
 
 

Delft University of Technology

Koiter–Newton Based Model Reduction for Large Deflection Analysis of Wing Structures

Sinha, Kautuk; Alijani, Farbod; Krüger, Wolf R.; Breuker, Roeland De

DOI
10.2514/1.J062514
Publication date
2023
Document Version
Final published version
Published in
AIAA Journal

Citation (APA)
Sinha, K., Alijani, F., Krüger, W. R., & Breuker, R. D. (2023). Koiter–Newton Based Model Reduction for
Large Deflection Analysis of Wing Structures. AIAA Journal, 61(8), 3608-3617.
https://doi.org/10.2514/1.J062514

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/1.J062514
https://doi.org/10.2514/1.J062514


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Koiter–Newton Based Model Reduction for Large Deflection
Analysis of Wing Structures

Kautuk Sinha∗

DLR, German Aerospace Center, 37073 Goettingen, Germany

Farbod Alijani†

Delft University of Technology, 2628 CN Delft, The Netherlands

Wolf R. Krüger‡

DLR, German Aerospace Center, 37073 Goettingen, Germany

and

Roeland De Breuker§

Delft University of Technology, 2629 HS Delft, The Netherlands

https://doi.org/10.2514/1.J062514

Wing structures subjected to large deflections are prone to nonlinear load-deflection behavior. Geometric

nonlinearities can arise due to the accompanying large rotations and in-plane deflections that manifest in the form

of stiffening effects in the nonlinear static response. To account for these nonlinearities, reduced-order modeling

techniques in combinationwith nonlinear finite element formulations have been previously proposed. However, these

methods often have a limited range of validity due to linear eigenmode-based formulations with assumptions of small

rotations. In this paper, a large deflection analysis framework based on the Koiter–Newton model reduction

technique is presented. It is demonstrated that the reduced model in its basic form is ineffective for large deflection

analysis.To resolve this, an incremental updatingprocedure is used for the reduced-ordermodel that incorporates the

necessary nonlinear effects. The model updating enables the computation of nonlinear response for a large range of

deflections.

I. Introduction

C ANTILEVERED structures can be prominently found in awide
variety of engineering applications ranging from aircraft wings

to micromechanical resonators. In these applications, the loading
conditions are such that the structure exhibits nonlinear behavior
while undergoing large rotations and large deformations. In general,
nonlinearities are manifested in the form of geometric stiffening
due to large rotations, large strains due to large deformations, and
follower forces, i.e., change in direction of the force along with the
deflecting geometry. The geometric stiffening effect is especially
influential in flexible structures that have a low bending stiffness
due to the pronounced coupling between the out-of-plane displace-
ment and in-plane stretching. Additionally, the large rotation of the
structure causes an apparent reduction in the moment arm [1], which
results in a varying moment distribution across the load trajectory.
The advent of high-aspect-ratio (HAR) and flexible-wing aircraft

designs, such as the high-altitude long-range and endurance aircraft
[2], has driven the increased interest in nonlinear modeling of wing
structures. The primary advantage of such wing designs is the gain
in the aerodynamic efficiency achieved due to the induced drag
reduction. However, a major drawback is that the traditional linear
analyses techniques become redundant due to the inherent nonli-
nearities.
A considerable amount of progress has been achieved in the last

decades in the analyses and prediction of geometrically nonlinear

effects. A majority of the methods developed in the past have
explored the geometrically exact beam (GEB) formulations in ana-
lyzing the flexible wings [3–6]. Equivalent one-dimensional (1-D)
nonlinear beam model formulations have been used for studying
flexible flying wings in Refs. [7,8]. In Ref. [9], the dynamics of a
flexible wing was modeled using a geometrically exact composite
beam description. A formulation for curved and twisted anisotropic
beams based on the intrinsic geometrically exact theory was pre-
sented in Ref. [10]. This has been subsequently applied in studying
the flight dynamics of a highly flexible flying wing configuration
[11]. A nonlinear aeroelastic model based on a GEB formulation has
been developed in Ref. [12] for large wind turbine blades. The main
idea in these methods was the derivation of equivalent beam proper-
ties that replicate the global structural response of the wing structure
with no assumptions with respect to beam kinematics. A strain-based
geometrically nonlinear beam model was used in Ref. [13], where
extensional strain, bending, and torsional curvatures were defined as
independent degrees of freedom; and the governing equations of the
beam and the strain-displacement kinematics were solved iteratively.
In this work, the authors describe this method as being efficient
for the static case because the stiffness matrix remains constant;
however, the method loses this advantage for transient problems
because the damping and inertia need to be updated. In Ref. [14], a
model reduction method based on eigenmode decomposition of the
Jacobian matrix of the system has been used in combination with a
GEB model for studying the dynamic gust response of a realistic
aircraft. A limitation of using equivalent beam formulations is that
it can lead to oversimplification of complex geometries, which
eliminates the local effects involving the interactions of structural
subcomponents.
Alternately, some researchers have deviated from the beam for-

mulations in an attempt to achieve generality for complex structures.
A finite element (FE) compatible approach based on the equivalent
linearization method for large deflection analysis has been presented
in Ref. [15]. The method has been shown to be accurate for the
class of problems dealing with a high degree of bending–stretching
coupling. However, it has been highlighted that for cantilevered
structures, which have significant in-plane motion, the existing non-
linear formulation is inapplicable due to the utilization of linear
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eigenmodes in the reduction basis. A nonlinear reduced-order mod-
eling technique for a wing structure was presented in Ref. [16]. The
reduction basis matrix was based on the concept of dual modes [17]
that were derived from nonlinear displacement fields obtained from a
set of nonlinear static analyses. The dual modes were appended to
linear modes in the basis matrix to capture the membrane stretching
effect. An extended modal approach was presented in Ref. [18–20]
that was directly applicable to generic FEmodels. Themethod used a
strain energy-based formulation inwhich higher-order stiffness terms
were computed as derivatives of the total strain energy of the system.
The nonlinear displacement field was constructed as a function of
generalized displacements with the utilization of higher-order mode
components. However, the method was shown to be accurate up to
moderately large deflections (25% of the semispan).
In a novel mode-based approach called the modal rotation method

(MRM) [21], curvature modes are used to obtain a reduced model.
The underlying premise is that the curvatures, unlike displacements,
can always be linearized through sufficient discretization; therefore, a
linear superposition of curvature modes is a valid assumption. The
nonlinear stiffness is not explicitly computed; instead, the nonlinear
terms are incorporated as iterative corrections to the generalized
forces. The simulation times using this approach have been shown
to be significantly fast even for complex three-dimensional (3-D)
structures undergoing highly nonlinear deformations. In Ref. [22],
a two-step reduction technique was presented, which was sub-
sequently applied to study the nonlinear aeroelastic characteristics
of a transport aircraft [23]. This involved a static condensation of
the 3-D structure to obtain a 1-D subdomain. Further reduction
was obtained by using the mode-based Galerkin projection of the
intrinsic nonlinear equations. The approach has been shown to be
accurate for moderately large deflections (up to 20% span) with
attached flows.
This paper presents the first application of the Koiter–Newton

model reduction technique [24–26] to the large deflection analyses
of cantilevered structures. A compatible FE framework is developed
with the objective of applying the method to any generic structure.
The nonlinearity in the system is modeled using higher-order stiff-
ness tensors, whereas the kinematics of the system is described
using the nonlinear Green–Lagrange equations. It is shown that the
Koiter–Newton reduction in its basic form is ineffective in large
deflection analyses of cantilevered structures. To circumvent this
issue, the concept of convective element coordinates [27] is used,
which accounts for the large rotation of the structure through incre-
mental model updating and iterative force correction. A nonlinear
predictor, obtained from solving the reduced model, enables larger
load increments to be applied in comparison to linear formulations.
The approach has been verified through nonlinear benchmark prob-
lems. Additionally, the method is validated through comparisons with
experimental data obtained from a highly flexible wind-tunnel test
model called the Pazywing [28]. Finally, the framework is applied to a
wing box model and compared to the results from MSC Nastran to
demonstrate its applicability to generic 3-D structures.

II. Theoretical Formulation

In the present formulation, the effect of geometric nonlinearities is
considered and the material is assumed to be linear elastic; whereas
the boundary conditions remain unchanged throughout the analysis.
The following subsections give a summary of the formulation imple-
mented in the framework.

A. Governing Equations

The internal force of the structure, which is a function of the
displacement vector u, can be expanded about the equilibrium posi-
tion using the Taylor series expansion, as described in the Eq. (1), for
a statically loaded system:

L�u� �Q�u; u� � C�u; u; u� �O�ku4k� � fext (1)

Here, L describes a linear function corresponding to the tangent
stiffness matrix;Q and C describe the quadratic and cubic functions
corresponding to the third-order and fourth-order stiffness tensors,

respectively; O�jju4jj� implies higher-order terms; fext describes a
vector of external loads; and u is a vector of displacements and

rotations.
The stiffness tensors of the full FEmodel are computed using strain

energy-based FE formulations. Presently, two types of elements are
used: planar beam element with three degrees of freedom (DOFs) per

node, for which the formulation and shape functions were discussed
in Refs. [25,29], and a high performance three-node triangle flat shell

element with six DOFs per node, which was discussed in detail in
Refs. [25,26,30–32]. It is notable that the choice of finite elements

does not have an influence on the generality of the process. However,
for simplicity in the further discussions presented here, the planar

beam element will be referred to.
Consistent with the large deflection and finite strain assumption,

the Green–Lagrange strain model is used to describe the strain-

displacement relationship. For beam elements, the axial strain ϵ
and the curvature χ are given by

ϵ � u;x �
1

2
�u;2x �w;2x � (2)

χ � w;xx (3)

where u andw are nodal displacements in the x and y directions, and
the subscript, x indicates the derivativewith respect to the x direction.
Because the nonlinearity lies in the axial component of the strain
description, only the axial strain energy is initially considered.
The axial strain energyU for the Euler–Bernoulli beam is given by

U � 1

2

L

0

EAϵ2 ds (4)

where E is the elastic modulus, A is the area of the cross section, s is
the length of a differential element of the beam, and L is the total

length of the beam. When discretized in an FE framework, the strain
energy Uelem of each beam element of length lelem can be obtained

using

Uelem � 1

2
Alelemϵ

0Eϵ (5)

It is notable that in Eq. (5), a constant strain is enforced by averaging

the strain over the length of the element. This is done to avoid the
locking phenomena in FE formulations, as discussed in Ref. [29].

The internal force vector corresponding to axial forces can then be
derived as the first derivative of the strain energy:

fi � EAlelemϵ
∂ϵ
∂qi

(6)

where q � � u v θ � consists of the element degrees of freedom.
Similarly, the stiffness tensors can be computed as higher-order

derivatives of the strain energy. Because the strain energy expression
comprises up to fourth-order terms in displacement derivatives,

the computation of stiffness tensors is limited to the cubic stiffness
term. IfN is the total number of degrees of freedom in themodel and i,
j, k, and l range from one to N, then the elements of these stiffness
tensors are

Lij � EAlelem ϵ
∂2ϵ

∂qi∂qj
� ∂ϵ

∂qi
∂ϵ
∂qj

(7)

Qijk �
EAlelem

2

∂ϵ
∂qj

∂2ϵ
∂qi∂qk

� ∂ϵ
∂qi

∂2ϵ
∂qj∂qk

� ∂ϵ
∂qk

∂2ϵ
∂qi∂qj

(8)

Cijkl �
EAlelem

6

∂2ϵ
∂qi∂ql

∂2ϵ
∂qj∂qk

� ∂2ϵ
∂qj∂ql

∂2ϵ
∂qi∂qk

� ∂2ϵ
∂qk∂ql

∂2ϵ
∂qi∂qj

(9)
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It is recalled that these expressions are computed using the axial strain
component. To obtain the complete set of stiffness tensors required
for the finite element equations, a bending stiffness component Kb

must be added to the stiffness matrix L. This bending stiffness term
Kb is obtainable from the curvature [32] and is defined in Appen-
dix A. Furthermore, the basic FE expressions relevant to the flat shell
elements are defined inAppendix B. For a comprehensive discussion
on the flat shell elements used in this work, the reader is referred to
Refs. [26,32].

B. Koiter–Newton Model Reduction

As seen in Sec. II.A, the governing equation comprises a nonlinear
system of equations that is normally solved iteratively through pre-
dictor–corrector methods. However, for complexmodels comprising
a large number of degrees of freedom, it is often computationally
expensive to obtain a solution of such a system; moreover, it can lead
to convergence issues. Model order reduction is a technique used to
alleviate the computational costs by reducing the system size while
maintaining the accuracy in the solution. This section summarizes the
steps in theKoiter–Newton reduction technique [24–26]. For this, we
write Eq. (1) as follows:

L�u� �Q�u; u� � C�u;u; u� � Fϕ (10)

where F is the subspace of load vectors, and ϕ is a vector of
corresponding load magnitudes.
The resultant solution u of the Eq. (10) is an equilibrium surface

that is parametrized using a vector of generalized displacements ξ
and expanded up to the third order:

u � uαξα � uαβξαξβ � uαβγξαξβξγ �O�jju4jj� α; β; γ � 1; : : : ; m

(11)

where uα, uαβ, and uαβγ represent the displacement fields and the

mutual interactions between them; and m is the number of vectors
selected in the force subspace while formulating the reduced-order
model (ROM). The reduction subspace comprises the external force
vector and additionally perturbation loads if unstable paths are of
interest.
The equilibrium surface may be parametrized with an infinite

choice of ξ. Therefore, ξ is chosen such that it is a work conjugate
to the load amplitudes so as to fix the parametrization:

�Fϕ�tδu � ϕtδξ (12)

Substituting Eq. (11) in the left-hand side of Eq. (12) and comparing
coefficients of the δξ terms, a set of orthogonality constraint equa-
tions is obtained as follows:

f t
αuβ � δαβ;

f t
αuβγ � 0;

f t
αuβγδ � 0 (13)

where fα is a component vector of the subspace F, and δαβ is the

Kronecker delta that is unity when α � β.
The load amplitudes are similarly assumed to be a third-order

expansion of the form�

ϕ � �L�ξ� � �Q�ξ; ξ� � �C�ξ; ξ; ξ� (14)

where �L, �Q, and �C are representative of the stiffness tensors in a
reduced-order system.
The load and displacement expansions in Eqs. (11) and (14) are

then substituted into the equilibrium equation [Eq. (1)], and the
coefficients of the various ξ terms are equated to zero. In combination
with the orthogonality constraints, a system of equations is obtained
that is then solved to obtain the unknown ROM variables. The
following is the complete set of ROM equations:

L −F
−F 0

uα
�Lα

� 0

Eα

(15)

L −F
−F 0

uαβ
�Qαβ

� −Q�uα; uβ�
0

(16)

Here, Eα is a unit vector such that the αth component of the vector
is one and all other elements are zero. The equations show that

together with the stiffness terms ( �Lα, �Qαβ) of the ROM, the displace-

ment fields uα and uαβ are computed as byproducts. Unlike many

eigenmode-based ROM approaches, there is no necessity for prede-
fining appropriate coefficients in the displacement expansion. The
computation of the term Q�uα; uβ� is done on an element level, and

the global assembly is conducted thereafter, thus avoiding large
tensor multiplications in the preprocessing steps. Furthermore, the
cubic stiffness term is computed in a simplified form on the element
level to avoid large tensor operations:

�Cαβγδ � C�uα; uβ;uγ; uδ�

−
2

3
�utαβL�uδγ� � utβγL�uδα� � utγαL�uδβ�� (17)

When no perturbation loads are included in the subspace, the ROM
system is equivalent to a one-DOF polynomial equation, which can
be easily solved using algebraic solvers without the need for iterative
numerical procedures. This is only possible when there are no
instabilities in the structural response.

C. Strategy for Nonlinear Analyses

1. Preliminary Comparisons with Full Nonlinear FE Analysis

Preliminary studies have been conducted on cantilevered and
clamped–clamped beams. In these studies, a single step execution
is conducted. This means that the ROM formulations are obtained
only once in the initial undeformed state of the structure. In the case of
the clamped–clamped beam, a concentrated force is applied at the
midpoint along the beam length with a single step execution, and a
load-deflection curve is obtained through the application of incre-
mental loading. As shown in Fig. 1a, the results are found to be
comparable between theROMand the full FE analysis. The deviation
in the response is 2.1%, even when a high degree of nonlinearity is
reached at the maximum applied load of 1000 N. Contrary to these
results, when a concentrated nonfollower force is applied at the tip of
a cantilever beam, it is observed that a much larger than expected
deflection response is obtained. A comparison of the results obtained
from the ROM-based analysis with the results from a full FE analysis
is shown in Fig. 1b. It can be observed that the ROM predictions,
although nonlinear, are generally much higher than the reference.
Furthermore, the error in response progressively increases as the
applied load is increased from 0 to 70 N.
A closer investigation of the problem reveals that the large rotation

of a cantilever is accompanied by a strongly coupled in-plane motion
of the free end such that the out-of-plane and in-plane deflections are
of a similar order of magnitude. This consequently results in consid-
erable shifts in the location of the applied force in a global frame
of reference and changes the internal force distribution across the
structure due to the reduction in themoment arm. In comparison, for a
clamped–clamped structure, a large deflection under an applied force
results in a stretching effect that predominantly induces the non-
linearity. However, in this case, the in-plane deflections of the nodal
points remain multiple orders of magnitude smaller than the out-of-
plane deflections. This highlights the main difference between the
large deflection behavior of a cantilever and a clamped–clamped
structure. In addition to the large rotation effect, the changes in the
geometry due to the structural deformations and the resultant changes
in the states of the stresses and strains in the structure must be
accounted for in the stiffness formulations. To resolve these issues,
it is essential to reformulate the ROM-based governing equations at
new equilibrium steps in the deformed state. In the next section, a
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stiffness updating procedure is described within the framework of
the Koiter–Newton reduction method that can capture the influence
of the large rotations in cantilevered structures.

2. Process Schematic for Incremental ROM Updating

A simplified process flow diagram for the nonlinear analysis
framework is depicted in Fig. 2. The first step in the process is to
obtain the full finite element model of the test structure. Here, the
approach presented in Sec. II.A is followed. Then, a reduced sub-
space is selected to compute the ROM parameters. In the current
implementation, a force subspace is used, comprising the external
force vector. The ROM is then obtained through the process
described in Sec. II.B. The incremental solution is obtained either
using a Newton–Raphson solver or alternately using a polynomial
solver if the ROM is a one-DOF system. A corrector step is then
included to minimize the difference between the applied and internal
forces. The concept of convective coordinates has been used in order
to account for the large rotation of the structure. The nodal coordi-
nates of the structure are updated after each load increment so that the
local coordinate system of the element moves with the rigid-body
motion of the structure and the equilibrium is computed in the
deformed state. Finally, the stiffness tensors are updated in the current
configuration of the structure, and a new load increment is provided
to trace the equilibrium path.
The overall process can be broadly divided into 1) computation of

the ROM variables, 2) solution of the ROM, and 3) correction of the
displacements based on the internal forces. The computation of the
ROM requires just one matrix inversion, i.e., the coefficient matrix
described in Eqs. (14) and (15). The solution of the ROM is obtained
using an algebraic polynomial solver for a stable 1-DOF system and
adds a comparatively insignificant computation cost. Finally, there

are Nk corrector steps in the kth load increment, where each step
requires one matrix inversion.
The number of matrix inversions M needed to solve the aug-

mented finite element equations in n load increments is defined by

M �
n

k�1

1� Nk (18)

The primary advantage comes from the utilization of the nonlinear
predictor, which allows larger load increments to be chosen. In
comparison, most commercial FE tools use a linear predictor that
necessitates the use of smaller load increments for faster conver-
gence. The improvement in performance is highlighted in the Vali-
dation Results section (Sec. III).

III. Validation Results

To assess the effectiveness and accuracy of the process, verifica-
tion studies were first conducted with respect to well-known bench-
mark problems available in the literature. Then, the process was
validated through comparison with experimental results. The appli-
cation to generic wing structures was demonstrated through the
analysis of a high-aspect-ratio wing box. In the subsequent sections,
the results of the validation study are presented. The following five
test cases have been considered for the validation study: 1) beam
rollup under tip moment, 2) cantilever plate subjected to tip shear
force, 3) I-section cantilever with distributed loading and follower
forces, 4) experimental results available for a flexible wing with tip
load, and 5) a high-aspect-ratio wing box design similar in construc-
tion to a generic aircraft wing box.

Fig. 2 Schematic of the iterative large deflection solver with incrementally updated ROM.
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Fig. 1 Load-deflection response obtained using the ROM (with no stiffness update) compared to Nastran: a) for a clamped–clamped beam, and b) for a
cantilever with an applied tip force.
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A. Comparison to Benchmark Problems

1. Cantilever Beam Rollup Under Applied Tip Moment

A classical benchmark problem for verification of nonlinear
numerical methods is the beam rollup example where a tip loaded
cantilevered structure under pure moment rolls up in a perfect circle.
The dimensions of the structure are based on Ref. [33], in which all
model parameters were defined as dimensionless. For consistency,
the parameters are chosen to be in the International System of Units
(SI) in the analyses conducted here. These model parameters are an
elastic modulus of E � 1.2e6 or 1.2e� 6, a length of L � 12 m, a
width of b � 1 m, a height of h � 0.1 m, and a Poisson’s ratio
of ν � 0.
The applied maximum moment is M � 50π∕3 N∕m, which is

increased from zero to themaximum using the user-defined and fixed
incremental steps. The analysis is conducted using the beam element
formulation in combination with the incrementally updated ROM
method.
A comparison of the numerical results with the analytical solution

is shown in Figs. 3a and 3b. Avery good agreement is seen between
the reference and the proposedmethod.The result presented inFig. 3a
has a deviation of 0.27% from the reference results at the maximum
loading condition. The deviation is computed as the ratio of the norm
of the vector comprising the error measure in the x and y directions to
the norm of the tip deflection vector of the reference dataset. It is
notable that an applied external moment implies that the sectional
moment distribution across the structure does not vary over the load
trajectory, unlike in the case of an applied force. Therefore, the
influence of the large rotations on the internal load distribution is
not a dominant factor in this example. Nevertheless, this analysis acts
as a good validation case for the general nonlinear formulation,which
is essential to capture the in-plane displacements correctly. Further-
more, it is noted that these results are achievable only when using the
ROM update procedure, whereas it is impossible to capture the
complete beam rollup with a single step execution with no ROM
update. The simulation time for the analysis is 0.73 s, whereas the
pre- and postprocessing require 2.8 s. The number of load increments
used has an influence on the accuracy and efficiency of the analysis.
The presented results are obtained using 50 load increments. By
reducing the load increments to 30, it is possible to obtain the solution
in 0.42 s with a deviation of 0.77% from the reference solution.
Similarly, by increasing the load increments to 70, the simulation
time increases to 0.95 s; however, the error reduces to 0.13%. All
simulations here are conducted using a Windows computer with a
2.6 GHz processor and 16 GB of RAM.

2. Cantilever Flat Plate with an Applied Tip Shear Force

To further investigate the effectiveness of the proposedmethod, the
large deflection behavior of a cantilevered plate subjected to a tip
shear force is studied [33]. In this case, the analysis is conducted with
flat shell elements to demonstrate the generality of the process,
regardless of the FE formulation used, and it comprises 320 elements.

The dimensions of the structure are based on Ref. [33], in which all
model parameters have been defined as dimensionless. For consis-
tency, the parameters are chosen to be in SI in the analyses conducted
here. These parameters are listed as follows: an elastic modulus
of E � 1.2e6 or 1.2e� 6, a length of L � 10 m, a width of
b � 1 m, a height of h � 0.1 m, and a Poisson’s ratio of ν � 0.
The applied maximum force is P � 4EI∕L2, which is increased

from zero to the maximum using the user-defined and fixed 10
incremental steps.
A comparison between the results obtained using the incremental

ROM-based method and the analytically obtained benchmark results
is shown in Fig. 4. An error of 1.4% is seen in the tip deflection at
maximum loading with a computational time of 2.1 s. By increasing
the number of load increments to 20, this can be further reduced to
under 0.8%; however, this iswith almost twice the computational cost
at 4.1 s. In this verification case, the problem setup is similar to the
example of the cantilever discussed in Sec. II.C. However, as seen in
the results, it is possible to capture the load-deflection response
through the ROM updating procedure while obtaining a good agree-
ment with the reference results.

3. Comparison Against the Modal Rotation Method

The MRM, briefly discussed in the Introduction section (Sec. I),
has been shown to be effective for significantly large deflection
problems with low computational times. Through this example, the
performance of the ROM is compared against the MRM results. The
structural model is an I-section cantilever beam for which the geo-
metrical and material parameters are described in Ref. [21]. To
summarize, the following parameters are used in the analysis: a
length of L � 30 m, a total cross-section area of A � 0.0152 m2,
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0 5 10 15 20

Tip deflection [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tne
mo

M
dezila

mro
N

[-]

Benchmark
ROM

OOP

IP

-5 0 5 10
x [m]

0

2

4

6

8

10

y 
[m

]

ROM
Benchmark

Fig. 3 Representations of a) out-of-plane (OOP) and in-plane (IP) displacements obtained using the ROM with an applied tip moment compared to
Nastran, and b) incremental deflection of the cantilever at different load steps.
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ROM with applied normalized tip forces compared to the benchmark.
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and an area moment of inertia of I � 2.693e−5 m4. A uniformly

distributed load of 1250 N∕m is appliedwith the follower force effect

enabled, which makes it closer to realistic wing loading conditions.

The follower force effect implies that the applied force remains

normal to the geometry in any deflected state.

The results presented in Fig. 5 show a comparison of the com-
puted beam deflections against the reference MRM results. The
results show a good agreement with a maximum deviation of 0.83%
at 100% loading. The maximum deflection presented here is com-
puted using 40 load increments and requires a simulation time of
0.63 s with a total processing time of 2.1 s. Similar to test case 1, the
accuracy varies with the number of load increments. The simulation
time reduces to just 0.28 s if 18 load increments are used; however,
the error increases to 2.4%. Furthermore, at lower loads, the results
can be obtained much faster by using a lower number of load
increments. For example, at 56% loading, the solution can be
obtained with a 3.01% error in 0.07 s and four load increments.
At 24 load increments, the simulation time increases to 0.32 s and
the solution error reduces to 0.82%. The variations in the error and
simulation time with the number of load increments are shown in
Fig. 6. The simulation times are generally in a similar order of
magnitude as the MRM. It is noteworthy that in this example,
numerical convergence errors were seen in the Newton–Raphson
iterations for loads beyond 1375 N∕m, whereas the MRM could
capture larger deflections.

B. Application to Wing Structures

1. Experimental Validation: Pazy Wing

The intended application of the proposed method is primarily to
study the nonlinear structural behavior of highly flexible-wing
structures. To demonstrate the applicability to realistic wing struc-
tures, the experimental data of static structural tests conducted on
the Pazy wing were obtained. The Pazy wing is an aeroelastic
benchmark wing specifically designed to study the geometrically
nonlinear aeroelastic behavior of such wing structures through
wind-tunnel tests and to generate benchmark experimental data
for verification of numerical methods. The design, analysis, and
testing of the Pazywingwere discussed in detail in Ref. [28,34]. The
wing has been designedwith a chord length of 100mm and a span of
550 mm, and it can structurally sustain deformations up to 50–60%
of the span. The primary structure is made of aluminum 7075,
whereas a thin polyester foil is used to provide the aerodynamic
shape of thewing. A tip mass attached at the center chord location is
used to load and deform the structure during the pure bending tests.
To conduct the analysis in the present study, an equivalent beam FE
model [35,36] of the Pazy wing is used, as shown in Fig. 7b. The
dimensions of the properties of the beam model are provided in
Appendix C. The tip of the wing is loaded in steps using weights
ranging from 0 to 3 kg.
A comparison of the out-of-plane tip deflection of the wing

obtained using the ROM-based method, using experimental meas-
urement data and through the full FE analysis using MSCNastran, is
shown in Fig. 8. Additionally, some results are obtained using the
ROM-based model without updating the ROM incrementally, i.e.,
using single step executions. Overall, the results obtained using
the proposed ROM-based method match well with the reference
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Fig. 5 Comparison of the deflection results for the distributed loading
case against the MRM results at different fractions of the total load.
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Fig. 7 Representations of a) experimental setup and test structure of the Pazywing developed inRef. [28], andb) equivalent beammodel of the Pazywing
depicted in blue along the spanwise direction with an applied tip load shown by the red arrow.
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experimental results and with the full FE analysis when the incre-

mental update procedure is used. A deviation of −2.5% is seen in

comparison to the experiments, whereas the results match perfectly

with Nastran. Both analyses are conducted with displacement and

force convergence criteria with a tolerance of 1e-2, which is the

default setting inNastran. The full FE solution usingNastran required

985 iterative steps and a total time of 5 s to obtain the deflection at the

maximum loading of 3 kg. The full solution curve shown in Fig. 8 is

obtainable through the proposedmethod using 54 iterative steps and a

total simulation time of 0.154 s for all load steps, with an additional

0.47 s needed for the pre- and postprocessing. The simulation for

each load individually is even faster. For the maximum applied load

of 3 kg, the solution can be obtained in 0.054 s with a processing time

of 0.16 s. The reduction in iterative steps is aligned with the propo-

sition in Sec. II.C that having a cubically nonlinear predictor step

allows the possibility of larger load incremental steps, and therefore

reduces the number of iterations needed. Furthermore, it is observed

from Fig. 8 that when the ROM update is not conducted, the out-of-

plane deflection almost follows a linear response path. This can be

explained by the fact that the displacement dependent nonlinear

stiffness terms are insignificant for this model when computed in

the base undeformed state. This also ensures that the linear response

is well matched within a linear domain of deflection.

2. Verification Through FE Analysis: High-Aspect-Ratio Wing Box

For the final test case, a wing box model with a 20 m half-span is

considered. It is defined with anisotropic material properties and

completely modeled using shell elements. The structural geometry

is similar to the wing described in Ref. [20], albeit with the modifi-

cation that the same material properties are defined at all sections

of the geometry for simplicity. The elements of the material prop-

erty matrix are defined as follows: G11 � G22 � 79.15 GPa,
G12 � 26.91 GPa, and G33 � 26.12 GPa. The wing box comprises

upper and lower skins, ribs, and spars: each with a varying thickness

from the wingtip to the root. The variable thickness distribution is

depicted in Fig. 9. The model is generated using the in-house para-

metric model generation tool, ModGen [37], from the DLR, German

Aerospace Center and comprises 8660 triangular elements. The

aerodynamic shape of the wing box has been defined using the

NACA4412 and NACA4415 profiles.

The analysis is conducted with a distributed load acting along the

40% chord line, which consists of 160 unconstrained node points. At

each of these node points, a transverse force of 500 N is applied,

resulting in a total force of 80,000 N. Additionally, a 2000 N∕m
torsional moment is applied on each of the 160 node points to enforce

a twisting motion in the structure. All degrees of freedom at the node

points forming the profile at the root are fully constrained in the

0 0.5 1 1.5 2 2.5 3
Weight [kg]

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
O

O
P 

D
ef

le
ct

io
n 

[m
]

ROM
Experiments
Nastran
ROM w/o update

Fig. 8 Out-of-plane deflections of the Pazy wing obtained using the
ROM with stiffness updates compared to MSC Nastran, experimental
results, and ROM without stiffness update (w/o update).

Fig. 9 Construction of the wing box and thickness distribution, in meters, along the wing half-span.
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upper skin of the HAR wing box: comparison to MSC Nastran.
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analysis. Figure 10 shows the stepwise normalized deflection data
along the reference line at the 40% chord position on the upper skin
panel as a percentage of the semispan of the wing box. The peak
transverse tip deflection is computed at 9.21 m, which is approxi-
mately 46% of the semispan. The error is computed as the ratio of the
norm of the vector comprising the error measure in the x, y, and z
directions to the norm of the reference tip deflection vector; and the
solution is found to be deviating by 1.45% from the Nastran solution.
The rotation angles in transverse bending θ1 and torsion θ2 are also

compared in this analysis, and the variation along the semispan is
depicted in Fig. 11. The θ1 is well matched with some distinctive
deviations seen near the tip. The difference in the θ2 estimation is
slightly higher and is observed to be around 4.6% near the tip,
whereas the error gradually becomes minimal toward the root. How-
ever, in contrast to θ1, it is noticed that θ2 in the linear analysis also
deviates from the linearNastran results, which implies the differences
in the finite elements used have some influence on this result. The
Nastran simulations require 395 iterations, whereas 11 iterations are
sufficient to obtain the ROM results. Despite the reduction in the
number of iterations, the total run time at 45.7 s is significantly higher
for this model and overshoots the 42 s needed in Nastran. This
increase is primarily due to the ROM formulation procedure; how-
ever, the high computational time is also partially attributed to sub-
optimal coding. It is inferred that with the increasing size and
complexity of the model, the time needed for ROM formulation
may have a contradictory effect on the efficiency of the model.
Further investigations are needed to improve the efficiency of the
algorithms used.

IV. Conclusions

A framework for the geometrically nonlinear analysis of structures
undergoing large deflections is presented. Themethod incorporates a
reduced-order modeling technique along with an incremental load
application approach in order to trace the equilibrium path of the
structure. The nonlinearity in the structure is introduced through the
nonlinear strain-displacement relationship in combination with
updating the coordinates of the structure to tackle the changing
geometry and force location inherent to the deflection behavior of
cantilevered structures. Validation studies have been conducted by
comparing numerical results with common benchmark problems
available in the literature. Data obtained from the static structural
measurements conducted on the Pazywing have been used for further
verification of the numerical method. The framework is finally
applied to a wing box model to demonstrate its applicability to
generic structures, and the results are subsequently compared with
MSC Nastran simulations.
Overall, the results are found to be sufficiently accurate in all

the test cases. For large and complex models, the ROM formulation
time can be significantly large. Further studies are required for
improving the numerical efficiency of the ROM formulation

algorithm for large models. A greater perceivable advantage of this
ROM technique, however, is expected to be observed in dynamic
analyses.

Appendix A: Beam Element

A.1. Strain andCurvatureDefinition of aBeamElement
in Finite Element Framework

The strain ε and the curvature χ for this element are defined as
[32]

ε� �u2 −u1�
L

� 1

2

�u2 −u1�
L

2

� 6

5L2
�w1 −w2�2�

2

15
�θ1 − θ2�2

� 1

5
θ1θ2�

1

5L
�θ1� θ2��w1 −w2�

χ�−
1

L2
3w1 − 3w2 −

6w1x

L
� 6w2x

L
��2L− 3x�θ1 ��L− 3x�θ2

A.2. Linear Bending Stiffness Matrix for a Beam
Element [32]
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Fig. 11 Rotation due to transverse bending (left) and twist (right) along the length of the HAR wing box (40% chord line) compared to the results from
Nastran.

Fig. A1 Element degrees of freedom in the beam element.
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Appendix B: Flat Shell Element

The Strain in the Flat Shell Element is Defined as:

ε � εl � εnl � Bl �
1

2
Bnl�q� q

Bl �
1

2A
�B1 B2 B3 �

where A is the element area.
Considering that the three nodal coordinates are (x1, y1), (x2, y2),

and (x3, y3),

xij � xi − xj

xij � xi − xj

B1 �

y23 0 0 0 0
y23�y13 − y21�

6

0 x23 0 0 0
x32�x32 − x12�

6

x32 y32 0 0 0
x31y13 − x12y21

3

B2 �

y31 0 0 0 0
y31�y21 − y32�

6

0 x13 0 0 0
x13�x12 − x23�

6

x13 y31 0 0 0
x12y21 − x23y32

3

B2 �

y12 0 0 0 0
y12�y32 − y13�

6

0 x21 0 0 0
x21�x23 − x31�

6

x21 y12 0 0 0
x23y32 − x31y13

3

The nonlinear strain component can be computed using the Bnl�q�
term, which is given by

Bnl�q� �
qtKxx

qtKyy

qtKxy

Kxx � Bt
wT

t
xTxBw � Bt

vT
t
xTxBv

Kyy � Bt
wT

t
yTyBw � Bt

uT
t
yTyBu

Kxx � Bt
w�Tt

xTy � Tt
yTx�Bw

Here,

Tx �
1

2A
� y23 y31 y12 � and Ty �

1

2A
� x32 y13 x21 �

The other terms involving Bu, Bv, and Bw are constant matrices
consisting of zero and one. The explicit formulations of these
matrices can be found in Refs. [26,32].

Appendix C: Dimensions of the Equivalent Beam
Model of the Pazy Wing

The equivalent beam model is obtained through the University of
Michigan’s FEM2Stick framework [35,36]. The FE model consists
of 16 node points located along the global x axis as follows:

X � �0.0; 0.03824; 0.07649; 0.11474; 0.15299; 0.19124; 0.22949;
0.26774; 0.30599; 0.34424; 0.38249; 0.42074; 0.45899;

0.49724; 0.53071; 0.54984�

The area of cross section of each element has minor variations and is
defined as follows:

A � �9.7944e−6; 9.6666e−6; 9.6476e−6; 9.6487e−6; 9.6499e

−6; 9.6506e−6; 9.6509e−6; 9.6509e−6; 9.6506e

−6; 9.6499e−6; 9.6488e−6; 9.64716e−6; 9.6534e

−6; 9.6992e−6; 1.0019e−7�

Similarly, the beam inertia has variations in each element and is
defined as follows:

I � �5.2474; 4.5044; 4.4782; 4.4743; 4.4748; 4.4749; 4.4749;
4.4749; 4.4749; 4.4748; 4.4747; 4.4761; 4.4891; 4.5481; 4.7703�

Finally, an equivalent E modulus of 1.0 is used.
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