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Abstract

Harnessing the power of microbial consortia is integral to a diverse range of sectors, from

healthcare to biotechnology to environmental remediation. To fully realize this potential, it

is critical to understand the mechanisms behind the interactions that structure microbial

consortia and determine their functions. Constraint-based reconstruction and analysis

(COBRA) approaches, employing genome-scale metabolic models (GEMs), have

emerged as the state-of-the-art tool to simulate the behavior of microbial communities

from their constituent genomes. In the last decade, many tools have been developed that

use COBRA approaches to simulate multi-species consortia, under either steady-state,

dynamic, or spatiotemporally varying scenarios. Yet, these tools have not been systemat-

ically evaluated regarding their software quality, most suitable application, and predictive

power. Hence, it is uncertain which tools users should apply to their system and what are

the most urgent directions that developers should take in the future to improve existing

capacities. This study conducted a systematic evaluation of COBRA-based tools for

microbial communities using datasets from two-member communities as test cases.

First, we performed a qualitative assessment in which we evaluated 24 published tools

based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability) fea-

tures essential for software quality. Next, we quantitatively tested the predictions in a sub-

set of 14 of these tools against experimental data from three different case studies: a)

syngas fermentation by C. autoethanogenum and C. kluyveri for the static tools, b) glu-

cose/xylose fermentation with engineered E. coli and S. cerevisiae for the dynamic tools,

and c) a Petri dish of E. coli and S. enterica for tools incorporating spatiotemporal varia-

tion. Our results show varying performance levels of the best qualitatively assessed tools

when examining the different categories of tools. The differences in the mathematical

formulation of the approaches and their relation to the results were also discussed.
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Ultimately, we provide recommendations for refining future GEM microbial modeling

tools.

Author summary

Constraint-based modeling employing genome-scale reconstructions of microbial species

has become one of the most successful approaches for studying, analyzing, and engineer-

ing microbial consortia. Over the past decade, many constraint-based modeling tools

have been published to examine an immense variety of microbial consortia spanning

from the application areas of bioremediation to food and health biotechnology. However,

new potential users lack an overview of the quality and performance of existing metabolic

modeling tools that would guide their choice. To tackle this issue, we examined 24 tools

for genome-scale metabolic modeling of microbial consortia. After an initial qualitative

screening, we quantitatively evaluated 14 adequate tools against published experimental

data that included different organisms and conditions. We conducted simulations and

evaluated model features such as predictive accuracy, computational time, and tractability

in capturing critical physiological properties. We found that, generally, more up-to-date,

accessible, and documented tools were superior in many important aspects of model qual-

ity and performance. Although, in some cases, we observed tradeoffs in older, less elabo-

rate tools that can be more accurate or flexible. This work has broad implications to help

researchers navigate the most suitable tools, and suggests to developers opportunities for

improvement of the currently existing capabilities for metabolic modeling of multi-species

microbial consortia.

Introduction

The goods and services provided by microbial consortia have long been harnessed in biotech-

nology. Recent years have seen a soar in the use of multi-species microbial consortia beyond

their traditional application in the production of food and beverages [1, 2]. For example,

microbial consortia are increasingly applied in the production of commodity chemicals [3, 4],

pharmaceuticals [5], or biofuels [6–8]; the valorization of waste and emissions [9–11], the

improvement of sustainable agriculture systems [12–14], and applications in health [15] or

bioremediation [16–18]. Besides the obvious advantage over established industrial processes in

terms of sustainability, multi-species consortia offer a number of advantages compared to

monocultures. These include the reduction of metabolic burden (a major issue) through divi-

sion of labor [19–21], an enhanced substrate versatility, and an increased robustness to fluctu-

ating environments [22, 23]. In consequence, synthetic ecology—the rational engineering of

multi-species microbial consortia—is emerging as a new frontier in biotechnology and bio-

medicine. In order to advance this frontier, it is imperative to build predictive models that will

allow us to design and control the composition and function of microbial communities

[24, 25].

Constrained-based metabolic modeling (CBM) is a powerful computational approach that

mechanistically predicts microbial metabolic traits from genomes. In the past decades, this

method has proven invaluable as a guide for microbial experimental design and for elucidating

metabolic engineering strategies [26, 27]. Because metabolic traits are also a central determi-

nant of ecological interactions in microbes (e.g. competition for resources or metabolite
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sharing), CBM also holds great promise as a predictive and an engineering tool in synthetic

ecology [4]. In a nutshell, CBM use genome-scale metabolic models (GEMs), a mathematical

representation of the metabolic network encoded in an organism’s genome, to simulate meta-

bolic fluxes in a given environment [28]. In the case of single organisms, one of the most popu-

lar methods is Flux Balance Analysis (FBA) [29]. FBA optimizes a predefined objective

function (e.g., biomass production) and assumes steady-state exponential growth (balanced

growth). Dynamic-FBA (dFBA) -an extension of FBA- is applied to represent non-continuous

operations, such as batch or fed-batch reactors, by incorporating differential equations that

describe the rate of change of the extracellular fluxes and the mass balances of the reactor [30,

31]. dFBA assumes a quasi-stationary state where internal dynamics are supposed to be much

faster than external changes of the medium [32]. Going a step further, another general meth-

odology has been developed to model microbial systems in which the extracellular environ-

ment varies spatially and temporally [33–35]. This approach is known as spatiotemporal FBA.

A spatiotemporal FBA framework typically consists of partial differential equations (PDEs)

conveyed in terms of time and spatial coordinates as independent variables [34]. The PDEs

mainly characterize extracellular mass balance equations for biomass, metabolite, and poten-

tially other chemical species concentrations. They account for the transport mechanisms that

cause spatial disparities, including metabolite diffusion and liquid/gas phase convection. Some

spatiotemporal FBA approaches choose to represent microbial biomass as individuals or

agents (IBM) [36–38]. In contrast, others opt to represent microbial biomass at the population

level (PLM) [33, 35].

With the continuous development of novel synthetic microbial consortia, considerable

efforts have been made to extend CBM to microbial communities [39–43]. In the past decades,

many tools have become available with the aim of studying microbial interactions in the gut

microbiome [44–46] or simulating the growth of microbial consortia in continuous and non-

continuous environments. The increasing availability of these tools makes the selection pro-

cess difficult for the user [47]. A key feature when selecting a tool is to verify whether it follows

the FAIR (Findable, Accessible, Interoperable, and Reusable) principles [48]. In particular,

adhering to the software FAIR guiding principles is best as they assure quality research mainte-

nance and reproducibility [49, 50]. As such, the findability of a tool is based on the capacity of

the metadata and software to be easily found by both humans and computers. Accessibility

pertains to the ease of knowledge available at which a software tool can be accessed, possibly

including authentication and authorization. Interoperability refers to the ability to communi-

cate with other software via exchanged data (or metadata). The reusability of tools is related to

how well-described (by metadata) and appropriately structured the software is so that outputs/

results can be replicated, combined, reinterpreted, reimplemented, and/or used in different

settings. Many studies have reviewed the state of the art of steady-state, dynamic, or spatiotem-

poral tools and followed qualitative assessments [39–43, 51–54]. However, no study has yet

reviewed these tools quantitatively. Thus, a systematic evaluation of the latter element would

be highly beneficial for the users and developers in the field. In this work, we have followed an

extensive qualitative assessment to evaluate FAIR principles of available tools and a quantita-

tive assessment to evaluate the performance of a subset of tools reproducing available experi-

mental data of two-species communities. The following case studies were selected to

quantitatively evaluate the tools: i) syngas fermentation by Clostridium autoethanogenum and

Clostridium kluyveri for the static tools, b) xylose and glucose mixture fermentation with engi-

neered Escherichia coli and Saccharomyces cerevisiae for the dynamic tools, and c) a Petri dish

of E. coli and Salmonella enterica for the spatiotemporal tools. In particular, we tested tools

that use CBM and GEMs; based on steady-state, dynamic, or spatiotemporal conditions and

suitable to model synthetic microbial communities of two species. Ultimately, we made
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recommendations for the best modeling tools to use based on qualitative and quantitative per-

formance outcomes and for the future development and improvement of the tools.

Overview of constrained-based modeling tools/approaches

Most of the community modeling tools available are based on steady-state, dynamic, and spa-

tiotemporal conditions, describing continuous cultures, non-continuous cultures, and com-

plex liquid and/or solid systems, for instance, a preferred environment of a Petri dish,

respectively (Fig 1). Steady-state approaches are suitable to describe growth in chemostats or

continuous stir batch reactor (CSBR) systems. These tools require a single GEM of individual

species and a community GEM, often generated by the tool. Extracellular metabolites and

reactions of single species models must be defined by the user in the same namespace (unified

identifier) upon constructing the community model. Most tools require the definition of

medium composition, and some require either the relative abundance (microbial composi-

tion) or the growth rate of individual species. The community growth is often defined as the

objective function, and/or the species growth. The objective function is maximized under the

specified constraints by computing the metabolic fluxes, microbial composition, or species

growth rate, thus allowing a solution where microbial interactions can be inferred.

Tools based on dynamic approaches are suitable to describe non-continuous systems, such

as batch serum bottles, batch or fed-batch reactors as well as some continuous systems, e.g.,

temporal dynamics of recovery from a perturbation in a CSBR. GEMs of species in the com-

munity are provided separately as inputs. All the tools require the medium composition in the

form of initial concentration and substrate uptake rates and the kinetic parameters as inputs.

Fig 1. Overview of steady-state, dynamic, and spatiotemporal tools to model microbial communities. The division

among steady-state, dynamic, and spatiotemporal tools is not firm since dynamic tools can be used to describe steady-

state systems. Likewise, spatiotemporal tools can be used to describe dynamic and steady-state systems. However, most

tools were specifically designed to be used for the highest dimensional cases.

https://doi.org/10.1371/journal.pcbi.1011363.g001
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The kinetic parameters are normally based on Michaelis-Menten-like kinetics, and thus,

Michaelis-Menten constant (Km) and maximum uptake rate of substrates (qSi,m) are required

parameters. After optimization of individual species’ growth rate, we can obtain information

on cross-feeding metabolites, concentration dynamics of substrates, products and biomass,

and metabolic fluxes.

Finally, the spatiotemporal tools aim to describe 2D dimensional surface environments

such as mimicking simple solid-state Petri dish environments. In addition to the required

inputs described for dynamic tools, these tools need information on the diffusion parameters.

The diffusion parameters consist of diffusion coefficients for biomass and metabolites. The

main output in spatiotemporal models is the spatial distribution of extracellular metabolites,

biomass of the different species, as well as growth and uptake rates, at any given time point.

This information can be then used to resolve space-dependent ecological interactions. For

instance, we can observe how growth and competition for substrates occurs at the border of a

colony, but not in the interior.

In this study, we evaluated a total of twenty-four tools/approaches based on steady-state (9)

[42, 44–46, 55–60], dynamic (8) [61–68] and spatio-temporal (7) [33, 35–38, 69–71] methods

according to their usability to model microbial communities using GEMs. A description of the

tools/approaches is found in the S1 Text.

Results

Both a qualitative and a quantitative assessment were performed to evaluate the modeling

tools and approaches. The assessment workflow began by first constructing a list of 16 essential

features for quality constraint-based GEM modeling of microbial communities. Each tool was

rated according to performance on these qualitative metrics ranging from 1 for inadequate

(Red) to 5 for excellent (Blue). The qualitative features are strongly related to FAIR Guiding

Principles for research software which include aspects such as software availability, user sup-

port, traceability, interoperability, etc [50]. These 16 features were evaluated from the perspec-

tive of a fairly experienced user of COBRA methods and tools. Some features can be

subjective. Thus, a description of the criteria followed to evaluate each qualitative metric was

described in an evaluation rubric (S2 Table). More specifically, to evaluate the numerical sta-

bility and reproducibility of the tools, we relied on existing literature, tool architecture, and/or

their performance in reproducing the available experimental studies chosen for the quantita-

tive assessment. Not all features could be examined since some tools were not readily available,

there was no tool developed for those approaches, or there was a lack of related information in

the literature. These features were marked as ‘Not applicable’ (NA; grey square).

From the qualitative examination of the tools, a subset of tools/approaches were quantita-

tively evaluated for their potential to directly model microbial consortia under various condi-

tions. For this subsequent evaluation, we needed data pertaining to substrate uptake rates,

biomass composition and growth rates for static tools, substrate and product concentrations

and biomass concentrations over time for dynamic tools, and media concentrations and spa-

tial distribution of metabolites for spatiotemporal tools. However, these types of raw data are

rarely available along with their metadata. Therefore, only a few suitable candidate datasets

were applicable to the surveyed modeling scenarios. We selected three datasets (Diender et al.

[72], Hanly and Henson [73], and Harcombe et al. [33]), one dataset for each category of

modeling tools to use as case studies to validate the predictive capabilities of the tools. Every

case study represents a consortium of two species. To have an unbiased comparison, tools

were not modified or augmented to revise their functionalities. Some tools were also available,
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but they were not quantitatively assessed since they were too specific to a particular application

and not designed for general application.

In these evaluations, two main points were addressed: the quality of the tool for modeling

microbial communities, and the predictability of the community behavior by the tool when

presented with data from simple test cases.

Qualitative assessment—Static tools/approaches

Fig 2 shows the evaluation of the described features in every tool/approach based on the rubric

(S2 Table). Joint FBA was not assessed since it is the oldest approach and did not include

important parameters such as the relative abundance of species. cFBA, RedCom, and NECom

are approaches, and therefore, some features were not evaluated (grey squares) since there is

no tool developed specifically for those approaches. The tools/approaches that best meet FAIR

principles are MICOM, MMT, SteadyCom, and cFBA (see scores in S1 Fig). All tools/

approaches are accessible for external use except CASINO and RedCom. OptCom is freely

available for academic users upon request.

OptCom did not undergo updates throughout the years. SteadyCom is integrated as part of

COBRA Toolbox [74] and has had some updates from the original publication. Small issues

are fixed from time to time in SteadyCom. However, changes are not documented clearly.

MMT and MICOM are routinely updated, and developers fix issues. Besides, all the modifica-

tions applied in every update of MICOM are described.

OptCom does not have community repository support, and developers only provide a con-

tact person. SteadyCom and MMT offer good community support within COBRA Toolbox.

Fig 2. Qualitative assessment of the static tools/approaches. The colored squares indicate the evaluation of the

specified feature in every tool/approach. The color scale (upper right) goes from excellent (blue) to inadequate (red).

When a feature does not apply to the specified tool/approach or the feature was not evaluated, it is indicated as NA

(Not applicable; grey). The metrics contained in the figure were inspired by [47]. Colored squares with ‘*’ indicate

features of OptCom evaluated using the OptCom function from MICOM. Colored squares with ‘**’ indicate that the

evaluation is an assumption based on the given information. Scom: SteadyCom; MMT: Microbiome Modelling

Toolbox. The tools/approaches are ordered by the year of the latest publication (e.g., MMT).

https://doi.org/10.1371/journal.pcbi.1011363.g002
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MICOM has excellent user support since it has two channels available for discussions and sup-

port. cFBA only needs the installation of CBMPy [75]. SteadyCom and MMT are already avail-

able as part of the COBRA Toolbox, whose installation is fast and easy. MICOM is easy to

install as it only needs a sentence of code and the installation of COBRApy [76]. OptCom was

run using the ‘OptCom’ function from MICOM, and thus, they were equally evaluated.

OptCom requires GAMS and BARON as solvers also accessed through GAMS. GAMS is

not a free programming language, and therefore, its use is more limited. All the dependencies

of cFBA and MICOM are freely accessible. SteadyCom, RedCom, MMT, and NECom are writ-

ten in Matlab, which is not free, but licenses are inexpensive for a wide group of users. Besides,

SteadyCom and MMT require COBRA Toolbox, and RedCom requires CellnetAnalyzer [77]

that are both freely available. Required solvers are either integrated by default or freely accessi-

ble to a wide group of users. CASINO uses the RAVEN Toolbox, a free software suited for

Matlab [78].

The developers of OptCom provide a book with tutorials to run the tool. Some tutorials are

included in COBRA Toolbox that explains case studies used with SteadyCom. However, they

merely explain some aspects of the software. MMT has explanatory tutorials and includes

README files for each main function of the tool, but it is not completely maintained to have

the latest functionality. MICOM contains an extensive user manual explaining all aspects of

the tool, and it is up to date (at the time of preparing this manuscript).

All the tools require certain expertise from the user to be run. OptCom is not considered a

user-friendly tool as GAMS is used as the programming language, and it is not an extended

programming language. cFBA, MMT, and MICOM require some knowledge of programming

and constrained-based modeling by the user. SteadyCom is somehow constrained to the case

studies of the original publication, and thus, extending their use to new cases, and GEMs

requires more knowledge by the user.

Except for CASINO and RedCom where the source code is unavailable, the source code is

accessible to all users. OptCom, MICOM, and MMT produce the same results over time. Opt-

Com, cFBA, and MICOM produce consistent solutions without infeasibility or non-conver-

gence issues. SteadyCom and MMT can lead, in some cases, to non-convergence solutions or

infeasibilities.

NECom was applied to model a co-culture of two species. OptCom and cFBA have been

used to model small microbial consortia (up to 3). CASINO, MMT, and MICOM can be used

to model large communities (gut microbiota). SteadyCom and RedCom can be applied to

model larger microbial communities than OptCom and cFBA (� 9).

OptCom toolbox used ‘txt’ files as input models that do not meet any community-level stan-

dard. cFBA, CASINO, SteadyCom, RedCom, MICOM, and NECom meet SBML or COBRA

community-level standards for model input and output files. Based on the original publication,

we hypothesize that CASINO meets the SBML standard for model input and output since the

RAVEN Toolbox is employed [78]. MMT meets both SBML and COBRA community-level

standards for model inputs and outputs models in COBRA format. RedCom meets COBRA

community-level standards. OptCom cannot be adjusted to standard GEM formats. cFBA uses

CBMPy, which reads the standard SBML format. MICOM is used with COBRApy, which

allows for different GEM formats. CASINO reads models imported in COBRA format. Steady-

Com allows for the translation of GEM models from/to other formats. MMT allows for the

import of SBML, XML, and COBRA models within the tool, and the user does not need to

transform them before running the tool. NECom allows for the use of COBRA models.

Every tool/approach allows for adapting some parameters and constraints with more or less

difficulty. MMT and MICOM provide a wide set of visualizations for different analyses. The

rest of the tools do not produce visual outputs by default.
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Quantitative assessment—Static tools/approaches

cFBA, SteadyCom, MICOM, and MMT scored higher than the other tools in the qualitative

assessment (see S1 Fig), and thus, they were also evaluated regarding their performance in

reproducing an experimental case study. OptCom was also assessed because it was available as

an additional function in MICOM, and it is highly cited (S1 Table). The case study consisted

of syngas fermentation to medium-chain fatty acids by a co-culture of C. autoethanogenum
and C. kluyveri. Syngas is a mixture of H2, CO and CO2. C. autoethanogenum can thrive on

syngas by assimilating CO or CO2 and H2 and producing acetate and ethanol as byproducts.

C. kluyveri does not grow on syngas. It needs acetate and ethanol to grow, and therefore, it

depends on the direct cross-feeding of these metabolites by C. autoethanogenum. The study of

Diender et al. [9] reported data on the steady-state consumption and production rates of CO,

acetate, ethanol, butyrate, and caproate. The hydraulic retention time (HRT) of the reactor was

fixed in the chemostat, suggesting that the species growth rates and the community growth

rate were equal (Fig 3A).

The latter assumption is also considered in cFBA, SteadyCom, and MMT, as illustrated in

Fig 3A. cFBA and MMT were run constraining the growth rates to the experimental values.

SteadyCom allows for the definition of the species’ growth rates and relative abundance. How-

ever, SteadyCom was not feasible in those conditions, and the unconstrained parameters

resulted in higher growth rates than the experiments. OptCom and MICOM do not assume

Fig 3. Comparison of tool predictions to experimental data from the study of Diender et al. [9]. (A) Community and species growth rate and (B)

Steady-state production rates of the main fermentation products obtained in the fermentation of CO by C. autoethanogenum and C. kluyveri with the

assessed tools. cFBA shows the average fluxes and standard deviation of the samples used with Flux sampling.

https://doi.org/10.1371/journal.pcbi.1011363.g003
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equal growth rates of species, and the predicted growth rates were also higher than the experi-

ments. The use of additional constraints in OptCom and MICOM to enforce equal growth

rates is possible and would result in a better fit, but tools have been run using the standard

methodology.

In the study of Diender et al., almost all the ethanol produced by C. autoethanogenum on

CO was fully consumed by C. kluyveri, whereas the acetate produced by C. autoethanogenum
was only partly consumed by C. kluyveri (Fig 3B) [79]. The fermentation of acetate and ethanol

by C. kluyveri led to butyrate (� 0.11 mmol h−1), caproate (� 0.035 h−1), and H2 (not showing

here). Standard deviations for experimental values were not reported.

All tools predicted the exchange of acetate and ethanol between C. autoethanogenum and

C. kluyveri, except MMT, which only predicted the exchange of ethanol (see fluxes in the

online repository: https://doi.org/10.5281/zenodo.8074832). OptCom, SteadyCom, and

MICOM predicted that the acetate produced by C. autoethanogenum was entirely consumed

by C. kluyveri (see fluxes in the online repository: https://doi.org/10.5281/zenodo.8074832.

However, cFBA predicted acetate production by the co-culture (Fig 3B) and acetate con-

sumption by C. kluyveri. Yet, acetate production was lower compared to the acetate mea-

sured in chemostat (� 0.73 mmol h−1). MMT did not predict the production of acetate.

Ethanol was difficult to detect in chemostat (�0.1 mM), as most of it was consumed by C.
kluyveri. cFBA predicted more ethanol than in chemostat, and in OptCom, SteadyCom,

MMT, and MICOM, ethanol was fully consumed by C. kluyveri. Butyrate production was

only predicted by cFBA and MMT. Caproate production was over-estimated by all the tools

except cFBA, which predicted a value comparable to the experiments, and MMT, which did

not predict caproate production.

Following the procedure of the modeling study of the same co-culture [79], flux sampling

was used to compute the fluxes with cFBA. While the agreement of experimental data with

model predictions is less accurate here than in the previous computational study for the lack of

constraints, the new adaptation of cFBA can reproduce the experimental data better than the

other tools [9]. MICOM, SteadyCom, and OptCom could also reproduce the cross-feeding of

acetate and ethanol, which is a key feature in this co-culture. MMT only reproduced the

exchange of ethanol, being infeasible for the CO uptake rate reported in the experiments. The

adjustment of the coupling factor (‘c’) or the use of mgPipe pipeline [46] in MMT could lead

to alternate outputs. Regardless, MMT was mainly designed to model the gut microbiome

using AGORA models, and thus, it is more suitable to model large communities. The use of

FVA as an alternative method to compute fluxes with the existing tools and approaches could

also lead to additional information on cross-feeding metabolites.

Qualitative assessment—Dynamic tools

Fig 4 shows the evaluation of the described features in every tool based on the evaluation

rubric (S2 Table). From the qualitative assessment of all the dynamic tools, it was apparent

that none were flawless (all features being good or excellent). There were, in fact, compromis-

ing aspects in many of the tools where tools were superior for some features while flawed for

other features (see Fig 4 and S2 Fig). For instance, when examining their availability, it was

determined that dyMMM, DAPHNE, MMODES, and surfinFBA were good or excellent. Still,

the tools were considered merely satisfactory when evaluating their interoperability, flexibility,

and reproducibility, except MMODES. In addition, tools such as dyMMM, DFBAlab, μbial-

Sim, and MMODES were easy to install and contained accessible and tractable dependencies,

but did not score above satisfactory levels for the software being traceable (Fig 4). Nevertheless,

there was one tool, d-OptCom, that scored poorly compared with the other methods because

PLOS COMPUTATIONAL BIOLOGY Evaluation of genome-scale constraint-based modeling tools for microbial consortia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011363 August 14, 2023 9 / 32

https://doi.org/10.5281/zenodo.8074832
https://doi.org/10.5281/zenodo.8074832
https://doi.org/10.1371/journal.pcbi.1011363


the software was not readily available from the developers (available upon reasonable request).

It was also constructed under an uncommonly utilized GAMS programming language.

Most of the tools received a good or excellent score for some features. For example, all the

tools, except d-OptCom and DFBAlab, are open source (contain source code available to all

users). DFBAlab also includes source code reachable to some users, but potential users first

need to request the software to gain access as it is not available in the public domain for all

users. All tools were deemed at least satisfactory regarding their reproducibility and potential

to visualize outputs. Furthermore, all the tools other than d-OptCom and DAPHNE adhere to

COBRA community standards [80] and contain a user-friendly interface, at least to a satisfac-

tory degree. This means most tools consist of relatively simple and direct ways of designating

inputs, such as adding GEMs, setting up media compositions, and defining model constraints

and kinetic parameters. Also, tools that were built incorporating existing COBRA frameworks,

such as COBRApy or COBRA Toolbox, typically scored well for being user-friendly and fol-

lowing current standards because they assimilate the current community standards and

acquire greater functionality from the existing infrastructure.

All the dynamic tools received at least a satisfactory score for their interoperability except

MCM, which got a poor score. This is due to MCM having difficulties handling some GEMs,

especially those of eukaryotes with multiple compartments. Also, MCM utilizes an in-house

convention when processing GEMs; thus, issues could arise when needing to employ the GEM

in another tool or database. It is best that GEMs adhere to SBML standards [81]. Most software

except MCM and d-OptCom earned at least a satisfactory score for dependencies. MCM

earned a relatively low score because of the reliance on a not up-to-date micog.py extension

(Python 2.7) for using GEMs. Overall, tools such as MMODES, μbialSim, and dyMMM

received superior scores because they are readily available, accessible, and inoperable com-

pared to the other tools.

Fig 4. Qualitative assessment of the dynamic tools. Colored squares indicate the evaluation of the specified feature in

every tool. The color scale (upper right) goes from excellent (blue) to inadequate (red). When a feature does not apply

to the specified tool or the feature was not evaluated, it is indicated as NA (Not applicable; grey). The metrics contained

in the figure were inspired by [47]. The tools are ordered by year of publication.

https://doi.org/10.1371/journal.pcbi.1011363.g004
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Quantitative assessment—Dynamic tools

A case study comprising a dataset published by Hanly and Henson [73] was used to validate

and quantitatively evaluate the dynamic tools. The experimental setup consists of a bioreactor

operating in batch mode with a co-culture of E. coli and S. cerevisiae designed to study the effi-

cient aerobic consumption of glucose/xylose mixtures. Each microbe utilizes a specific sub-

strate. S. cerevisiae only consumes glucose, whereas the engineered E. coli strain ZSC113 only

consumes xylose. This was done to prevent diauxic growth shown in monoculture for S. cerevi-
siae. The individual biomasses of the two microbial species as well as the concentration

dynamics of the substrates glucose and xylose, were studied. Moreover, ethanol concentration

dynamics were also measured because S. cerevisiae produces it during fermentation, thus,

inhibiting the growth of S. cerevisiae and E. coli.
Furthermore, tools that scored 50 or above when summing up the qualitative scores were

deemed of sufficient quality for a further quantitative examination. These tools were DFBAlab,

dyMMM, μbialSim, and MMODES. We evaluated each tool’s capability of simulating the

observed kinetics using the same inputs across the tools. The error distribution for the differ-

ent methods was determined (see Methods Section for a description of the normalized error

calculation). S. cerevisiae and E. coli biomass concentration increases (Fig 5). DFBAlab was the

only tool to predict the biomass formation of E. coli somewhat accurately though the simula-

tion differed substantially from hours 5 to 12.5, showing no growth while growth was observed

(Fig 5B). μbialSim and MMODES predicted growth for E. coli, but the biomass formations

Fig 5. Quantitative assessment of the dynamic tools. Experimental biomass concentration profiles of E. coli and S. cerevisiae (Panel A and C,

respectively). Comparison of tool predictions of biomass concentration profiles with data for E. coli and S. cerevisiae (Panel B and D, respectively) from

the study of Hanly and Henson. [73].

https://doi.org/10.1371/journal.pcbi.1011363.g005
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were at least an order of magnitude below measured biomass levels (Fig 5B). dyMMM pre-

dicted slight growth of E. coli. Overall, μbialSim and DFBAlab achieved the best predictions

for E. coli based on the experimental data with R2 values of 0.959 and 0.775, respectively. For

the S. cerevisiae growth kinetics, the dyMMM tool most accurately simulated biomass forma-

tion (Fig 5D). While DFBAlab predicted growth for S. cerevisiae, the final biomass concentra-

tion was about 65% less than the experimental value (Fig 5D). μbialSim and MMODES

simulated slight growth for S. cerevisiae. Overall, dyMMM and DFBAlab achieved the best pre-

dictions for S. cerevisiae based on the experimental data with R2 values of 0.900 and 0.682,

respectively (for all R2 values, see S1 Data).

The measure and predicted kinetics for the consumption of glucose and xylose, as well as

the formation of ethanol, are illustrated in Fig 6. Both sugars’ concentration decrease over

time, where glucose is completely consumed around 7.6 h while xylose remains in the medium

longer and is used up entirely by around 13.2 h. This is due to a faster glucose uptake rate from

S. cerevisiae compared to xylose’s consumption rate by E. coli. There is a steady production of

ethanol until the 7.5 h duration. Then, there is a decrease in ethanol, perhaps because S. cerevi-
siae consumes ethanol under aerobic conditions. The co-culture featured a high increase in

ethanol levels due to S. cerevisiae fermentation metabolism; ethanol is an inhibitor of E. coli

Fig 6. Quantitative assessment of the dynamic tools. Experimental extracellular metabolite concentration profiles of glucose, xylose, and ethanol

(Panel A, C, and E, respectively). Comparison of tool predictions of extracellular metabolite concentration profiles with data for glucose, xylose, and

ethanol (Panel B, D, and F, respectively) from the study of Hanly and Henson. [73].

https://doi.org/10.1371/journal.pcbi.1011363.g006
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growth. This ethanol inhibition from S. cerevisiae on E. coli growth was the only interspecies

interaction identified in this experiment.

For the sugar substrates glucose and xylose, dyMMM and DFBAlab simulated the kinetics

most precisely according to the experimental values (Fig 6A and 6B). However, DFBAlab pre-

dicted rapid xylose consumption at the end of fermentation. MMODES simulated a linear glu-

cose consumption with a final concentration of about 52 mM, while xylose consumption was

not predicted. μbialSim did not simulate glucose consumption, while xylose was consumed

slightly with a final concentration of about 35 mM. All the tools simulated ethanol production.

Nevertheless, none of the tools could accurately estimate the dynamics of ethanol production.

This is because the diauxic shift from glucose to ethanol by S. cerevisiae cannot be modeled by

simple optimization as done by FBA. dFBAlab predicted the magnitude and kinetic character-

istics most accurately, while μbialSim and MMODES gave an underestimation for the ethanol

concentrations and reflected linear profiles (Fig 6C). Overall, DFBAlab achieved the best pre-

dictions for glucose, xylose, and ethanol kinetics based on the experimental data with R2 values

of 0.902, 0.978, and 0.440, respectively (for all R2 values, see S1 Data).

Qualitative assessment—Spatiotemporal tools

Fig 7 shows the evaluation of the described features in every tool based on the evaluation

rubric (S2 Table). From the qualitative assessment of all the spatiotemporal tools, none of the

tools received a perfect score. Many tools were highly rated in many categories, while several

were also deficient in many categories (see Fig 7) and S3 Fig). For example, COMETS, BacAr-

ena, CROMICS received excellent scores for software availability and being open-source

because these tools and their source codes are readily available via a GitHub repository or a

maintained website, whereas MatNet received an inadequate score because neither the tool

nor its source code can be easily accessed online. When evaluating the software maintenance,

Fig 7. Qualitative assessment of the spatiotemporal tools. Colored squares indicate the evaluation of the specified

feature in every tool. The color scale (upper right) goes from excellent (blue) to inadequate (red). When a feature does

not apply to the specified tool or the feature was not evaluated, it is indicated as NA (Not applicable; grey). The metrics

contained in the figure were inspired by [47]. The tools are ordered by year of publication.

https://doi.org/10.1371/journal.pcbi.1011363.g007
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user support, and ease of installation of the software, two tools stood out as excellent: COM-

ETS and BacArena. In contrast, many of the tools, including IndiMeSH, MiMoSA, ACBM,

and CROMICS were merely rated as being satisfactory to poor for software maintenance and

user support (Fig 7). However, except for MiMoSA, they were regarded as good for simple

installation because of the accompanying instructions within the software download. Most of

the tools received a good or excellent score for some features. For instance, for reproducibility,

scalability, and visualization of results, all tools scored good to excellent, except ACBM and

MatNet (for reproducibility), MiMoSA and MatNet (for scalability), and MiMoSA and MatNet

(for visualization of results) (Fig 7). ACBM did score well for reproducibility because slight

changes in the same GEM files caused the tool to be invalid or inoperable. In general, IBM

methods scored lower in terms of scalability because of the additional computational costs

compared to PLM methods. Most of the tools contained some functionality for visualizing

results or rendered outputs which were easy to use by other software tools. Many of the tools

have at least a satisfactory level of traceability, reliance on available software, and documenta-

tion. Only ACBM scored poorly for traceability because changes to the software cannot be

detected, whereas most other tools contain mechanisms to trace various versions, and updates

are documented.

All the spatiotemporal tools received at least satisfactory scores except MatNet for their

user-friendly interfaces and numerical stability (Fig 7). These relative scores reflect how well

the functionality, design, and incorporation of community-devised constraint-based modeling

infrastructure into the tools. Also, some tools, such as COMETS and ACBM contain GUI

options for novice users who may be less comfortable using command-line interfaces. Many of

the tools were numerically stable, using examples implying users can start using the software

assuming no infeasibilities occur under basic conditions. Overall, tools such as COMETS,

BacArena, and CROMICS received superior scores because they are more readily available,

up-to-date, open-source, and contain user-friendlier interfaces compared to the other tools.

Quantitative assessment—Spatiotemporal tools

A case study comprising a dataset published by Harcombe et al. [33] was used to validate and

quantitatively evaluate the spatiotemporal tools. The experimental setup consists of a two-

member consortium of two mutant strains of E. coli K-12 and S. enterica LT2, designed to

study the syntrophy between the two strains. E. coli K-12 is deficient in methionine produc-

tion, so it relies on methionine production from S. enterica LT2. Conversely, S. enterica LT2

relies on the secretion of acetate by E. coli K-12 because S. enterica LT2 cannot uptake lactose

under microaerobic conditions. This experiment created the optimal condition to observe a

mutualistic relationship where neither species can grow without the other being present. The

two-species consortium was grown as a lawn on a Petri dish. Furthermore, experimentally, E.
coli and S. enterica were grown overnight in permissive lactose Hypho minimal media (see S2

Table in [33] for more details) and then mixed at a ratio of 1:99 and 99:1. To examine the

impact of time and space on the consortium, on LB, both E. coli and S. enterica can grow inde-

pendently, and X-gal(5-bromo-4-chloro-3-indolyl-b-D-galactopyra- noside) was included in

the plates so that blue E. coli colonies could be distinguished from white S. enterica colonies

(see [33] for more details). The individual biomasses of the two microbial species were exam-

ined and measured over a 48-hour growth cycle by counting colonies. By the end of the cycle,

the composition converged even when the inoculum frequencies varied by two orders of mag-

nitude. Furthermore, the study also found a relationship concerning the spatial structure with

the metabolite resources being allocated, which caused decreased growth between the species

as they were moved further apart.
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From the qualitative assessment, there were four tools considered to be adequate for a fur-

ther quantitative survey. Furthermore, from an enumeration of the qualitative scores, tools

that scored overall 50 or above were deemed requisite quality (see S3 Fig). These tools were

COMETS, BacArena, IndiMeSH, and CROMICS. We evaluated each tool’s capability of simu-

lating the observed biomass dynamic as well as the spatial composition based on moving the

species apart using similar inputs across the methods. The error distribution for the different

methods was determined (see Methods Section for a description of the normalized error calcu-

lation). Over the 48-hour cycle, the community composition of species converged regardless

of whether the initial frequency was 1% or 99% of E. coli. COMETS predicted species ratios for

the two initial frequency conditions (Fig 8). COMETS predicted a composition of 79% ± 4% E.
coli, which is not significantly different from the experimental frequency of 78% ± 6% (Fig

9A). However, BacArena predicted a composition of 63.2% E. coli (Fig 8B). The predictions of

the community composition from IndiMeSH were determined not to be significantly different

from both the experimental and COMETS simulation results (p-value of 0.66 and 0.33, respec-

tively, two-tailed t-test). The CROMICS results showed that regardless of the initial frequency,

the system converged in a species ratio of 76.3% ± 0.1% for E. coli.
The two-species consortium was used to examine the influence of spatial structure on

resource allocation and growth within this mutualistic system. Here, we illustrate the evolution

of the colony spatial distribution over time using a PBM (COMETS) and an IBM (BacArena)

for their representations of biomass (Fig 9). The COMETS simulation shows a rapid rise in the

population density of E. coli and a shift in the location within the grid from E. coli from 9h to

48h (Fig 9A). COMETS also predicted a moderate increase in population density in S. enterica
as well as a slight shift in position from 9h to 48h (Fig 9A). BacArena takes a different approach

and models each organism individually on a two-dimensional grid to simulate a spatial envi-

ronment. For BacArena, the colony evolved first around the initial microbial positions of E.
coli and S. enterica where E. coli reaches a near-final individual amount t = 9h (Fig 9B). The

simulated S. enterica colony continued to grow more abruptly, however, from t = 9h to

t = 48h, filling up most of the remaining spatial elements (Fig 9B).

Fig 8. Quantitative assessment of the spatiotemporal tools. Abundance simulation profiles of E. coli and S. enterica from COMETS (Panel A) and

BacArena (Panel B). Note biomasses used per individual organisms were 5 x 109 fg and 3 x 108 fg for E. coli and S. enterica, respectively. Experimental

data used was from the study of Harcombe et al. [33].

https://doi.org/10.1371/journal.pcbi.1011363.g008
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As a simple test, we attempted to simulate conditions where the growth of the species

should be affected by increasing distance between them. Consistent with what was observed

experimentally [33], the simulations using COMETS, IndiMeSH, and CROMICS showed sim-

ilar degrees of decreased growth as they were initiated further apart (see Zenodo repository:

https://doi.org/10.5281/zenodo.8074832 for output data for all the tools). However, the BacAr-

ena tool could not capture any variation in spatiotemporal growth as observed during the

experiment.

Discussion

This study provides a survey of the chronicled expansion of GEM modeling tools/approaches

for microbial communities throughout the past decade and recommends the best GEM model-

ing tools based on qualitative and quantitative assessments. In particular, we assessed tools

Fig 9. Quantitative assessment of the spatiotemporal tools. Colony spatial distribution over time simulation profiles of E. coli and S. enterica from

COMETS (Panel A) and BacArena (Panel B). For Panel B, the red dots represent E. coli and the black dots represent S. enterica. Experimental data used

was from the study of Harcombe et al. [33].

https://doi.org/10.1371/journal.pcbi.1011363.g009
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that used CBM methods and their performance to model synthetic microbial communities of

two species. This study also illustrates the challenges and brings forth issues and recommenda-

tions that should be considered when developing future tools, so that overall serviceability and

performance can best facilitate potential users.

In general, GEM modeling tools fall into several categories for analyzing microbial commu-

nities. They have been used to identify interspecific interactions, which are embodied in tools

such as SMETANA [82]. These tools can also contain extensive functionality, as illustrated in

the Community Gap-Filling [83] tool for creating draft GEMs from genome assemblies and

performing gap filling and, based on the resolved metabolic gaps, can determine interspecies

relationships. There are tools available such as CommModelPy [84], DOLMN [20], FLYCOP

[85], and Community Opt-yield-FBA [86], which were developed to facilitate the synthetic

designing of microbial consortia. However, this study focuses on static, dynamic, and spatio-

temporal Flux-Balance-Analysis-based modeling tools used for simulating extracellular and

intracellular metabolic phenotypes of microbial consortia. Furthermore, the scope of the work

was limited to evaluating GEM modeling tools for microbial communities where the user

needs to provide draft or curated GEMs as inputs and not tools that are used primarily to cre-

ate the reconstructions. CommModelPy [84], DOLMN [20], and FLYCOP [85] likewise were

omitted from this study’s assessment because we believe they are outside its scope. For

instance, the DOLMN tool is applicable for investigating the division of labor or interactions

among different strains within the same species. Moreover, the FLYCOP pipeline employs the

COMETS version 1 tool, which is already included in this study’s assessment. Therefore, we

feel that FLYCOP is more appropriate as an expansion tool to facilitate the in-silico design of

synthetic microbial communities.

The criteria to qualitatively evaluate the tools was based on the FAIR principles that we con-

sider, should be applied for data, operating procedures, tools, and models [48, 50]. Generally,

tools that scored the highest in the qualitative assessment were shown to perform best in the

quantitative assessment, highlighting the importance of following the FAIR principles. Tools

that were less ‘FAIR’ could hardly be accessed nor used in this study. Thus, further information

and access to the code would be required to quantitatively assess the performance of these

tools and draw a conclusion. Nevertheless, a tool needs to be FAIR to be used, to contribute to

the field, and thus, to shed light on the continuous challenges that can be, later on, tackled in

new tools. In fact, this study observed the latter, since the continual publication of GEM

modeling tools for microbial consortia over the past decade has generally improved in perfor-

mance over time. The first tools have served as a proof of concept and have established the

basis for developing the new tools. However, there were a few exceptions of tools that had high

scores in the qualitative assessment and performed worse than the average in the quantitative

assessment.

In this study, the assessment was based on the modeling of two-species co-cultures, and

therefore, the results could have varied when the tools were applied to larger communities, or

to alternative systems. In addition, the limited availability of experimental data affected the

selection of case studies, which might have an effect on the assessment of tools. By having

more publicly available datasets, GEM modeling tools would be able to be more robustly evalu-

ated on a quantitative level in terms of their scalability and numerical stability. In general, the

performance of these tools would be enhanced if the quality of the GEMs or model architec-

ture was improved, and more constraints were applied to fit the experimental studies or to

compute fluxes. However, we ran the tools without augmenting them and following the

reported standards used to avoid an unbiased evaluation. The quantitative evaluations should

be taken with a degree of awareness about their generality and projection to other types of sys-

tems. Furthermore, the quantitative evaluations here performed should be carefully considered
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as indications of tool performance rather than absolute measures of performance. They repre-

sent the behavior of the tools when confronted with specific datasets with defined biological

characteristics. The syntrophic relationship established in the system used to test the static

tools is different from the alleviation of toxicity observed in the dataset used for the dynamic

tools. We cannot rule out that tool performance is affected by the nature of the interactions.

The current status of the array of static, dynamic, and spatiotemporal tools for GEM model-

ing microbial consortia presents a substantial barrier to entry for researchers unfamiliar with

specific requirements and idiosyncrasies that may arise within CBM frameworks. Tools should

be user-friendly enough for a novice user who may be familiar with metabolic modeling con-

cepts such as FBA and has some basic programming knowledge. We believe that user-friendli-

ness is also linked to the quality of available documentation and the existence of community

support. Therefore, we recommend keeping manuals and related repositories up to date and

including dependencies amenable to changing computational environments or, alternatively,

describing which packages are compatible. When the software is open/free, a possible solution

could be to provide a container with the tool and the dependencies. All changes should be

equally specified and updated in all places where the tool can be found unless specified other-

wise. It is crucial that the tool is accessible to the users. Licenses are also important and should

be provided because they allow tools to be incorporated in pipelines such as FLYCOP that

build upon and extend the functionalities of COMETS to design microbial communities. We

recommend the tools can read several GEM formats and namespaces without the need to

translate the input models using other packages (e.g., COBRA Toolbox, COBRApy). The

translation of these models often leads to a loss of information and a lack of key attributes that

might generate errors when running the tools. The community models built by some static

tools could keep the original bounds of the transport reactions of a single GEM to avoid the

user the re-definition of the bounds once the community model is built. This would extend the

use of these tools to cases with unspecified mediums/diets. Dynamic tools should allow the

possibility of including inhibitory effects to better predict community behavior.

Tools oriented for modeling small and big communities should incorporate sufficient series

of examples featuring a range of application scenarios from small to big communities. Tools

could incorporate case studies with GEMs of non-model organisms since many case studies

are typically proven on communities of several E. coli species that use the same GEM. Other

tools are meant to work with models retrieved from a specific database and defined namespace

(e.g., AGORA [87]). The applicability of these tools to non-model organisms is critical for

designing and optimizing synthetic communities. In the past decades, many synthetic commu-

nities have been established that do not depend on model organisms and have shown a high

potential for producing commodity chemicals [4, 88–91]. On the other hand, GEMs require

accurate genome annotation and curation to properly account for interactions mediated

through pathways, but there is still difficulty identifying these components in microbial

genomes. Therefore, most GEM modeling efforts have been restricted in application to high-

quality GEMs (E. coli and S. cerevisiae). To extend the applicability to alternative GEMs, the

quality of GEMs of single species and communities should follow the community standards (e.

g standard-GEM [92]) and, thus, be verified using test suites such as MEMOTE [93].

Some tools are based on approaches that use FBA and, therefore, are limited to the maximi-

zation of the community growth rate or species growth rate. In those cases, FBA favors growth

over production, and cross-feeding metabolites might be overlooked (Fig 3B). Objective func-

tions can be improved by using experimental data, or frameworks can be refined in dynamic

tools to use a bi-level objective routine [94] or a multiphase, multiobjective approach [95]. Yet,

these amendments may still not apply to all growth scenarios [96]. Flux sampling has been

proven to be an effective tool to explore metabolism using GEM [31, 97, 98], and its use can
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mitigate the influence of the objective function. Flux sampling has also been successfully

implemented to model microbial communities [79]. Therefore, we recommend integrating

flux sampling methods in current and newly developed tools for modeling microbial commu-

nities in different environments, even though computational costs are high [99].

Future tools/approaches could consider using enzyme-constrained models to model micro-

bial communities since they have shown great potential to better understand microbial pheno-

types and phenomena such as overflow metabolism [31].

It is of the utmost importance that static tools/approaches incorporate the biomass compo-

sition of each species in their formulations beyond simply integrating the ratio by changing

the stoichiometry of their biomass reaction. There is no clear consensus yet among static

approaches on whether the species grow at balanced growth or whether the community and

species growth rates differ. This challenges the selection of the objective function and the opti-

mization approach of static tools. We believe that static tools best fit the simulation of continu-

ous environments where the dilution rate is assumed to be constant, and thus, the community

growth rate should be the same as single species [79]. Techniques that predict variable growth

rates among microbes within a community should be incorporated into dynamic tools. The

drawback, nonetheless, is the inability to account for longitudinal community composition.

An original method for alleviating this limitation is integrating ecological models within exist-

ing constraint-based frameworks. Some researchers have already begun employing COBRA

methods and evolutionary game theory [100]. However, in the future, it would be beneficial to

bolster more tools in this direction.

The results of this work suggest there is still much room for improving the overall quality of

GEM modeling tools for microbial communities. Despite the immense number of proposed

tools over the last decade, the availability, user-friendliness, and overall performance quality of

the tools are disparate, and there is no perfect tool for all scenarios. In addition, although some

of the tools were available and accessible to a moderately novice-level user, there were still

some flaws in the quantitative predictions of those tools. However, we determined some tools

were exceptional and should be preferred starting points for researchers or developers.

For instance, for static systems, cFBA is the approach that achieves the best outcome, but it

largely requires manual adaptation. Moreover, it is not a tool, but merely a generalized

approach or algorithm. However, self-contained tools, such as MICOM and SteadyCom, pro-

duce reasonable results. None of them outperform the others, so they can be considered as a

starting point, and given the usability characteristics, we recommend MICOM. For dynamic

systems, the choice is more difficult to discern, but given our results, we suggest DFBAlab.

MMODES is also a solid option, although discretion is advised when interpreting results from

MMODES as predictions largely disagree with the measurements. Yet ethanol inhibition

should be taken into account because the case we simulated contains ethanol inhibition.

Therefore, an option or flexibility for augmenting a more complex Michaelis–Menten or Hill

kinetic expression to reflect growth rate suppression at high ethanol concentrations would be

desirable in a new tool. For spatiotemporal systems, we recommend either COMETS or

BacArena because of their extensive development, accessible platforms, and documentation.

COMETS performed better in simulating a simple co-culture experiment. However, BacArena

is an individual-based method that can be beneficial when studying heterogeneous cell

populations.

Through this qualitative and quantitative survey, we have presented and analyzed a broad

overview of many GEM modeling tools for microbial consortia. These tools have been success-

fully applied in various types of systems of microbial communities. In addition, while these

constraint-based tools have significantly transformed our understanding of communities by

incorporating mechanistic details and highlighting metabolic interactions, there are still many
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opportunities for improving modeling frameworks by making software FAIR, user-friendly,

and improving the accuracy of simulations of various types of systems. The work presented

here can guide researchers in selecting the proper modeling tools and help developers build

upon suitable modeling frameworks for new software tools.

Materials and methods

An extensive literature review was executed to identify the state of the art of tools for modeling

microbial communities in steady-state, dynamic, and spatiotemporal environments that used

GEMs. Every tool was rigorously studied to follow a qualitative assessment. For that, we cre-

ated an evaluation rubric that described each of the evaluation levels for every feature (S2

Table). All tools evaluated in this study are the most up-to-date versions as of December 15,

2022. In addition, we looked into studies that provided experimental data of synthetic micro-

bial consortia of two species in every environment and assessed the performance of a set of

each type of tool to reproduce them. The code used to produce our reported results and figures

can be downloaded from: https://doi.org/10.5281/zenodo.8074832 and https://gitlab.com/

wurssb/Modelling/modelingtools_microbial_consortia. The scripts can be used by other users

as a guide to facilitate the evaluation and use of these tools.

Evaluation of static tools

The case study chosen to evaluate the static tools was the production of medium-chain fatty

acids from the fermentation of CO by a co-culture of C. autoethanogenum and C. kluyveri. The

GEM of C. autoethanogenum, iCLAU786 [101], and the GEM of C. kluyveri, ickl708 [102],

were downloaded from their original publications in SBML (xml) format and used as the input

files in every tool. Extracellular metabolites (defined in compartment ‘_e’) and exchange reac-

tions (‘EX_XX’) common in both GEMs were modified to have the same namespace, as

required to build the community model in all tools.

Experimental data was obtained from steady-state concentrations of fermentation products,

total biomass, and hydraulic retention time (HRT) reported in the study of Diender et al. [9].

In particular, we simulated the condition defined in reactor run number three from the latter

publication (Tables 1 and 3; 116 mmol CO L−1 d−1 and 0 H2). CO feed rate and steady-state

concentrations of fermentation products were converted to mmol h−1, and HRT (d) was con-

verted to growth rate (h−1). The biomass species ratios were obtained from the computational

study of the same co-culture [79], 0.4–0.6 C. autoethanogenum-C. kluyveri, respectively. CO

feed rate was constrained to the experimental value in every tool unless stated otherwise. Addi-

tional constraints were applied and are specified per tool in the S3 and S4 Tables. Predicted

steady-state fluxes of acetate, ethanol, butyrate, and caproate, as well as the community and

species growth rate, were compared to the experimental measurements.

Below, we describe the specific methods applied to run every tool. The links to access the

tools repository can be found in S1, S5 and S9 Tables.

OptCom. OptCom was run using the OptCom function found within the MICOM

module called ‘micom.optcom’ instead of using the code from the original publication.

Therefore, we first installed MICOM 0.32.2 using pip upon installation of Python 3.7 and

COBRApy 0.24.0. ‘OSQP’ was installed by default with MICOM and used as solver. The

community model was created using the ‘Community’ function. The function requires a

‘taxonomy’ table as an input parameter, which contains information about the species, mod-

els, and species relative abundance (biomass fraction). In addition, we included the mass as

the input parameter (0.22 g). OptCom function was run with the generated community

model as input, selecting ‘original’ as the strategy parameter and setting a min_growth of
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0.01 h-1 for each species. The community growth rate was maximized simultaneously with all

individual growth rates, and fluxes were computed. The input fluxes were provided as envi-

ronmental fluxes in mmol h-1, and thus, they had to be divided by the total community bio-

mass (0.22 g) to simulate growth and multiplied by the total community biomass to output

again environmental fluxes.

cFBA. cFBA was run using Python 3.7 and COBRApy 0.24.0 following the methodology

implemented in a previous computational study, where a community model of the same two

species was built [79]. ‘GLPK’ was used as the default solver installed with COBRApy. The

community model was built manually, unifying the extracellular metabolites and extracellular

reactions common between species in one single reaction or metabolite. We used the same

community model without adding the extra reactions described in the latter publication. The

species biomass reactions were constrained to the relative abundance multiplied by the growth

rate (g h−1), and the same as the community growth rate (0.021 h−1). The solution space was

computed using the ‘sample’ function in the flux_analysis submodule found in COBRApy.

The results shown here are the average and standard deviation based on 10000 samples gener-

ated under the specified condition.

SteadyCom. MATLAB 2022b was installed using an academic license, and COBRA

Toolbox version 3.33 was installed following the installation instructions specified in the

GitHub repository of COBRA Toolbox. SteadyCom was run using the ‘SteadyCom’ subroutine

in COBRA Toolbox and ‘GLPK’, the LP solver installed when installing COBRA Toolbox. The

community model was built using ‘createMultipleSpeciesModel.’ The names and IDs for

metabolites and exchange reactions in the shared compartment of the community [u] were

added into the community model as ‘infoCom’ and ‘indCom’ fields using ‘getMultiSpeciesMo-

delId.’ The bounds of the reactions defined in the [u] compartment (e.g., ‘autoIEX_MG[u]tr,

‘EX_MG[u]’) were imported from the Excel file ‘Bounds_steadycom.xlsx’. SteadyCom was run

using the built community model and the following options as input parameters: GRguess = 0.5;

algorithm = 1; feasCrit = 1 and BMweight = 0.2. The community growth rate was maximized,

and fluxes were computed.

Microbiome Modelling Toolbox (MMT). MATLAB 2022b was installed using an aca-

demic license, and COBRA Toolbox version 3.33 was installed following the installation

instructions specified in the GitHub repository of COBRA Toolbox. MMT 2.0 was run from

COBRA Toolbox using ‘GLPK,’ the LP solver installed when installing COBRA Toolbox. The

community model was created using the ‘joinModelsPairwiseFromList’ function. The cou-

pling factor ‘c’ and threshold ‘u’ were maintained at their default values, 400 and 0, respec-

tively. The bounds of the reactions defined in the [u] compartment of the generated

community model were imported and defined from the Excel file ‘Bounds_MMT’. The species

biomass reactions were constrained to the relative abundance multiplied by the growth rate (g

h−1). The interactions and fluxes of the co-culture were next explored using the function called

‘simulatePairwiseInteractions’. To run the latter function, the community model and the pair-

edModelInfo.mat file created by ‘joinModelsPairwiseFromList’ were used as the input parame-

ters. Besides, ‘saveSolutionsFlag’ was selected to output the fluxes.

MICOM. MICOM was run using Python 3.7 and COBRApy version 0.24.0. MICOM

0.32.2 was installed using pip as described in the GitHub repository of MICOM. ‘OSQP’ was

installed by default with MICOM and was used as the solver. The community model was cre-

ated using the ‘Community’ function following the procedure described to run OptCom. ‘The

cooperate tradeoff’ algorithm was used with a fraction of 0.5 to simulate growth. The input

fluxes were provided as environmental fluxes in mmol h-1, and thus, they had to be divided by

the total community biomass (0.22 g) to simulate growth, and multiplied by the total commu-

nity biomass to output again environmental fluxes.
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Evaluation of the dynamic tools

Similar to what was done by Hanly and coworkers [73], S. cerevisiae S288C (iND750) [103]

and E. coli K-12 substr. MG1655’s (iJR904) [104] GEMs, acquired from the BiGG database

[105], were used to perform the model simulations with DyMMM, DFBAlab, MMODES,

and μbialSim. Furthermore, the E. coli model (iJR904) was modified by constraining flux

bounds for glucose exchange and glucose kinase at zero to mathematically reflect the associ-

ated gene deletions. The simulations were based on an aerobic xylose co-culture of S. cerevisiae
and the engineered E. coli strain ZSC113 fermentation experiment. In this experiment, glucose

and xylose concentrations are expected to decrease over time, while the ethanol concentration

is expected to increase. Simultaneously, S. cerevisiae and E. coli biomass concentrations are

expected to increase over time. For all simulations, any constraints and parameters given in

the original tools were modified according to the experimental values from the respective data-

set from Hanly and coworkers [73]. Please see the S5, S6, S7 and S8 Tables for specific inputs

as well as summary of boundary conditions, constraints, and parameters for all GEMS for the

dynamic modeling approaches. The simulated growth and metabolite concentration curves of

E. coli and S. cerevisiae, as well as from glucose, xylose, and ethanol were compared to the

experimental measurements.

The coefficient of determination, also known as R-squared (R2) was calculated to quantita-

tively estimate the quality of the model fits and performance with the experimental data as in

the work of Montgomery [106] for the dynamic and spatiotemporal cases.

The equation for R-squared is:

R2 ¼ 1 �
SSE
SST

where: R2 is the coefficient of determination, SSE is the sum of squared residuals, and SST is

the total sum of squares, and SSE
SST represents the ratio of the sum of squared residuals to the total

sum of squares.

The equation for the sum of squared residuals:

SSE ¼
Xn

i¼1
ðyi � ŷiÞ

2

where: SSE is the sum of squared residuals, yi is the actual value of the dependent variable for

the ith observation, ŷi is the predicted value of the dependent variable for the ith observation,

and n is the number of observations.

The equation for the total sum of squares:

SST ¼
Xn

i¼1
ðyi � �yÞ2

where: SST is the total sum of squares, yi is the actual value of the dependent variable for the ith

observation, �y is the mean of the dependent variable, and n is the number of observations.

dyMMM. An implementation for this method is provided by the developers on source-

forge.net: https://sourceforge.net/p/dymmm/wiki/Home/. This method requires a working

installation of COBRA Toolbox [107] version 3.33 was used in this study with MATLAB

2022b. The provided formulation allows users to add initial concentrations of limiting or

important substrates as well as products of interest. There is also a field to add initial biomass

concentrations of microbes. We followed as instructed in the source code by the developers to

add the proper inputs regarding initial concentration values of substrates and microbial bio-

masses, as well as GEMs, where needed. These inputs we added as presented in the supplemen-

tary table (S6, S7 and S8 Tables).
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DFBAlab. An implementation for this method is provided by the developers via the web-

site https://yoric.mit.edu/software. This method requires a working installation of IBM

CPLEX (version 20.1.0 was used in this study with MATLAB 2022b) or Gurobi (we used Gur-

obi version 10.0). A similar example is supplied in the tutorial to the user as the case study

used in this work. Although the original formulation of this method uses values directly from

the literature [62], in the implementation, the values are not exactly as reported for our chosen

case study. Therefore, the initial concentrations of glucose, xylose, and microbial biomasses

were adapted S7 and S8 Tables), and the time span of the simulation was modified from 10 to

14 hours.

μbialSim. An implementation for this method is supported via the website: https://github.

com/fcentler/microbialSim. This method requires a working installation of COBRA

Toolbox (version 3.33 was used in this study with MATLAB 2022b) or CellNetAnalyzer (ver-

sion 2022.1 was used in this study). The provided example 2, based on a batch-culture growth

of a binary syntrophic community, served as a starting point for employing our dynamic case

study conditions. The reactor was defined according to initial substrate concentrations (see S8

Table). The GEMs (iJR904 and iND750) were loaded and adapted according to the COBRA

Toolbox protocol within μbialSim. In addition, reaction indices for the non-growth associate

maintenance (NGAM) and biomass reaction were provided. Exchange reactions were defined

that link compounds in the reactor to cellular uptake and secretion. The models were parame-

terized according to the kinetic parameters provided in the literature (S7 and S8 Tables). The

simulation duration and time step size chosen were 14 and 0.02 h, respectively. dFBA was

selected as the solver type between the options ODE and dFBA. However, GPLK was used as

the COBRA solver.

MMODES. An implementation for this method is supported via the website: https://

mmodes.readthedocs.io/en/latest/index.html. MMODES was installed via pip (using Python

3.9 in this study as well as COBRApy version 0.24.0). The example script and the documenta-

tion were used for instructions. First, the medium file was defined according to the medium

composition given and initial conditions from the work of Hanly and Henson (see S7 and S8

Tables). Next, the kinetic parameters were defined and set according to values used by Hanly

and Henson (see S7 Table). Then, the GEMs (iJR904 and iND750) of the microbes, along with

their respective initial biomasses and substrates they consume, were added to the model frame-

work. The FBA optimization routine using the GPLK solver was selected. We chose a simula-

tion time of 14 h with 0.02 h timesteps. Also, finite element analysis was used for the ordinary

differential equation integrator.

Evaluation of the spatiotemporal tools

Similar to what was done by Harcombe et al. [33], simulations were performed using the

GEMs for E. coli (iJO1366) [108] and S. enterica (iRR1083) [109]. We compared BacArena,

IndiMeSH, and CROMICS, which were designed to study microbial communities using FBA

and IBMs, with COMETS which was mainly designed to investigate the interrelationships of

bacterial communities in space using FBA and PLMs. The goal was to compare the methods

with one another for their potential in simulating trophic dependences of multispecies bacte-

rial communities without making prior assumptions. Therefore, simulations mimicked the

two-member consortium experiment studied in the original publication [33]. This consortium

was composed of two mutant strains, S. enterica LT2 and E. coli K-12. S. enterica LT2 cannot

metabolize and consume lactose, and E. coli K-12 cannot produce methionine. Hence, these

two species participate in a mutualistic relationship because S. enterica relies on the secretion

of acetate for a substrate by E. coli while E. coli needs S. enterica to produce methionine.
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Stoichiometric models of each species were modified to incorporate known genetic constraints

according to the method of Harcombe and coworkers [33]. For instance, in the E. coli strain,

the metB mutation was accounted for by constraining to zero the flux through the correspond-

ing reaction (cystathionine γ-synthase). In S. enterica, methionine necessitated that we added a

gain-of-function mutation in metA (homoserine transsuccinylase). This secretion was mod-

eled as coupled to biomass where lactose is utilized by E. coli, so that as cells grew, they pro-

duced appropriate amino acid levels. A summary of boundary conditions, constraints, and

parameters for all GEMS for spatiotemportal methods can be found in S10 and S11 Tables).

COMETS. The in silico experiment was set up as reported in the work of Harcombe et al.

[33] (for more detail, see experimental procedures in the original work). The developers provide

an implementation for this method via the website: https://www.runcomets.org/. This method

requires a working installation of Java and Gurobi (we used Java 20 in this study as well as Gur-

obi version 10.0). The Python version of the COMETS Toolbox (we used Python version 3.9 in

this study as well as COMETS v0.4.1) was installed using the Anaconda distribution.

BacArena. The developers provide a tutorial to help implement this method via https://

bacarena.github.io/. This method requires a working installation of R and Sybil (we used R

version 4.2.2 in this study as well as Sybil version 2.2.0). Both GEMs of E. coli (iJO1366) and S.
enterica (STM v1 multistrain) were retrieved from the BiGG database [105]. The S. enterica
model was modified to ensure methionine production using the method of Harcombe et al.

[33]. The biomass reaction was updated to include the production of 0.5 mmol gDW-1 of

excreted extracellular methionine, which was balanced by an equal amount of intracellular

methionine consumed. The methionine transporter (METtex, METabcpp) were set to export

only (upper bounds set to 0). The E. coli model was modified to block flux through the corre-

sponding reaction, cystathionine γ-synthase (CYSTL). To model metabolic exchanges between

the microbes and compare the results of BacArena with the other methods, we performed the

simulations with our method using a setup similar to COMETS [33]. The simulations were

carried out on a 50 times 50 grid environment for 48 hours. In the setups, a minimal medium

stated in Harcombe et al. [33] was added to the environment with 1 mmol of lactose per grid

position, oxygen, and several co-factors (calcium, chlorine, cobalt, potassium, iron, magne-

sium, ammonium, manganese, nickel, phosphate, zinc, and sulfate). To ensure the growth and

mimic the preculture environment, an initial amount of 1.0 mmol methionine and acetate was

added to each grid position. The amounts and biomasses of the initial species were also set

according to initial frequencies used in Harcombe et al. [33]. The diffusion of metabolites was

calibrated to the standard diffusion of glucose.

IndiMeSH. The developers provide an implementation for this method in the supporting

materials of the original paper [38]. This method requires a working installation of MATLAB

(we used MATLAB version 2022b in this study). The in silico experiment was performed to

simulate microbial life on a two-dimensional surface in IndiMeSH, a rectangular, saturated

pore network (coordination number: 4) was created with the same topology as in the COM-

ETS simulations (for details, see S1(A) Fig in the supplementary material of the original

paper). Each pore has dimensions of 500x250x70 microns (LxWxH), as specified in the paper.

Furthermore, we followed the setup as reported in the work of Borer et al. [38] (for details, see

the Methods section in the original paper).

CROMICS. The developers provide an implementation for this method via a GitHub

repository: https://github.com/EPFL-LCSB/cromics. This method requires a working installa-

tion of MATLAB and CPLEX solver (version 20.1.0 was used in this study with MATLAB

2022b). We used the setup detailed in the original paper [71], which mimics the setup of Har-

combe and coworkers [33] for the two-species consortium of S. enterica and E. coli (for details,

see the Methods section in the original paper [71]).
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