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Recognizing Hand Gestures Using Solar Cells
Dong Ma ,Member, IEEE, Guohao Lan ,Member, IEEE, Changshuo Hu ,

Mahbub Hassan , Senior Member, IEEE, Wen Hu , Senior Member, IEEE, Mushfika B. Upama,

Ashraf Uddin , Senior Member, IEEE, and Moustafa Youssef , Fellow, IEEE

Abstract—Wedesign a system, SolarGest, which can recognize hand gestures near a solar-powered device by analyzing the patterns of

the photocurrent. SolarGest is based on the observation that each gesture interfereswith incident light rays on the solar panel in a unique

way, leaving its discernible signature in harvested photocurrent. Using solar energy harvesting laws, we develop amodel to optimize design

and usage of SolarGest. To further improve the robustness of SolarGest under non-deterministic operating conditions, we combine dynamic

timewarping with Z-score transformation in a signal processing pipeline to pre-process each gesturewaveform before it is analyzed for

classification.We evaluate SolarGest with both conventional opaque solar cells aswell as emerging see-through transparent cells. Our

experiments demonstrate that SolarGest achieves 99% for six gestureswith a single cell and 95% for fifteen gesturewith a 2� 2 solar cell

array. The power measuement study suggests that SolarGest consume 44% less power compared to light sensor based systems.

Index Terms—Solar energy harvesting, visible light sensing, gesture recognition

Ç

1 INTRODUCTION

AS all types of devices around us become smart and capa-
ble of taking input fromus, there is a necessity to explore

practical and efficient ways to interact with them. Gestures,
being regarded as one of themost natural ways for human to
communicate with anyone or anything, have sparked the
integration of gesture recognition to consumer electronics
[2], [3]. To recognize human gestures, various sensors and
modalities, such as WiFi (electromagnetic) [4], [5], [6], cam-
era (image) [7], [8], microphone (acoustic) [9], [10], acceler-
ometer (motion) [11], [12], and light sensor (ambient light)
[13], [14], [15], [16], [17], have been investigated and vali-
dated. These modalities, either deployed in the environment
(e.g., WiFi, camera), or implemented on the device itself (e.g.,
microphone, accelerometer, ad light sensor), can achieve
great gesture recognition performance in certain conditions.

With existing approaches, however, gesture recognition
would pose two challenges on electronic devices. First, as
most consumer devices are usually powered by small bat-
teries with limited energy budget, gesture recognition sen-
sors would draw power from the battery and therefore
shorten the continuous operation time of the device. Second,
embedding such sensors on devices, especially Internet of
Things (IoTs) with limited form factor, requires addition
space (e.g., an array of light sensors), thereby making device
miniaturization more difficult.

To tackle them, we propose the use of solar cells for ges-
ture recognition on consumer devices. On one hand, solar
cells are known as energy harvesting materials, which could
convert energy from incident light into electricity and there-
fore supply power to the electronic devices. Further, when
employing solar cells as gesture recognition sensors, they are
passive elements without consuming any power from the
device battery. On the other hand, embedding solar cells on
IoTs can be space-free as the conventional silicon solar cells
(opaque) can be used as the shell or case of the device. More-
over, the emerging transparent solar cells [18], [19] openmore
opportunities for gesture recognition and power supply on
mobile devices. Manufactured with innovative organic
materials, transparent cells absorb and harvest energy from
infrared and ultraviolet lights, but let the visible lights pass
through so we can see through the solar panel like a clear
glass. Such property allows the integration of solar panels to
the entire device body, especially on top of the screen,
thereby eliminating the requirement of additional space.
Fig. 1 depicts how a transparent solar cell fitted on the screen
of a smart watch can be used for the dual purpose of energy
harvesting and gesture recognition1
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1. Note that the screen light of smartwatch has no impact on the pro-
posed gesture recognition system as: (1) transparent solar cells mainly
absorb energy from invisible light (infrared and ultraviolet spectrum),
while the screen light is fully visible; (2) transparent solar cells are usu-
ally unidirectional and can only absorb energy from the front side.
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In this work, we present SolarGest, a hand gesture recog-
nition system with solar cells. It is based on the observation
that any hand gesture interferes with incident light rays on
the solar panel in a unique way, leaving its discernible sig-
nature in the generated photocurrent signal. Combining
solar energy harvesting law with geometry, we develop a
model that could quantitatively study the impact of factors
affecting the gestured-induced photocurrent, such as the
incident angles and intensities of ambient lights, the form
factor as well as the energy harvesting density of the solar
panel, and etc. In addition, we devise a gesture recognition
framework including signal processing and one-dimen-
sional Convolutional Neural Network (CNN) based classifi-
cation. Particularly, we design a signal alignment stage that
combines dynamic time warping (DTW) and Z-score trans-
formation to deal with the temporal and amplitude varia-
tions on gesture waveforms incurred by various factors.

We manufacture both transparent and opaque solar cells
for experimentation. With 6,960 gesture samples collected
from three subjects using a single solar cell, we demonstrate
SolarGest can achieve 98% recognition accuracy on six ges-
tures. Further, we extend our previous work [1] by design-
ing a 2� 2 solar cell array to collect 3,000 gesture samples
and demonstrate it obtains 95% recognition accuracy on fif-
teen gestures. In addition, our power consumption mea-
surement reveals that SolarGest consumes 44% less power
compared to light sensor based systems. As solar cells
absorb energy from any form of light, SolarGest has a wide
application scenarios both indoor and outdoor. For instance,
users can purchase from solar-powered vending machines,
configure solar-powered garden lights, or operate solar-
powered calculators by simply using gestures.

Key contributions of this paper can be summarized as
follows:

� Using solar energy harvesting laws and geometric
analysis, we developed a model to simulate photo-
current waveforms produced by hand gestures.
With this model, we can analyze the impact of vari-
ous parameters on the photocurrent waveforms.

� We presented SolarGest, an end-to-end hand gesture
recognition framework with solar cells. The frame-
work contains a signal processing pipeline and a
CNN-based classifier.

� With the developed transparent and opaque solar
cells, we collected 6,960 gesture samples for six ges-
tures under different conditions and demonstrated

that even with a single transparent cell, SolarGest
can recognize gestures with an accuracy up to 99%.

� We developed a 2� 2 opaque solar cell array and
expand the gesture set to fifteen gestures. The experi-
mental results show that SolarGest achieves 95%
accuracy in recognizing the fifteen gestures.

� Finally, we experimentally demonstrated that Solar-
Gest consumes 44% less power compared to light
sensor based gesture recognition systems.

2 RATIONALE AND GESTURE MODELLING

SolarGest recognize hand gesture based on the generated
photocurrent. In this Section, using fundamentals of solar
energy harvesting, we present the operation rationale of
SolarGest. Then, with simple geometric arguments, we
derive a model to simulate photocurrent waveforms pro-
duced by hand gestures in both vertical and horizontal
planes relative to the solar panel.

2.1 Photovoltaic Theory

Based on the photovoltaic effect [20], solar cells convert the
energy from incident light into electrical current (photocur-
rent). The amount of generated photocurrent can be denoted
as a function of the form factor of the solar cell and its current
density. The current density is defined as the amount of pho-
tocurrent generated per unit area (e.g., mA=cm2), which is a
measure of solar energy harvesting efficiency. As current
density depends on the light intensity of the operating envi-
ronment, for fair comparison among different solar cells, it
is typically reported under a standard lighting condition,
named Global Standard Spectrum (AM1.5g) [21], [22]. Then,
the standard current density J�

SC is obtained as [23]:

J�
SC ¼ q

hc0

Z 1

0

að�ÞIð�Þ�d�; (1)

where q represents the elementary charge, c0 represents the
speed of light in free space, and h represents the Planck’s
constant. Symbol � is the wavelength of incident light. að�Þ
and Ið�Þ refer to the solar cell absorption efficiency and light
intensity at wavelength �, respectively. Due to the linear
relationship between current density and light intensity [24],
the current density JSC (mA=cm2) at any light intensity I
can be computed by

JSCðIÞ ¼ I

I�
J�
SC; (2)

where I�ð¼ 100mW=cm2Þ represents the light radiance
power under Global Standard Spectrum (AM1.5g). Then,
using Lambert’s cos(u)-law [25], the generated photocurrent
J , is calculated as

J ¼
Z p=2

0

S � JSCðIÞ � cosðuÞdu; (3)

where S refers to the form factor of the solar cell and u is the
incident angle, i.e., the angle between light beam and the sur-
face normal (see Fig. 2a). As light from different sources
(such as sun, fluorescent lamp and LED) have a different
spectral irradiance profile,the amount of generated photo-
current could be different even under the same light inten-
sity. Although we derive the model based on AM1.5g

Fig. 1. Illustration of a transparent solar powered smartwatch with solar-
based gesture recognition.
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(dedicated for sunlight), it can be applied to other irradiance
spectrum as gestures are differentiated due to their unique
patterns (relative changes), rather than the absolute values.
We further validate this in Fig. 12, which confirms that ges-
ture patterns collected under fluorescent light are consistent
with those derived using the model.

2.2 Modelling Solar Gestures

As illustrated in Fig. 2b, we develop a three-dimensional
(3D) geometric model to simulate solar photocurrent under
hand gestures. The human hand and solar cell are modelled
as round surfaces with radius RH and RS , respectively. As
many IoT devices have small form factors [26], in this paper,
we consider the case where solar cell is smaller than hand
size (e.g., Lunar Watch [27]), i.e., RS < RH

2. The solar cell
is assumed to be placed on a horizontal surface and a hand
performs different gestures in a parallel plane above it. Dur-
ing a gesture, we define the minimum distance between the
solar cell and hand as proximity, denoted by P , and define
the vertical movement distance as displacement, denoted by
D. Since RS < RH , only the light rays with incident angles
larger than a certain threshold (uth) can reach the solar
cell.

Figs. 2c and 2d show the longitudinal section of the 3D
model, in which solar cell and hand are represented by two
line segments with lengths 2RS and 2RH , respectively. The
green area corresponds to the angular space where light can
be absorbed by the solar cell, whereas the light in gray area
is blocked by human hand. In fact, a gesture is comprised of
a sequence of hand positions. Given the initial hand posi-
tion, moving direction and speed of hand movement, we
can compute hand positions at any successive points in
time. Taking Up gesture as an example, if the initial distance
(at time zero) between hand and solar cell is d and the hand
moves in a constant speed v, at time t, the distance between
hand and solar cell becomes dþ vt. Thus, the corresponding

threshold angles uth1ðtÞ and uth2ðtÞ for the two absorption
angular spaces are

uth1ðtÞ ¼ uth2ðtÞ ¼ arctan
RH �RS

dþ vt

� �
: (4)

Since only light beams from the two green areas can be
absorbed, the photocurrent JðtÞ can be calculated as

JðtÞ ¼
Z p=2

uth1ðtÞ
S � JSCðIÞ � cosðuÞdu

þ
Z p=2

uth2ðtÞ
S � JSCðIÞ � cosðuÞdu: (5Þ

From Eq. (5), the complete gesture waveform can be
obtained by generating photocurrent values at successive
points in time, i.e., ðJðt1Þ; Jðt2Þ; :::; JðtnÞÞ, where Jðt1Þ and
JðtnÞ represent the start and end of the gesture, respectively.
With this model, we study the impact of various parameters
(like light intensity, efficiency and form factor of the solar
cell and user hand size) on the photocurrent waveforms, as
presented in Fig. 6.

3 SOLARGEST DESIGN

3.1 Overview

We present the system architecture and workflow of Solar-
Gest in Fig. 3. When performing a gesture at certain lighting
condition, a solar-powered device measures time-series of
photocurrent and delivers the signal to a gesture recogni-
tion system, which could be located on an edge device, such
as smartphone, laptop, or home hub (note that such edge-
based processing will ensure that latency is minimal), using
low-power communications like backscatter or BLE. The
gesture recognition system identify the gesture and either
sends that information back to the originating device if local
control in the device is involved, or communicates with
other IoT devices based on the desired action from the ges-
ture. Next, we describe the proposed gesture recognition
framework (including signal processing and classification)
in detail.

Fig. 2. (a) Illustration of incident angle. (b) 3D geometric model of SolarGest. (c) 2D geometric analysis of vertical movement. (d) 2D geometric analy-
sis of horizontal movement.

2. Note that the model can be easily extended to RS > RH . In this
case, the inner part of the solar cell, a circle with radius RH , will be
affected by hand movement, but the residual area will generate steady
photocurrent during a gesture. Thus, total photocurrent would be
obtained as the sum of current from the two parts.
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3.2 Recognition Framework

3.2.1 Signal Processing

After acquiring photocurrent signals from the solar cell, we
introduce a signal processing pipeline that deals with three
specific issues. First, it removes noise contained in photo-
current signal using discrete wavelet transform (DWT).
Then, the boundaries of the gesture are detected using a
segmentation algorithm. Finally, a signal alignment module
applies a combination of dynamic time warping (DTW) and
Z-score transformation on the segmented signal to address
specific alignment issues that are caused by variations in
operating conditions, such as hand motion speed, lighting
conditions etc.

Denoising. Raw photocurrent signals are noisy as shown in
the bottom row of Fig. 12. The fast Fourier transform (FFT)
graphs in Fig. 4a reveal that there is a 50Hz noisewhen the sig-
nal is collected indoor under a ceiling light powered by 50Hz
AC current, but such noise is absent when measured outdoor
under the sun. In addition, due to the minor imperfections of
the hardware (e.g., micro-controller), Gaussian noise also
exists in the photocurrent signal. Discrete wavelet transform
(DWT) has been demonstrated to be an affectivemethod to fil-
ter noise from both time and frequency domain [13], [28]. By
hierarchically decomposing a signal in various resolutions at
different frequency range, DWT computes detail coefficients
and approximation coefficients at each decomposition level.
The main procedure to denoise a signal with DWT is to mod-
ify the detail coefficients based on thresholding strategies. In
specific, we divide the denoising process into three steps.

First, SolarGest decomposes the photocurrent signal to
level 5. The choice of level 5 is based on the sampling rate.
Since we sample data at 500Hz, the highest frequency con-
tained in the signal is 250 Hz due to the Nyquist Theorem.
As observed from Fig. 4a, the gesture frequency is actually
less than around 5Hz. During DWT decomposition, the

frequency span at each level is half of the level before it.
Thus, at level 5, the frequency range is [0, 250=25]Hz, i.e., [0,
7.8] Hz, which covers the gesture frequency. Second, a soft
thresholding scheme is applied to the detail coefficients at
level 5, which shrinks both positive and negative coeffi-
cients towards zero. The threshold is adaptively computed
using the principle of Stein’s Unbiased Risk Estimate
(SURE) [29]. Finally, we apply inverse DWT to the altered
detail coefficients and unmodified approximation coeffi-
cients for reconstruction of the denoised signal.

Gesture Segmentation. After denoising, the next step is to
segment exact gestures from the time-series of signal. To
detect the start and end of a gesture, previous works either
use a preamble scheme [4] or a threshold-based method (i.e.,
a start is detected once the value is higher than a predefined
threshold and an end is detected when the values fall below
the threshold) [13], [14]. However, the former requires users
to perform an additional gesture every time, which is not
user-friendly. The threshold-based method does not work if
the amplitude before and after a gesture is different (e.g.,Up
andDown shown in Fig. 12). To enable detection of gestures,
like many other gestures recognition systems [4], [13], [14],
[30], SolarGest requires users to take a short pause before
and after a gesture. Thus, we proposed a new segmentation
algorithm, which can accurately detect the plateau periods
(i.e., pauses) before and after a gesture.

Specifically, we apply a sliding temporal window on the
denoised signal. A gesture start is detected if the following
two conditions are satisfied: (1) the standard deviation of
the samples in current window is lower than a pre-defined
threshold stdThr; (2) the difference between the last sample
in current window and the mean of all the samples in the
window is higher than a threshold meanThr. The first condi-
tion ensures that the current window is in a plateau, while
the second condition determines that a gesture starts right
after a pause. Thus, the last sample in current window is
regarded as a gesture start. The same principle is utilized to
detect the end of a gesture and consecutive samples
between start and end are extracted as a gesture. To mini-
mize the probability of falsely extracting an un-occurred
gesture, we further apply a gesture length constraint based
on our experimental data. Fig. 4b presents the Cumulative
Distribution Functions (CDFs) of gesture durations when
three subjects perform the six different gestures. We can
observe that around 90% gestures are completed within 1 s.
Therefore, we apply a length constraint which ensures ges-
tures less than 0.2 s or greater than 1.4 s are discarded.
meanThr and stdThr are optimized through trial-and-error
procedure and the values used in our work is 0.5 and 0.25,
respectively. The detected gestures are interpolate to the
same length so that they can be fed to the classifier.

Fig. 3. SolarGest system architecture.

Fig. 4. (a) FFT analysis of photocurrent signals collected under indoor
fluorescent light (up) and outdoor natural light (bottom), (b) CDFs of ges-
ture duration.
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Fig. 5 shows the gesture segmentation result, where the
green dots represent the start points and red squares repre-
sent the end points. Note that during a data collection ses-
sion, the user always keeps his/her hand within the
operating region thus avoiding any transition effects, i.e., a
slightly descending/ascending signal caused by entering/
leaving the operating region. With the proposed segmenta-
tion algorithm, SolarGest successfully identifies 96% of ges-
tures in our dataset while incurring no false positives.

Signal Alignment. Using the developed model presented
in Section 2, we study the impact of eight practical parame-
ters, i.e., device parameters such as solar cell form factor
and efficiency, environment parameters such as light inten-
sity and size, as well as gesture parameters such as speed,
hand angle, proximity, and displacement, on the gesture
profiles, as presented in Fig. 6. In each graph, only a specific
parameter varies and the rest are set to default values.3 It
can be observed that each parameter indeed affects the ges-
ture waveform and the impact can be categorized into
temporal variation (variation in waveform duration) and
amplitude variation. Specifically, different gesture speeds and
displacements lead to varying gesture durations, making
the same gestures mismatched in time dimension. Other
parameters, such as light intensity and hand angle (refers to
the angle between hand and horizontal plane, as shown in
Fig. 2a), result in amplitude shifts.

SolarGest adopts a signal alignment phase to tackle the
two issues. Taking two LeftRight gesture as an example,
Fig. 7 illustrate the alignment process. We first apply Z-
score transformation, which is known to be an effective
function to make multiple signal with different amplitudes
comparable [31], on the gesture signal. From Fig. 7b, we can
see that after Z-score, the amplitudes are converted to the
same scale between [-2,2] but we can still observe the tem-
poral misalignment issue. Due to the successful application
of DTW to cope with temporal mismatch (like in speech rec-
ognition [32] and activity recognition [33]), we then apply
DTW to the processed gesture signals. The performance is
shown in Fig. 7c, from which we can see that the two signals
almost overlap, demonstrating the effectiveness of signal
alignment.

3.3 Gesture Classification

We design a one-dimensional (1D) convolutional neural
network (CNN) to classify the detected gestures, given its
effectiveness on mining information from sequential data as
well as low computational overhead [34]. As shown in

Fig. 8, the network contains two 1D convolution layer (with
64 filters and kernel size of 3) as it is common to stack two
layers for greater capability of learning features from the
input data. A dropout layer (with dropout rate of 0.5) is fol-
lowed for regularization. Then we add a max pooling layer
(with pool size of 2) to consolidate the learned features to
the most essential elements. After pooling, the learned fea-
tures are flattened to one long vector and passed through a
fully connected layer (Dense) before making a prediction
with the output layer (Dense). We use relu as the activation
function and adam as the optimizer. The loss function is set
to categorical cross entropy as this is a multi-class classifica-
tion problem.

We also benchmark the performance of the proposed
CNN model with other deep neural networks and machine
learning classifiers. Specifically, we consider a long short-
term memory (LSTM) neural network based classifier due
to its superior performance on mining temporal correlations
from sequential signals [35]. The LSTM classifier consists of
one LSTM layer where each cell contains 32 hidden units,
one flatten layer, and one fully connected layer as used in
the CNN model. For machine learning based models, we
consider five typical classifiers, i.e., Support Vector Machine
(SVM), K Nearest Neighbours (KNN), Decision Tree (DT),
and Random Forest (RF). The hyper-parameters for each
classifier are fine-tuned to provide optimal performance.
Given that DWT coefficients are a good representation of
the signal [4], [30], [36], we use them as features for the five
machine learning models. As described during denoising,
we perform five level DWT decomposition on each gesture
with Daubechies2 wavelet and extract the detail coefficients
in the fifth level as the features. The models are evaluated
with the 5-fold cross validation mechanism, i.e., the dataset
is randomly split into five sections and we iteratively select
one section as the testing data and use the rest as the

Fig. 5. Segmentation performance. The green dots represent the
detected start points and the red squares represent the detected end
points.

Fig. 6. The impact of different parameters on gesture profile. In each
graph, only a specific parameter varies and the rest are in default value.

Fig. 7. Illustration of signal alignment using Z-score transformation and
DTW.

3. Default parameter values: RH = 6cm, RS = 2cm, D = 12cm,
P = 3cm, J�

SC = 7mA=cm2, v = 20cm=s, I = 5000lux.
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training data. All the codes are implemented in Tensorflow
with Python.

4 IMPLEMENTATION AND DATA COLLECTION

Given that transparent solar cells are currently not available
off-the-shelf, we prototype both transparent and opaque
solar cells to collect gesture data under various conditions.

4.1 Solar Cell Prototype

As shown in Fig. 10a, we prototyped three different solar
cells, a 10x5cm silicon-based opaque solar cell (S1) and two
1x1cm transparent solar cells (refer to as T1 and T2), in our
photovoltaic laboratory. The two transparent solar cells
were made from the same organic material (PBDB-T: ITIC)
but with different transparency levels (T1 20.2% and T2
35.3%) and thickness (T1 143nm and T2 53nm). To demon-
strate the ‘see-through’ property of the transparent solar
cells, we placed them on the screen of an iPhone7. As shown
in Fig. 10a, we can clearly see the displayed ‘Hello World’
context through both T1 and T2. T2 provides a better ‘see-
through’ performance as it has a higher transparency to
allow more visible light to pass through. In terms of the
energy harvesting efficiency, T1 and T2 provide current
densities of 13:82mA=cm2 and 6:85mA=cm2, respectively.
More details of our transparent solar cell prototypes are
available in [37]. In Fig. 10b, we compare the absorption effi-
ciency of the three solar cells in the visible light spectrum.
We can notice that the opaque solar cell S1 achieves nearly
100% absorption efficiency over the entire wavelength
range, whereas, the absorption rate of T1 and T2 is only 50%
and 30%, respectively, on average.

4.2 Gesture Data Collection

With the prototype solar cells, we have collected a compre-
hensive gesture dataset for performance evaluation. As
shown in Fig. 11, the solar cells are connected to an Arduino
Uno board. The output of the solar cell is sampled by the
Arduino via its onboard ADC at 500Hz and saved in the
microSD card. A lamp is used to control the light intensities.
For comparison purpose, we also collected the photocurrent
signal from two different light sensors, TI OPT101 and Hon-
eywell SD3410, which are widely used in ambient light
based gesture recognition systems [15], [16], [17], [38].
Fig. 11 illustrates our data collection setup at an indoor envi-
ronment, which is conducted in our photovoltaic research
lab due to the special (and bulky) tools required to connect
the transparent cell output to the Arduino.

During data collection, we have considered many differ-
ent settings, including: (1) three solar cells with different
energy harvesting efficiencies/transparencies; (2) five light
intensity levels for indoor and outdoor combined (i.e., 800
lux and 2600 lux for transparent solar cells only under
indoor lab environment; 10 lux, 50 lux, 800 lux, 2600 lux
and 70k lux for the opaque solar cell under different sce-
narios including indoor and sunny outdoor); (3) six hand
gestures as introduced in Fig. 9; (4) threes subjects to per-
form the gestures; and (5) scenarios with/without human
interference to investigate the robustness of SolarGest
against interference (data collected using the two transpar-
ent solar cells only). Specifically, the human interference is
introduced by asking one subject to walk around in a half
circle with radius of 30cm when another subject is perform-
ing gestures. As suggested by [39], light incident angles
have little impact on the gesture recognition accuracy.
Thus, we consider the case where light source is located at
the top of the solar cell.

Table 1 summarizes the considered experiment settings.
3 subjects (including 1 female and 2 male) were invited to
collect data. Each subject perform gestures in 13 sessions
(i.e., 2 transparent solar cell � 2 light intensities � 2 interfer-
ence conditions + 1 opaque solar cell � 5 light intensities),
where he/she needs to perform each of the 6 gestures 40
times. Only one subject is participated in outdoor experi-
ment and human interference is not considered here. A
two-minutes break was set between sessions to avoid
human fatigue. The entire data was collected over five days.
In total, we created a dataset consisting of 8� 3� 6�
40þ 5� 1� 6� 40=6,960 gestures.

5 PERFORMANCE EVALUATION

5.1 Simulated versus Real Waveforms

Fig. 12 compares simulated gesture waveforms (top row)
against actual waveforms (bottom row) collected from pro-
totype transparent solar cells for 5 different gestures. It is
clear that even though we model hand and solar cell as
circles, the gesture signals simulated by our model are very
similar to those generated by real solar cells in terms of sig-
nal features and patterns. This demonstrates that our model
can be an effective tool to study gesture recognition using
solar cells under a variety of scenarios.

5.2 Gesture Recognition Performance of SolarGest

Classifier. Table 2 presents the overall classification accuracy
for the three solar cells using different classifiers. We can
observe that regardless of solar cells, all the classifiers
achieve recognition accuracy greater than 93%. Deep neural
network based classifiers outperform the machine learning
ones and the proposed CNN model obtains slight higher
than LSTM. Moreover, CNN has lower computation over-
head which results in short training time.

Transparency Level. Table 2 also compares the gesture rec-
ognition capability of solar cells with different transparency
levels. The results indicate that despite being transparent
with limited energy harvesting capacities, both T1 and T2
prototypes achieved very high accuracies. As expected, the
opaque solar cell (S1) results in highest accuracy due to its

Fig. 8. The designed one-dimensional CNN for gesture classification.
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stronger response to light variations (therefore higher SNR).
Overall, transparency level has very limited impact of the
recognition performance.

Light Intensity. We select five light intensity levels that
correspond to common conditions, 10 lux-dark room, 50
lux-living room, 800 lux-office, 2600 lux-cloudy, and 70k
lux-sunny, to access the performance of SolarGest in
practical scenarios. As our transparent solar cells are still
in laboratory stage without encapsulation, they are very
sensitive to environment factors (e.g., humidity). Conse-
quently, we test T1 and T2 under 800 lux and 2600 lux
only, while the opaque solar cell is tested under all the
five conditions.

The results in Fig. 13 show that, for the same solar cell,
higher light intensity ensures a higher recognition accu-
racy, although the improvement is minor. To assess the
limit of SolarGest, we create an extremely dark environ-
ment (i.e., 10 lux) by turning off all lights in a dark room
except a laptop screen. We find that, with our current
prototype (Arduino UNO), the collected signal always
remains zero, making it impossible to detect any gesture.
The reason is that the resolution of Arduino ADC (10 bit)

is not sufficient to capture the minor changes in photocur-
rent. However, we found this issue can be resolved by
either using a high resolution ADC (e.g., 16 bit) or amplify-
ing the current. We implemented an amplification circuit
and tested two amplification factors: 32� and 64�. The
results show that, with both amplification levels, gesture
accuracy reaches to around 97%. As a result, SolarGest
works well within a broad range of light intensities.

Human Interference. As solar cells can absorb light from all
directions, someone walking in vicinity of the solar cell
might interfere the amount of incident light, thereby distort-
ing the gesture signals. We investigate the robustness of
SolarGest against ambient human interference by asking
one subject to walk around when another subject is per-
forming gestures. From Fig. 14a, we can see that human
walking near the solar panel indeed introduces some fluctu-
ations in the signals. Fig. 14b quantifies the impact of such
interference by plotting the accuracies with and without
human walking. The results suggest that interference
reduced accuracy by only 0.5% and SolarGest still achieved
over 98% recognition accuracy.

We also investigate the impact of sudden and dramatic
light intensity change. For example, the global light inten-
sity could increase by tens of thousands lux when walking
from indoor to outdoor or decrease when sunlight is
blocked by cloud during a gesture. We conduct the experi-
ment using the developed geometric model to simulate ges-
tures and run the recognition pipeline. Specifically, we train
the model using gestures simulated under stable light inten-
sity, while test using the distorted gestures (simulated by
switching the light intensity in different levels and frequen-
cies) only. Our results indicate that when light intensity
changes very fast (e.g., >50Hz), the accuracy is not affected,
while almost half of the distorted gestures are wrongly rec-
ognized when intensity switching rate is low (e.g., 2Hz).
However, as suggested in [39], such low global light change
can be effectively filtered out by subtracting it.

Fig. 9. Illustrations of the six hand gestures conducted over the solar cells.

TABLE 1
Experiment Setting

Parameter Option Value

Solar cell 3 transparent solar cell: T1, T2
opaque solar cell: S1

Light intensity 4 10, 50, 800, 2600,70klux
Interference 2 with, without

Gesture 6 Down, DownUp, FlipPalm,
LeftRight, Up, UpDown

Subject 3 1 male, 2 female
Photodiode 2 TI OPT101, Honeywell SD3410

Fig. 10. (a) Effect of placing the two transparent solar cells T1 and T2 on
an iPhone 7 screen that displays the text ‘Hello Word’ (up) and the silicon
based solar cell S1 (low), (b) Absorption spectra of the three solar cells
S1, T1, and T2 within visible light band.

Fig. 11. Data collection setup.
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Unseen Scenarios. Then, we evaluate the model adaptation
capability of SolarGest to unseen scenarios, i.e., the training
and testing data are collected under different conditions.
Two unseen cases are considered. First, we train the classi-
fier using the data collected under one light intensity and
test it by the data collected under another intensity. The per-
formance of training and testing with the same light inten-
sity, i.e., seen scenario, is also obtained. From Fig. 15a, we
can see that SolarGest still achieves 92% accuracy even in
unseen lightning environment case. Second, we train the
classifier using the data collected from two subjects and test
it on the remaining one. The results in Fig. 15b indicate that
SolarGest is more robust to subject difference compared to
light intensity. Overall, the CNN model achieves 94% accu-
racy for unseen users.

Effect of Signal Alignment. Since various factors result in
the amplitude or temporal shift on the solar signals, we pro-
posed an alignment stage to address it. Here, we assess how
the signal alignment affects the recognition accuracy. Specifi-
cally, we use signals collected from low and high light inten-
sities to create the amplitude shift. Then, we train the model
with data collected at one light intensity and test on the other,

with and without applying signal alignment. From Table 3,
we can observe that the proposed signal alignment can
enhance the recognition accuracy by around 5%.

5.3 Comparison With Light Sensor based Systems

Researchers have demonstrated the feasibility of using light
sensors for gesture recognition [13], [14]. To compare Solar-
Gest with such approach, we also collect the data of two
light sensors (OPT101 and SD3410) simultaneously during
the experiment with transparent solar cells. Fig. 16 com-
pares the signal traces from solar cell T1 and the two light
sensors. We can observe that signal traces from light sensors
are more noisy. With the signal from solar cell, the system
can perfectly detect all the ten gestures, whereas, both of the
two light sensors can only detect eight of the ten gestures.
Table 4 compares the overall performance of light sensors
and transparent solar cells in terms of both segmentation
and recognition accuracies. We can notice that solar cells
achieve 12% to 26% higher segmentation accuracies and at

Fig. 12. Comparison of simulated gesture signal with the signal generated by solar cells.

TABLE 2
Recognition Accuracy Given Different Transparencies and

Classifiers

Solar Cell Classifier

KNN DT SVM RF LSTM CNN

T1 96.1% 94.1% 95.1% 95.9% 98.8% 98.9%
T2 95.6% 93.0% 94.5% 95.2% 98.4% 98.5%
S1 98.0% 94.9% 96.3% 96.8% 99.4% 99.5%

Fig. 13. Recognition accuracy under different light intensity.

Fig. 14. (a) Comparison of raw signals with and without interference.
(b) Impact of interference on recognition accuracy.

Fig. 15. Recognition accuracy on (a) unseen lighting environment,
(b) unseen user.
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least 9% better gesture recognition accuracy compared to
light sensors. These results suggest that compared with a
single light sensor, solar cell exhibits stronger robustness to
gesture variation and environmental noise due to its larger
sensing area. To further improve the segmentation accu-
racy, the user might need to have a longer and stable pause
before and after a gesture. Or a simple wake-up gesture,
like completely covering the solar cell so that its outputs are
always zeros, can be designed to trigger the gesture recogni-
tion system and accurately detect the start of a gesture.

5.4 Expanding Gesture Sets With Solar Cell Array

To investigate the capability of SolarGest for recognizing
more gestures, we design additional nine user-friendly ges-
tures as shown in Fig. 17. However, it is obvious that with a
single solar cell, some gestures (e.g., Left & Right) can not
be distinguished as they interfere with the incident light in
the same way. To tackle it, we propose the use of a 2� 2
solar cell array, where each solar cell is opaque and has a
size of 2:5� 2:5 cm. In such case, Left and Right gesture will
have different sequential order when interfering with left
and right solar cells of the array. Following the data collec-
tion procedures described in Section 4.2, we ask one subject
to collect data for the 15 gestures. Each gesture was per-
formed for 200 times and a total of 15� 200 ¼ 3; 000 ges-
tures has been collected.

We set the index of the four solar cells from 1 to 4 as
shown in Fig. 17 (Left). Then, when applying the the gesture
recognition pipeline, we consider different number of solar
cells with all possible combinations. When multiple solar
cells are utilized, we stack the signals from each solar cell in
rows, i.e., regard each solar cell as an independent channel.
Then, the stacked signal is fed to the CNN classifier. The
detailed results are presented in Table 5. We can observe
that (1) the recognition accuracy increases when more solar
cells are used, (2) a single solar cell obtains very poor perfor-
mance as it can not distinguish gestures with opposite direc-
tion, (3) SolarGest achieve 95% accuracy on 15 gestures
when all the four solar cells are used.

6 POWER MEASUREMENTS

After demonstrating the superior gesture recognition perfor-
mance of SolarGest, we now investigate the power saving
advantage of SolarGest against light sensor based systems.
From Fig. 3, we can see that SolarGest consumes power from
two events: MCU sampling and data transmission. In con-
trast, light sensor based systems consumes additional energy
in powering the photodiodes. Next, we perform a conserva-
tive comparison which assumes that only one photodiode is
required for light sensor based systems (current works usu-
ally require an array of sensors [13], [14]).

MCU Power Measurement. since both solar cell and light
sensor are sampled by analog-to-digital converter (ADC), we
conducted an experiment tomeasure the power consumption

Fig. 16. Segmentation performance comparison using signals from (a)
solar cell T1, (b) photodiode OPT101, and (c) SD3410, under gesture
FlipPalm. The green dots represent the detected start points and the red
squares represent the detected end points.

TABLE 4
Performance Comparison Between Light Sensors and

Solar Cells

Metric OPT101 SD3410 T1 T2 S1

Segmentation Accuracy 70.2% 84.3% 96.2% 96.1% 96.8%
Recognition Accuracy 55.2% 89.9% 98.9% 98.5% 99.5%

TABLE 3
Effect of Signal Alignment

Train Test Alignment Accuracy

Low High w/o 86.55%

w/ 92.13%

High Low w/o 84.95%

w/ 89.07%
Fig. 17. Illustrations of the nine additional gestures.
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during ADC sampling. We select the Texas Instrument Sen-
sorTag as the target device, which is equipped with an ultra-
low power ARM CortexM3 MCU. The SensorTag is running
with the Contiki operating system. We duty-cycled the MCU
at 50Hz for sampling and applied an oscilloscope to measure
the average power consumption of SensorTag during the
sampling. According to our measurement, the system con-
sumes 20.28mWin sampling the signal at 50Hz.

Light sensor power measurement: in addition, we also
measure the power consumed by the light sensor itself. We
consider two light sensors, namely TI OPT 101 and Honey-
well SD 3410, that are widely used in the literature [15],
[16], [17], [38]. In particular, we measured the power con-
sumption of the sensors under different light intensities
(assuming normal operation scenarios), as the datasheet
only gives the power consumption when the sensor is
operated in dark environment. Fig. 18 illustrates the mea-
surement setup. To minimize the effect of ambient light, we
conduct the experiment in a box with one side open. A
smartphone is placed on top of the box and its Flash is used
as the light source. We create an aperture with a radius of
1cm on the top of the box and place the light sensor right
below the aperture to ensure 0� of light incident angle. The
light sensor is powered by a 3V battery and a multimeter is

used to measure the current. Fig. 19 presents the power con-
sumption of the two light sensors under different light
intensities. We can observe that the power consumption is
not constant. When the light intensity is lower than 100 lux,
the power consumption increases linearly with light inten-
sity. Once the light intensity is higher than 100 lux, the
energy consumption becomes stable. Since the light inten-
sity of normal environment is usually higher than 100 lux,
e.g., 200-800 lux for office environment, it means that, with-
out duty-cycling (sensor always turn on), OPT101 and
SD3410 consumes around 650uW and 730uW, respectively.
With 50 Hz duty-cycle, the power consumption reduces to
39.78 mW and 42:18mW , respectively. In addition, our
results is consistent with the datasheet when light intensity
is 0 [40]. In contrast, solar cell is passive and does not
require any external power.

Overall system power saving: now, we analyze the overall
system power consumption. Considering 50Hz sampling
rate and a duty-cycled system, Table 6 presents the power
consumption of SolarGest and light sensor (i.e., photodiode)
based system. Note that the photodiodes are assumed to
operate in photoconductive mode, which requires external
power supply, in order to provide faster response rate [41].
The recent advancement in Wi-Fi backscattering has dem-
onstrated that 1 Mbps data rate can be achieved with only
14.5 mW power consumption [42]. Given a sampling fre-
quency of 50Hz, SolarGest has 100 Bytes data (2 Bytes for
each 12-Bits ADC reading) to be transmitted per second.
Thus, it means that 0.023 mW 4 is required for backscatter-
ing-based data transmission. Overall, the power consump-
tion of SolarGest will be around 20.3 mW , while the
consumption of light sensor based system is about 60.1 mW .
Thus, SolarGest is able to save over 66% of the energy. In a
more general case where BLE is used for communication,
31.11mW power is required for the data transmission (100
Bytes per second) based on our measurement (using TI Sen-
sorTag as the target platform.). In this case, the overall sys-
tem power consumption for SolarGest and the two light
sensors based system increase to 51.39 mW , 91.17 mW , and
93.57 mW , respectively. But SolarGest still saves at least 44%
of the energy compares to light sensor based systems. Fur-
thermore, current light sensor based systems implement an
array of light sensors (e.g., 9 in [14] and 36 in [13]), which

TABLE 5
Recognition Accuracy Given Different Transparencies and

classifiers

SC Quantity SC Index Accuracy Average Accuracy

1

{1} 31.56%

30.47%
{2} 28.73%
{3} 34.32%
{4} 27.27%

2

{1, 2} 87.38%

84.19%

{1, 3} 82.84%
{1, 4} 87.04%
{2, 3} 86.86%
{2, 4} 76.35%
{3, 4} 84.68%

3

{1, 2, 3} 94.22%

93.28%{1, 2, 4} 91.23%
{1, 3, 4} 93.14%
{2, 3, 4} 94.51%

4 {1, 2, 3, 4} 95.07% 95.07%

Fig. 18. Light sensor power measurement setup.

Fig. 19. Power consumption measurement of light sensors under
different light intensities.

4. Pbackscatter ¼ ð100 � 8Þ=1000000 � 14:5mW ¼ 0:023mW:
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definitely incur much higher power consumption. In sum-
mary, our power consumption study demonstrated that the
proposed gesture recognition system is lightweight and can
be easily integrated to existing mobile devices.

7 RELATED WORK

7.1 Gesture Recognition

Gesture recognition is a well-explored area in the research
community. A variety ofmodalities have been utilized for ges-
ture recognition. By capturing images with cameras or depth
sensors, vision-based approach utilizes image processing
techniques to recognize gestures [7], [8]. Radio frequency (RF)
signal can be used for gesture recognition, where the underly-
ing principle is that hand movements interfere with the elec-
tromagnetic wave in the space and result in certain variations
on the received signal. By analyzing the received RF signals,
various information, like received signal strength (RSS) [4],
[43], channel state information (CSI) [5], and Doppler shift [6],
can be extracted to differentiate gestures. Replacing the RF
transceiver with an acoustic (ultrasound) transceiver, the
Doppler shift can be extracted from the reflected soundwaves
to identify gestures [9], [10]. Motion sensor-based gesture rec-
ognition leverages an inertial measurement unit (IMU), usu-
ally accelerometers and gyroscopes, to track human body/
hand movement [11], [12]. Recently, employing light sensors
for gesture recognition receives massive attention [13], [14],
[15], [16], [17], [39].When a gesture is performed over an array
of light sensors (photodiodes), its shadow will be measured
and used recognize the gesture.

Existing approaches can find application in specific
scenarios where they can achieve excellent performance.
However, each modality suffers from certain limitations. For
instance, vision-based method has heavy computation over-
head due to the involvement of image processing and it
incurs privacy concerns as camera can capture other per-
sonal and sensitive data [5], [44]. In addition, all thesemodal-
ities requires additional energy to power the operating
sensor, shortening the operation time of the devices. In con-
trast, SolarGest recognize gestures with photocurrent signals
from solar cells, which not only eliminates sensor-consumed
energy but also supplies inexhaustible power to the host
device. Interestingly, Li et al. [39] proposed to operate light
sensors in the photovoltaic mode for gesture recognition. As
a result, the sensor becomes passive without energy con-
sumption and can harvest energy from the incident light as
well. However, the transparent solar cells introduced in our
work can be seamlessly integrated on top of the screens of
electronic devices, resulting in a wider range of applications
while without impacting device’s appearance.

7.2 Solar Cell Based Sensing

In fact, the output photocurrent froma solar cell reflects the light
intensity of the surrounding environment. Based on this phe-
nomenon, researchers has explored the sensing potential of
solar cells by regarding them as light indicators [45]. Randall
et al. [46] equipped a solar panel on human shoulder to detect
the received light strength (RLS). The RLS is then used to esti-
mate the distance between celling light and user’s shoulder.
After generating a RLSmap of the room, the instant RLS can be
used for indoorpositioning. Similarly, as every location onEarth
has a unique solar signature, like a unique sunrise and sunset
time, Chen et al. [47] proposed to create a sunlight map of the
Earth, which can infer a location’s longitude and latitude sepa-
rately using the outputs of solar panels installed on the roof.

There is a prior work that leverages an opaque solar panel
for gesture recognition [48]. Our work differs from it in three
aspects. First, [48] recognizes three gestures only, Swipe, Two
Taps, and Four Taps, which is actually one basic gesture but
with different repetitions. However, SolarGest differentiates
gestures based on the unique gesture patterns. Second, we pro-
totype the novel transparent solar cell anddemonstrated its fea-
sibility for gesture recognition even with much lower energy
harvesting capability. Third, with fundamentals in solar tech-
nology, we developed a theoretical model which allows us to
study the impact of different practical factors in a solar based
gesture recognition system.

8 CONCLUSION

We have proposed SolarGest, a solar-based gesture recog-
nition system for ubiquitous solar-powered IoTs. Using
solar energy harvesting fundamentals and geometric analy-
sis, we derived a model that accurately simulates hand
gestures and study the impact of various parameters.
Employing real solar cells, both opaque and transparent,
we have demonstrated that our system can detect six ges-
tures with 96% accuracy using a single cell and detect fif-
teen gesture with 95% accuracy using a 2� 2 cell array.
Our power consumption measurement revealed that Solar-
Gest consumes 44% less power compared to light sensor
based approach.
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