problems, compute their lower bounds with the active-set method and their upper bounds in case

of feasibility
7: add these two sub-problems to  and remove the parent leaf node of these two sub-problems from 
8: set 𝐿𝑘 as the smallest lower bound from the lower bounds of all sub-problems in 
9: set 𝑈𝑘 as the smallest upper bound of all sub-problems

10: remove all leaf nodes (sub-problems) from  for which their lower bound values are greater than 𝑈𝑘 (pruning)
11: set 𝑘 = 𝑘 + 1
12: until 𝑈𝑘 = 𝐿𝑘

5. Numerical experiments in a toy network

We first present the implementation of our urban rail corridor coordination model in a toy network (Fig. 2).
This toy network has 𝐾 = (1, 2, 3) train lines. It also has (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) train stations. Trains have to operate in

both directions, so we also have additional stations (12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22) demonstrating the movement in the reverse
direction, where station 12 symbolizes the opposite direction station of 11, 13 the opposite direction station of 10, and so on. In
addition, we have a set of 6 train trips 𝑁 = (1, 2, 3, 4, 5, 6). Trips 1 and 4 are successive trips of line 1, 𝑃 1

1,4 = 1, trips 2 and 5
are successive trips of line 2, 𝑃 2

2,5 = 1, and trips 3 and 6 are successive trips of line 3, 𝑃 3
3,6 = 1. The ordered stations of line 1

are 𝑆1 = (1, 2, 3, 4, 5, 6, 7, 8) in the main direction and (15, 16, 17, 18, 19, 20, 21, 22) in the opposite, of line 2 are 𝑆2 = (3, 4, 5, 6, 11)
in the main direction and (12, 17, 18, 19, 20) in the opposite, and of line 3 are 𝑆3 = (5, 6, 7, 8, 9, 10) in the main direction and
(13, 14, 15, 16, 17, 18) in the opposite. Trips 1 and 4 are assigned to line 1, trips 2 and 4 to line 2, and trips 3 and 6 to line 3.
That is, 𝛽1 = 𝛽4 = 1, 𝛽2 = 𝛽5 = 2, and 𝛽3 = 𝛽6 = 3.

Trips 1 and 4 are successively operated by the same train (𝜋11,4 = 1). The same applies for trips 2 and 5 (𝜋22,5 = 1), and trips 3
and 6 (𝜋3 = 1). The safety distance among successive trains is set to 𝛿 = 1. The minimum allowed dispatching headway between
12

3,6
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Table 2
Optimal trip arrival times at the stations of the joint corridor in minutes.

Station Trip 1 Trip 2 Trip 3 Station Trip 4 Trip 5 Trip 6

3 3 4 – 15 11.869 – 16.869
4 4 5 – 16 12.869 – 17.869
5 5 6 7 17 13.869 14.869 18.869
6 6 7 8 18 14.869 15.869 19.869
7 7 – 9 19 15.869 16.869 –
8 8 – 10 20 16.869 17.869 –

successive trips of any train line 𝑘 ∈ 𝐾 is set to 𝑣𝑘 = 2, and the maximum allowed dispatching headway is set to 𝑢𝑘 = 20. The dwell
time at stops is set to 𝜂 = 0.1 minutes.

In addition, we initialize the target headways 𝐇, the indicator parameters 𝜱 that indicate whether we should meet a target
headway between two trips at a station, and the weight factor parameters 𝜳 as:

• ℎ𝑠𝑖𝑗 = {(𝑖, 𝑗, 𝑠) ∶ 0 for 𝑖 in 𝑁 for 𝑗 in 𝑁 for 𝑠 in 𝑆}
• 𝜙𝑠𝑖𝑗 = {(𝑖, 𝑗, 𝑠) ∶ 0 for 𝑖 in 𝑁 for 𝑗 in 𝑁 for 𝑠 in 𝑆}
• 𝜓𝑠𝑖𝑗 = {(𝑖, 𝑗, 𝑠) ∶ 0 for 𝑖 in 𝑁 for 𝑗 in 𝑁 for 𝑠 in 𝑆}

We then set their values as follows:
for 𝑖 in 𝑁 :

for 𝑗 in 𝑁 :
for 𝑠 in 𝑆:

if 𝛾𝑠𝑖 = 1 and 𝛾𝑠𝑗 = 1 and 𝑖 ≠ 𝑗: ℎ𝑠𝑖,𝑗 = 2 minutes
𝜓𝑠𝑖,𝑗 = 1.5
if 𝑖 = 1 and 𝑗 = 2: 𝜙𝑠𝑖,𝑗 = 1
if 𝑖 = 2 and 𝑗 = 3: 𝜙𝑠𝑖,𝑗 = 1
if 𝑖 = 4 and 𝑗 = 5: 𝜙𝑠𝑖,𝑗 = 1
if 𝑖 = 5 and 𝑗 = 6: 𝜙𝑠𝑖,𝑗 = 1

In addition to the above, we set the latest possible dispatching time to ensure that the train trips in the opposite direction
ill not be delayed and thus avoid schedule sliding as 𝜔𝑖 = 14 minutes for all 𝑖 ∈ 𝑁 , and 𝑀 = 10000. Solving the corridor

oordination problem in this toy network results in a model with 1572 variables and 432 constraints. The solution time of this
roblem implemented on a computer with Intel Core i7-9750H CPU @ 2.60 GHz was 0.04 s.

The optimal solution of this problem after implementing Alg. 2 results in the new trip dispatching times:

𝑥1 = 0, 𝑥2 = 3, 𝑥3 = 6, 𝑥4 = 10.869, 𝑥5 = 12.869, 𝑥6 = 13.869

ith

𝑐𝑖 = 0 ∀𝑖 ∈ 𝑁

esulting in a globally optimal solution with objective function value 591 and an optimality gap of 0%. The arrival times of the
rain trips at the stations of the joint corridor are presented in Table 2.

. Case study

.1. Description

The potential impact of urban rail corridor coordination is demonstrated on a light rail service in The Hague, The Netherlands.
he Hague is a city on the North Sea coast of the western Netherlands, and it is the seat of the Dutch parliament. It has a population
f more than half a million inhabitants and a public transport network consisting of buses and trams (light rail) operated by HTM.
he data used for the case study is the network and timetable data (GTFS) and passenger demand data – processed from smart card
ata (see Yap et al., 2017 for information on the data processing and inferences performed) – from 2018. The network consists of 7
ight rail lines which share tracks in the tram tunnel that runs through the central parts of The Hague. Three of the seven lines are
upporting peak hour service lines that are operated but not communicated as separate lines. The network consists of a total of 99
tations. The characteristics of the 7 lines are presented in Table 3. Note that 3 of them (2K, 3K, and 4K) are peak-hour lines and
o not operate throughout the day.

The network configuration is presented in Fig. 3. In this network, the supporting peak-hour service lines 2K, 3K, and 4K serve
arts of the main lines 2, 3, and 4, respectively.

In our case study, we analyze the trips that serve the shared corridor between 16:50-17:50 because this is the peak afternoon
eriod during which travel demand and service frequencies are at the highest level and all 7 lines are operational. Note that line
13

K has only one departure per hour (providing a short-line addition for line 2). The basis for the analysis is the timetable as it was
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Table 3
Characteristics of the service lines.

Line Operational period Frequency Nr. of stations Total trip time

2 04:45-00:30 6 trips/h 31 0:41:53
2K (peak-only) 07:30-08:45 and 16:45-17:15 5 trips/day 20 0:32:51
3 06:15-00:30 6 trips/h 41 1:08:35
3K (peak-only) 07:15-09:15 and 16:50-17:50 6 trips/h 15 0:21:37
4 06:00-01:00 6 trips/h 31 0:55:46
4K (peak-only) 07:30-09:15 and 16:10-18:10 6 trips/h 23 0:39:21
6 05:30-00:15 6 trips/h 28 0:37:22

Fig. 3. Network topology of the urban rail lines.

Fig. 4. Number of boarding passengers at each station.

implemented on 11-09-2018. The weight factor 𝜓𝑠𝑖𝑗 is calculated for each station based on the number of boarding passengers. The
weight is computed as a normalized value of the number of boarding passengers as follows:

𝜓𝑠𝑖𝑗 ∶=
𝐵𝑠

∑

𝑠∈𝑆 𝐵𝑠
∀𝑠 ∈ 𝑆, ∀𝑖, 𝑗 ∈ 𝑁 (41)

where 𝐵𝑠 is the number of passengers boarding at station 𝑠. The passenger demand data with the number of boardings at each
station is presented in Fig. 4. This data is retrieved from the actual smart card data records available from 11-09-2018.

Note that the weight factor 𝜓𝑠𝑖𝑗 is calculated for each station based on the number of boarding passengers. That is, the weight
factor value is affected from the number of boarding passengers, and not their arrival pattern; implying that the arrivals of passengers
at stations are uniformly distributed (which is the most common assumption for urban public transport services operating in high
frequencies (Gkiotsalitis, 2023)).

Based on the original schedule retrieved from the GTFS data, the safety distance parameter 𝛿 has a value of 2 s. The minimum
dispatching time is 𝑣𝑘 = 120 seconds and the maximum dispatching time 𝑢𝑘 = 1200 seconds for all seven lines. The dwell time per
station is retrieved from the original timetable.

Since dwell times are constant and the travel time for traversing common line segments is line-agnostic, it is possible to speed
up the calculation by simplifying the network by means of aggregating stations served by the same lines by summing the respective
weights 𝜓𝑠𝑖𝑗 . This reduces the number of stations from 99 to 22 resulting in the simplified network of Fig. 5.

6.2. As-is scenario

In the original timetable of 2018, all individual urban rail lines have a time headway of 10 min. In Fig. 5 we present how the
10-minute headways of the lines are positioned in relation to one another. At multiple stations, the headways are not equally divided
14
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Fig. 5. Time headways in the original 2018 timetable.

Fig. 6. Example of the full circle representation at the Central Station, where the time headways of the consecutive trips of the seven lines are expressed in
minutes.

over the 10-minute cycles. For example, at the Central Station which is served by all seven lines, headways between successive trips
are consecutively 0.03 min, 2.47 min, 2.50 min, 0.03 min, 2.47 min, 2.00 min, and 0.50 min; thereby, yielding a very uneven
service arrival pattern with the expected ramifications for passengers’ waiting times and uneven on-board crowding conditions due
to bunching. This also causes safety issues because the gap between successive vehicles is as low as 0.03 min.

In Fig. 5, a full circle corresponds to a 10-minute cycle. The positions of lines within the circle represent the arrival of trips
within the 10-minute interval. Note that all lines within our network have a 10-minute headway. Stations with small variations in
headways have lines distributed evenly within their respective circles, whereas unevenly distributed circles represent stations with
large variations in headways. For instance, the first station of line 4 has an evenly distributed headway of 10 min. In contrast, the
Central Station has an uneven service arrival pattern. Note that the position of line 6 in the 10-minute cycle changes along its route,
as it has different travel times than lines 4 and 2 between their shared stations.

To clarify the meaning of the full circles, consider the full circle at the Central Station with consecutive time headways between
the trips of the seven lines being 0.03 min, 2.47 min, 2.50 min, 0.03 min, 2.47 min, 2.00 min, and 0.50 min. This is represented in
Fig. 6 which provides more information about the circle used at the Central Station.

We note that at the Central Station, which is the most visited station, we have 10 platforms and our lines are served by platforms
B and D.

6.3. Results of model implementation

The model formulated in Section 3 and the solution method of the B&B algorithm coupled with the Active Set method (Alg. 2)
are implemented in Python on a computer with AMD Ryzen 7 5700U CPU @ 1.80 GHz processor and a 16 GB RAM. The globally
optimal solution for this network with 7 lines and 22 stations is found in 2,928.26 s. The results of the model are presented in
Table 4. The number of binary variables is 57,024.
15
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Table 4
Computation time, variables and constraints of the exact urban rail corridor coordination model.

Number of binary variables 57,024
Number of constraints 351,452
Computation time 2,928.26 s
Optimality Gap 0% (optimal solution)
Objective function value 2,213,745 s2
Objective function value of the original timetable 7,999,773 s2

Fig. 7. Time headways in the optimized timetable.

Fig. 8. Example of time headways of successive trips at Central Station within the hourly period 16:50-17:50, 11-09-2018.

The solution of the optimization process results in a new set of dispatching times for the vehicle trips of the urban rail line.
Based on this solution, the time headways at the stations of the urban rail network are presented in Fig. 7.

In Fig. 7, a full circle is a 10-minute cycle. The positions of lines within the circle represent the arrival of trips within the 10-
minute interval. Evenly distributed circles are stations with small variations in headways and unevenly distributed circles represent
stations with large variations in headways. Note that the optimized solution improved the distribution of headways at the common
corridor. For instance, the time headways of successive trips at the Central Station are more evenly distributed compared to the
time headways of the original timetable presented in Fig. 5. As a result, there is no vehicle bunching in the common corridor.

In general, our corridor coordination model spaces the trips more evenly over time. It is notable that the model avoids very
short time headways which are observed in the original timetable of Fig. 5. The minimum time headway between successive trips
on the network increases from 2 s to 57 s, while maintaining the same average headway. This results in reduced bunching for the
same service frequency (see Fig. 8). Note that by planning for more evenly distributed vehicle arrivals at the common corridor,
there is lesser need for complex real-time control strategies aimed at reducing bunching during operations. In Fig. 8 we present the
successive time headways between the 37 trips of all lines that serve the Central Station from 16:50 until 17:50.

From Fig. 8 one can note that several time headways of the original timetable are almost 0 (i.e., the time headways 1, 7, 14, 20,
26, and 32). On the contrary, the optimized time headways after the implementation of our model are never below 57 s, resulting
in reduced bunching.

From the results it becomes evident that the large variations in time headways that were present at some stations of the joint
corridor are reduced in our optimized timetable. This, however, might increase the headway variation at isolated network segments
that are served only by a single line. This is presented in Fig. 9 where the coefficient of variation of time headways at the isolated
stations 2, 3, 4, 6, 7, 13, 14, 17, 18, 20, 21, and 22 – which are served only by one line – is increased compared to the respective
coefficient of variation of the original timetable. The coefficient of variation at each station is calculated as the standard deviation
16
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Fig. 9. Coefficient of variation of the time headways at each station.

Table 5
Mean time headways (in seconds) and coefficient of variation (in seconds) of time headways at
the different stations.

Station Model Original timetable Change of
variationMean Coefficient of

variation
Mean Coefficient of

variation

1 480 0.255 500 0.310 −0.055
2 579 0.038 600 0.000 0.038
3 283 0.204 300 0.000 0.204
4 577 0.053 600 0.000 0.053
5 292 0.152 311 0.423 −0.272
6 581 0.036 597 0.012 0.024
7 577 0.053 600 0.000 0.053
8 248 0.703 250 1.117 −0.413
9 174 0.520 183 0.812 −0.291
10 109 0.367 115 0.551 −0.184
11 93 0.241 99 0.640 −0.399
12 193 0.234 203 0.364 −0.130
13 285 0.170 300 0.000 0.170
14 579 0.038 600 0.000 0.038
15 273 0.329 297 0.870 −0.541
16 480 0.255 500 0.310 −0.055
17 576 0.081 600 0.000 0.081
18 581 0.036 597 0.012 0.024
19 295 0.251 322 0.795 −0.544
20 576 0.081 600 0.000 0.081
21 0 0.000 0 0.000 −0.000
22 581 0.036 597 0.012 0.024

of the headways of consecutive trips arriving at this station divided by the mean value of the headway at this station. Figs. 8 and
9 illustrate the trade-off between attaining more even headways at the common corridor and increasing the variation of headways
at isolated segments of the urban rail network.

The detailed change in the coefficient of variation at the time headway of each station before and after applying our urban rail
corridor coordination model is presented in Table 5.

It is important to note that the coefficient of variation of time headways at stations that are served by more than one line
(namely, stations 1, 5, 8, 9, 10, 11, 12, 13, 15, 16, 17) has been significantly reduced after the implementation of our proposed
corridor coordination model. This has resulted in minor coefficient of variation increases at stations served by a single line (namely,
stations 2, 3, 4, 6, 7, 14, 17, 18, 20, 21, 22). That is, by performing the same number of trips, there is a significant improvement
of the distribution of time headways at the common corridor in the expense of a slight increase of headway variability at isolated
stations with a small number of passengers.
17



Transportation Research Part E 178 (2023) 103265K. Gkiotsalitis et al.

p
c
b
t

Table 6
Computation time of the exact urban rail corridor coordination model.

Time period No of trips Binary variables Computation time (h)

1 h 36 57,024 0.813
2 h 72 228,096 1.127
3 h 108 513,216 2.214
4 h 144 912,384 6.127
5 h 180 1,425,600 11.423

6.4. Computational times

We previously presented the improvement potential of the implementation of our method in a joint corridor. To understand the
racticality of our approach in terms of computational complexity, we perform additional experiments. Because the computational
omplexity of our approach is mainly affected from the binary variables of our problem since the continuous relaxation of it can
e solved in polynomial time, we concentrate on settings where the number of binary variables increases. We have already shown
hat the number of binary variables in our model is 2|𝑁|

2
|𝑆|, where |𝑁| is the total number of trips of all lines operating in the

joint corridor during the time period of our selection, and |𝑆| the total number of stations.
In our case study, we have |𝑆| = 22 stations. In addition, during the 1-hour period of our experiments we had 36 trips, resulting

in 2 ⋅ 362 ⋅ 22 = 57,024 binary variables. Given that the main driving force of the increase in the binary variables is the number of
trips |𝑁| because its value is squared, we perform additional computational experiments considering longer time periods of the day.
The results are presented in Table 6, where column 1 presents the time period, column 2 the number of trips, column 3 the number
of binary variables, and column 4 the computational cost in hours. The experiments are performed in a conventional computer
machine with an AMD Ryzen 7 5700U CPU @ 1.80 GHz processor and a 16 GB RAM.

7. Concluding remarks

This study developed a corridor coordination model for urban rail networks. It particularly focused on the pressing issue of vehicle
bunching at the stations of a joint corridor which results in safety-related issues and increased waiting times for a high number of
passengers that travel through these dense corridors. The developed model was a nonlinear and non-convex mathematical program
which was reformulated as a mixed-integer quadratic program. The resulting mixed-integer quadratic program has a convex objective
function and can be solved to global optimality. A branch-and-bound algorithm coupled with the active-set method was proposed
as a solution method for this problem.

This model was implemented in the urban rail network of The Hague, focusing on 7 lines with a common corridor. Using actual
passenger demand and vehicle trip data from 11-09-2018, we demonstrated the improvement potential in the main part of the
urban rail network in The Hague. Because the original timetables of the urban rail network lines are produced with the objective of
improving the regularity of each service line or synchronizing the vehicle arrivals at common stations (Liebchen, 2007; Liu et al.,
2021), the vehicle trips at a common corridor have uneven headways resulting in bunching and long/uneven waiting times for
passengers. Our approach alleviates this issue by producing more even arrivals between vehicle trips of different lines that serve a
common corridor at the expense of increasing the irregularity at low-demand, isolated network segments.

In future research, our approach can be used to reduce vehicle bunching in conjunction with targeted, real-time control measures
such as vehicle holding at stations and speed control. Although our approach is implemented at the tactical planning level where
we use estimates of inter-station travel times from historical data, one can extend our model to cater for travel time uncertainties by
adopting a stochastic optimization formulation. Closing, by incorporating constraints related to the required maintenance of tracks
and trains, our model can also be applied in case of anticipated disruptions in the urban rail network.
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