

Delft University of Technology

Efficient Visual Ego-Motion Estimation for Agile Flying Robots

Xu, Y.

DOI
10.4233/uuid:a5998475-a7be-46e5-9bd9-6fbd9b81c15c
Publication date
2023
Document Version
Final published version
Citation (APA)
Xu, Y. (2023). Efficient Visual Ego-Motion Estimation for Agile Flying Robots. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:a5998475-a7be-46e5-9bd9-6fbd9b81c15c

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:a5998475-a7be-46e5-9bd9-6fbd9b81c15c
https://doi.org/10.4233/uuid:a5998475-a7be-46e5-9bd9-6fbd9b81c15c

EFFICIENT VISUAL EGO-MOTION ESTIMATION

FOR AGILE FLYING ROBOTS

EFFICIENT VISUAL EGO-MOTION ESTIMATION

FOR AGILE FLYING ROBOTS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, Prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Thursday 7 September 2023 at 15:00 o’clock

by

Yingfu XU

Master of Science in Aeronautical and Astronautical Science and Technology,
Harbin Institute of Technology, China

born in Tieling, China

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof.dr. G.C.H.E. de Croon Delft University of Technology, promotor
Dr.ir. C. De Wagter Delft University of Technology, copromotor

Independent members:
Dr. M. Sifalakis Stichting IMEC Nederland
Dr. J. Martinez-Carranza INAOE, Mexico
Prof.dr. D.M. Gavrila Delft University of Technology
Prof.dr. E.O. Postma Tilburg University
Prof.dr.ir. M. Mulder Delft University of Technology

Keywords: Micro Air Vehicles, Ego-Motion Estimation, Deep Neural Networks,
Self-Supervised Learning, Network Prediction Uncertainty, Monocular
Visual-Inertial Odometry, Monocular Depth Prediction

Printing: Ridderprint | www.ridderprint.nl

Front & Back: Ir. Cai Huang

Copyright © 2023 by Y. Xu

ISBN 978-94-6384-477-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary ix

1 Introduction 1
1.1 Challenges brought by Agile Manuevers 3
1.2 Previous Research. 5

1.2.1 Traditional Methods . 5
1.2.2 Learning-based Methods . 8

1.3 Research Objectives and Questions . 10
1.4 Dissertation Outline . 12
References . 13

2 Efficient Model-Aided Visual-Inertial Ego-Motion Estimation for Multirotor Mi-
cro Air Vehicles 21
2.1 Introduction . 22
2.2 Estimator Framework . 24

2.2.1 Definitions . 24
2.2.2 Linear Drag Model . 25
2.2.3 State Propagation . 25
2.2.4 Acceleration Measurement Update 26
2.2.5 Relative Visual Measurement Update 27
2.2.6 Composition and Resetting for New Keyframe 27

2.3 Visual Relative Pose Estimation . 27
2.3.1 Keyframe-based Feature Tracking 28
2.3.2 Linear Relative Yaw Calculation . 28
2.3.3 Linear Relative Translation Direction Calculation 29

2.4 Experimental Results . 29
2.4.1 Data Pre-processing . 30
2.4.2 Results and Discussion. 30

2.5 Conclusion and Future Work . 34
References . 34

3 CNN-based Ego-Motion Estimation for Fast MAV Maneuvers 37
3.1 Introduction . 38
3.2 Methodology . 39

3.2.1 Homography Transformation . 39
3.2.2 Cascaded Network Blocks Connected by Image Warping. 41
3.2.3 Dataset Generation . 41

v

vi CONTENTS

3.3 Networks . 45
3.3.1 ICSTN-based Networks . 45
3.3.2 Pyramidal Images and Feature Maps in ICSTN. 46
3.3.3 Self-Supervised Learning . 46
3.3.4 Networks for Tilt Angle Prediction 47

3.4 Evaluation . 47
3.4.1 Simulated Dataset . 48
3.4.2 Flight Dataset . 48

3.5 Conclusion . 50
3.6 Appendix . 50

3.6.1 Networks with Sharing Parameters among Blocks 50
3.6.2 Error Distribution of Network’s Prediction 51
3.6.3 Public High-Speed Flight Dataset and Prior Pose. 52
3.6.4 CNN-based VIO for Real-Time Feedback Control 54
3.6.5 Supplementary Materials . 56

References . 56

4 CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for Visual-
Inertial Odometry 61
4.1 Introduction . 62
4.2 Related Works . 64

4.2.1 Learning-based Visual Ego-Motion Estimation 64
4.2.2 Network Uncertainty Estimation in Computer Vision 66
4.2.3 Deep Planar Homography . 67

4.3 System Overview . 68
4.4 Planar Homography Network . 69

4.4.1 Datasets . 69
4.4.2 Self-Supervised Cascaded Network Blocks 70
4.4.3 Content-Aware Learning . 72

4.5 Uncertainty Estimation . 74
4.5.1 Configurations . 74
4.5.2 Model Distillation for Predictive Uncertainty 77
4.5.3 Empirical Uncertainty . 80

4.6 Visual-Inertial Odometry . 83
4.6.1 Homography-Network-based Vision Front-end 83
4.6.2 EKF-based Back-end . 83

4.7 Evaluation . 85
4.7.1 Comparison of Accuracy with SOTA VIO Approaches 86
4.7.2 Ablation Study . 87
4.7.3 Onboard Deployment for Feedback Control 92
4.7.4 Time Efficiency and Processing Latency 92
4.7.5 Robustness toward High-Speed Flight 95
4.7.6 Potential Improvements . 98

CONTENTS vii

4.8 Conclusions. 99
4.9 Appendix . 99

4.9.1 Network Architecture . 99
4.9.2 Model Size . 99
4.9.3 Implementation and Training . 99
4.9.4 Comparison of Basic Homography Networks 100
4.9.5 Direct Linear Transformation (DLT) Solver. 101
4.9.6 Why Learning Requires a Teacher Network? 101
4.9.7 Comparison of Different Output Dimensions 102
4.9.8 Difficult Testing Samples. 102
4.9.9 Correlation between Predictive and Empirical Uncertainty 103
4.9.10 Network Uncertainty and Velocity 106
4.9.11 UAHN-VIO for Feed-Back Control 107
4.9.12 EKF State Propagation . 107
4.9.13 a Priori Homography . 108
4.9.14 Iterative EKF . 108
4.9.15 Parameter Tuning of SOTA VIO Approaches 108
4.9.16 Supplementary Materials . 109

References . 109

5 Lightweight Visual-Inertial Odometry and Monocular Depth Learned from Self-
Supervised Structure-from-Motion 115
5.1 Introduction . 116
5.2 Teacher Networks . 118

5.2.1 Improved Self-Supervised SfM . 118
5.2.2 Datasets and Network Training . 121

5.3 Efficient VIO based on Pose Network and EKF 122
5.3.1 Uncertainty-Aware Pose Network 124
5.3.2 EKF-based Back-end . 125
5.3.3 Evaluation . 126

5.4 Lightweight Monocular Depth Network . 131
5.4.1 Training Schemes . 132
5.4.2 Real-World Testing . 137

5.5 Conclusions. 139
References . 139

6 Conclusion 145
6.1 Answers to Research Questions . 145
6.2 Discussion . 147

6.2.1 Computational Demand . 147
6.2.2 Scale Ambiguity . 148
6.2.3 Network Uncertainty Estimation. 148
6.2.4 Robustness towards Motion Blur. 148

References . 149

viii CONTENTS

Acknowledgements 151

Curriculum Vitæ 153

List of Publications 155

SUMMARY

Micro air vehicles (MAVs) have shown significant potential in modern society. The de-
velopment in robotics and automation is changing the roles of MAVs from remotely con-
trolled machines requiring human pilots to autonomous and intelligent robots. There
is an increasing number of autonomous MAVs involved in outdoor operations. In con-
trast, the deployment of MAVs in GPS-denied environments is relatively less practiced.
The speed when flying indoors is often slow. One reason is that MAVs are surrounded by
obstacles. But it should also be noticed that ego-motion estimation becomes more diffi-
cult to remain reliable during faster flight.

The reason for this is that fast motion brings challenges to the robustness and com-
putational efficiency of ego-motion estimation solutions based on the limited onboard
sensing and processing capacities. The challenge to robustness is that the motion blur in-
duced by agile maneuvers reduces the amount of available visual information needed by
the current mainstream ego-motion estimation solutions, given the fact that frame-based
cameras are the primary sensor for most lightweight MAVs. The challenge of computa-
tional efficiency comes from the strong desire for smaller and smaller MAVs to better fit
cluttered environments. Moreover, to compensate for the decrease in robustness, addi-
tional computational power is required to detect known landmarks or visual processing
that better copes with motion blur. This dissertation responds to the challenges by inves-
tigating novel ego-motion estimation approaches that combine robustness and efficiency.

First, the goal of higher efficiency in the context of traditional visual feature points is
pursued, albeit at the cost of reduced accuracy. The targeted scenarios are where known
landmarks exist, such as gates in autonomous drone racing. The proposed velocity esti-
mator’s mission is to navigate the MAV until the next landmark appears in the field of view
and corrects the accumulated drift in the position estimation. To prevent drift over time,
a simple linear drag force model is used for estimating the pitch and roll angles of the
MAV with respect to the gravity vector and its velocity within the horizontal plane of the
propellers. The translational motion direction and the relative yaw angle are efficiently
calculated from the correspondences of feature points using a RANSAC-based linear algo-
rithm.

Secondly, the focus of this dissertation shifts to the robustness against motion blur.
Specifically, artificial neural networks (ANNs) are chosen as the vision front-end. Unlike
many prior works that train and test ANNs solely in a known environment, the present
study demands the ANNs be able to generalize to unknown environments and perform
self-supervised learning without relying on ground-truth labels. The goal is for ANNs to
achieve a general deployment capability comparable or close to that of traditional vision
front-ends. A monocular downward-facing camera is selected as the vision sensor, given
that a planar homography transformation can be utilized when the ground is mainly pla-
nar to simplify the learning process and speed up onboard processing. Regarding motion
blur, the downward-facing camera is more affected than the forward-facing one, espe-

ix

x SUMMARY

cially in fast flight close to the ground, thus it is suitable for studying the blur robust-
ness. MAV flight experiments show that the ANN-based method is more robust to blurry
images than their classical counterparts using feature points. Furthermore, uncertainty
estimation for network prediction is studied. The estimated uncertainty is utilized in a
visual-inertial odometry (VIO) solution based on an extended Kalman filter (EKF). It con-
tributes to high accuracy when tested on a high-speed dataset, comparable to state-of-
the-art VIOs.

Ultimately, we remove the requirement for the camera to face a mainly planar sur-
face and apply the gained experience to the forward-facing camera that films general 3-d
structures. To conduct self-supervised learning, we adopt the mainstream approach of
jointly learning the camera pose and dense depth map and enhance the accuracy using
state-of-the-art techniques. The resulting computationally heavy networks achieve high
prediction accuracy and act as the learning target in the training of lightweight student
networks. The student pose network is capable of uncertainty estimation and serves as
the vision front-end of an efficient EKF-based VIO system. The student depth network
predicts downsampled depth maps that are field tested in obstacle avoidance of a nano
quadrotor MAV.

Overall, this dissertation studies visual ego-motion estimation solutions for lightweight
MAVs. Robustness towards motion blur and computational efficiency of the solutions
have high priorities in the algorithmic designs. The main contribution is the develop-
ment of generalization-capable learning-based approaches that cope with motion blur
better than traditional methods and, at the same time, guarantee real-time performance
when using an on-the-shelf mobile processor. There are additional contributions that
lie in increasing efficiency when using traditional visual processing and an aerodynamic
model, insight into network uncertainty estimation, and a training scheme of a lightweight
monocular depth network for obstacle avoidance.

1
INTRODUCTION

Robots are gradually coming from science fiction novels and movies into people’s daily
lives. Over the past two decades, flying robots, also known as drones and micro air vehicles
(MAVs), have made even greater progress than their robot peers that walk or swim. The
most well-known application of MAVs is aerial photography. Carrying a camera, an MAV
allows human beings as terrestrial lives to observe our world from the bird’s view in the
most affordable and accessible way. MAVs also succeed in other outdoor applications such
as agricultural plant protection, geographic mapping, relay communications, delivery, etc.
Satellite navigation technologies represented by the Global Positioning System (GPS) [1]
provide reliable ego-motion information to navigate the MAV to accomplish its mission
safely and effectively.

However, GPS signals are unavailable indoors and become less reliable near large build-
ings or in a forest. Similar to GPS, external infrastructures, such as motion capture systems
(MCSs) [2] and wireless beacons [3], can measure the position of optical markers and ra-
dio markers, respectively. These infrastructures can be established indoors and work well
after calibration. MCSs are known for their high measurement accuracy and are widely
used by research laboratories. But it is difficult to promote them for real-world applica-
tions because of their high cost. More importantly, it restricts the flight range of MAVs
within the effective range of the external sensors, rendering them useless for scenarios
involving unknown environments.

The most common onboard sensors for robot navigation are frame-based cameras
and 3-dimensional (3-d) light detection and ranging (LiDAR) sensors [4, 5]. A LiDAR sen-
sor measures the bearing of the environmental point clouds and the metric-scale distance
to them. LiDAR measurements are largely invariant to illumination change. However, the
big size and weight of LiDAR sensors make them a heavy burden for MAVs. A stereo cam-
era can provide the metric-scale depth of pixels via a stereo matching algorithm. However,
given the shape of a small-size quadrotor MAV, mounting a monocular camera is much
easier than mounting a stereo camera with a proper baseline. Monocular cameras have
been shown to be suitable even for very lightweight (< 50 grams) MAVs [6, 7] thanks to
their small size, weight, and energy consumption.

1

1

2 1. INTRODUCTION

An MAV can estimate its translational velocity by combining the measurements of a
monocular camera and a range finder sensor that are downward-facing mounted [8–10].
For higher accuracy in ego-motion estimation and acquiring surrounding information,
visual simultaneous localization and mapping (V-SLAM) have been applied to MAVs. A
V-SLAM system simultaneously estimates the camera’s position and orientation and con-
structs a map of the surrounding. The map can be made of sparse visual feature points
(feature-based method) [11] or be dense, containing a higher percentage of image infor-
mation by processing raw pixel intensities (direct method) [12]. V-SLAM requires con-
siderable computing power. For MAV platforms without onboard processors qualified for
that, a ground station is required to process the sensor data transmitted from the MAV
and send back the output of the V-SLAM system [13, 14]. Compared to onboard process-
ing, using an external processor is susceptible to interference. Communication range and
delay can be bottlenecks in the autonomous MAV system.

The map of a V-SLAM system is built in an incremental way. Visual information in a
newly captured image is first matched with the current map. Then, the positions of the
filmed 3-d points are estimated together with the new camera pose. Lastly, the points and
their descriptors are added to the map. As the camera travels more distance, the map
becomes larger in size, and the error of pose estimation accumulates over time. When the
camera revisits a scene, it can be relocalized in the map, the drift in its pose estimation
can be eliminated, and (a part of) the map can be updated according to the constraint
derived from the relocalization and become more accurate. This procedure is known as
“loop closure”. It contributes to the long-term accuracy of ego-motion estimation at the
cost of a significant amount of computation.

In order to perform visual ego-motion estimation in real-time with the limited on-
board computational resource, maintaining such a large-scale map is not an option. In-
stead, solely considering the visual information in the latest images within a sliding win-
dow can be enough for good short-term accuracy, while reducing the computational de-
mand of long-term mapping and loop closure. Such an algorithm is commonly referred
to as visual odometry (VO) [15, 16]. In the context of ORB-SLAM [11], a highly recognized
V-SLAM system, VO corresponds to the tracking and local mapping components. Note
that local mapping is only needed by VO algorithms that estimate the camera poses based
on the estimated position of 3-d points in the scenes. This strategy is widely adopted by
feature-based and direct VO solutions, but it is not indispensable. For example, as will
be introduced later, an artificial neural network (ANN) can learn to directly regress to the
relative pose using an image pair as input, without explicitly knowing the scene structure.

A monocular camera as the only sensor limits the robustness of ego-motion estima-
tion. In the cases of visual tracking failure, i.e., visual information in the newly captured
image cannot match the old visual information well, or operating in a highly dynamic
scene, a VO is forced to stop the current estimation and reinitialize or suffers from big
drifts. An inertial measurement unit (IMU) made of a 3-axis accelerometer and a 3-axis
gyroscope measures the 3-d angular rate and the 3-d translational acceleration caused by
all forces applying to it except for gravity. As a complementary sensor to a camera, an IMU
provides high-frequency measurements resistant to unfavorable conditions such as illu-
mination change and fast motion. Algorithms that combine visual and inertial measure-
ments and set ego-motion estimation as the main goal are called visual-inertial odometry

1.1. CHALLENGES BROUGHT BY AGILE MANUEVERS

1

3

Figure 1.1: A quadrotor MAV in fast flight and a blurry image taken by its onboard camera.

(VIO) algorithms. In addition to higher accuracy, VIO has more robustness given that the
ego-motion can be propagated by IMU measurements even when there is no reliable vi-
sual information. Besides, IMU measurements provide information on the metric scale
and the direction of gravity [17], which are unobservable for a monocular VO.

To enable VIO to run in real-time onboard computation-constraint mobile devices, for
instance lightweight MAVs, researchers have been working on improving the algorithmic
efficiency of VIO. Compared to iterative optimization-based back-ends that involve many
(previous) camera poses and world points, more computationally efficient VIO back-ends
have been developed based on the extended Kalman filter (EKF). A smaller number of val-
ues essential to ego-motion estimation forms the state vector of the filter. For example,
the computation in local mapping is reduced by one-shot calculation of the positions of
points co-visible from multiple camera poses. The camera poses are then updated as fil-
ter states by the point position [18]. For [19], only the newest camera pose is kept in the
state vector. Thanks to the robust visual tracking approach, the accuracy is decent even
though the number of world points maintained in the state vector is relatively small. Be-
sides algorithmic advances, thanks to more powerful mobile processors suitable for MAVs
becoming available on the market, many works have emerged, which demonstrate on-
board VIO guiding MAVs in autonomous flights [20–22]. The thorough research on this
topic raises the question: is visual ego-motion estimation for MAVs a solved problem?

1.1. CHALLENGES BROUGHT BY AGILE MANUEVERS
An advantage of MAVs over other types of robots is their flexibility. MAVs have no terrain
requirements, and their small size allows operations in narrow spaces. But at the same
time, the small size also prevents big onboard batteries. Given the limited battery life, fly-
ing fast is an important way to expand the range of flight. Before academia was attracted
to high-speed and agile autonomous flight, there were already people who pursued push-
ing the speed of quadrotor MAVs to the limit. Such enthusiasm spawned a new e-sport
called the drone race. Pilots fly along the predefined racing track indicated by the gates.
The pilot who does not crash and uses the least time to finish the track wins. Human
drone pilots wear goggles to see the video captured by a monocular camera mounted on
the racing MAV and transmitted wirelessly to the goggles. The video is the only source of
information from which the pilot estimates the position, attitude, and velocity of the MAV

1

4 1. INTRODUCTION

and steers the MAV accordingly.

Autonomous drone racing (ADR) is a research topic that aims to replace the human
pilot in drone racing with a machine. More specifically, the MAV uses its onboard sensing
and processing resources to navigate itself on the racing track at high speed. Examples of
ADR tracks are shown in Fig. 1.2. In pursuit of high-speed and agile autonomous flight,
advances have been made in aerodynamic modeling [23], trajectory planning [24] and
tracking [25]. When relying on a motion capture system for ego-motion information, au-
tonomous MAVs achieved significantly fast speeds, even faster than some expert human
pilots [26]. Progress is also made in visual ego-motion estimation and localization on the
racing track. Since the appearance of the gates is pre-known, it is straightforward to local-
ize the MAV in the track by detecting the gates in the image. Visual gate detection and a
simple aerodynamic model of the quadrotor MAV are the key components of efficient ego-
motion estimation solutions [27, 28]. Learning-based semantic segmentation for gate de-
tection has been proven to be robust towards motion blur and illumination variance [28].
A problem of using vision only for gate detection is that the ego-motion estimation tends
to drift when there is no gate in the field of view. When the onboard computational re-
source allows, VIO is a good choice to maintain the accuracy of ego-motion estimation.
ADR solutions [21, 29] deploy a VIO [19] and use gate detection to compensate for VIO
drift. In real-world applications where landmarks such as the gates are far away from each
other, the accuracy of the VIO is a determining factor of whether the MAV succeeds in
reaching the next landmark.

However, VIO can become less accurate in fast flight. Visual feature points based on
image gradient [30–32] are widely used in the visual processing front-end of VIO. In high-
speed translational motion and especially fast rotation that occurs when the MAV makes
sharp turns, the optical flow in the camera’s field of view massively increases, causing sig-
nificant motion blur that lowers the image gradient. It becomes harder to detect or track
feature points. The motion blur changes the observed appearance of the environment,
which makes it hard to use direct photometric feedback [19, 33] as well. An example of
motion blur is shown in Fig. 1.1. Another negative effect is that agile maneuvers result in
feature points leaving the field of view quickly. Fewer observations of feature points are
not only unfavorable to accuracy but also require more frequent new point detection and
thus lead to more computational effort in image processing [20]. Some of these issues can
be tackled by adopting novel hardware, i.e., event cameras. The event camera is a new-
generation vision sensor that is known for low latency, high temporal resolution, and high
dynamic range [34]. It does not suffer from motion blur and thus can be a promising sen-
sor for fast MAV flight. But an event camera provides little information in slow-speed flight
and hover. It requires the MAV to keep uninterrupted motion to generate enough events.
Also due to the much higher prices, event cameras are not likely to replace the dominating
position of frame-based cameras on MAVs in the near future.

Given that deep learning outperforms conventional approaches in many computer
vision tasks, researchers started to explore learning-based ego-motion estimation. Ob-
served in [35, 36], convolutional neural networks (CNNs) predicting relative pose between
consecutive images show robustness to motion blur. Although appealing, many learning-
based works train and test on the same dataset. Thus the generalizability is not verified.
In addition, techniques detecting outliers in network predictions are currently immature.

1.2. PREVIOUS RESEARCH

1

5

(a) A racing track of AIRR [28]. The gates were printed with patterns.
(b) A racing track consisting of
four thin orange gates [27].

Figure 1.2: Two examples of autonomous drone racing tracks.

Thus, network performance is questioned in generic usage. Besides, pursuing higher ac-
curacy leads to more and more layers and parameters, which makes the computation un-
affordable for onboard processors.

Based on the above discussion and looking back to the question asked before, al-
though VIO solutions satisfy the requirement of autonomous MAVs in many usage scenar-
ios, more research is required for visual ego-motion estimation to gain more robustness
towards the negative effects caused by agile maneuvers of MAVs. This dissertation mainly
studies learning-based approaches, emphasizing generalization, algorithmic efficiency,
and robustness to fast motion. Before diving into the solutions, an overview of previous
works comes first in the remainder of this chapter, followed by the research questions and
the outline of this dissertation.

1.2. PREVIOUS RESEARCH
This section is an overall description of the background and research progress related to
this dissertation. The related works are divided into two types according to whether the
visual information is used in an explicit way. The first type is mainstream and traditional.
The visual information is explicitly used as pixel-level correspondences to establish con-
straints on camera motion based on multi-view geometry. The other way is based on deep
learning. Artificial neural networks (ANNs) are trained to infer required information from
raw images.

1.2.1. TRADITIONAL METHODS
After fast development over the past two decades, monocular VIO has grown into a big
family. Survey papers [37–39] provide comprehensive and detailed introductions and dis-
cussions. The following is a brief overview of main-stream VIO solutions within which
selected works are discussed in more detail because of their algorithmic efficiency and
performance in high-speed flight.

The vision processing front-end of VIO solutions can be categorized into feature-based
methods and direct methods. Feature-based pipelines extract image features, mostly point
features [30, 40], according to the requirements of neighboring pixel intensities. Feature
correspondences between images are established by feature tracking based on optical flow
[41] or matching using descriptors [32, 42]. The constraints on camera poses and feature

1

6 1. INTRODUCTION

point positions is derived from the 2-d reprojection error or epipolar geometry [43].

In contrast, direct methods take advantage of more image information. For example,
LSD-SLAM [12] tracks all pixels with enough gradient and builds a semi-dense map. Us-
ing pixel intensity gradient, the optimization process adjusts camera pose and pixel depth
to minimize the photometric error of the aligned pixels. Although directly working on
raw pixels avoids extra computational resources on extracting and matching features, it is
sensitive to the initialization of the camera pose and pixel depth, and how well the photo-
metric consistency holds.

There are also hybrid methods that not only extract feature points but also directly
establish correspondences using pixel intensities. Semi-direct visual odometry (SVO) [44]
extracts FAST [40] point features only in keyframes and uses the direct method to align
the image patches around the points. Processing sparse patches results in low processing
time and thus brings SVO advanced time efficiency [45]. Robust visual-inertial odometry
(ROVIO) [19] adopts the combination of FAST points and image patches as well. For MAVs,
feature-based methods and hybrid methods are more popular thanks to their robustness
and maturity. But feature points are sensitive to image gradient so image blur can lead to
less robust detection and tracking. A mitigation measure adopted by OpenVINS [46] is to
conduct image preprocessing by histogram equalization [47] to increase the contrast.

In terms of the state estimation back-end, the extended Kalman filter (EKF) is an op-
tion for fusing inertial and visual measurements. VIO solutions with such a back-end are
often referred to as filter-based methods. For example, ROVIO [19] aligns sparse image
patches iteratively using the photometric error as the innovation term in the measurement
update of an IEKF (iterative EKF). The bearings and distances of 3-d world points captured
by the image patch centers are included in the filter’s state vector. When the number of
tracked patches drops below a threshold, FAST feature points are extracted and the corre-
sponding image patches surrounding them are added to the tracking process. The design
of ROVIO enables it to operate on a single thread. Given its robustness, multi-camera ca-
pability and computational efficiency, ROVIO was adopted in autonomous drone racing
[21]. But its real-time processing capability is constrained by the size of the state vector,
making it difficult to track a large number of image patches at the same time.

Multi-state constraint Kalman filter (MSCKF) [18] is one of the earliest successful VIO
methods and has many variants [20, 46, 48, 49]. Its vision front-end is feature point de-
tection and tracking. The 3-d positions of the points are not in the state vector of the EKF.
Instead, the state vector is augmented by the stochastically cloned camera poses (posi-
tion and orientation) of multiple image frames. The observations of a 3-d world point in
multiple image frames encode the constraint of the camera motion. When the tracking
of a feature point has been lost or the number of camera poses reaches the maximum,
the visual measurements (bearing vectors) of this point in multiple frames are used to tri-
angulate its 3-d position in a least-square manner. The residual in the EKF update is the
reprojection error, i.e., the difference between the 2-d observation of a world point and the
2-d projection of this point in the image plane according to its triangulated 3-d position.
Thus, different from ROVIO which updates the camera pose once a new image is avail-
able, the visual update of MSCKF is triggered in a “delayed” manner that utilizes previous
observations of a feature point. Because the position of a point is not maintained in the
state vector, MSCKF can make use of more feature points without significantly increasing

1.2. PREVIOUS RESEARCH

1

7

the computational cost.
Another type of back-end is based on batch optimization, iteratively solving a nonlin-

ear least-squares problem over a set of measurements. It is also known as bundle adjust-
ment (BA). To prevent the computation to increase over time, recent states in a bounded-
size sliding window are actively optimized while past states and measurements are margin-
alized. There are open-source libraries for solving the optimization problem. For example,
the Ceres Solver [50] adopted by [51] and the general graph optimization (g2o) adopted by
[11]. Compared to filter-based methods, BA-based methods weigh accuracy more than
efficiency. It is often the choice when mapping the environment is required. Highly rec-
ognized BA-based works include OKVIS (open keyframe-based visual-inertial SLAM) [52],
VINS-Mono (monocular visual-inertial system) [51], and ORB-SLAM3 [53].

VIO methods are compared with each other on benchmark datasets. The EuRoC MAV
dataset [54] is the most used visual-inertial dataset collected by a multirotor MAV. There is
motion blur caused by fast rotation in some sequences of this dataset. But in general, the
flight speed is slow given the mobility of an MAV. In contrast, the UZH-FPV dataset [55]
focuses more on fast flight. It was collected by a racing quadrotor MAV flown by an expert
pilot. The speed of the MAV (up to 12.8 m/s indoor and 23.4 m/s outdoor) is much higher
than EuRoC (2.3m/s indoor). As a result, the optical flow is much bigger and induces
more motion blur. According to [56], MSCKF variants using a monocular camera [46, 49],
a variant of VINS-Mono using a stereo camera [57], and variants of OKVIS using a stereo
camera [58, 59] perform well on this dataset.

There are also works that utilize the aerodynamic model of the quadrotor MAV in
ego-motion estimation. A velocity estimator was proposed by [60]. It adopts an aerody-
namic model that calculates the thrust force and the drag force of the propellers from rotor
speeds. The camera is only used for estimating the relative yaw angle of an image pair us-
ing the correspondences of feature points. VIMO (visual inertial model-based odometry)
[61] extends [51] by establishing a residual term derived from the dynamic model of the
quadrotor and adding it to BA.

(a) The trajectories of FAST feature points [40]
plotted by OpenVINS [46]. The image is from the
EuRoC dataset [54].

Relative
Rotation and
Translation

Consecutive Images

(b) A basic ANN for relative pose prediction. Multiple con-
volutional layers extract information from the channel-
dimension concatenated images and downscale the fea-
ture map.

Figure 1.3: Two categories of vision front-end introduced in this section. The mainstream is detect-
ing and tracking visual feature points. A newer approach is to train an ANN that predicts the relative
pose of the input images.

1

8 1. INTRODUCTION

1.2.2. LEARNING-BASED METHODS

In the presence of significant motion blur, visual features are harder to detect and track
because of less image gradient. It is also problematic to assume that the pixels filming
the same 3-d world point in different images maintain constant intensities. Human be-
ings can recognize most objects even in a very blurry image and approximately predict
the camera motion. This “intelligence” can be explained by the experiences that humans
have learned throughout their lifetime. Researchers have been working on training artifi-
cial neural networks (ANNs) to predict the relative pose of a moving camera to empower
ANNs with similar intelligence in the presence of image blur and other possible unfavor-
able conditions [35, 36, 62, 63], e.g., varying illumination, motion blur, and dynamic ob-
jects. In the rest of this dissertation, an ANN predicting the camera’s relative rotation and
translation between the time points when the input images are captured is referred to as
a pose network.

Training a pose network is straightforward when ground-truth pose labels are avail-
able. The input of a pose network can be an image pair with overlapping contents [35, 64–
66] or a dense optical flow map of the image pair [36, 62]. The flow map explicitly expresses
the pixel-wise matching information that encodes the motion of the camera, assuming a
mostly static scene. There are works that use both images and IMU measurements as
input to the network, i.e., learning-based VIO solutions. VINet [64] is an end-to-end train-
able VIO solution supervised by ground truth. Two separate networks are in charge of vi-
sual processing and inertial processing, respectively, at different sensor rates. They output
intermediate tensors without physical meaning. Another network takes the concatenated
output tensors as input to perform sensor fusion and pose prediction. Long Short-Term
Memory (LSTM) is utilized to process IMU measurements in [64, 65] to retain the effects
of past input on the current prediction. Instead of training an IMU network, the learning-
based VIO proposed in [66] integrates IMU measurements to propagate motion states,
since IMU has well-understood models grounded in physics. The pose network predic-
tions are used in the EKF updating. The ground truth poses supervise not only the pose
network predictions but also the a posteriori poses after sensor fusion. The training is
end-to-end thanks to the differentiable extended Kalman filter (EKF).

As ground-truth pose is expensive to obtain in the real world, datasets with labels are
often limited in size. This is the reason that self-supervised learning draws great research
interest. For temporally consecutive images, the captured scenes usually have an overlap.
The intensities of the pixels filming the overlapping scene can be used as a constraint of
the camera motion. SfMLearner [67] first proposed to simultaneously train a pose net-
work and a monocular depth network. The pose network predicts the relative pose Tt→s

between the source image Is and the target image It . The depth network predicts D t , the
pixel-wise depth map of It . An image Ĩs can be synthesized by warping Is according to the
2-d projections of the 3-d point cloud established from D t in the image plane of Is located
at Tt→s . Minimizing the photometric difference between Ĩs and It leads to accurate Tt→s

and D t , when the following assumptions hold: the scene is static, the camera has enough
translational motion, the pixel is visible in both images, and the scene appearance keeps
constant in different images. In summary, this self-supervised loss function is derived
from the temporal consistency of the structure and appearance. It is referred to as the
reprojection-based loss in some works and in this dissertation because Ĩs is synthesized

1.2. PREVIOUS RESEARCH

1

9

through the reprojection of 3-d points defined by D t .

This scheme has been further improved by many following works. Monodepth2 [68]
proposed a pixel-wise auto-masking strategy that uses more than one source images to
construct multiple photometric error maps with the target image. For each pixel, only
the smallest photometric error in the error maps is minimized by network training. This
strategy can avoid minimizing the incorrect loss derived from a world point occluded in
a source image. Another strategy is to exclude pixels at whose locations the intensities
have little change in consecutive images. Because its constant intensity can be caused by
objects moving at the same velocity as the camera or a stationary camera. Both situations
violate the assumptions of the reprojection-based loss. Works [69, 70] introduce the 3-
d geometric consistency constraint into the loss function. Both the depth maps D t and
Ds of the images It and Is are predicted by the depth network. D t and Ds and Tt→s are
adjusted together in training to align the two point clouds corresponding to D t and Ds .

For the above-mentioned works, the scales of the translational motion and depth are
trained to be consistent through the gradient flow. At inference time, the two networks run
independently, so their scales are decoupled. In [71] and [72], the pose network inference
is conducted for multiple times by iterative view synthesis. In the first iteration, the in-
puts of the pose network are the original Is and It . With the first pose prediction Tt→s and
D t , the warped source image Ĩs,1 can be synthesized. It should have smaller visual dis-
parities with Ĩs,1 than with Is . In the second iteration, the pose network infers the relative
pose Tt→s,1 from the inputs Ĩs,1 and It . Tt→s,1 is then composed to Tt→s . The composed
transformation is used to synthesize the Ĩs,2 that is an input of the third iteration. In this
way, the pose network incrementally refines the transformation by inferring from more
and more similar image pairs. The input image Ĩs,i is a function of D t . So their scale is
coupled.

Learning-based VIO can also perform self-supervised learning using the reprojection-
based loss. Same as [64, 65], SelfVIO [73] has three networks for vision, IMU, and fusion,
respectively. The relative pose Tt→s in the reprojection-based loss is the output of the fu-
sion network. Although accelerometer measurements have metric scale, as pointed out
in [63], a network has no knowledge of the IMU kinematic so the metric scale in sensor
measurements is not preserved. The scale of translational motion and depth is still un-
known. Wagstaff et al. [63] extended [66] to a self-supervised monocular VIO with metric
scale. The scale of IMU data is explicitly kept in the state propagation based on IMU in-
tegration. A depth network predicts a depth map that constructs the reprojection-based
loss together with the a posteriori pose of the differentiable EKF.

Besides EKF, pose and depth predictions have also been involved in optimization-
based VIO back-ends. In D3VO [74], network predictions are integrated into a traditional
direct visual odometry framework [33]. Depth predictions are leveraged to initialize the
sparse depths that are later optimized by the photometric BA. The predicted relative pose
not only initializes the pose in the optimization but also builds a factor graph of poses as
a regularizer. The depth network additionally predicts a pixel-wise uncertainty map re-
flecting how well the appearance consistency and the static scene assumption hold. The
uncertainty serves as the weight of the photometric energy in BA.

The works discussed above have a pose network to directly regress to the relative pose
between an image pair. Besides, deep learning can be used in other ways to contribute

1

10 1. INTRODUCTION

to ego-motion estimation. Feature points as the vision front-end of VIO can be detected
[75, 76] and matched [77, 78] using learning-based approaches. The authors of [79] use
learning-based dense optical flow [80] to track feature points. DF-VO [81] calculates the
relative pose by solving the essential matrix of epipolar geometry according to the pixel
correspondences predicted by an optical flow network. DROID-SLAM [82] also adopts
an optical flow network. Its predictions are used as constraints for a BA back-end that
optimizes camera poses. A learnable update operator iteratively refines the dense optical
flow map. The BA maps an optical flow revision and its confidence map to the pose and
depth update, ensuring that the reprojected points match the revised optical flow. DROID-
SLAM is trained end-to-end thanks to the differentiable BA layer. The camera pose and the
optical flow induced by the estimated depth and pose are supervised by the ground truth.

Compared with traditional solutions, learning-based ego-motion estimation has not
been widely accepted for navigating MAVs. The reasons can be summarized as three-
fold. The first one is the high computational demand. In the pursuit of accuracy, the size
of networks grows. Iterative inferencing [71, 72, 82] can not be paralleled and thus fur-
ther increases the overall time consumption. The optimization-based back-end is another
computational burden. For instance, DROID-SLAM [82] is a computationally demanding
system that requires a powerful NVIDIA GeForce RTX-3090 GPU for tracking and local BA
to process the monocular video of EuRoC dataset in real-time, with images downsampled
and frame rate reduced to 10 fps.

The second reason is the lower accuracy than traditional solutions when tested on an
MAV dataset. Many approaches achieve higher accuracy than traditional approaches on
KITTI [83], a car dataset with camera motion in three degrees of freedom (DoF). A few
works [35, 36, 63–66, 74, 82] expanded their evaluation to the EuRoC [54] MAV dataset.
Compared to KITTI, EuRoC has a smaller number of training samples, more difficult mo-
tion patterns (6 DoFs), and more complex environmental factors. Only TartanVO [36],
D3VO [74], and DROID-SLAM [82] outperform traditional approaches on EuRoC. Tar-
tanVO uses an optical flow map as the input to the pose network, and the translational
motion prediction has no scale. D3VO and DROID-SLAM have BA-based back-ends. All
of them require too high computational power for an MAV.

The third reason is about failure detection. For feature point matching, random sam-
ple consensus (RANSAC) [84] is well-recognized to be robust and effective. Although ANNs
can show high average accuracy and low outlier rate on the testing dataset, the absence of
RANSAC-like failure detection techniques gives the impression that a very wrong network
prediction is possible and unpredictable. It is a big obstacle for ANNs to be deployed for
ego-motion estimation which is critical for flight safety.

1.3. RESEARCH OBJECTIVES AND QUESTIONS

This dissertation focuses on developing visual ego-motion estimation solutions that are
robust toward agile MAV maneuvers and efficient enough for onboard processors. The
main research goal is formulated as follows.

1.3. RESEARCH OBJECTIVES AND QUESTIONS

1

11

Research Goal

To develop real-time onboard-processing visual ego-motion estimation solutions
for autonomous MAVs deployable in unknown environments. The visual process-
ing must maintain robustness during agile maneuvers.

The key requirements can be summarized as the following aspects:

• Efficiency: Trade-off accuracy and efficiency. Perform real-time processing with a
limited sacrifice of accuracy.

• Robustness: Maintain the prediction accuracy in general in the appearance of sig-
nificant motion blur and reveal inaccurate predictions by estimating the prediction
uncertainty.

• Generalization: Be deployable in unknown environments and have no strict re-
quirement on the filmed environmental structures.

The research objective is further split into four research questions, formulated as fol-
lows. In some applications, computational power for ego-motion estimation is very lim-
ited and long-term accurate ego-motion estimation is not necessary. It suffices to ensure
that the error remains within acceptable bounds until it reaches the next waypoint where
the accumulated error can be corrected. It is better that the estimator remains functional
when visual information becomes unavailable suddenly, e.g., motion blur is too much for
detecting and tracking feature points. Hence, the first research question is:

Research Question 1

How to design an ego-motion estimator that uses as little computing power as pos-
sible while maintaining acceptable accuracy?

Although wrong matches of visual feature points can be detected and rejected, the
numbers of detected and tracked points drop facing motion blur. In contrast, ANNs have
been found to possess a degree of resistance to image blur [35, 62, 63]. However, the gen-
eralization and robustness of ANNs have not been verified in real-world experiments with
high-speed MAVs. A relatively simple application scenario can help explore the gener-
alization, robustness, and efficiency of ANN in MAV ego-motion estimation. Thus the
specific research question is:

Research Question 2

Can an ANN maintain the accuracy of inferring translation velocity from blurry
images captured by a downward-facing camera while achieving real-time perfor-
mance on an onboard processor and generalization to unknown environments?

The previously discussed ANN only predicts translational motion and lacks the ability
to evaluate the accuracy of its predictions. This poses a hidden danger as an erroneous

1

12 1. INTRODUCTION

prediction could cause disastrous errors in ego-motion estimation. To achieve higher ac-
curacy in ego-motion estimation, the ANN prediction should also reflect camera rotation.
Moreover, it is crucial to have network uncertainty estimation that weighs the prediction
confidence. Self-supervised learning is preferred because the requirement for ground-
truth labels can limit the amount of training data, thereby compromising generalization.
Therefore, the third research question is:

Research Question 3

How to train a planar homography network without using ground-truth labels, es-
timate the prediction uncertainty of the network, and build an efficient and accu-
rate VIO upon it?

If a visual processing algorithm can only handle mainly planar surfaces, its application
scope becomes limited. Compared to the homograph network mentioned above, pose
networks that regress camera rotation and translation from images of general 3-d struc-
tures are more suitable for small MAVs equipped with a single forward-facing camera.
Training a lightweight and uncertainty-aware pose network without using ground-truth
labels requires highly accurate target poses obtained from self-supervised learning. Since
the self-supervised learning of a pose network for 3-d structures requires depth informa-
tion, a depth network can be trained simultaneously. For MAVs, the depth network should
provide sufficient information for obstacle avoidance while remaining lightweight. Con-
sidering both pose and depth, the fourth research question is:

Research Question 4

How to obtain accurate network predictions of pose and depth without ground
truth and use them to train a lightweight uncertainty-aware pose network and a
lightweight depth network for a forward-facing camera?

1.4. DISSERTATION OUTLINE
This dissertation has six chapters. The current Introduction chapter introduces the back-
ground, current state-of-the-art research outcomes, and the remaining challenges. Re-
search questions are then raised accordingly. In the following four chapters, the above
research questions are investigated in detail one by one.

In Chapter 2, an EKF-based ego-motion estimator is proposed. It detects and tracks
traditional visual feature points and aims at minimizing computational demand. The fre-
quency of feature point detection operation is reduced for less time consumption in visual
processing. A linear aerodynamic model of the drag force is utilized. It leads to bounded
estimation errors in the velocity components orthogonal to the shafts of propellers and
the attitude relative to the gravity direction, even when vision information is unavailable.
The gravity-related attitude is then taken as known information to simplify the RANSAC-
based calculation of the relative heading angle and the translational direction, using the
epipolar constraints.

After digging into the potential of higher efficiency given the traditional vision front-

REFERENCES

1

13

end, Chapter 3 switches the front-end to ANNs and explores their ability to handle motion
blur better. Using a de-rotated image pair as input, the networks predict 3-d translational
motion that is scaled by the distance from the camera to the observed planar surface. To
preserve accuracy while squeezing network inference time cost, the network architecture
of cascaded network blocks connected by image warping is adopted. The network train-
ing is self-supervised on a big-scale synthetic dataset. Experiments verify the network’s
generalization, inference efficiency, and robustness towards motion blur.

Building upon the translation network that needs known rotation developed in Chap-
ter 3, Chapter 4 expands it to predict the full 8-d planar homography transformation. This
homography network is able to estimate its prediction uncertainty, utilize the prior knowl-
edge of camera motion, and maintain high and stable inference efficiency. Additionally,
accounting for 3-d objects on the ground improves the network’s adaptability to environ-
ments. The filter-based VIO designed based on the uncertainty-aware homography net-
work balances accuracy and efficiency well, rivaling mainstream VIO solutions.

Chapter 5 inherits the methodology developed in Chapter 4, which is for training a
network that can estimate its prediction uncertainty without requiring ground-truth la-
bels. It is applied to a pose network that regresses rotation and translation from image
pairs capturing general 3-d structures. The joint training scheme that involves training
a pose network and a monocular depth network simultaneously is enhanced by iterative
pose network inference based on depth-dependent view synthesis and produces higher
prediction accuracy. The more accurate pose prediction serves as the learning target for
the lightweight uncertainty-aware pose network. Additionally, this chapter explores how
to increase the prediction accuracy of a lightweight depth network that is trained based
on the joint training scheme.

Chapter 6, the final chapter, summarizes the answers to the research questions and
concludes that the proposed ego-motion estimation solutions are efficient enough for
MAVs and show robustness towards motion blur. In addition, more profound thoughts
derived from the development process of the solutions are discussed and are expected to
point out issues to be addressed for future research.

REFERENCES
[1] Wikipedia, Global positioning system, https://en.wikipedia.org/wiki/

Global_Positioning_System (2023), accessed on 3rd April 2023.

[2] Bitcraze, Motion capture positioning, https://www.bitcraze.io/
documentation/system/positioning/mocap-positioning/ (2023), accessed
on 3rd April 2023.

[3] M. W. Mueller, M. Hamer, and R. D’Andrea, Fusing ultra-wideband range measure-
ments with accelerometers and rate gyroscopes for quadrocopter state estimation, in
2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015)
pp. 1730–1736.

[4] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, Lio-sam: Tightly-coupled
lidar inertial odometry via smoothing and mapping, in 2020 IEEE/RSJ international
conference on intelligent robots and systems (IROS) (IEEE, 2020) pp. 5135–5142.

https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System
https://www.bitcraze.io/documentation/system/positioning/mocap-positioning/
https://www.bitcraze.io/documentation/system/positioning/mocap-positioning/

1

14 REFERENCES

[5] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, Fast-lio2: Fast direct lidar-inertial odometry,
IEEE Transactions on Robotics 38, 2053 (2022).

[6] S. Li, C. De Wagter, and G. C. De Croon, Self-supervised monocular multi-robot rela-
tive localization with efficient deep neural networks, in 2022 International Conference
on Robotics and Automation (ICRA) (IEEE, 2022) pp. 9689–9695.

[7] G. C. De Croon, J. J. Dupeyroux, C. De Wagter, A. Chatterjee, D. A. Olejnik, and
F. Ruffier, Accommodating unobservability to control flight attitude with optic flow,
Nature 610, 485 (2022).

[8] PX4Autopilot, Px4flow smart camera, https://docs.px4.io/main/en/sensor/
px4flow.html (2023), accessed on 3rd April 2023.

[9] Bitcraze, Flow deck v2, https://www.bitcraze.io/products/flow-deck-v2/
(2023), accessed on 3rd April 2023.

[10] P.-J. Bristeau, F. Callou, D. Vissière, and N. Petit, The navigation and control technol-
ogy inside the ar. drone micro uav, IFAC Proceedings Volumes 44, 1477 (2011).

[11] R. Mur-Artal and J. D. Tardós, Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras, IEEE transactions on robotics 33, 1255 (2017).

[12] J. Engel, T. Schöps, and D. Cremers, Lsd-slam: Large-scale direct monocular slam,
in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part II 13 (Springer, 2014) pp. 834–849.

[13] D. Gehrig, M. Göttgens, B. Paden, and E. Frazzoli, Scale-corrected monocular-slam
for the ar. drone 2.0, (2017).

[14] S. H. Lee and G. de Croon, Stability-based scale estimation for monocular slam, IEEE
Robotics and Automation Letters 3, 780 (2018).

[15] D. Scaramuzza and F. Fraundorfer, Visual odometry [tutorial], IEEE robotics & au-
tomation magazine 18, 80 (2011).

[16] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, Review of visual odome-
try: types, approaches, challenges, and applications, SpringerPlus 5, 1 (2016).

[17] A. Martinelli, Vision and imu data fusion: Closed-form solutions for attitude, speed,
absolute scale, and bias determination, IEEE Transactions on Robotics 28, 44 (2011).

[18] A. I. Mourikis and S. I. Roumeliotis, A multi-state constraint kalman filter for vision-
aided inertial navigation, in Proceedings 2007 IEEE international conference on
robotics and automation (IEEE, 2007) pp. 3565–3572.

[19] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, Iterated extended kalman
filter based visual-inertial odometry using direct photometric feedback, The Interna-
tional Journal of Robotics Research 36, 1053 (2017).

https://docs.px4.io/main/en/sensor/px4flow.html
https://docs.px4.io/main/en/sensor/px4flow.html
https://www.bitcraze.io/products/flow-deck-v2/

REFERENCES

1

15

[20] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor,
and V. Kumar, Robust stereo visual inertial odometry for fast autonomous flight, IEEE
Robotics and Automation Letters 3, 965 (2018).

[21] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Muglikar, and
D. Scaramuzza, Alphapilot: Autonomous drone racing, Autonomous Robots 46, 307
(2022).

[22] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu, et al.,
Swarm of micro flying robots in the wild, Science Robotics 7, eabm5954 (2022).

[23] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza, Neurobem: Hybrid
aerodynamic quadrotor model, arXiv preprint arXiv:2106.08015 (2021).

[24] P. Foehn, A. Romero, and D. Scaramuzza, Time-optimal planning for quadrotor way-
point flight, Science Robotics 6, eabh1221 (2021).

[25] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, A comparative study of
nonlinear mpc and differential-flatness-based control for quadrotor agile flight, IEEE
Transactions on Robotics 38, 3357 (2022).

[26] D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka, Y. Song, G. Cioffi,
E. Kaufmann, and D. Scaramuzza, Past, present, and future of autonomous drone
racing: A survey, arXiv preprint arXiv:2301.01755 (2023).

[27] S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. de Croon, Visual model-
predictive localization for computationally efficient autonomous racing of a 72-g
drone, Journal of Field Robotics 37, 667 (2020).

[28] C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. de Croon, The sensing state-
estimation and control behind the winning entry to the 2019 artificial intelligence
robotic racing competition, Field Robot. 2, 1263 (2022).

[29] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scara-
muzza, Beauty and the beast: Optimal methods meet learning for drone racing, in
2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp.
690–696.

[30] J. Shi et al., Good features to track, in 1994 Proceedings of IEEE conference on computer
vision and pattern recognition (IEEE, 1994) pp. 593–600.

[31] M. Trajković and M. Hedley, Fast corner detection, Image and vision computing 16,
75 (1998).

[32] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, Orb: An efficient alternative to sift
or surf, in 2011 International conference on computer vision (Ieee, 2011) pp. 2564–
2571.

[33] J. Engel, V. Koltun, and D. Cremers, Direct sparse odometry, IEEE transactions on
pattern analysis and machine intelligence 40, 611 (2017).

1

16 REFERENCES

[34] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger,
A. J. Davison, J. Conradt, K. Daniilidis, et al., Event-based vision: A survey, IEEE trans-
actions on pattern analysis and machine intelligence 44, 154 (2020).

[35] S. Wang, R. Clark, H. Wen, and N. Trigoni, End-to-end, sequence-to-sequence prob-
abilistic visual odometry through deep neural networks, The International Journal of
Robotics Research 37, 513 (2018).

[36] W. Wang, Y. Hu, and S. Scherer, Tartanvo: A generalizable learning-based vo, in Con-
ference on Robot Learning (PMLR, 2021) pp. 1761–1772.

[37] C. Chen, H. Zhu, M. Li, and S. You, A review of visual-inertial simultaneous localiza-
tion and mapping from filtering-based and optimization-based perspectives, Robotics
7, 45 (2018).

[38] G. Huang, Visual-inertial navigation: A concise review, in 2019 international confer-
ence on robotics and automation (ICRA) (IEEE, 2019) pp. 9572–9582.

[39] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny, Visual and visual-inertial slam:
State of the art, classification, and experimental benchmarking, Journal of Sensors
2021, 1 (2021).

[40] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in
Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9 (Springer, 2006) pp. 430–443.

[41] B. D. Lucas and T. Kanade, An iterative image registration technique with an applica-
tion to stereo vision, in IJCAI’81: 7th international joint conference on Artificial intel-
ligence, Vol. 2 (1981) pp. 674–679.

[42] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, Brief: Binary robust independent
elementary features, in Computer Vision–ECCV 2010: 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV
11 (Springer, 2010) pp. 778–792.

[43] Wikipedia, Epipolar geometry, https://en.wikipedia.org/wiki/Epipolar_
geometry (2022), accessed on 3rd April 2023.

[44] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, Svo: Semidi-
rect visual odometry for monocular and multicamera systems, IEEE Transactions on
Robotics 33, 249 (2016).

[45] J. Delmerico and D. Scaramuzza, A benchmark comparison of monocular visual-
inertial odometry algorithms for flying robots, in 2018 IEEE international conference
on robotics and automation (ICRA) (IEEE, 2018) pp. 2502–2509.

[46] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, Openvins: A research platform
for visual-inertial estimation, in 2020 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2020) pp. 4666–4672.

https://en.wikipedia.org/wiki/Epipolar_geometry
https://en.wikipedia.org/wiki/Epipolar_geometry

REFERENCES

1

17

[47] OpenCV, Histogram equalization, https://docs.opencv.org/3.4/d4/d1b/
tutorial_histogram_equalization.html (2023), accessed on 3rd April 2023.

[48] M. Li and A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odometry,
The International Journal of Robotics Research 32, 690 (2013).

[49] Q. Xiaochen, H. Zhang, and F. Wenxing, Lightweight hybrid visual-inertial odometry
with closed-form zero velocity update, Chinese Journal of Aeronautics 33, 3344 (2020).

[50] S. Agarwal, K. Mierle, and T. C. S. Team, Ceres Solver, (2022).

[51] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial
state estimator, IEEE Transactions on Robotics 34, 1004 (2018).

[52] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, Keyframe-based
visual–inertial odometry using nonlinear optimization, The International Journal of
Robotics Research 34, 314 (2015).

[53] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, Orb-slam3:
An accurate open-source library for visual, visual–inertial, and multimap slam, IEEE
Transactions on Robotics 37, 1874 (2021).

[54] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart, The euroc micro aerial vehicle datasets, The International Journal of
Robotics Research 35, 1157 (2016).

[55] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza, Are we ready
for autonomous drone racing? the uzh-fpv drone racing dataset, in 2019 International
Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 6713–6719.

[56] Robotics and U. o. Z. Perception Group, Uzh fpv leader board, https://fpv.ifi.
uzh.ch/uzh/uzh-fpv-leader-board/ (2023), accessed on 3rd April 2023.

[57] H. Zhang and C. Ye, Vins-stereo for the fpv drone racing vio competition 2020, .

[58] S. Leutenegger, Okvis 2.0 for the fpv drone racing vio competition 2020, (2020).

[59] J. Huai and Y. Lin, A keyframe-based sliding window filter, .

[60] J. Svacha, G. Loianno, and V. Kumar, Inertial yaw-independent velocity and attitude
estimation for high-speed quadrotor flight, IEEE Robotics and Automation Letters 4,
1109 (2019).

[61] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, Vimo: Simultaneous visual inertial
model-based odometry and force estimation, IEEE Robotics and Automation Letters
4, 2785 (2019).

[62] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, Exploring representation learn-
ing with cnns for frame-to-frame ego-motion estimation, IEEE robotics and automa-
tion letters 1, 18 (2015).

https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://github.com/ceres-solver/ceres-solver
https://fpv.ifi.uzh.ch/uzh/uzh-fpv-leader-board/
https://fpv.ifi.uzh.ch/uzh/uzh-fpv-leader-board/

1

18 REFERENCES

[63] B. Wagstaff, E. Wise, and J. Kelly, A self-supervised, differentiable kalman filter for
uncertainty-aware visual-inertial odometry, arXiv preprint arXiv:2203.07207 (2022).

[64] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, Vinet: Visual-inertial odome-
try as a sequence-to-sequence learning problem, in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31 (2017).

[65] L. Han, Y. Lin, G. Du, and S. Lian, Deepvio: Self-supervised deep learning of monoc-
ular visual inertial odometry using 3d geometric constraints, in 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019) pp. 6906–
6913.

[66] C. Li and S. L. Waslander, Towards end-to-end learning of visual inertial odometry
with an ekf, in 2020 17th Conference on Computer and Robot Vision (CRV) (IEEE,
2020) pp. 190–197.

[67] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, Unsupervised learning of depth and
ego-motion from video, in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017) pp. 1851–1858.

[68] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, Digging into self-supervised
monocular depth estimation, in Proceedings of the IEEE/CVF international conference
on computer vision (2019) pp. 3828–3838.

[69] R. Mahjourian, M. Wicke, and A. Angelova, Unsupervised learning of depth and ego-
motion from monocular video using 3d geometric constraints, in Proceedings of the
IEEE conference on computer vision and pattern recognition (2018) pp. 5667–5675.

[70] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid, Unsupervised
scale-consistent depth and ego-motion learning from monocular video, Advances in
neural information processing systems 32 (2019).

[71] M. Hosseinzadeh, R. Fahimi, Y. Wang, et al., Unsupervised learning of camera pose
with compositional re-estimation, in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (2020) pp. 11–20.

[72] B. Wagstaff, V. Peretroukhin, and J. Kelly, On the coupling of depth and egomotion
networks for self-supervised structure from motion, IEEE Robotics and Automation
Letters 7, 6766 (2022).

[73] Y. Almalioglu, M. Turan, M. R. U. Saputra, P. P. de Gusmão, A. Markham, and
N. Trigoni, Selfvio: Self-supervised deep monocular visual–inertial odometry and
depth estimation, Neural Networks 150, 119 (2022).

[74] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry, in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (2020) pp. 1281–1292.

REFERENCES

1

19

[75] D. DeTone, T. Malisiewicz, and A. Rabinovich, Superpoint: Self-supervised interest
point detection and description, in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops (2018) pp. 224–236.

[76] A. B. Laguna and K. Mikolajczyk, Key. net: Keypoint detection by handcrafted and
learned cnn filters revisited, IEEE Transactions on Pattern Analysis and Machine In-
telligence (2022).

[77] K. M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, and P. Fua, Learning to find good
correspondences, in Proceedings of the IEEE conference on computer vision and pat-
tern recognition (2018) pp. 2666–2674.

[78] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, Superglue: Learning fea-
ture matching with graph neural networks, in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (2020) pp. 4938–4947.

[79] C. Huang, R. Yan, and X. Liu, A Filter-Based Visual-Inertial Odometry with RAFT,
Tech. Rep. (Megvii, Tech. Rep, 2020).

[80] Z. Teed and J. Deng, Raft: Recurrent all-pairs field transforms for optical flow, in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part II 16 (Springer, 2020) pp. 402–419.

[81] H. Zhan, C. S. Weerasekera, J.-W. Bian, and I. Reid, Visual odometry revisited: What
should be learnt? in 2020 IEEE International Conference on Robotics and Automation
(ICRA) (IEEE, 2020) pp. 4203–4210.

[82] Z. Teed and J. Deng, Droid-slam: Deep visual slam for monocular, stereo, and rgb-d
cameras, Advances in neural information processing systems 34, 16558 (2021).

[83] A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vi-
sion benchmark suite, in 2012 IEEE conference on computer vision and pattern recog-
nition (IEEE, 2012) pp. 3354–3361.

[84] Wikipedia, Random sample consensus, https://en.wikipedia.org/wiki/
Random_sample_consensus (2023), accessed on 3rd April 2023.

https://en.wikipedia.org/wiki/Random_sample_consensus
https://en.wikipedia.org/wiki/Random_sample_consensus

2
EFFICIENT MODEL-AIDED

VISUAL-INERTIAL EGO-MOTION

ESTIMATION FOR MULTIROTOR

MICRO AIR VEHICLES

A promising approach to ego-motion estimation of multirotor micro air vehicles (MAVs)
is to fuse information from a monocular camera and an inertial measurement unit (IMU).
Visual-inertial odometry (VIO) solutions face an efficiency-accuracy trade-off when they are
deployed onboard small-sized MAVs with limited processing power. This chapter proposes
an aerodynamic-model-aided approach that emphasizes time efficiency over estimation ac-
curacy. A linear drag force model of propellers guarantees bounded estimation errors in the
velocity components orthogonal to the shafts of propellers and the attitude relative to the
gravity direction. Feature point correspondences are extracted from the monocular image
stream to compute the relative heading angle and translational direction, which is fused
with inertial measurements by an extended Kalman filter (EKF) in a loosely coupled man-
ner. We evaluate our approach on a publicly-available dataset and compare its accuracy
and time efficiency against a state-of-the-art approach. It shows balanced performance in
accuracy and efficiency. The robustness to the situations where vision information becomes
unavailable is also observed.

Parts of this chapter have been accepted by the International Micro Air Vehicle Conference and Competition
(2023).

21

2

22
2. EFFICIENT MODEL-AIDED VISUAL-INERTIAL EGO-MOTION ESTIMATION FOR

MULTIROTOR MICRO AIR VEHICLES

2.1. INTRODUCTION
The autonomous flight of micro air vehicles (MAVs) in GPS-denied environments is a very
challenging yet very popular problem in the field of robotics research. For large flying
robots (i.e. heavier than ∼300 grams, and larger than ∼50 centimeters in diameter), this
task is substantially simpler since they are not constraint by computational or payload
capacity, and can process information from numerous sensors. However, they require
more flying space and stringent safety checks, and are generally more expensive. On the
other hand, smaller palm-sized drones [1, 2] are a promising alternative as they are safer
and cheaper, but come with the disadvantage that they are generally limited in terms of
resources. This limitation makes the combination of a monocular camera and an iner-
tial measurement unit (IMU) the most promising option for ego-motion estimation. The
camera provides abundant up-to-scale information about the surroundings, and the met-
ric scale can be recovered using accelerometers or by means of control stability [3, 4].

Visual-inertial odometry (VIO) [5–9] has shown good performance in MAV naviga-
tion in recent years. It is intuitive to perform ego-motion estimation and environment
mapping simultaneously by taking the reprojection error from observations of the same
landmark in different frames and IMU measurements as constraints between the poses of
frames and landmarks’ locations. Environment mapping not only contributes to the ac-
curacy of the ego-motion estimation, but also provides an obstacle map for motion plan-
ning. However, this comes at the cost of a complex iterative batch graph optimization and
the need for an initialization procedure, which may be required multiple times in case of
tracking failure. Additionally, to perform the mapping, the poses of landmarks need to
be treated as states to be estimated. Even for indirect approaches [6, 7], which only map
sparse-point features and use a sliding window to bound the optimization, the computa-
tional demand of this task is still relatively high [10].

Focusing on ego-motion, the Multi-State Constraint Kalman Filter (MSCKF) [5] also
maintains a window of poses but does not optimize the location of points. It is based on
an extended Kalman filter (EKF) whose state vector is augmented with poses of the pre-
vious frames that observed the same features. The least-squares location of one point is
only calculated once after this point is no longer tracked. Its reprojection errors, which
express geometric constraints between the frames’ poses, are then used to perform visual
measurement updates. Instead of reprojecting three-dimensional points into frames, [9]
enforces multiple constraints on a pair of frames directly through the pixel locations of
their point correspondences. The drift in the relative pose is reflected by the residual of
the epipolar geometry constraint. The poses of the frame pair are updated by this resid-
ual in an EKF. The absence of 3D point locations further reduces computational demand,
and only one frame’s pose is needed to augment the state vector. However, since the pixel
location of the tracked point goes directly into the measurement equation and point cor-
respondences perform updating one by one, pose accuracy suffers from frame-to-frame
feature tracking noise. This one-point-one-time updating also requires more processing
time.

The approaches mentioned above use the raw visual features processed together with
IMU measurements in a tightly-coupled manner. Visual odometry systems like SVO [11],
which can produce up-to-scale environment map and ego-motion estimation, can be
loosely coupled with IMU measurements by an EKF [12, 13]. The EKF-based, loosely-

2.1. INTRODUCTION

2

23

coupled approach SVO+MSF [14] and the EKF-based, tightly-coupled, map-less MSCKF
outperform others in efficiency among several openly-available visual-inertial ego-motion
estimation solutions [10].

In windless environments, since all the aerodynamic force acting on an MAV is caused
by propeller rotation and ego-motion, the aerodynamic model becomes an additional
source of information for ego-motion estimation. As shown in [15], a simplified linear
drag model in the propeller plane can be combined with IMU measurements to estimate
horizontal components of attitude and velocity in the multirotor’s body frame. Unlike
estimation from purely integrated IMU measurements, the error of this model-aided es-
timation does not increase over time [15]. It is related to IMU bias and model fidelity.
This approach has been used for velocity prediction in visual-inertial ego-motion estima-
tion [1, 9] and trajectory tracking [16]. In [17], high estimation accuracy was reached with
a more precise dynamic model that takes into account thrust forces and the effect of rotor
speed on the drag, which makes the vertical speed in the body frame to be observable.
In this case, the camera provides point correspondences only to estimate the relative yaw
angle between pair of frames. Worth noticing is that the drift-free roll and pitch angles
were used as known values to simplify calculating the essential matrix.

EKF

Visual Processing

Feature
Tracking

Feature
Detection

Key
frame

?

Monocular
Camera

IMU Model-aided
State Prediction

Relative Yaw
Update

Relative
Position
Update

Accelerometer
Update

RANSAC
Linear
5-Point

Linear
2-Point

State
Vector

inliers

Yes

Figure 2.1: Pipeline of the proposed approach.

To gain robustness and accuracy with as little computation as possible, we propose
an approach that combines all the previously mentioned strategies that benefit time effi-
ciency. It is a map-less, model-aided, EKF-based, loosely-coupled ego-motion estimator
for multirotor MAVs. The linear drag force model prevents attitude and velocity estimation
in the body’s horizontal plane from drifting over time when there is no visual information.
The relative heading angle and the direction of translational motion between two frames
are calculated from visual feature point correspondences using the epipolar constraint.

2

24
2. EFFICIENT MODEL-AIDED VISUAL-INERTIAL EGO-MOTION ESTIMATION FOR

MULTIROTOR MICRO AIR VEHICLES

The attitude estimation is taken as known information to simplify the visual pose calcula-
tion. The visual update executes in a one-frame-one-time manner.

The proposed ego-motion estimator has a relatively low-complexity modular pipeline
that is easy to implement and debug. We choose the EuRoC [18] dataset as the validation
tool and compare our approach with MSCKF [5], a relatively efficient (yet accurate) VIO
solution. The accuracy of the proposed approach is compromised due to the prioritized
efficiency. But it is sufficient for short-time navigation. And it is observed that the estima-
tor can maintain its accuracy when visual information is no longer available.

2.2. ESTIMATOR FRAMEWORK
The proposed ego-motion estimator pipeline is shown in Fig. 2.1. The Visual Processing
module receives estimated roll and pitch angles from the EKF module. The relative pose is
calculated from the feature point correspondences in the current frame and the keyframe
based on the estimated roll and pitch angles. The relative yaw angle and the direction of
translation with respect to the keyframe are taken as measurements for the visual update
step of the EKF.

Figure 2.2: Schematic that illustrates the definition of the different coordinate frames and the mo-
tion of the MAV from the key frame pose to the current pose.

2.2.1. DEFINITIONS
In this chapter, we denote all scalars by lowercase letters x, vectors by lowercase bold let-
ters x , and matrices by bold uppercase letters X . Coordinate frames are denoted by non-
bold uppercase letters X . Estimated values are written as x̂, and raw measurements as
x̃.

As shown in Fig. 2.2, the body frame B (green) is defined according to the pose of the
propellers. The plane defined by the x-axis and y-axis of B is orthogonal to the propellers’
rotation axis. The IMU is located at the origin of B . IMU measurements are required
to be expressed in B before being used by the estimator. The world frame W (black) is
stationary. Its z-axis zW has the same direction as gravity. The heading frame H (red) is
defined by rotating the world frame around the z-axis by the yaw angle. Thus zH always
points to the direction of gravity. The heading frame’s origin coincides with the origin
of the camera frame C . The Euler angles roll φ, pitch θ, and yaw ψ reflect the rotation

2.2. ESTIMATOR FRAMEWORK

2

25

between W and B . The rotation sequence is first z-axis (ψ), then y-axis (θ), and last x-axis
(φ). φ and θ reflect the attitude of B respect to the gravity diretion.

If the number of tracked feature points is below the preset threshold, or there are not
enough inlier points in the RANSAC-based calculation of the essential matrix, the current
frame is defined as the new keyframe. A certain number of feature points are detected in a
new keyframe. Unit vector tke y points from the camera position of the keyframe (right) to
the current camera position (left), as shown in Fig. 2.2. The solid lines connect the camera
with the feature points detected in the keyframe. The dashed lines connect the camera
with points tracked in the current frame.

For cameras mounted far from the body center, we consider the translational velocity
of the camera caused by its rotation relative to IMU, which is neglected in [9, 17]. The
vector that points from the IMU to the camera expressed in the body frame is denoted by
pC

B .

2.2.2. LINEAR DRAG MODEL
There are various aerodynamic forces acting on an multirotor MAV in flight. In [17], the
thrust produced is modelled to be proportional to the sum of the squares of propeller
speed. The drag acting on propellers is proportional to the product of the MAV’s velocity
and the sum of the rotor speeds. The velocity-square-proportional parasitic drag on the
airframe was considered in [19] to improve the accuracy of the model in high-speed flight.

With the sensor setup that only consists of an IMU and a camera, we choose the sim-
plified velocity-proportional drag force model [15]. We define the propeller plane as the
plane orthogonal to the shafts of propellers. The drag force vector inside the propeller
plane is approximately proportional to the projection of the MAV’s velocity vector to the
propeller plane. The drag parameter kd is estimated as an EKF state to compensate for its
variation in different aerodynamic regimes. Its derivative is modeled as a small Gaussian
white noise wkd

.
The biased and noisy IMU measurements are modeled as

ã = â +ba +wa , ω̃= ω̂+bg +wg , (2.1)

where wa and wg are white Gaussian noise. We model the derivatives of the additive
accelerometer bias ba and gyroscope bias bg as small white Gaussian noise wba and wbg ,
respectively. â denotes the translational acceleration caused by the aerodynamic force
acting on a flying MAV, mainly consisting of the drag force and the thrust acting on the
propellers. Hence

â = [
ax , ay , az

]T = [kd vB ,x +wv,x , kd vB ,y +wv,y , ãz −ba,z +wa,z]T , (2.2)

where wv denotes the noise of the linear drag model.

2.2.3. STATE PROPAGATION
The estimator back-end is a simplified variant of the EKF-based back-end of the robocen-
tric VIO [20]. It estimates the relative pose between the current body frame and the local
frame of reference. The EKF state vector is defined as

x := [Rk pG , Rk
G q , gRk ,Bt pRk , Bt

Rk
q , vBt , ba , bg , kd]. (2.3)

2

26
2. EFFICIENT MODEL-AIDED VISUAL-INERTIAL EGO-MOTION ESTIMATION FOR

MULTIROTOR MICRO AIR VEHICLES

Bt is the current body frame at time t . When a new keyframe is defined, the new refer-
ence frame Rk+1 is set to be the same as the Bt at the time. Rk is the current reference
frame. It is the kth reference frame since the estimator is initialized. G stands for the
global frame. It is the first reference frame R0, i.e., the body frame when the first keyframe
is captured after the initialization of the estimator. Note that G and W are not the same
coordinate frame. They have the same origin point, but there is relative rotation between

them. R(G
W q) can be calculated from R(G

W q) ·R(Rk
G q) ·gRk = [0,0, g]T . Rk pG is a translation

vector pointing from the origin of G to the origin of Rk , expressed in Rk . It is about the
global position of Rk . Bt pRk is a translation vector pointing from the origin of Rk to the

origin of Bt , expressed in Bt . It is about the local position of Bt relative to Rk . Rk
G q is the

Hamilton quaternion reflecting the relative rotation between G and Rk . Bt
Rk

q reflects the
relative rotation between Rk and Bt . gRk indicates the gravity vector expressed in Rk . vBt

is the translational velocity of the IMU expressed in Bt .

Eq. (2.4) shows the IMU-driven state dynamics (ẋ). wp is the process noise in position

integration. [ω̂]× represents the skew-symmetric matrix associated with ω̂. R(Bt
Rk

q) is a

transformation function from Bt
Rk

q to SO3 rotation matrix that maps a vector expressed in
Bt to its expression in Rk . ⊗ denotes quaternion product. Ez is a 3×3 diagonal matrix with
[0,0,1] as its diagonal elements. Ex,y is a 3×3 diagonal matrix with [1,1,0] as its diagonal
elements. We utilize the techniques introduced in [21] for quaternion-related calculation.

Bt ṗRk =−[ω̂]× ·Bt pRk +vBt +wp ,

v̇Bt =−[ω̂]× ·vBt +R(Bt
Rk

q)T ·gRk +Ex,y (kd vBt +wv)+Ez â,

Bt
Rk

q̇ = 1

2
Bt
Rk

q ⊗
[

0
ω̂

]
,

ḃa = wba , ḃg = wbg .

(2.4)

2.2.4. ACCELERATION MEASUREMENT UPDATE

Drag-induced acceleration in the horizontal body plane (the plane that contains the x-axis
and y-axis of B) can be measured by accelerometer measurements along the x-axis and
y-axis of B . Accelerometer measurements correct state propagation through the following
measurement update equations of the EKF.

za,x = kd vB ,x +ba,x +wa,x ,

za,y = kd vB ,y +ba,y +wa,y .
(2.5)

The accelerometer measurement update steps along with the model-aided inertial
ego-motion state propagation. The estimated horizontal states (gRk , vB ,x , and vB ,y) do
not drift over time. But they are noisy and negatively affected by the accelerometer bias
ba . The performance of model-aided inertial ego-motion estimation is omitted in this
chapter. An interested reader can refer to [15]. We use the drift-free roll φ̂ and pitch θ̂ an-
gles to simplify the visual measurement processing, as introduced in Section 2.3. φ̂ and θ̂

of the current frame are calculated from R(Bt
Rk

q)T ·gRk = R(φ̂) ·R(θ̂) · [0,0, g]T .

2.3. VISUAL RELATIVE POSE ESTIMATION

2

27

2.2.5. RELATIVE VISUAL MEASUREMENT UPDATE
The Visual Processing module outputs the visual measurements of the relative pose with
respect to the keyframe, ψ̂ke y and H ,ke y t̂ , to be introduced in Section 2.3. ψ̂ke y reflects the
visual measurement of the 1-dimension rotation between the current heading frame and
the keyframe heading frame. H ,ke y t̂ is the visual measurement of the camera translation
direction expressed in the keyframe heading frame. The EKF uses these measurements in
the visual measurement update through Eq. (2.6).

zr = Bt
Rk

q +wr ,

zt =
tBC +Bt pRk −R(Bt

Rk
q)T · tBC

∥tBC +Bt pRk −R(Bt
Rk

q)T · tBC∥
+wt .

(2.6)

zr is the rotation between the current body frame and the keyframe body frame. It is
calculated from ψ̂ke y together with the roll and pitch angles of the current frame φ̂cur r.,

θ̂cur r. and the keyframe φ̂ke y , θ̂ke y . zt is the direction of the translational motion from the
camera position at the keyframe to the current camera position, expressed in the current
body frame. It is obtained by rotating H ,ke y t̂ to get its expression in the current body frame
via φ̂cur r., θ̂cur r., and ψ̂ke y,post .. zt is a unit vector, so the propagated camera translation is
normalized accordingly. tBC is the translation vector points from the IMU to the camera,
expressed in B . In the implementation, we neglect the correlation of the elements in the
three axes of the visual measurements. Thus the measurement noise matrices Rwt and
Rwr are diagonal matrices.

The rotation update using zr takes place first. And then, translation update uses zt .
The purpose of this two-step updating is to benefit the calculation of the visual transla-
tion measurement H ,ke y t̂ by the more accurate a posteriori relative yaw angle ψ̂ke y,post .,

as introduced in Section 2.3. ψ̂ke y,post . is calculated from the a posteriori Rk
G q̂ and ĝRk that

has been updated by zr .

2.2.6. COMPOSITION AND RESETTING FOR NEW KEYFRAME

When a new keyframe is defined, the a posterior relative pose estimation Bt p̂Rk and Bt
Rk

q̂
are composed to the global pose, as shown in Eq. (2.7).

Rk+1
G q =Bt

Rk
q̂ ⊗Rk

G q ,

Rk+1 pG =R(Bt
Rk

q̂)T ·Rk pG +Bt p̂Rk

(2.7)

The current body frame Bt becomes the new reference frame Rk+1. The expression of the
gravity vector gRk+1 in Rk+1 is calculated as gRk+1 = R(Bt

Rk
q̂)T · ĝRk . Bt pRk+1 and Bt

Rk+1
q are

set to a zero vector and a unit quaternion whose vector part is a zero vector, respectively.
Their corresponding elements in the covariance matrix are set to zeros too.

2.3. VISUAL RELATIVE POSE ESTIMATION
In this section, we describe the proposed method for estimating the yaw angle and the
direction of translation relative to the keyframe. The relative yaw and translation are cal-
culated separately, as shown in Fig. 2.1.

2

28
2. EFFICIENT MODEL-AIDED VISUAL-INERTIAL EGO-MOTION ESTIMATION FOR

MULTIROTOR MICRO AIR VEHICLES

2.3.1. KEYFRAME-BASED FEATURE TRACKING
We follow the same idea of keyframe-based feature detection and tracking strategy as [9,
17]. Kanade-Lucas-Tomasi (KLT) [22] is utilized as the feature tracker to continuously
track FAST features [23] between frames. If the number of points tracked in the current
frame falls below a threshold, the current frame is defined as the new keyframe. A fixed
number of uniformly distributed FAST points are detected in a new keyframe by evenly
splitting the image into several regions while keeping the same number of good features
in each region. These newly detected points are then added to a database for tracking in
the coming frames.

2.3.2. LINEAR RELATIVE YAW CALCULATION
Based on the epipolar geometry of a pair of corresponding points, the linear 8-point al-
gorithm [24] calculates the essential matrix which helps extracting the 3D relative rota-
tion and the 2D direction of translation. If two relative orientation angles are known, the
remaining angle and the direction of translation can be calculated linearly with 5-point
pairs [25]. Slightly different from [17], our linear 5-point algorithm projects point coordi-
nates on a unit sphere in the heading frame H .

The pixel location of a feature point is first undistorted and normalized using the dis-
tortion parameters and the intrinsic matrix of the camera. We then obtain the homoge-
neous coordinates of the feature points expressed in the camera frame, C p̃ke y and C p̃cur r..
The epipolar constraint is given by

C p̃T
cur r. ⌊C ,cur r.t×⌋RC ,cur r.

C ,ke y
C p̃ke y = 0 (2.8)

where ⌊C ,cur r.t×⌋ is the skew-symmetric matrix of the translation vector C ,cur r.tke y that
points from the origin of the current camera frame to the origin of the keyframe camera
frame, expressed in current camera frame.

Using the camera extrinsic rotation matrix RB
C and the estimated roll φ̂ and pitch θ̂

angles of the keyframe and the current frame, we can express the feature point coordinates
in the heading frame H , as

H p̂ke y = RT
θ̂,ke y

RT
φ̂,ke y

RB
C

C p̃ke y ,

H p̂cur r. = RT
θ̂,cur r.

RT
φ̂,cur r.

RB
C

C p̃cur r..
(2.9)

H p̂ke y and H p̂cur r. are normalized to unit vectors H pke y and H pcur r., which are equivalent
to the 3D coordinates of the feature points projected onto the unit sphere. They describe
the directions of the feature points in the heading frame H , so we refer to them as point
vectors. The epipolar constraint equation in H is given by

H pT
cur r. ⌊H ,cur r.t×⌋R H ,cur r.

H ,ke y
H pke y = 0 (2.10)

where R H ,cur r.
H ,ke y is the relative rotation between two heading frames, which equals to Rψke y .

In Eq. (2.10), the essential matrix EH = ⌊H ,cur r.t×⌋Rψke y has six entries defined up-to-scale,
which can be linearly solved with a minimum of five points [25]. The visual measurement
of relative yaw ψ̂ke y is then calculated from EH .

2.4. EXPERIMENTAL RESULTS

2

29

Both [9] and [17] reject outliers in the tracked points using the prior relative pose based
on state propagation. They apply a threshold on the 2D distance from each tracked point
to the epipolar line or the residuals of the epipolar constraint equation. This scheme is
faster than iterative random sample consensus (RANSAC) outlier rejection. However, ag-
gressive maneuvers may cause fewer feature points to be detected and correctly tracked.
Due to the biases of the IMU measurements and the simplified drag model, the propa-
gated relative translational motion would diverge if without enough vision updates. Con-
sequently, the prior relative pose is not accurate enough for outlier rejection. Therefore,
we employ RANSAC in the linear 5-point algorithm to calculate the relative yaw angle. Set-
ting the number of random trials to a reasonably small number limits the required com-
putation cost.

2.3.3. LINEAR RELATIVE TRANSLATION DIRECTION CALCULATION

During implementing the 5-point algorithm and testing it on EuRoC, it was observed that
the translation direction vectors calculated together with relative yaw were noisy. The
standard deviation of the direction error can be more than 30 degrees compared to the
ground-truth motion direction. Instead of using this translational direction in the EKF
update, we take the relative yaw angle as a known value and re-calculate the translation
vector H ,ke y t̂ . As introduced before, the visual translation measurement update happens
after the rotation update. So we can calculate H ,ke y t̂ after the rotation update and make
use of the updated a posteriori relative yaw angle ψ̂ke y,post .. This is achieved by rotating
H pcur r. from the current heading frame to keyframe heading frame by R(ψ̂ke y,post .). Then
we get the epipolar constraint equation in the keyframe heading frame as

H ,ke y pT
cur r. ⌊H ,ke y t×⌋ H ,ke y pke y = 0. (2.11)

There are only three up-to-scale entries in the translation-only essential matrix EH ,ke y =
⌊H ,ke y t×⌋ in Eq. (2.11). Therefore, H ,ke y t̂ can be solved by a minimum of two point corre-
spondences, as in [26].

We solve H ,ke y t̂ from the inlier point pairs of the 5-point RANSAC. In order to calculate
translation, corresponding point vector pairs with big enough angles are necessary. After
rotating the inlier point vectors into the keyframe heading frame, the point vector pairs
are checked. Only pairs with angles beyond a certain threshold are used. In our imple-
mentation, the threshold is 5 degrees. Note that Eq. (2.11) has two mirrored solutions.
The true direction can be determined by triangulating features and choosing the solution
with all the features in front of the camera. To be more efficient, we use the propagated
Bt pRk to determine the direction of H ,ke y t̂ . The solution that has a smaller angle with the
expression of Bt pRk in the heading frame is selected.

2.4. EXPERIMENTAL RESULTS
We evaluate the proposed ego-motion estimator on the widely recognized EuRoC MAV
dataset. This dataset is comprised of multiple sequences with varying lighting conditions,
and a maximum flight speed of 2.3 m/s. The proposed approach uses synchronized left-
camera images and IMU measurements.

2

30
2. EFFICIENT MODEL-AIDED VISUAL-INERTIAL EGO-MOTION ESTIMATION FOR

MULTIROTOR MICRO AIR VEHICLES

2.4.1. DATA PRE-PROCESSING

In the EuRoC dataset, the IMU does not coincide with the forward-right-down body frame
definition. As a result, the accelerometer’s x-axis and y-axis do not directly measure the
drag force in the body horizontal plane. A body-IMU rotation matrix is needed to trans-
fer the accelerometer’s measurements to the body frame. We assume that the coordinate
frame of the reflective markers mounted on the MAV approximately coincides with the
body frame. Because the origin of our body frame is the same as the IMU frame, we use
the sensor rotational extrinsic data to rotate IMU measurements and ground truth to the
body frame.

The proposed estimator is initialized just before taking off to comply with the drag
force model, which only stands when the MAV is in flight. Visual updating starts after the
second keyframe is captured. The initial value of kd was set to -0.2 for all the sequences.
This value is close to the least-square solution calculated by the ground-truth velocity of
the Machine Hall 05 (MH05) sequence.

2.4.2. RESULTS AND DISCUSSION

The main evaluation results of the proposed estimator in terms of time efficiency and
accuracy are listed in Table 2.1. The C++ code of this work is implemented based on the
open-sourced code of [27]. The proposed estimator is compared with a state-of-the-art
(SOTA) VIO MSCKF [5] implemented by the same open-sourced repository [27]. The top
group of Table 2.1 (from 1⃝ to 3⃝) shows the test results of the proposed estimator with
three different settings in the vision front-end. The bottom group (4⃝ and 5⃝)) shows the
outputs of MSCKF in two settings. Here we only compare with MSCKF since the gap in
accuracy is big. The comparison of MSCKF with other VIO solutions can be found in [10].

The time consumption measurements shown in the second and the third columns
of Table 2.1 were collected during the tests on Machine Hall 05 sequence of the EuRoC
dataset, running on a laptop computer. The root-mean-square error (RMSE) of abso-
lute translation errors (ATEs) is the metric of estimation accuracy. The calculation is con-
ducted by [28]. The alignment of the estimated trajectory and the ground-truth trajectory
has 4 degrees of freedom (yaw and 3-d translation). The RMSEs of ATEs are shown in the
eleven columns from the right of Table 2.1. The eleven columns correspond to the eleven
flight sequences of the EuRoC dataset (Vicon Room 101 to 103, 201 to 203, and Machine
Hall 01 to 05). The sequence names are abbreviated in Table 2.1.

For 1⃝ and 2⃝, 30 feature points are detected in a keyframe, and a new keyframe is
defined when the number of inlier points is below 10. For 3⃝, 250 feature points are de-
tected in a keyframe, and a new keyframe is defined when there are fewer than 60 inliers.

1⃝ corresponds to the estimator that uses images that are downsampled to half of the
original resolution. And it does not have histogram equalization as image preprocessing.
The rest settings (2⃝ and 3⃝) and MSCKF (4⃝ and 5⃝) use images with original resolution
and preprocessed by histogram equalization. Thus the vision processing time consump-
tion of 1⃝ is much lower than 2⃝ while sacrificing the accuracy. It is an extreme case that
minimizes visual processing. In the 5-point RANSAC of 1⃝, 2⃝, and 3⃝, six point pairs are
selected as a sample. The total number of random trials is set to six. If the highest inlier
rate is more than 60%, this sample’s inlier point pairs are used to calculate the essential
matrix.

2.4. EXPERIMENTAL RESULTS

2

31

Table 2.1: Accuracy and time efficiency of the proposed method (top group, rows 1 to 3) compared
with the baseline method (bottom group, rows 4 and 5). The name of the EuRoC dataset flight se-
quences (Vicon Room 101 to 103, 201 to 203, and Machine Hall 01 to 05) are abbreviated to fit the
page width. “V” stands for Vicon Room, and “MH” stands for Machine Hall. Data below the se-
quence names shows the root-mean-square errors (RMSE) of the absolute translation errors (ATEs)
of the estimated trajectories. Bold represents the overall best and underline represents the best of
the proposed method.

ID ATT1 AVT2 NFP3 V11 V12 V13 V21 V22 V23 MH1 MH2 MH3 MH4 MH5
1⃝ 4.41 3.11 30 5.12 1.19 8.04 4.21 2.11 5.90 4.70 13.4 12.0 2.37 2.76
2⃝ 7.25 5.81 30 1.26 1.17 3.11 2.38 1.48 2.91 3.60 13.2 11.2 2.12 1.56
3⃝ 12.9 11.5 250 2.04 1.76 5.37 4.56 2.80 7.76 13.5 1.67 10.4 2.37 1.35
4⃝ 7.93 3.82 51 0.16 0.13 0.12 245 0.13 0.16 38.0 5.20 130 2.35 1.00
5⃝ 17.4 7.58 199 0.09 0.09 0.11 0.12 0.10 0.20 0.34 0.24 58.5 0.65 1.54
1 Average total time (ATT) consumption (millisecond) of processing after receiving a new

frame.
2 Average vision-related time (AVT) consumption (millisecond) in processing a single

frame, including feature tracking, feature detection, and outlier rejection of feature
points.

3 Number of feature points (NFP). For the proposed approach (top group), the shown
number is the number of feature points to detect in a new keyframe. For MSCKF (bot-
tom group), the shown number is the average number of tracked points in each frame.

Comparing 2⃝ and 3⃝, it is obvious that more feature points do not necessarily im-
prove the accuracy of the proposed estimator. This is different from MSCKF. As shown by

4⃝ and 5⃝, 5⃝ detects and tracks more points and has higher accuracy. The reason is that
the vision update of MSCKF is triggered when a point loses tracking or leaves the field of
view. Thus a bigger number of points means more times of updating. But for the proposed
estimator, vision update happens for every frame and the visual measurement is calcu-
lated from all points tracked in a frame. In this case, fewer points do not necessarily lead
to a less accurate essential matrix. On the contrary, a big number of tracked points with
tracking noise would deteriorate the accuracy. So the proposed estimator is more suitable
for applications where the computational power for visual processing is very limited and
only a small number of points can be detected and tracked.

For 2⃝, the estimated trajectories of MH02 and MH03 are less accurate than other
sequences. The trajectory errors are mainly caused by the big estimation errors at the be-
ginning of the sequences. For MH02, the ATE of the second half of the estimated trajectory
is 3.243. For MH03, after deleting 20% of the estimated trajectory from the beginning of
the sequence, the ATE of the rest part of the trajectory is 2.979. From Fig. 2.4, we can see
that the estimation converges to be accurate after around 30 seconds since taking off. So
in real-world applications, it is better to have safety measures for the possible big drifts at
the beginning of a flight, for example, a space without obstacles close by.

From Table 2.1, we notice that, in the sequences V201, MH01, and MH03, MSCKF
4⃝ drifts after very slow motion, which leads to big trajectory errors. But in general, the

proposed approach is less accurate than MSCKF. Despite that, as shown in Fig. 2.3, Fig.

2

32
2. EFFICIENT MODEL-AIDED VISUAL-INERTIAL EGO-MOTION ESTIMATION FOR

MULTIROTOR MICRO AIR VEHICLES

Figure 2.3: Estimated trajectory of MH05 sequence by the proposed estimator 2⃝ in Table 2.1.

(a) Euler Angles Estimation (rad).

(b) Velocity Estimation Expressed in MAV Body Frame (m/s).

Figure 2.4: Estimated attitude and velocity of MH03 sequence by the proposed estimator 1⃝ in
Table 2.1.

2.4. EXPERIMENTAL RESULTS

2

33

(a) Euler Angles Estimation (rad).

(b) Velocity Estimation Expressed in MAV Body Frame (m/s).

Figure 2.5: Estimated attitude and velocity of MH05 sequence by the proposed estimator 2⃝ in
Table 2.1. Camera images are no longer used by the estimator after ∼590 seconds.

2

34 REFERENCES

2.4, and Fig. 2.5, the accuracy is acceptable for short-term ego-motion estimation.
The advantages of the proposed estimator are time efficiency and robustness. As Table

2.1 shows, 1⃝ and 2⃝ consume less time than MSCKF 4⃝. Another fact worth mentioning
is that we observed in experiments that our 5-point RANSAC implementation runs slower
than the OpenCV 8-point RANSAC adopted by MSCKF. It can be attributed to the highly
optimized OpenCV library function. There can be a space to further shorten the time con-
sumption by optimizing our implementation. As for robustness, the proposed estimator
does not have big drifts as 4⃝ when testing on the sequences V201, MH01, and MH03. As
the proposed estimator does not map the environment, sudden loss tracking of many or
all points does not require re-initializing the system. In addition, the proposed estimator
maintains accuracy even if there is not visual measurement anymore. As shown in Fig.
2.5, we cut off the camera image stream at the 52nd second after taking off, and the ac-
curacy basically maintains. Obvious estimation errors are only observed in the velocity
estimation of the z-axis in the last ∼12 seconds of flight.

2.5. CONCLUSION AND FUTURE WORK
In this chapter, we present a visual-inertial ego-motion estimation approach for multi-
rotor MAVs. Its high time efficiency derives from a vision frond-end that minimizes vi-
sual processing and a simple EKF-based back-end that performs loosely-coupled visual-
inertial fusion. A linear drag model is utilized, and it leads to bounded errors in the estima-
tion of the horizontal components of attitude and velocity. The estimation accuracy of the
proposed approach is worse than the state-of-the-art approach in comparison but it can
be enough for applications that require short-term ego-motion estimation. Given its high
time efficiency, it is more friendly to lightweight multirotor MAVs with limited processing
power onboard.

There is an opportunity to deploy the proposed ego-motion estimator in autonomous
drone racing. Its small requirement for processing power benefits other algorithms run-
ning onboard and it has acceptable drifts in estimating flight trajectories. The racing gates
can be detected and taken as stationary landmarks in ego-motion estimation and correct
the accumulated error of the proposed estimator. The estimation accuracy rarely drops
in short term when the vision information becomes absent, implying that the estimator
can stay functional when there is no valid feature point due to the motion blur in agile
maneuvers.

REFERENCES
[1] S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. H. E. de Croon, Visual

model-predictive localization for computationally efficient autonomous racing of a
72-gram drone, (2019), arXiv: 1905.10110.

[2] K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon, Minimal
navigation solution for a swarm of tiny flying robots to explore an unknown environ-
ment, Science Robotics 4, 1 (2019).

[3] G. C. H. E. de Croon, Monocular distance estimation with optical flow maneuvers and
efference copies: A stability-based strategy, Bioinspiration & Biomimetics 11, 1 (2016).

REFERENCES

2

35

[4] S. H. Lee and G. de Croon, Stability-based scale estimation for monocular slam, IEEE
Robotics and Automation Letters 3, 780 (2018).

[5] M. Li and A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odometry,
The International Journal of Robotics Research 32, 690 (2013).

[6] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial
state estimator, IEEE Transactions on Robotics 34, 1004 (2018).

[7] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, and R. Siegwart, Keyframe-
based visual-inertial SLAM using nonlinear optimization, Proceedings of Robotis Sci-
ence and Systems (2013).

[8] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, Iterated extended kalman
filter based visual-inertial odometry using direct photometric feedback, The Interna-
tional Journal of Robotics Research 36, 1053 (2017).

[9] D. Abeywardena, S. Huang, B. Barnes, G. Dissanayake, and S. Kodagoda, Fast, on-
board, model-aided visual-inertial odometry system for quadrotor micro aerial vehi-
cles, in 2016 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2016) pp. 1530–1537.

[10] J. Delmerico and D. Scaramuzza, A benchmark comparison of monocular visual-
inertial odometry algorithms for flying robots, in 2018 IEEE international conference
on robotics and automation (ICRA) (IEEE, 2018) pp. 2502–2509.

[11] C. Forster, M. Pizzoli, and D. Scaramuzza, Svo: Fast semi-direct monocular visual
odometry, in 2014 IEEE international conference on robotics and automation (ICRA)
(IEEE, 2014) pp. 15–22.

[12] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, A robust and modular
multi-sensor fusion approach applied to mav navigation, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (2013) pp. 3923–3929.

[13] S. Weiss and R. Siegwart, Real-time metric state estimation for modular vision-inertial
systems, in IEEE International Conference on Robotics and Automation (2011) pp.
4531–4537.

[14] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza, Au-
tonomous, vision-based flight and live dense 3D mapping with a quadrotor micro
aerial vehicle, Journal of Field Robotics 33, 431 (2016).

[15] D. Abeywardena, S. Kodagoda, G. Dissanayake, and R. Munasinghe, Improved state
estimation in quadrotor mavs: A novel drift-free velocity estimator, IEEE Robotics &
Automation Magazine 20, 32 (2013).

[16] M. Faessler, A. Franchi, and D. Scaramuzza, Differential flatness of quadrotor dynam-
ics subject to rotor drag for accurate tracking of high-speed trajectories, IEEE Robotics
and Automation Letters 3, 620 (2017).

2

36 REFERENCES

[17] J. Svacha, G. Loianno, and V. Kumar, Inertial yaw-independent velocity and attitude
estimation for high-speed quadrotor flight, IEEE Robotics and Automation Letters 4,
1109 (2019).

[18] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart, The euroc micro aerial vehicle datasets, The International Journal of
Robotics Research 35, 1157 (2016).

[19] M. Rigter, B. Morrell, R. G. Reid, G. B. Merewether, T. Tzanetos, V. Rajur, K. Wong, and
L. H. Matthies, An autonomous quadrotor system for robust high-speed flight through
cluttered environments without GPS, in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (2019) pp. 5227–5234.

[20] Z. Huai and G. Huang, Robocentric visual-inertial odometry, The International Jour-
nal of Robotics Research 41, 667 (2022).

[21] J. Sola, Quaternion kinematics for the error-state kalman filter, arXiv preprint
arXiv:1711.02508 (2017).

[22] C. Tomasi and T. Kanade, Detection and tracking of point features, International Jour-
nal of Computer Vision Technical Report (1991).

[23] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in
Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9 (Springer, 2006) pp. 430–443.

[24] H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two pro-
jections, Nature 293, 133 (1981).

[25] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, A minimal case solution to the cali-
brated relative pose problem for the case of two known orientation angles, in European
Conference on Computer Vision (Springer, 2010) pp. 269–282.

[26] C. Troiani, A. Martinelli, C. Laugier, and D. Scaramuzza, 2-point-based outlier rejec-
tion for camera-imu systems with applications to micro aerial vehicles, in 2014 IEEE
international conference on robotics and automation (ICRA) (IEEE, 2014) pp. 5530–
5536.

[27] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, Openvins: A research platform
for visual-inertial estimation, in 2020 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2020) pp. 4666–4672.

[28] Z. Zhang and D. Scaramuzza, A tutorial on quantitative trajectory evaluation for vi-
sual (-inertial) odometry, in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2018) pp. 7244–7251.

3
CNN-BASED EGO-MOTION

ESTIMATION FOR FAST MAV
MANEUVERS

In the field of visual ego-motion estimation for Micro Air Vehicles (MAVs), fast maneuvers
stay challenging mainly because of the big visual disparity and motion blur. In the pur-
suit of higher robustness, we study convolutional neural networks (CNNs) that predict the
relative pose between subsequent images from a fast-moving monocular camera facing a
planar scene. Aided by the Inertial Measurement Unit (IMU), we mainly focus on trans-
lational motion. The networks we study have similar small model sizes (around 1.35MB)
and high inference speeds (around 10 milliseconds on a mobile GPU). Images for training
and testing have realistic motion blur. Starting from a network framework that iteratively
warps the first image to match the second with cascaded network blocks, we study different
network architectures and training strategies. Simulated datasets and a self-collected MAV
flight dataset are used for evaluation. The proposed setup shows better accuracy over exist-
ing networks and traditional feature-point-based methods during fast maneuvers. More-
over, self-supervised learning outperforms supervised learning. Videos and open-sourced
code are available at https: // github. com/ tudelft/ PoseNet_ Planar .

Parts of this chapter [1] have been published in 2021 IEEE International Conference on Robotics and Automation
(ICRA).

37

 https://github.com/tudelft/PoseNet_Planar

3

38 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

3.1. INTRODUCTION
Indoor flight of Micro Air Vehicles (MAVs) is an attractive but challenging task. Towards
the goal of autonomy, robust state estimation is one of the most essential modules of the
MAV’s flight control system. A camera captures rich information in a big field of view.
Since being small and power-efficient, it is an ideal onboard sensor [2]. Its combination
with the high-sample-frequency IMU is not only suitable for environment perception but
also for real-time ego-motion estimation. Visual [3, 4] and visual-inertial [5–9] odometry
(VO/VIO) systems contribute to MAVs’ autonomy in generic environments by achieving
real-time efficiency on onboard processors with decent accuracy.

Figure 3.1: We study CNNs for visual ego-motion estimation, using blurry gray-scale images cap-
tured by the downward-facing camera of fast-moving MAVs. The derotated image pair has big pho-
tometric errors. After being warped by the network’s prediction of the relative pose, only small pho-
tometric errors can be found around edges. The proposed networks better cope with fast motion
than traditional feature-based methods.

Being constrained by the limited battery life, increasing flight speed is a direct way to
enlarge an MAV’s operation range and efficiency. However, it also introduces challenges
for perception, and notably VO/VIO. Detection and tracking of handcrafted interest-point-
based features [10–12] is the standard in state-of-the-art VIO systems [7–9]. However, such
systems lack robustness in the presence of motion blur occurring during fast maneuvers.
Robust Visual Inertial Odometry (ROVIO) [6] directly uses photometric errors of multilevel
image patches around FAST feature points [11] to be more robust against image blur than

3.2. METHODOLOGY

3

39

point features, partly because the texture of the tracked image patch is taken into account.
However, Foehn et al. point out that, at larger speeds the state estimation of ROVIO suffers
from drift [13]. When the speed gets larger, feature points and patches can move out of the
camera’s field of view sooner. We believe that the bigger visual disparities between images
and the consequent lower number of frames in which features can be tracked is another
adverse condition besides motion blur. Since ROVIO takes features’ 3-dimensional (3-d)
positions as states of an extended Kalman filter (EKF), having fewer visual observations
decreases the accuracy. Other VIO systems such as [5, 7] that estimate feature positions by
multiple observations can also suffer from high-speed motion [14].

CNNs are state of the art in many computer vision tasks and are promising for VO as
well. Various networks have been proposed to estimate the pose change (rotation and
translation) between two or more subsequent views. There are not only supervised pose
networks trained by limited ground truth [15–17] but also self-supervised ones trained
together with other networks including a depth estimation network [18–22]. Evaluated
by the KITTI dataset [23], these networks obtain highly accurate performances and rival
VO [4] with a traditional vision method [12].

There are also pose networks considering the application to an MAV’s ego-motion es-
timation. For example, in [17], a recurrent CNN is trained on the EuRoC MAV dataset [24]
to regress the 6 degree-of-freedom (6DoF) motion. The network manages to learn the
more complex (compared with a car) MAV’s dynamics but the accuracy is limited by the
small amount of training data. Differently, PRGFlow [25] focuses on the essential function
of estimating the 3-d translational velocity of the MAV with a downward-facing camera,
assuming a planar ground. Aided by the attitude estimated by IMU measurements, via
image warping, the task is simplified to the pixel-level similarity transformation estima-
tion. Although PRGFlow thoroughly studied CNN-based ego-motion estimation, the fo-
cus is on the low-speed flight (about 0.5m/s on average), with motion blur lacking from
the artificially generated training images.

Hence, it is currently still an open question of how good CNNs perform during fast
maneuvers. To gain insight into this matter, in this chapter we study networks predict-
ing 3-d relative translation of MAVs in fast maneuvers with a downward-facing camera.
The networks are trained and tested on images with significant motion blur and big visual
disparities. Our main contributions are that we: (1) Extend and further improve the per-
formance of the network framework proposed in [25] to fit fast maneuvers, and (2) Inves-
tigate how well the networks can deal with faster motion in comparison with traditional
feature-point-based methods. According to our knowledge, this is the first work show-
ing networks’ superior performance in fast motion when traditional feature-point-based
methods have high failure rates.

3.2. METHODOLOGY

3.2.1. HOMOGRAPHY TRANSFORMATION

As shown in Eq. (3.1), for a fixed point laying on a plane observed by two cameras, it has
been proven in [26] that the projective coordinates x1, x2 of the same point in the camera
frames are related by the homography matrix H that depends only on the 6-d relative
pose of the cameras and the unit normal vector of the plane n. R denotes the rotation

3

40 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

matrix between the camera frames and t denotes the translation vector expressed in the
second camera’s frame pointing from the second camera to the first one. The scalar d is
the distance from the first camera to the plane.

x2 = H x1, H = R + t nT

d
(3.1)

Here we define the coordinate system whose x-axis points to the north, y-axis to the
east, and z-axis to the gravity direction as the world frame. The plane that the downward-
facing camera observes is assumed to be orthogonal to the gravity vector. The attitude of
the camera relative to the world frame can be estimated by an IMU, then the information
remaining unknown in the homography matrix is the ratio of the translation vector t to
the distance to the plane d . Here we refer to it as the distance-scaled relative translation
vector. This vector together with the flight height that is available from a downward-facing
rangefinder can determine the metric average translational velocity of the MAV during the
camera’s sample interval. Here we refer to it as the distance-scaled translational velocity
vector.

PRGFlow warps both the images to make the image planes parallel to the ground using
the absolute attitude estimated by the IMU. The distance-scaled relative translation then
can be determined by the similarity transformation between the image pair. Networks are
trained to predict the 3 parameters (2-d translation, zoom-in/out) reflecting the relative
location of pixels. However, when the roll or pitch angle of the MAV is big, which is often
the case in fast maneuvers, the camera would have big tilt angles relative to the plane’s
normal vector. So warping the image pair like PRGFlow can cause big black boundaries
and thus lose many pixels. It then requires pre-processing moving the pixels back inside
the image frame and the corresponding post-processing for calculating the pose from the
similarity transformation.

To avoid the above-mentioned processings, our networks predict the distance-scaled
relative translation vector expressed in the camera frame directly from images that have
(non-zero) tilt angles, requiring input images to have the identical intrinsic parameters
as the training set. Only one image needs to be warped by the relative rotation. Tilt an-
gles are available from an IMU but we additionally explore networks predicting them in
Subsection 3.3.4.

warp

image 2
image 1

inital
pose

translation

compose

warp translation

compose

translation

compose

warp

block 1 block 2 block 3

final pose
prediction

1st pose prediction 2nd pose prediction

Figure 3.2: An ICSTN-based network with 3 blocks for relative pose prediction. The dashed line
frame indicates the basic functional unit that can be sequentially stacked one or multiple times. The
dotted frame indicates a network block that takes (downsampled) concatenated images as input and
predicts the 3-d distance-scaled relative translation.

3.2. METHODOLOGY

3

41

3.2.2. CASCADED NETWORK BLOCKS CONNECTED BY IMAGE WARPING

Sanket et al. adopt the inverse compositional spatial transformer networks (ICSTN) [27] as
the framework of their networks [25]. The ICSTN has multiple network blocks that predict
the image deformation that benefits the final goal. Based on the homography transfor-
mation, a new image can be synthesized by warping the original image using the method
proposed in [28]. As shown in Fig. 3.2, a network block is made up of multiple convolu-
tional layers followed by a fully-connected layer regressing the translation. With multiple
cascaded network blocks, each block takes the concatenated original image 1 and the im-
age 2 warped by the newest pose prediction as input and combine its output into the pose
prediction. As the pose prediction is refined by more blocks, there is less relative motion
between the concatenated images. Each block predicts a part of the total relative trans-
lation, making the problem more tractable. The network can also make use of an initial
guess of the relative pose, which can be available from the IMU integration or the MAV’s
dynamic model. PRGFlow has compared network architectures inside one block. Focus-
ing on fast maneuvers, we study higher-level architectures applying to the pyramidal im-
ages and feature maps to enlarge the receptive field which is important for dealing with
the big visual disparities.

The loss functions of the networks are the mean of the Charbonnier [29] loss of the pre-
dicted 3-d translation’s error in supervised learning and the mean of the Charbonnier loss
of the valid pixels’ photometric error in self-supervised learning. For data augmentation,
we feed the network with image pairs concatenated in both orders to perform bidirec-
tional training.

We implement the networks in Python 3.6.9 with the Pytorch [30] 1.1.0 library. The
Adam optimizer [31] with β = (0.9,0.999) is utilized during the 25 training epochs. The
batch size is 16. The initial learning rate is 0.0002 and it is divided by 2 after 5, 10, 15, and 20
epochs. The weights of convolutional layers are initialized by Glorot initialization [32] with
a gain of 1. The weights of fully-connected layers are initialized by the (Pytorch default)
uniform distribution U (−pk,

p
k) where k is the multiplicative inverse of the number of

input features.

3.2.3. DATASET GENERATION

We use the Microsoft COCO dataset [33] as the source of a large variety of textures to gen-
erate a big number of image pairs thanks to the homography transformation. A source
image is treated as a plane above which a simulated camera is moving. For one plane, one
image pair is generated. Costante et al. and Kendall et al. test their pose estimation net-
works with respectively artificial Gaussian blur [15] and motion blur [34] added to images.
Their blur is uniform over the whole image and thus not ego-motion-related. In order to
obtain realistic blur that is caused by the camera’s motion within the exposure duration,
we simulate a moving camera whose time step for the kinetic integration is 0.1 millisecond
(ms) and the exposure duration is 10ms. In each integration step during the exposure, an
image is sampled from the homography transformation of the plane. The blurry image is
the average of the 100 sampled images. The poses of both the exposure starting step and
ending step of an image are recorded. Except for Subsection 3.3.3, the pose of the start-
ing step is used as the ground truth in supervised learning. 30 frames per second (fps)
are recoreded to simulate a common global shutter camera. The images are in grayscale

3

42 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

with the resolution of 320×224 pixels. The intrinsics of the simulated camera are fx = 160,
fy = 160, cx = 160, cy = 112.

Figure 3.3: A blurry image pair. Starting from the left: (1) the first image, (2) the derotated second
image, and (3) the second image.

The initial poses of the kinetic integrations uniformly distribute within the flight en-
velope of a normal quadrotor MAV. The uniformly randomly generated translational ve-
locity and rotational velocity stay constant during the kinetic integration. The camera’s
distance-scaled translational velocity vector’s components along the x-axis and y-axis of
the world frame range from -7.5 to 7.5. The range of the component along the z-axis is
from -3.75 to 3.75. Angular velocity vector’s components along the x-axis and y-axis of the
camera frame range from -180 to 180 degrees per second. The range of the component
along the z-axis is from -90 to 90 degrees per second. Initial roll and pitch angles range
from -25 to 25 degrees. Since we record the poses at the start and the end of exposure du-
ration, the motion flow that causes blur can be calculated. Over the dataset, the average
motion flow of all the pixels in an image has mean values of 6.6 and 6.2 pixels in the x-axis
and y-axis, respectively. The maximum motion flow of all the pixels in an image has mean
values of 13.4 (x-axis) and 11.9 (y-axis) pixels. The above data shows that our dataset
involves a big range of motion and significant motion blur. After removing hundreds of
images with little texture, there are 82,172 training samples, 9,948 validation samples (for
validating the model after each epoch during training), and 30,565 testing samples.

3.2. METHODOLOGY

3

43

Ta
b

le
3.

1:
IC

ST
N

-b
as

ed
n

et
w

o
rk

s
w

it
h

d
if

fe
re

n
tn

u
m

b
er

s
o

fb
lo

ck
s.

N
et

w
o

rk
N

u
m

.
B

lo
ck

s
N

u
m

.C
o

n
v.

/
K

er
n

el
/

St
ri

d
e

N
u

m
.

Pa
ra

m
s

F
P

S
R

F
In

li
er

R
at

e(
%

)
E

P
E

’s
St

an
d

ar
d

D
ev

ia
ti

o
n

s
(1

e-
3)

(e
n

d
-p

o
in

tl
o

ss
/

m
u

lt
i-

st
ag

e
lo

ss
es

)

M
ed

ia
n

s
o

fE
P

E
’s

A
b

so
lu

te
V

al
u

es
(1

e-
3)

(e
n

d
-p

o
in

tl
o

ss
/

m
u

lt
i-

st
ag

e
lo

ss
es

)

1
[1

8]
1

8/
7,

5/
2.

2
1.

58
3M

21
5

26
3

90
.1

4
(1

3.
44

,1
3.

88
,1

9.
23

)
(7

.8
3,

8.
11

,1
1.

93
)

2
[3

5]
1

18
/

3,
3/

2,
2

1.
44

1M
10

5
75

9
91

.7
7

(6
.7

0,
6.

94
,9

.6
3)

(3
.8

5,
4.

03
,6

.1
2)

3
[3

6]
1

21
/

3,
3/

2,
2

1.
47

7M
10

3
97

5
92

.3
5

(7
.3

2,
7.

58
,1

0.
57

)
(4

.3
3,

4.
48

,6
.6

6)
4

(o
u

rs
)

2
9/

7,
5/

2,
2

1.
38

5M
10

4
64

7
89

.9
2

(3
.3

5,
3.

30
,3

.9
1)

/
(2

.7
1,

2.
64

,3
.2

8)
(1

.8
9,

1.
89

,2
.6

1)
/

(1
.4

9,
1.

49
,2

.1
8)

5
(o

u
rs

)
3

5/
7,

5/
2,

2
1.

36
7M

10
1

71
87

.5
9

(3
.3

3,
3.

15
,4

.2
9)

/
(2

.2
8,

2.
22

,3
.0

8)
(1

.9
1,

1.
83

,2
.9

0)
/

(1
.2

4,
1.

22
,2

.1
1)

6
(o

u
rs

)
3

5/
7,

5/
4,

2
1.

25
2M

10
1

13
5

92
.1

8
(2

.0
6,

2.
05

,2
.9

0)
(1

.1
6,

1.
13

,2
.0

0)

7
(o

u
rs

)
4

3/
7,

5/
4,

4
1.

42
1M

95
55

85
.4

8
(3

.5
8,

3.
51

,4
.7

5)
/

(2
.2

0,
2.

19
,3

.0
6)

(2
.2

0,
2.

20
,3

.2
0)

/
(1

.2
8,

1.
26

,2
.1

3)
8

(o
u

rs
)

4
3/

9,
5/

8,
4

1.
27

6M
95

10
5

87
.3

5
(2

.1
0,

2.
09

,3
.0

1)
(1

.2
5,

1.
22

,2
.0

9)

3

44 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

Ta
b

le
3.

2:
IC

ST
N

-b
as

ed
n

et
w

o
rk

s
u

si
n

g
p

yr
am

id
al

im
ag

es
o

r
fe

at
u

re
m

ap
s.

N
u

m
.

P
yr

am
id

N
u

m
.L

ay
er

s/
K

er
n

el
/

St
ri

d
e

N
u

m
.

Pa
ra

m
s

F
P

S
(i

n
tr

p
l.

/
av

g.
p

o
o

li
n

g)
R

ec
ep

ti
ve

F
ie

ld
E

P
E

’s
St

an
d

ar
d

D
ev

ia
ti

o
n

s
(1

e-
3)

(i
n

tr
p

l.
/

av
g.

p
o

o
li

n
g)

3
3/

7,
5/

2,
2;

4/
7,

5/
2,

2;
5/

7,
5/

2,
2

1.
38

8M
10

3
/

10
8

23
×4

;3
9×

2;
71

(2
.1

3,
2.

05
,2

.9
3)

/
(2

.1
1,

2.
09

,2
.9

1)
3

3/
7,

5/
4,

2;
4/

7,
5/

4,
2;

5/
7,

5/
4,

2
1.

27
2M

10
4

/
11

1
39

×4
;7

1×
2;

13
5

(2
.1

1,
2.

09
,2

.9
4)

/
(2

.0
9,

2.
06

,2
.9

4)
3

4/
7,

5/
2,

2;
4/

7,
5/

4,
2;

4/
7,

5/
4,

4
1.

31
6M

10
4

/
10

9
39

×4
;7

1×
2;

11
9

(2
.0

7,
2.

06
,2

.9
3)

/
(2

.0
7,

2.
07

,2
.9

0)
4

2/
7,

5/
2,

2;
2/

7,
5/

4,
2;

3/
7,

5/
4,

2;
3/

7,
5/

4,
4

1.
38

6M
93

/
98

15
×8

;2
3×

4;
39

×2
;5

5
(2

.0
3,

2.
02

,2
.8

7)
/

(2
.0

2,
2.

02
,2

.8
5)

3
[F

P
E

:3
/

7,
5/

2,
2]

+
[2

;3
;4

]
1.

45
5M

10
0

71
;7

1;
71

(2
.1

8,
2.

12
,3

.1
2)

3
[F

P
E

:3
/

7,
5/

4,
2]

+
[2

;3
;4

]
1.

34
0M

10
0

13
5;

13
5;

13
5

(2
.0

0,
1.

97
,3

.0
8)

Ta
b

le
3.

3:
C

o
m

p
ar

is
o

n
b

et
w

ee
n

su
p

er
vi

se
d

an
d

se
lf

-s
u

p
er

vi
se

d
le

ar
n

in
g.

N
et

w
o

rk
s

In
li

er
R

at
e(

%
)

(s
u

p
er

vi
se

d
/

se
lf

-s
u

p
er

vi
se

d
)

E
P

E
’s

St
an

d
ar

d
D

ev
ia

ti
o

n
s

(1
e-

4)
(s

u
p

er
vi

se
d

/
se

lf
-s

u
p

er
vi

se
d

)
M

ed
ia

n
s

o
fE

P
E

’s
A

b
so

lu
te

V
al

u
es

(1
e-

4)
(s

u
p

er
vi

se
d

/
se

lf
-s

u
p

er
vi

se
d

)

Ta
b

le
3.

1
6

92
.1

8
/

91
.4

1
(2

0.
62

,2
0.

46
,2

8.
99

)
/

(1
9.

16
,1

9.
29

,2
8.

36
)

(1
1.

62
,1

1.
29

,2
0.

01
)

/
(1

0.
71

,1
0.

60
,1

9.
54

)
Ta

b
le

3.
1

6*
75

.2
0

/
70

.8
4

(5
.3

0,
4.

95
,7

.0
4)

/
(4

.1
6,

3.
82

,5
.5

4)
(3

.1
5,

3.
15

,4
.5

5)
/

(2
.4

0,
2.

15
,3

.4
7)

Ta
b

le
3.

2
3(

p
)*

73
.2

0
/

69
.9

1
(5

.4
9,

4.
93

,7
.0

2)
/

(4
.2

0,
3.

79
,5

.5
2)

(3
.0

8,
2.

91
,4

.4
2)

/
(2

.3
6,

2.
16

,3
.4

7)
Ta

b
le

3.
2

4(
i)

*
71

.4
3

/
67

.2
9

(4
.4

9,
4.

23
,5

.9
4)

/
(3

.0
8,

2.
89

,3
.9

0)
(2

.8
2,

2.
64

,3
.9

3)
/

(1
.9

1,
1.

80
,2

.6
3)

3.3. NETWORKS

3

45

3.3. NETWORKS

3.3.1. ICSTN-BASED NETWORKS

In this subsection, we study ICSTN-based networks with different numbers of blocks.
Blocks of one multi-block network have identical architecture. In the 3rd column of Table
3.1, “Num. Conv.” is the abbreviation of the number of convolutional layers. The kernel
sizes and the strides of the first and second convolutional layers are also listed. Deeper
layers have kernel sizes of 3 and strides of 2 or 1. Networks’ inference speeds are indi-
cated by fps when running on an NVIDIA Jetson TX2 with Ubuntu 18.04.3 LTS and Cuda
V10.0.326 in the MAXP_CORE_ARM power mode. “RF” denotes the receptive field of the
fully-connected layer’s input. We call the final prediction error the end-point error (EPE).
The predicted translation is rotated into the world frame to calculate the 3-d EPE vector.
1e-3 means that the actual data equals the shown data multiplied by 10−3.

EPE’s standard deviation can reflect how noisy the predictions are but it is sensitive to
outliers that can be caused by image pairs lacking texture or having duplicate textures. So
we use a local outlier rejection function of MATLAB to remove outliers and keep the char-
acteristic of local distribution. After respectively ascendingly sorted by the corresponded
ground truth along each axis, the EPEs whose absolute values are more than 3 scaled me-
dian absolute deviations in a local window of size 1000 are rejected. A prediction is consid-
ered an outlier if its component along any axis is rejected. The 3 values inside the bracket
separated by commas correspond to the data of the x-axis, y-axis, and z-axis. The medi-
ans of EPE’s absolute values are calculated from all the predictions including outliers.

Networks with a single block are shown in the first 3 rows of Table 3.1. The 1st network
is the pose estimation network proposed in [18]. The 2nd and 3rd networks respectively
have skip connections [35, 36] for better performance in their deeper architectures. They
have smaller model sizes, higher accuracy, but slower speed. The 2nd network with 18
convolutional layers and densely connected architecture has the highest accuracy. In the
case of multiple blocks, for each block, there is an image warping operation that has un-
neglectable time consuming. Since a network’s inference speed is required to be around
100fps, the total number of layers in the whole network decreases when the number of
blocks increases. The accuracy gets worse when there are more than 3 blocks mainly be-
cause the blocks are too shallow and the total capacity of the whole network decreases.
As shown by the 6th and 8th networks, bigger strides lead to smaller resolution of the last
feature map and thus fewer parameters in the fully-connected layer. Besides, it increases
the receptive field. Since our dataset has image pairs with big visual disparities, a bigger
receptive field can capture more feature correspondences and improve the accuracy.

For the networks with multiple blocks, instead of only using the loss of the final pre-
diction (end-point loss) in training [25], We used a weighted sum of the losses of every
prediction after every block (multi-stage losses) for backpropagation. The loss weight dis-
tributions of blocks are respectively [0.3,0.7], [0.2,0.3,0.5], and [0.1,0.2,0.3,0.4] for networks
with 2, 3, and 4 blocks. The accuracy is compared by the 4th, 5th, and 7th networks of Ta-
ble 3.1. Multi-stage losses produce higher accuracy. For the 6th and 8th networks, we only
show the results of multi-stage losses. All the networks in the rest part of this chapter are
trained with their multi-stage losses.

3

46 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

3.3.2. PYRAMIDAL IMAGES AND FEATURE MAPS IN ICSTN
From Table 3.1, we find that a bigger receptive field can benefit accuracy. When the kernel
size and stride keep the same, another way to increase the receptive field is using pyrami-
dal images. Networks using pyramidal images or feature maps with lower resolution are
shown in Table 3.2. The downsampled image at each pyramid level has half the size of
the image of its adjacent lower level. So the lowest-resolution image of the network that
has 4 pyramids has one-eighth the width and height of the original image. The number
of network blocks is the same as the number of pyramids. The first pose prediction block
uses the images at the highest pyramid level with the lowest resolution. The predicted
pose is used to warp the original image. Then the warped image is downsampled to the
next lower pyramid level and input to the next network block. For image downsampling,
we compared bilinear image interpolation [28] and average pooling. They have similar
accuracy, but average pooling is faster in our Pytorch implementation.

Since the EPE’s standard deviation is enough to reflect the accuracy of the network pre-
dictions, the medians of EPE’s absolute values are not shown in Table 3.2. Comparing the
1st network of Table 3.2 with the 5th of Table 3.1, with the same kernel size and stride, the
pyramidal network that has fewer layers achieves higher inference speed and accuracy,
thanks to the bigger receptive fields of the first two blocks. Comparing the 2nd network
of Table 3.2 with the 6th network of Table 3.1, the pyramidal network has slightly lower
accuracy. We think it is because when the receptive fields are big enough, the pyramidal
version receives less information due to the downsampling. The 8th network of Table 3.1
has a big receptive field. Also with 4 blocks, the 4th network of Table 3.2 has decreasing
receptive fields with the increasing of image resolution. Although 3 out of 4 blocks have
smaller receptive fields than the 8th network of Table 3.1, this 4-stage coarse-to-fine re-
finement gets better accuracy. The 2nd and 3rd networks of Table 3.2 have the same total
number of layers. The 3rd one having a deeper block at the lowest resolution achieves
slightly higher accuracy.

The pyramidal feature maps network is based on the feature pyramid extractor (FPE)
inspired by the PWC-Net [37]. The results are shown in the last 2 rows of Table 3.2. The
general principle is extracting multiple feature maps at different resolutions (pyramid lev-
els) of each image respectively by the same convolutional feature extractor network. One
of the feature maps is warped and then concatenated along the channel dimension with
the other feature map of the same size. The concatenated feature maps are the input of the
pose prediction blocks. The networks we design have 3 levels of pyramidal feature maps
and 3 pose prediction blocks that have 2, 3, and 4 convolutional layers respectively. The
FPE network at the last row of Table 3.3 has the highest accuracy in the x-axis and y-axis.

3.3.3. SELF-SUPERVISED LEARNING

Self-supervised learning is based on the photometric error between the image warped by
the predicted relative pose and the other image. We use a mask to not count the photo-
metric errors of the pixels whose locations to interpolate lie outside the image frame. By
the results shown in the 1st row of Table 3.3, we notice that self-supervised learning with a
basic photometric loss gets better accuracy than supervised learning. The reason behind
it is worth further studying. For now, we think it is mainly because the target relative poses
used in supervised learning are calculated from the poses at the starting time points of the

3.4. EVALUATION

3

47

image exposure. While the simulated camera keeps moving within the exposure duration,
motion blur appears and the image gets a different appearance from the start of exposure,
and thus there will be small photometric errors between the images warped by the target
relative pose. This means the network is trained to regress to a target not perfectly match-
ing the feature correspondences. This discrepancy can “confuse” the network. While in
the case of self-supervised learning, the network tries to minimize the photometric er-
ror affected by the blur and is more likely to converge to the “accurate” relative pose that
best matches the feature correspondence. When we evaluate the self-supervised network,
we use the poses at the start of exposure as the ground truth, to which the network does
not learn to converge. But the effect of it is smaller than the “confusion” induced by the
discrepancy.

To verify the hypothesis above, we take the average of the poses at the start and at the
end of exposure as reference pose for a blurry image and calculate the target relative pose
from it. The results are marked with an asterisk and shown in Table 3.3 from the 2nd to the
4th row. “Table 3.2 3(p)” denotes the average pooling version of the 3rd network of Table
3.2. Similarly, the “(i)” denotes the bilinear interpolation version.

From the results of the testing set shown in Table 3.3, one can notice that all the self-
supervised networks are more accurate. Besides, they are also slightly more accurate on
the training set. As for the supervised networks, training with the new target pose (2nd
row) has much higher accuracy compared with the old target pose calculated from the
poses at the start of exposure (1st row). The inlier rates drop when we use the new tar-
get pose. The reason is that the errors of the image pairs having less texture are more
likely to be outliers because their neighbors have smaller errors. Obviously, the new target
pose matches the feature correspondence better and acts as better supervision. But still,
the remaining small discrepancy makes it less good than self-supervised networks. So we
believe that self-supervised learning is a better choice for blurry image pairs that have un-
known relative pose perfectly matching the feature correspondences. This also provides
us with the hypothesis that taking the non-neglectable exposure duration of an image into
account may benefit ego-motion estimation.

3.3.4. NETWORKS FOR TILT ANGLE PREDICTION

It is known that one can estimate the tilt of the camera relative to the plane in the view
from the optical flow field [38]. Since tilt is a property of the flow field and hence affects
both images, it cannot be estimated iteratively by our ICSTN-based framework that warps
only one image (Fig. 3.2). For this preliminary investigation, we employ a single deep
network block to predict tilt angles from a pair of derotated images, supervised by ground
truth. Shown in Table 3.4, the best network’s EPE’s standard deviation is around 4 degrees
for both angles. Although the prediction is noisy, it may serve as an unbiased absolute
information source of attitude.

3.4. EVALUATION
The 4th network of Table 3.3 is chosen for evaluation and comparison to traditional feature-
based methods. Note that the network is trained only with the simulation dataset de-
scribed in Subsection 3.2.3 without any fine-tuning to highlight the generalizability. We

3

48 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

Table 3.4: Networks predicting tilt angles.

Networks Inlier
Rate(%)

EPE’s Std. Dev. (radian,
1e-2)

Medians of EPE’s ABS
(radian, 1e-2)

Table 3.1 - 2 97.13 (7.72, 6.57) (5.06, 4.30)
Table 3.1 - 3 96.91 (8.71, 7.50) (5.75, 4.87)

use MATLAB functions for traditional feature detection and matching. More feature points
can be detected by tuning the parameters of the functions. Here we only show the re-
sults of the default parameters. 50 uniformly distributed ones are selected when there are
enough detected features. The translation is obtained by calculating the similarity ma-
trix (with known in-plane rotation, 3 DoF left) based on linear least squares and random
sample consensus (RANSAC).

3.4.1. SIMULATED DATASET
We generate a dataset of 5000 image pairs with different exposure duration (ranges from
0.2ms to 20ms) and random distance-scaled velocity vectors that have the same norm
(∥v∥/d = 5) to compare the performance of the network and feature-based methods with
increasing motion blur. Another dataset of 5000 sharp image pairs with different distance-
scaled velocity vectors (same range as the training set) and the same exposure duration
(0.2ms) is generated to study the effect of visual disparity. All the image pairs have the
random attitude and zero angular rates.

The norms of the error vectors of the estimated distance-scaled translations and their
local standard deviations are shown in Fig. 3.4. We use linear fitting to show their trends.
The local standard deviations are calculated with the window size of 10% of the total
number of inliers. For feature-based methods, if there are less than 2 inlier matchings
in RANSAC, this pair is treated as an outlier. For the estimated pose, we apply the same
local outlier rejection as Section 3.3 with the window size of 500. The final inlier rates of
the network, SURF [39], ORB [12], and FAST [11] are shown in Fig. 3.4. The network has
the highest inlier rates partly because it does not rely on the number of matches so it can
perform prediction on every image pair. Fig. 3.4 shows that the network is most accurate
with both datasets. Its performance is barely affected by the growing motion blur while
feature-based methods more or less provide more noisy results. For the increasing dispar-
ity, the network is also least affected.

3.4.2. FLIGHT DATASET
To obtain sensor data in real-world flights, an MYNT EYE D1000-120 visual-inertial sensor
is downward-facing mounted on an Eachine Wizard X220 FPV Racing Drone that carries
an NVIDIA Jetson TX2. IMU measurements (200Hz) and monocular gray-scale images
(30fps) with an exposure duration of 20ms are collected. The images are undistorted and
transformed to have the same size and intrinsic matrix as the training set. The top left of
Fig. 3.1 shows an example. The camera’s attitude is estimated by the Madgwick filter [40]
using the IMU measurements. The ground-truth velocity is obtained from the OptiTrack
motion tracking system at 120Hz. The first column of Table 3.5 shows the average and

3.4. EVALUATION

3

49

0 5 10 15 20
Exp. Duration (ms)

0
2
4
6
8

Er
ro

rN
or

m
10-3

0 5 10 15 20
Exp. Duration (ms)

0

2

4

6

8

Er
ro

r N
or

m
 S

td
.

10-3
network 88%
SURF 81%

ORB 78%
FAST 38%

2 4 6 8 10
v/d

0

2

4

6

Er
ro

r N
or

m

10-3

2 4 6 8 10
v/d

0

2

4

Er
ro

rN
or

m
 S

td
.

10-3

network 86%
SURF 83%

ORB 82%
FAST 66%

Figure 3.4: Comparison between feature-based methods and the network. The top row shows how
their accuracy changes with the amount of motion blur. The bottom row shows the effects of the
increasing visual disparity. “v/d” denotes the norm of the distance-scaled velocity of the simulated
camera.

maximum distance-scaled translational velocity of 4 one-minute flights.

Table 3.5: Network and SURF evaluated by flight dataset.

Sequence RMSE (1e-2): network / SURF (orig.) / SURF (hist. equal.)

1(0.3,1.3) (2.10, 2.17, 2.01) / (1.95, 2.17, 2.40) / (1.90, 2.05, 1.77)
2(0.6,2.5) (4.21, 4.57, 3.65) / (4.03, 4.35, 3.70) / (3.91, 4.36, 2.96)
3(1.2,3.2) (5.44, 5.87, 5.03) / (5.75, 5.48, 6.36) / (5.20, 5.25, 4.34)
4(1.4,3.9) (10.2, 9.48, 10.0) / (15.1, 11.5, 28.3) / (10.0, 8.91, 8.65)

The results of the fastest flight are shown in Fig. 3.5. SURF’s result is noisy in some
parts of the flight mainly because of the big motion blur and scenes lacking texture. For
8.6% of image pairs, SURF has less than 2 inlier matchings. We use zero vectors to show
its results in this case. For the other 3 slower flights, SURF has enough matches all the
time. The root mean square errors (RMSEs) of the distance-scaled velocity vector’s com-
ponents along the world frame’s 3 axes are shown in Table 3.5. When using original images,
the network outperforms SURF more in faster flights where fewer points are detected. In
histogram equalized images, more SURF points are detected and the accuracy is slightly
higher than the network. The network performs better on original images than histogram
equalized images since the images in the training set are without pre-processing.

3

50 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

0 10 20 30 40 50

-2

0

2
v/

d

x axis

0 10 20 30 40 50

-2

0

2

v/
d

y axis

0 10 20 30 40 50 Time(s)
-1

0

1

v/
d

z axis

Ground Truth
SURF
Network

Figure 3.5: The ratio of velocity to height (v/d) of the number 4 flight, expressed in the world frame.
Both methods use original images.

3.5. CONCLUSION
In this chapter, we have shown that CNNs are suitable for ego-motion estimation of fast-
moving MAVs equipped with a downward-facing camera. When flying fast, both motion
blur and the visual disparity between subsequent images increase, which is handled bet-
ter by a network than by traditional feature-based methods. Our investigation into the
training of an ICSTN-based network shows that (1) it is better to take all blocks’ prediction
errors into account, (2) a larger receptive field that can be achieved by pyramidal images
allows to estimate larger motions, (3) self-supervised learning based on the photometric
error leads to better performance.

3.6. APPENDIX

3.6.1. NETWORKS WITH SHARING PARAMETERS AMONG BLOCKS
Sharing parameters among the blocks of an ICSTN-based network is a way to widen the
network (have more convolution kernels in each layer) without enlarging the model size.
We train the 6th network of Table 3.1 and its variants by self-supervised learning. The
results are shown in Table 3.6. Besides sharing all the parameters we also try only sharing
the fully-connected layer (FC).

The results show that sharing all the parameters and keeping the width of the network
significantly reduce model size but hurt the accuracy a lot. The wider network having
a slightly bigger model size fails to outperform the origin, either, shown in the 2nd row.
Besides, it is slower (96Hz) than the original (101Hz). Sharing the fully-connected layer

3.6. APPENDIX

3

51

reduces the model size a little at the cost of the slight deterioration of accuracy. An ex-
planation to the results is that, when blocks have different parameters, the first block is
trained to better handle bigger disparities and the last block focuses more on the smaller
ones. Although sharing parameters widens the network, its enhancement to the model
capacity of the block is less than the negative effects of weakening its specialization.

Table 3.6: Networks with shared parameters.

Share
Params

Num. Params (original
/ wider)

EPE’s Approx. Normal Distr.: std(1e-4) (original /
wider)

None 1.252M (4.59, 4.04, 5.94)
All 0.417M / 1.259M (8.68, 8.42, 12.05) / (6.28, 5.96, 8.55)
FC 1.221M (4.44, 4.11, 6.02)

-0.2 -0.1 0 0.1 0.2
-5

0

5
10 -3 x axis

-0.2 -0.1 0 0.1 0.2
-5

0

5

Pr
ed

ic
tio

n
Er

ro
r 10 -3 y axis

-0.1 -0.05 0 0.05 0.1
Ground-Truth Distance-Scaled Translation

-5

0

5 10 -3 z axis

x axis

-5 0 5
X

X

X

X

X

X

10 -3

0

500

1000

y axis

-5 0 5
10 -3

0

500

1000

Pr
ob

ab
ilit

y
D

en
si

ty

z axis

-5 0 5
Prediction Error 10 -3

0

500

1000

Data Hist.
Approx. Normal Distr.

Figure 3.6: Error distribution of the 6th network of Table 3.1 trained in the self-supervised manner.

3.6.2. ERROR DISTRIBUTION OF NETWORK’S PREDICTION
In order to better illustrate the performance of the networks, Fig. 3.6 shows the error dis-
tribution of the 6th network in Table 3.1 trained in a self-supervised manner. Other net-
works’ error distribution figures have similar shapes. After the outlier rejection described
in Section 3.2, its inlier rate is 85.2%. From the left graph of Fig. 3.6, one can notice that
the errors lie approximately unbiasedly close to zero and the predictions in the z-axis are
noisier than the other 2 axes. For all the networks in this chapter the z-axis has worse
predictions. This is also the case for most networks in [25]. It is possible that a standard

3

52 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

CNN’s ability to estimate scale variations is fundamentally limited (cf. [41, 42]). A deeper
analysis of this issue is required.

Another phenomena worth noticing is that the network has noisier predictions with
bigger translations. It is also shown in Fig. 3.4, the uncertainty of prediction grows with
the amount of motion. And the prediction error does not perfectly normally distribute, as
shown in the right graph of Fig. 3.6. Predicting the uncertainty of the pose prediction will
be studied in future works.

3.6.3. PUBLIC HIGH-SPEED FLIGHT DATASET AND PRIOR POSE

Table 3.7: Evaluation by a public dataset of fast MAV flight.

Sequence RMSE (1e-1): Prior Pose Input / Zero Input

2 (6.97m/s) (10.76, 11.81, 7.53) / (14.48, 12.63, 8.70)
4 (6.55m/s) (9.94, 14.64, 6.80) / (12.16, 14.77, 8.40)

9 (11.23m/s) (9.70, 12.78, 10.55) / (21.15, 15.07, 15.77)
12 (4.33m/s) (7.74, 8.44, 6.30) / (9.38, 8.85, 6.48)
13 (7.92m/s) (9.86, 19.08, 6.56) / (14.18, 19.13, 8.50)
14 (9.54m/s) (33.06, 22.27, 17.08) / (36.75, 21.21, 21.37)

Figure 3.7: The network’s performance when the scene is not a perfectly planar surface. The left
image is the first image. The middle one shows the photometric error after derotation and the right
one shows the photometric error after the second image is warped by the network prediction.

We evaluate the 4th network of Table 3.3 with the 6 indoor 45-degree downward-facing
flight sequences that have public ground truth from the UZH-FPV [43] dataset. For this
dataset, the distance to the ground is unknown. So we manually set the initial distance
at the starting point of the ground truth data to make the RMSE smaller. The peak speed
of each sequence and the networks’ RMSEs are shown in Table 3.7. Fig. 3.7 shows that
the network’s performance when the scene is not a perfectly planar surface. Despite the
network is disturbed by the low objects lying on the ground because of their rich visual
textures, it still outputs relatively accurate predictions. There are other scenes that are not
inside a single plane, such as high obstacles and strings. But since most of the time the
ground plane takes up the majority of the image, the network has reasonable predictions.
Another source of inaccuracy is that the attitude estimation from the Madgwick filter is
less accurate because of the big acceleration during fast maneuvers.

3.6. APPENDIX

3

53

20 25 30 35 40 45 50 55 60 65
-10

0

10
v/

d
x axis

20 25 30 35 40 45 50 55 60 65

-5

0

5

v/
d

y axis

20 25 30 35 40 45 50 55 60 Time(s)
-4

-2

0

2

v/
d

z axis Ground Truth
Zero Input
Prior Input

Figure 3.8: The ratio of velocity to height expressed in the world frame. The network’s results with
and without the prior pose are compared using the number 2 indoor 45-degree downward-facing
sequence of the UZH-FPV dataset.

Figure 3.9: Comparison between with and without the prior pose when the visual disparity is big.
The left column shows the image pair; In the middle column, the upper image shows the photomet-
ric error after derotation and the lower one shows the photometric error of warping by the network
prediction when a zero vector is the initial guess of translation; The upper image of the right column
shows the photometric error of warping by the prior pose. And the lower one shows the photometric
error of warping by network prediction when the prior pose is the input initial pose.

3

54 3. CNN-BASED EGO-MOTION ESTIMATION FOR FAST MAV MANEUVERS

In the previous parts of this chapter, the initial pose (shown in Fig. 3.2) of the network
only contains the relative rotation. The translation is set to a zero vector. The network
needs to deal with the whole visual disparity caused by translational motion. Because
of the inertia of MAV, its translational velocity cannot change much during the sampling
interval of the camera. So the translation vectors of temporally adjacent image pairs are
similar. We add the predicted translation of the previous image pair as prior information
to the initial pose and call it the prior pose. In this case, the disparity of the image pair
warped by the initial pose gets smaller.

With the prior pose, the accuracy increases significantly and the predictions are less
noisy, as shown in Table 3.7 and Fig. 3.8. We think the reason is that the visual disparities
of the image pairs in the UZH-FPV dataset are big enough for the network’s accuracy to
decrease. Take the number 9 sequence as an example, the average absolute values of the
difference between the network’s input initial translation and output predicted transla-
tion in 3 axes significantly drop from 1.36e-1, 9.51e-2, and 6.46e-2 to 2.14e-2, 1.19e-2, and
1.50e-2 after using the prior pose. This means the network faces much smaller disparities.
From Fig. 3.9 one can clearly see the big disparity when the MAV flies at around 9.2m/s
close to the ground. Without the prior pose, the network decreases the disparity a lot but
still not enough. By contrast, the disparities decrease a lot already after warping by the
prior pose, which is easier for the network. The prior pose can be more accurate when
other information sources of ego-motion (IMU, dynamics model, etc.) are available. The
prior pose makes the network less demanded by big disparities, and thus makes it possible
to reduce receptive fields and model sizes of the networks.

3.6.4. CNN-BASED VIO FOR REAL-TIME FEEDBACK CONTROL

For autonomous feedback control of an MAV using only onboard sensors and proces-
sors, we implement a CNN-based VIO for high-frequency ego-motion estimation. It is
expanded from an EKF-based inertial attitude and velocity estimator [44] that also utilizes
the linear drag model of quadrotor MAV. The network (4th of Table 3.3) predictions and
the LiDAR measurements are utilized in the measurement update of EKF.

As shown in Eq. 3.1, the translational vector is scaled by the height of the first image.
This is also the case in the training of the networks. As for the VIO, we take the current
image as the first image of the network input, and the previous image as the second. So
the predicted distance-scaled translation is scaled by the current height. This avoids re-
running the EKF from the previous image’s time on. As the time interval of the image
pair (∆t) is short, we assume the average velocity during ∆t approximately equals the in-
stantaneous velocity of the current image. Then the measurement equation of the net-
work prediction can be formulated as Eq. (3.2), where h denotes the height of the cam-
era, c v denotes the velocity vector expressed in the camera frame, and c tnet ,k denotes the
distance-scaled translation vector of the image pair predicted by the network. The prior
pose (c tnet ,pr i or) is calculated from the estimated states. We input it to the network as the
initial pose to reduce both amount and range of the motion that the network deals with.
So we can ignore the varying error distribution of the network predictions over motion as
shown in Subsection 3.6.2, and assume that the measurement noise of the network pre-
diction (nnet) is approximately Gaussian and the noise covariance matrix (R) is constant.

3.6. APPENDIX

3

55

c tnet ,pr i or =
∆t · c vk|k−1

hk|k−1
, c tnet ,k = c tnet ,pr i or +nnet (3.2)

The CNN-based VIO is implemented in C++ and communicates with the controller
via Robot Operating System* (ROS). In order to run the network implemented and trained
in Python within the VIO, we use TorchScript and LibTorch from the PyTorch C++ API†.
TorchScript generates the traced network model that can be loaded and run in C++ by
LibTorch functions.

In flight, the average time cost of the network (4th of Table 3.3) inference is around
12.8 milliseconds on the GPU of an NVIDIA Jetson TX2 ‡. Its MAXP_CORE_ARM power
mode shows the highest inference speed of our network implementation. The camera’s
exposure duration is set to 10ms. Although the images look a little dark for bare eyes,
the effect on the network’s performance can be ignored. This highlights the network’s
generalizability. For control, a basic proportional-integral-derivative (PID)-based position
and velocity controller runs on the TX2 as a ROS node. A Betaflight§ flight controller is
in charge of attitude control and connected with the TX2 via a universal asynchronous
receiver-transmitter (UART).

-0.2 -0.1 0
x(m)

-0.15

-0.1

-0.05

0

0.05

y(
m

)

Hover Flight (30fps)
avg.=0.01m/s max=0.04m/s

-4 -2 0 2 4
x(m)

-2

0

2

y(
m

)

8-Shape Flight (30fps)
avg.=1.54m/s max=2.47m/s

-2 0 2 4
x(m)

-2

0

2

4

y(
m

)

Shuttle Flight (30fps)
avg.=2.20m/s max=4.07m/s

Ground Truth
Estimation

Figure 3.10: The ground-truth and estimated trajectories of hover flight (left), 8-shape flight (mid-
dle), and shuttle flight (right).

The MAV performs autonomous hover flight, eight-shape flight with changing heading
and height, and high-speed shuttle flight between two waypoints, under using state esti-
mation from the CNN-based VIO. The estimated and ground-truth trajectories for one-
minute flights and their average and maximum speed are shown in Fig. 3.10. The link to
the flight video is shown in Subsection 3.6.5. As far as we know, this is the first time that
the pose estimation network’s competence in autonomous feedback control of an MAV is
demonstrated. Note that the VIO shown here is basic. Unlike VIO solutions performing
mapping, our VIO has no global correction. The network only predicts the relative pose
of adjacent images. The trajectory is purely integrated from the network-corrected veloc-
ity estimation and thus suffers from drift over time. Taking the average velocity during
camera sample interval as the instantaneous velocity and the constant noise covariance

*http://wiki.ros.org/melodic
†https://pytorch.org/docs/stable/cpp_index.html
‡https://developer.nvidia.com/embedded/jetson-tx2
§https://betaflight.com/

3

56 REFERENCES

matrix of network prediction are two other sources of inaccuracy. There is space for fur-
ther improvements.

3.6.5. SUPPLEMENTARY MATERIALS
The links to the videos demonstrating the network’s performance and autonomous flights
are https://youtu.be/BMdh6dmLgrM and https://youtu.be/Uz9pNpn94jU. The code
developed for this work is open-source at
https://github.com/tudelft/PoseNet_Planar.

REFERENCES
[1] Y. Xu and G. C. de Croon, Cnn-based ego-motion estimation for fast mav maneu-

vers, in 2021 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2021) pp. 7606–7612.

[2] G. De Croon and C. De Wagter, Challenges of autonomous flight in indoor environ-
ments, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE, 2018) pp. 1003–1009.

[3] C. Forster, M. Pizzoli, and D. Scaramuzza, Svo: Fast semi-direct monocular visual
odometry, in 2014 IEEE international conference on robotics and automation (ICRA)
(IEEE, 2014) pp. 15–22.

[4] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, Orb-slam: a versatile and accurate
monocular slam system, IEEE transactions on robotics 31, 1147 (2015).

[5] M. Li and A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odometry,
The International Journal of Robotics Research 32, 690 (2013).

[6] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, Robust visual inertial odometry
using a direct ekf-based approach, in 2015 IEEE/RSJ international conference on intel-
ligent robots and systems (IROS) (IEEE, 2015) pp. 298–304.

[7] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial
state estimator, IEEE Transactions on Robotics 34, 1004 (2018).

[8] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor,
and V. Kumar, Robust stereo visual inertial odometry for fast autonomous flight, IEEE
Robotics and Automation Letters 3, 965 (2018).

[9] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, Orb-slam3:
An accurate open-source library for visual, visual-inertial and multi-map slam, arXiv
preprint arXiv:2007.11898 (2020).

[10] J. Shi et al., Good features to track, in 1994 Proceedings of IEEE conference on computer
vision and pattern recognition (IEEE, 1994) pp. 593–600.

[11] M. Trajković and M. Hedley, Fast corner detection, Image and vision computing 16,
75 (1998).

https://youtu.be/BMdh6dmLgrM
https://youtu.be/Uz9pNpn94jU
 https://github.com/tudelft/PoseNet_Planar

REFERENCES

3

57

[12] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, Orb: An efficient alternative to sift
or surf, in 2011 International conference on computer vision (Ieee, 2011) pp. 2564–
2571.

[13] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Mug-
likar, and D. Scaramuzza, Alphapilot: Autonomous drone racing, arXiv preprint
arXiv:2005.12813 (2020).

[14] S. Zhong and P. Chirarattananon, Direct visual-inertial ego-motion estimation via it-
erated extended kalman filter, IEEE Robotics and Automation Letters 5, 1476 (2020).

[15] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, Exploring representation learn-
ing with cnns for frame-to-frame ego-motion estimation, IEEE robotics and automa-
tion letters 1, 18 (2015).

[16] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu, Relative camera pose estimation
using convolutional neural networks, in International Conference on Advanced Con-
cepts for Intelligent Vision Systems (Springer, 2017) pp. 675–687.

[17] S. Wang, R. Clark, H. Wen, and N. Trigoni, End-to-end, sequence-to-sequence prob-
abilistic visual odometry through deep neural networks, The International Journal of
Robotics Research 37, 513 (2018).

[18] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, Unsupervised learning of depth and
ego-motion from video, in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017) pp. 1851–1858.

[19] R. Li, S. Wang, Z. Long, and D. Gu, Undeepvo: Monocular visual odometry through
unsupervised deep learning, in 2018 IEEE international conference on robotics and
automation (ICRA) (IEEE, 2018) pp. 7286–7291.

[20] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and M. J. Black, Competitive
collaboration: Joint unsupervised learning of depth, camera motion, optical flow and
motion segmentation, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2019) pp. 12240–12249.

[21] Y. Chen, C. Schmid, and C. Sminchisescu, Self-supervised learning with geometric
constraints in monocular video: Connecting flow, depth, and camera, in Proceedings
of the IEEE International Conference on Computer Vision (2019) pp. 7063–7072.

[22] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid, Unsupervised
scale-consistent depth and ego-motion learning from monocular video, Advances in
neural information processing systems 32 (2019).

[23] A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vi-
sion benchmark suite, in 2012 IEEE conference on computer vision and pattern recog-
nition (IEEE, 2012) pp. 3354–3361.

3

58 REFERENCES

[24] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart, The euroc micro aerial vehicle datasets, The International Journal of
Robotics Research 35, 1157 (2016).

[25] N. J. Sanket, C. D. Singh, C. Fermüller, and Y. Aloimonos, Prgflow: Benchmarking
swap-aware unified deep visual inertial odometry, arXiv preprint arXiv:2006.06753
(2020).

[26] O. D. Faugeras and F. Lustman, Motion and structure from motion in a piecewise pla-
nar environment, International Journal of Pattern Recognition and Artificial Intelli-
gence 2, 485 (1988).

[27] C.-H. Lin and S. Lucey, Inverse compositional spatial transformer networks, in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
pp. 2568–2576.

[28] M. Jaderberg, K. Simonyan, A. Zisserman, et al., Spatial transformer networks, Ad-
vances in neural information processing systems 28 (2015).

[29] D. Sun, S. Roth, and M. J. Black, A quantitative analysis of current practices in optical
flow estimation and the principles behind them, International Journal of Computer
Vision 106, 115 (2014).

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep
learning library, in Advances in neural information processing systems (2019) pp.
8026–8037.

[31] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

[32] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics (2010) pp. 249–256.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-
nick, Microsoft coco: Common objects in context, in European conference on computer
vision (Springer, 2014) pp. 740–755.

[34] A. Kendall, M. Grimes, and R. Cipolla, Posenet: A convolutional network for real-time
6-dof camera relocalization, in Proceedings of the IEEE international conference on
computer vision (2015) pp. 2938–2946.

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected con-
volutional networks, in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017) pp. 4700–4708.

[36] K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual networks, in
European conference on computer vision (Springer, 2016) pp. 630–645.

REFERENCES

3

59

[37] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume, in Proceedings of the IEEE conference on computer vision
and pattern recognition (2018) pp. 8934–8943.

[38] G. De Croon, H. Ho, C. De Wagter, E. Van Kampen, B. Remes, and Q. Chu, Optic-flow
based slope estimation for autonomous landing, International Journal of Micro Air
Vehicles 5, 287 (2013).

[39] H. Bay, T. Tuytelaars, and L. Van Gool, Surf: Speeded up robust features, in European
conference on computer vision (Springer, 2006) pp. 404–417.

[40] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, Estimation of imu and marg
orientation using a gradient descent algorithm, in 2011 IEEE international conference
on rehabilitation robotics (IEEE, 2011) pp. 1–7.

[41] Y. Xu, T. Xiao, J. Zhang, K. Yang, and Z. Zhang, Scale-invariant convolutional neural
networks, arXiv preprint arXiv:1411.6369 (2014).

[42] N. Van Noord and E. Postma, Learning scale-variant and scale-invariant features for
deep image classification, Pattern Recognition 61, 583 (2017).

[43] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza, Are we ready
for autonomous drone racing? the uzh-fpv drone racing dataset, in 2019 International
Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 6713–6719.

[44] D. Abeywardena, S. Kodagoda, G. Dissanayake, and R. Munasinghe, Improved state
estimation in quadrotor mavs: A novel drift-free velocity estimator, IEEE Robotics &
Automation Magazine 20, 32 (2013).

4
CUAHN-VIO: CONTENT-AND-

UNCERTAINTY-AWARE

HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Learning-based visual ego-motion estimation is promising yet not ready for navigating
agile mobile robots in the real world. In this chapter, we propose CUAHN-VIO, a robust
and efficient monocular visual-inertial odometry (VIO) designed for micro aerial vehicles
(MAVs) equipped with a downward-facing camera. The vision front-end is a content-and-
uncertainty-aware homography network (CUAHN). Content awareness measures the ro-
bustness of the network towards non-homography image content, e.g. 3-dimensional ob-
jects lying on a planar surface. Uncertainty awareness refers that the network not only pre-
dicts the homography transformation but also estimates the prediction uncertainty. The
training is self-supervised, so that it does not require ground truth that is often difficult to
obtain. The network has good generalization that enables “plug-and-play” deployment in
new environments without fine-tuning. A lightweight extended Kalman filter (EKF) serves
as the VIO back-end and utilizes the mean prediction and variance estimation from the
network for visual measurement updates. CUAHN-VIO is evaluated on a high-speed public
dataset and shows rivaling accuracy to state-of-the-art (SOTA) VIO approaches. Thanks to
the robustness to motion blur, low network inference time (∼23ms), and stable processing
latency (∼26ms), CUAHN-VIO successfully runs onboard an Nvidia Jetson TX2 embedded
processor to navigate a fast autonomous MAV.

Parts of this chapter [1] have been submitted to the International Journal of Robotics Research.

61

4

62
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

4.1. INTRODUCTION

Figure 4.1: Visualized outputs of CUAHN-VIO evaluated on Seq. 13 of the UZH-FPV dataset [2].
CUAHN is robust to sparse non-planar objects and motion blur. Example image pairs are respec-
tively shown on the left and right of the first row. The colormaps (2nd row) show the photomet-
ric error between the current image and the previous image warped according to the homography
transformation predicted by the network. The arrows in pink are the network-predicted optical flow
vectors of the four corner pixels. The red ellipses are the 95% confidence ellipses of the endpoint dis-
tributions of the optical flow vectors. They are plotted according to the uncertainty estimation from
the network. The trajectory plot in the bottom left aligns and compares the trajectory estimated by
CUAHN-VIO with the ground truth. The boxplot in the bottom right shows the relative translation
errors of different sub-trajectory lengths. CUAHN-VIO rivals SOTA approaches.

Thanks to the rapid development of computer vision and state estimation techniques,
VIO has become a trustworthy component of autonomous robots, such as MAVs. It ex-
pands the application scope of MAVs to GPS-denied environments such as indoor spaces.
Monocular VIO is attractive to MAVs because it only requires an inertial measurement unit
(IMU) and a single camera.

Traditional monocular VIO is built upon projective geometry. Feature-based approach-
es [3–8] detect and track handcrafted feature points along image frames. Direct approaches
[9–11] directly utilize the photometric intensities of pixels. Hybrid approaches [12, 13]
combine both. Although such approaches has been widely recognized, their vision front-

4.1. INTRODUCTION

4

63

ends have inherent defects. They are often affected by disadvantageous and hard-to-
model environmental factors, such as motion blur, varying illumination, and textureless
regions.

An alternative is learning to predict camera ego-motion by a deep neural network
(DNN). As observed in [14–19], DNNs better cope with visually degraded conditions than
their handcrafted counterparts. Often referred to as PoseNet, the DNN regresses to the
six-degrees-of-freedom (6-DoF) relative pose, i.e. 3-DoF rotation and 3-DoF translation,
between temporally consecutive camera views. The network input is a concatenation of
images or an optical flow map, where the camera ego-motion is encoded. In supervised
learning, PoseNet learns translational motion with metric scale from ground-truth labels
[17–22]. But the labels are often expensive to obtain and thus limit the amount of train-
ing data. Alternatively, self-supervised learning can be conducted by involving co-training
with another network that predicts a pixel-wise depth map [15, 23–30]. The training loss
derives from the difference between the actually captured image and the “virtual” one
synthesized by image warping according to the predicted relative pose and depth.

When training with monocular videos, translation and depth are scaled mutually to
best explain the visual correspondences within the input images. Since there is no con-
straint on the scales in the loss function, as pointed out in [27], networks not only suf-
fer from scale ambiguity but also have scale-inconsistent predictions over different video
snippets. Metric scale can be learned from calibrated stereo images [28, 29] or videos with
synchronized IMU data streams [15]. But both methods raise higher demands on training
data.

Besides the issue of scale discussed above, we believe that learning-based ego-motion
estimation has three major challenges on the road to being trusted in deployment on-
board MAVs. The first one is the network generalization capacity. Obviously, the require-
ment of fine-tuning in every new environment is a fatal barrier to wider application. How-
ever, to the best of our knowledge, only three works [14, 16, 20] demonstrated cross-dataset
generalization. All of them utilized large datasets synthesized in simulation. In most
works, the networks are trained and tested on the same dataset. The most popular is KITTI
[31], a car dataset with 3-DoF motion. When it comes to a smaller number of training sam-
ples and more difficult motion patterns, networks [15, 18, 19, 21, 22] show worse accuracy
than traditional approaches on EuRoC [32], an indoor MAV flight dataset with 6-DoF mo-
tion.

The second challenge is network prediction uncertainty. It is typical that most deep
learning application works purely pursue prediction accuracy on certain datasets. It is not
enough because we lack knowledge of the mechanisms of DNNs and thus highly inac-
curate predictions may appear, especially when the input sample is outside the training
distribution or distorted by noise. Such outliers can cause a big drift in ego-motion es-
timation and mislead the robot. Uncertainty estimation can remedy this problem. For
example, estimating the uncertainties of each network prediction and using them within
the bundle adjustment (BA) back-end lead to better accuracy than constant hand-tuned
uncertainty [18, 29].

The last challenge is high computation time. The causes are, for instance, the network
being too deep [18], combining multiple networks that together are very large [30], or us-
ing an expensive intermediate representation such as a dense optical flow map [14, 17].

4

64
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Works [14, 17, 18, 30] reported network inference time of more than 40ms measured on
Nvidia GPUs designed for desktop computers.

In this chapter, we propose CUAHN-VIO that overcomes the three challenges to a large
extent. Instead of PoseNet, the vision front-end is a network that predicts the planar ho-
mography transformation. It is a pixel-level task and thus generalizes better across cam-
eras with different intrinsics. The network input is a pair of temporally consecutive images
captured by a downward-facing camera mounted on an MAV. We show cross-dataset eval-
uation and real-world flight experiments without any fine-tuning to demonstrate the de-
cent generalization of the network. The network prediction uncertainty is estimated with
minor extra computation. It strengthens the system’s robustness toward outlier predic-
tions and contributes significantly to VIO accuracy. In terms of inference time, CUAHN-
VIO runs faster than 30 frame-per-second (fps) onboard an Nvidia Jetson TX2 mobile pro-
cessor. Its robustness toward high-speed motion is highlighted in a comparative experi-
ment with a traditional VIO approach.

In the previous chapter, we observed that a network with cascaded architecture better
copes with motion blur than handcrafted visual feature points when applied to predict-
ing 3-DoF translational motion. Motivated by this observation, this chapter aims to es-
tablish a complete VIO system with a network-based vision front-end to pursue accurate
ego-motion estimation in agile maneuvers of MAVs. The network, CUAHN, is more capa-
ble than the translation networks in [16], featured by that CUAHN predicts homography
transformation that encodes 6-DoF camera motion, and CUAHN estimates the prediction
uncertainty.

The main contributions of this chapter can be summarized as:

• We propose a practical scheme of self-supervised training a homography network.
It has high prediction accuracy, high-quality uncertainty estimation, and robustness
toward sparse 3-dimensional (3-d) structures in view.

• We build a VIO system upon the network and an EKF-based back-end. The metric
scale is maintained by the integration of IMU measurements. The network archi-
tecture of cascaded blocks makes full use of the EKF a priori state, contributing to
both accuracy and efficiency.

• To the best of our knowledge, CUAHN-VIO is the first learning-based VIO that not
only rivals SOTA approaches in both accuracy and efficiency but also has “plug-and-
play” generality and convenience for robot navigation in the real world.

4.2. RELATED WORKS

4.2.1. LEARNING-BASED VISUAL EGO-MOTION ESTIMATION
For PoseNets learning to predict 3-DoF translational motion in metric scale from monoc-
ular video [17, 18, 20, 28, 29], the scale in testing is recovered by the network’s “memory”
of the scene structure, e.g. the size of objects, in the training set. When testing in a new
environment, the scale is possibly inaccurate because of the non-perfect generalization.
An extreme case is a miniature park. A car model may be misidentified by the network
as a real car that the network has seen in training. Consequently, a translation of a few
centimeters may be mistaken for meters of motion. To avoid this problem, TartanVO [14]

4.2. RELATED WORKS

4

65

recovers up-to-scale translational motion by constraining the normalized translation vec-
tor in training. The network is trained on a large-scale dataset of simulation environments
and generalizes well to real-world datasets. A potential problem is that the normalized
translation is indefinite when the camera is close to stationary or in pure rotation. In the
evaluation of [14], the scale of predicted translation is recovered by ground truth metric
scale. So the potential bad effect cannot be observed. Another drawback of this approach
is that calculating the optical flow map that is the input of PoseNet is computationally
heavy.

When IMU measurements are fed along with video, two separate subnetworks can be
respectively in charge of visual and inertial processing at different sensor rates and output
two intermediate tensors. And another subnetwork takes the concatenated intermediate
tensors as input to perform sensor fusion and pose prediction [19, 21]. This setup has a
principle-level generalization issue. Networks for IMU processing and sensor fusion im-
plicitly “remember” the sensor setup of the training set, e.g. bias and noise characteris-
tics of IMU and the extrinsics between IMU and camera. Generalizing to a new sensor
setup is difficult. IMU data is low-dimensional and has well-understood models that are
grounded in physics. Practising this idea, an end-to-end supervised learning scheme for a
loosely-coupled VIO is proposed in [22]. Its back-end is a differentiable EKF whose states
are propagated by integrating IMU measurements.

For self-supervised learning, SfMLearner [23] firstly proposed to simultaneously train
two networks that respectively predict Tt→s and D t . Tt→s is the relative pose between
source image Is and target image It . D t is the pixel-wise depth map of It . An image Ĩs can
be synthesized by warping Is according to the 2-d projections of the 3-d point cloud estab-
lished from D t on the image plane of Is located at Tt→s . Based on the assumption that the
pixels in consecutive images corresponding to the same point in the scene have the same
intensity, the supervision signal derives from the photometric difference between Ĩs and
It . We call it reprojection-based loss for simplicity. This scheme was further developed
by also predicting Ds and punishing the 3-d geometric inconsistency between D t and Ds

[26, 27].

Also using reprojection-based loss, SelfVIO [30] performs self-supervised learning of a
depth network and three subnetworks for pose prediction. They have the same functions
as the subnetworks of supervised-learning VIO [19] and [21]. IMU measurements bring in
motion information with metric scale, however, as pointed out in [15], the IMU processing
network has no knowledge of the physical model of IMU and the reprojection-based loss
does not account for scale. So the metric scale of the IMU measurements is transformed
by the trained network and thus predictions still have no metric scale. Extended from [22],
the PoseNet prediction in [15] is also fused with the IMU-propagated a priori states by an
EKF. The refined a posteriori ego-motion and the output of a depth network together min-
imize the self-supervised reprojection-based loss in training. The metric scale is obtained
by explicitly integrating IMU measurement according to its physical model. But the au-
thors used a 7-DoF similarity transformation (Sim3) for trajectory alignment to quantify
the VIO accuracy. So we do not know how well the scale of their VIO output matches the
metric scale.

4

66
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

4.2.2. NETWORK UNCERTAINTY ESTIMATION IN COMPUTER VISION

According to the taxonomy of [33], for a deep network model, there are two major types
of uncertainty that can be modeled. Aleatoric uncertainty captures noise inherent in the
network input. It can be learned from the real data distribution by the network [34]. The
loss function is the negative log-likelihood (NLL) loss. We referred to it as predictive un-
certainty to emphasize the way by which it is obtained.

Epistemic uncertainty reflects the ignorance about the perfect model that maps clean
noiseless input to the desired output. It can be explained away given enough training data.
Bayesian neural networks [35] model the trainable network parameters as distributions
instead of deterministic values to explain the Epistemic uncertainty in the parameters.
Since exact Bayesian inference is computationally intractable for DNNs [36, 37], practical
strategies of approximate inference were developed such as ensembles of DNNs (deep
ensembles) [36] and Monte Carlo Dropout (MC-Dropout) [38]. Given a certain input, these
methods estimate the distribution of the network prediction by combining the multiple
outputs of an empirically sampled subset of all the possible network instances.

The models of deep ensembles are different point estimates (instead of distribution)
of model parameters. They are trained independently to de-correlate their predictions.
Ensemble members can be trained on different randomly sampled subsets of the entire
training set, referred to as bootstrapping. To approximate a similar effect in a compu-
tationally more efficient way, MC-Dropout requires only a single network model trained
with dropout, while also deploying dropout during inference, such that multiple indepen-
dent models are randomly sampled via multiple forward passes. Epistemic uncertainty is
referred to as empirical uncertainty in this chapter to highlight its acquisition approach.

The above introduced uncertainty estimation approaches have been applied to com-
puter vision tasks. Predictive uncertainty has been proven effective in the prediction of
object pose [39], camera ego-motion [15, 18, 22, 40, 41], monocular depth [33, 40, 42],
optical flow [43], semantic segmentation[33], and image classification [36]. For empiri-
cal uncertainty, deep ensembles were evaluated in image classification [36], optical flow
[43], and monocular depth [42]. Likewise, MC-Dropout was adopted in networks for op-
tical flow [43], monocular depth [33, 42], semantic segmentation [33], and camera pose
regression [44].

Our purpose in studying network uncertainty estimation is for a better knowledge of
visual measurement to benefit Bayesian state estimation. With the similar aim, Kaufmann
et al. [39] fuse the network-predicted gate pose and its uncertainty with outputs of a VIO
system by an EKF. The purpose is to compensate for the gate displacement and the accu-
mulating error of VIO in autonomous drone racing. Embedded in a traditional VO, D3VO
[29] leverages the predictive uncertainty. The uncertainty map of photometric matching
acts as the weights of the photometric energy in the BA back-end. The relative pose net-
work of D3VO has no uncertainty estimation, so the weights in the optimization of pose
energy are set as constant. In [18], six predictive standard deviations of 6-DoF relative pose
are used in BA that optimizes a pose graph and achieve higher accuracy than constant
hand-tuned covariance. Differently, Li et al. [22] proposed to learn predictive uncertainty
through the Bayesian nature of a differentiable EKF instead of the widely used NLL loss.
The supervision signal is the gradient flow coming from the a posteriori ego-motion that
is a function of the measurement noise covariance matrix R in EKF updating. Since the

4.2. RELATED WORKS

4

67

a posteriori states are functions of the whole filter, the learning of R is implicitly affected
by the EKF hyperparameters, e.g. the process noise covariance matrix Q , which poses a
potential of overfitting.

Most works adopt uncertainty estimation in supervised learning. About self-supervised
learning, Poggi et al. [42] made a step in the field of monocular depth. A strategy called
Self-Teaching was proposed to decouple depth from pose. The network that outputs pre-
dictive uncertainty is trained by the NLL loss and supervised by the outputs of an already
trained depth network with the same architecture. The self-supervised EKF-based VIO
[15] learns predictive uncertainty of relative camera pose from the error of a posteriori
ego-motion, same as the supervised VIO [22]. Because the current network prediction af-
fects the later a posteriori states, the network is supposed to adjust the current covariance
prediction according to the error of a posteriori ego-motion in the future. So sequential
training data having enough length is required.

4.2.3. DEEP PLANAR HOMOGRAPHY

When a camera films a 3-d point on a planar surface from different poses, the 2-d projec-
tions of this point on the image planes can be mapped by a planar homography transfor-
mation. It is a function of the ego-motion of the camera and thus useful for a VIO system.
It can be inferred by a DNN from an input image pair. Both supervised [45–47] and self-
supervised [48, 49] learning schemes have been proposed.

A planar homography transformation can be based on visual correspondences be-
tween the image pair. Multiple cascaded network blocks can predict the transformation
parameters incrementally [16, 46, 47]. In this scheme, image warping and synthesizing op-
eration is inserted between every two adjacent blocks. After the inference of each block,
an image is synthesized by warping the original one using bilinear interpolation [50] ac-
cording to the prediction(s) of the previous block(s). The next block infers from the syn-
thesized image and the other image. Between them, there are supposed to be fewer visual
disparities than the original image pair. In this way, each block predicts a part of the total
transformation. Compared with a single deep network, this strategy can lead to higher
accuracy and less difficulty in training thanks to the involvement of geometric knowledge
and shallower architectures of network blocks.

In many applications, it is not the case that all the visual correspondences can be ex-
plained by homography transformation. Masking out the non-homography pixels, e.g. the
ones filming 3-d structures or dynamic objects, has the goal of boosting accuracy. In [47],
a convolutional decoder is added to the homography network for mask prediction. Two
masks for the input image pair are predicted together and then concatenated with the im-
ages. The concatenation is the input to the next cascaded network block. In this work,
mask prediction is learned from the ground truth labels. Instead, Zhang et al. [49] implic-
itly learn the mask in a self-supervised way. An extra subnetwork predicts a mask for each
input image. And then the mask is multiplied with the feature map of the image. The idea
behind this is that the mask can weigh down the influence of non-homography pixels. The
homography network infers from the mask-weighted feature maps for the transformation
that is constrained by the self-supervised loss function.

4

68
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Figure 4.2: An overview illustration of the application scenario, sensor setup, and coordinate defini-
tion. W stands for world frame and B stands for body frame, i.e., IMU frame.

4.3. SYSTEM OVERVIEW
Fig. 4.2 illustrates that CUAHN-VIO applies to MAVs that are equipped with an IMU and a
downward-facing monocular camera. From a pair of temporally consecutive images, the
vision front-end, a DNN (Fig. 4.5), predicts the planar homography transformation and
the uncertainty. They are utilized in updating the EKF back-end as shown in Fig. 4.3.

Learning-based VIO approaches [15, 19, 21, 22, 30] perform end-to-end learning, i.e.,
the ego-motion inferred from both inertial and visual measurements is under constraint
in the loss function. The whole VIO system is obtained from a single training attempt.
But there are disadvantages. First, videos with synchronized IMU streams are required in
training. They are expensive to collect, which places a barrier to enlarging the training
set. Besides, extra work is required to obtain the initial poses of data sequences in self-
supervised learning [15]. Second, although training the VIO submodules together con-
tributes to in-domain accuracy, the VIO system can overfit the sensor setup of the training
set.

By contrast, the DNN of CUAHN-VIO is trained alone, totally decoupled from the VIO
system. The benefit is the better generalization capacity. The network has no requirement
for camera intrinsics or the camera-IMU extrinsics. Changes to the sensor set only require
modifying the back-end parameters without any change in the network. Besides, we do
not require sequential training data. A large number of easy-to-obtain simulation image
pairs (Subsection 4.4.1) enable the network to generalize to real-world scenes without any
fine-tuning.

In the context of no ground-truth label, our approach requires training two networks.
They are the student network acting as the VIO front-end and the teacher network. The
teacher network has more layers than the student network to gain more accuracy. It is
trained by a self-supervised loss function based on photometric matching (Subsection
4.4.2). Content-aware pixel-wise masks are predicted to mitigate the negative impacts
of the pixels whose photometric error cannot be reduced by a better homography trans-
formation (Subsection 4.4.3). The teacher network is required because its mean value
predictions of homography transformations are needed by the student network as targets

4.4. PLANAR HOMOGRAPHY NETWORK

4

69

to learn predictive uncertainty by the NLL loss (Subsection 4.5.2). The student network
estimates empirical uncertainty by deep ensembles or MC-Dropout (Subsection 4.5.3).
Uncertainty estimation turns out to be important in improving the VIO accuracy.

Figure 4.3: An overview data flow diagram of CUAHN-VIO.

The back-end of CUAHN-VIO is a simple extended Kalman filter (EKF), as shown in
Fig. 4.3 and introduced in detail in Subsection 4.6.2. It is propagated by IMU integra-
tion that explicitly maintains the metric scale. The network-predicted homography trans-
formation zt and its uncertainty σ2

t update the filter at the frame rate. The a priori ho-
mography transformation parameterized as four optical flow vectors ft |t−1 is utilized for
pre-warping the current image It . The new image Ĩt ,prior synthesized by warping is more
similar to the previous image It−1 unless the EKF totally diverges. The smaller visual dis-
parities make the task of the network easier. This is especially helpful in fast flight when
the optical flow is big. With this prior information, running fewer network blocks produces
higher accuracy.

4.4. PLANAR HOMOGRAPHY NETWORK

4.4.1. DATASETS

The training dataset is the same as [16]. It is a big-scale (more than 80 thousand training
samples) synthetic dataset with a wide variety of textures, realistic motion blur, and di-
verse motion patterns. It consists of independent image pairs with small baselines filming
perfectly planar surfaces. We refer to it as the Basic Dataset in this chapter.

To involve non-planar and dynamic content, we collected a flight dataset by a MYNT
EYE D1000-120 camera downward-facing mounted on a quadrotor MAV. It has 20 videos
in which 44,837 image pairs were selected for training, 3,904 for validation, and 4,577 for
testing. We put many objects of various heights on the floor that the camera filmed. Some
of them moved due to the downwash from the MAV propellers. The ground-truth homog-
raphy transformations were calculated from the camera poses measured by an OptiTrack
motion capture system. Example images are shown in the left three columns of Fig. 4.6.
This dataset is called the MYNT Dataset.

The inputs of all networks in this chapter are required to be undistorted grayscale im-
ages with the resolution of 320×224. There is no requirement on camera intrinsics.

4

70
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

4.4.2. SELF-SUPERVISED CASCADED NETWORK BLOCKS
When the network acts as a VIO vision front-end, its input images are temporally consec-
utive, so we refer to them as the previous image Ip and the current image Ic . The homog-
raphy transformation is parameterized as four 2-d optical flow vectors in the image plane
of Ic . They point from the image corners to the pixels corresponding to the corners of Ip ,
as illustrated in Fig. 4.4. For simplicity, they are called 8-d corner flow f . This four-point
parameterization of homography transformation is widely adopted by learning-based ho-
mography estimation [45–48] and it shows better performance than 3×3 homography ma-
trix when using traditional methods [51].

As shown in Fig. 4.5, the proposed network has four cascaded blocks that are gradual
in terms of the number of layers and the resolution of the input. The 1st block is the shal-
lowest and its input is the most downsampled. The 4th block is the deepest and it infers
from full-resolution images. An input tensor to a network block is made of two (down-
sampled) images concatenated along the channel dimension. The 1st block infers from
the downsampled Ip and Ic and regresses to f1. The direct linear transformation (DLT*)
solver calculates the homography matrix H1 from f1. The correspondence between the
float pixel coordinate (uc , vc) in Ic and the integer pixel coordinate (up , vp) in Ip is

λ[uc , vc ,1] = H1[up , vp ,1]T . (4.1)

Homography transformation has 8 DoFs while homography matrix H has nine elements.
λ is a scalar that makes the equation true when H is given. With (uc , vc), a new image can
be synthesized by warping Ic using differentiable bilinear interpolation [50]. The synthe-
sized image is referred to as Ĩc,1, the warped Ic according to f1. Ĩc,1 is then downsampled
and concatenated with the downsampled Ip to form up the input tensor of the 2nd block.
f2, the prediction of the 2nd block, is supposed to point from the corners of Ĩc,1 to the
pixels in Ĩc,1 that have the same intensities as the corners of Ip . H2 is integrated with H1

by matrix multiplication to produce the updated Hinteg.,2 = H1H2. Hinteg.,2 is used to warp
Ic to synthesize Ĩc,2, which is an input to the 3rd block. The same processes repeat for the
3rd and 4th blocks. The later warping is based on the refined Hinteg.,i = H1H2 · · ·Hi . Thus
there should be fewer discrepancies between the pair of (downsampled) images that are
input to the next block. In this way, blocks running earlier are trained to capture bigger
disparities and the later blocks are good at refining Hinteg.,i by inferring from the more-
and-more similar images. The final prediction ftotal is the total corner flow between Ic

and Ip . It is obtained by

λ(ftotal, j +c j ,Ic) = Hinteg.,3(f4, j +c j ,Ĩc,3
), (4.2)

where j indexes over the four corners and c j is the corner pixel coordinate. (f4, j +c j ,Ĩc,3
) is

the predicted coordinate of the pixel in Ĩc,3 corresponding to the j th corner of Ip . (ftotal, j +
c j ,Ic) is the coordinate of a pixel in Ic that has the same intensity as the pixel at (f4, j +c j ,Ĩc,3

)

in Ĩc,3. Here pixel coordinates are 3-d homogeneous coordinates.

*An asterisk indicates that further elaboration is available in Appendix. Applying to the whole chapter.

4.4. PLANAR HOMOGRAPHY NETWORK

4

71

F
ig

u
re

4.
4:

A
n

ex
am

p
le

o
f8

-d
co

rn
er

fl
ow

f
.I

m
ag

es
ar

e
ad

ap
te

d
fr

o
m

[5
2]

.

F
ig

u
re

4.
5:

T
h

e
ar

ch
it

ec
tu

re
o

fc
as

ca
d

ed
n

et
w

o
rk

b
lo

ck
s

fo
r

p
la

n
ar

h
o

m
o

gr
ap

h
y

tr
an

sf
o

rm
at

io
n

p
re

d
ic

ti
o

n
.T

h
e

d
ow

n
w

ar
d

ar
ro

w
in

th
e

fo
o

tm
ar

ke
r

o
f

I i
,↓

in
d

ic
at

es
th

at
it

h
as

b
ee

n
d

ow
n

sa
m

p
le

d
.

D
at

a
fl

ow
s

co
rr

es
p

o
n

d
to

tr
ai

n
in

g.
In

in
fe

re
n

ce
,l

o
ss

te
rm

s
ar

e
n

o
t

ca
lc

u
la

te
d

an
d

th
er

e
is

n
o

D
LT

so
lv

er
fo

r
f 4

.T
h

e
n

et
w

o
rk

o
u

tp
u

t
f t

o
ta

l
is

o
b

ta
in

ed
b

y
E

q
.(

4.
2)

.

4

72
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

The similarity between Ĩc,i and Ip indicates how accurate is Hinteg.,i . The loss function
for self-supervised learning is given in Eq. (4.3) and Eq. (4.4).

Li = 1

|V |
∑

k∈V
L(I i ,k) (4.3)

L(I i ,k) = α

2
(1−SSIM(I i ,k))+ (1−α) · |Ip,k − Ĩc,i ,k | (4.4)

V denotes the set of all valid pixels excluding the ones sampled outside the border of Ic .
It is a mask calculated from Hinteg.,i . I i denotes the concatenation of Ip and Ĩc,i . Same
as other works [29, 40, 42, 53], we involve both the L1 loss of pixel-wise photometric error
and Structured Similarity Index Measure (SSIM) loss in the loss function of self-supervised
learning, as shown in Eq. (4.4) where α= 0.85. Multi-stage losses are calculated from each
I i . Their weights are respectively 0.1, 0.2, 0.3, and 0.4 from earlier to later blocks.

The planar homography network is implemented* in a Python environment with Py-
Torch library and trained on the Basic Dataset by the self-supervised loss. We employed
bidirectional training, i.e. concatenating an image pair in two opposite orders. The aver-
age error of the predicted ftotal on the testing set of the Basic Dataset is 0.275 pixels. It is
the average of the absolute values of elements of the 8-d error vector that represents the
difference between the network prediction and ground truth, i.e. 1

8

∑4
j=1 | f j ,u − f j ,u,GT| +

| f j ,v − f j ,v,GT|. Note that this is different from the optical flow endpoint error (EPE) uti-
lized by other works [45, 47, 49], which is the average L2 distance, i.e. 1

4

∑4
j=1 || f j − f j ,GT||2.

The reason for element-wise averaging is that, as introduced later, the uncertainty of each
element of f is estimated independently. The error-variance data pairs for evaluating un-
certainty estimation are element-wise. We refer to the trained network as the Basic Model.
Its average inference time cost of a single image pair is 28.20 ms in Python environment
and 21.16 ms in C++*, measured on a TX2 processor in Max-P ARM power mode.

4.4.3. CONTENT-AWARE LEARNING
The major assumptions made in the self-supervised loss function Eq. (4.4) are that 1)
the camera is facing a single perfectly planar surface, and 2) the overlapping content of
both images meets the brightness consistency constraint. However, these assumptions
can be easily violated in the real world by 3-d structures, moving objects, occlusions, and
reflective materials. A straightforward idea is to learn a content-aware (CA) mask to down-
weight the losses of pixels violating the assumptions. The mask is supposed to be learned
without ground truth. It only acts on the loss function and thus is not required during
testing.

To predict such a mask, 4th block is expanded to a UNet[54]-like architecture with skip
connections. Its convolutional layers serve as the encoder part. The upsampling decoder
part is added and connected to the last convolutional layer. A single mask is inferred from
I 3. The mask-involved loss function is applied to the final homography transformation
prediction Htotal. The rest blocks keep their original architectures and Hinteg.,i , i ∈ {1,2,3}
are still constrained by Eq. (4.4) without taking the mask into account, assuming that the
ratio of assumption-violating pixels is not big enough to greatly deteriorate the supervi-
sion signal.

4.4. PLANAR HOMOGRAPHY NETWORK

4

73

We compare two content-aware loss functions. The first one is proposed in [23]. The
predicted mask is called the explainability map. Its elements Ek are bounded between
zero and one by a Sigmoid activation. Ek indicates the network’s belief in how much the
assumptions are satisfied for the kth pixel of Ip . The pixel-wise loss is weighted by Ek as
shown in Eq. (4.5). A regularization term Lreg.(Ek) encourages non-zero Ek by minimizing
the cross-entropy loss with 1.0 so as to prevent the network to minimize the loss by output-
ing small values for all Ek . If the network predicts the kth pixel to meet the assumptions
well, the value of Ek would be close to 1.0 and L(I 4,k) would be fully minimized. On the
contrary, L(I 4,k) would be ignored if Ek is close to zero.

LCA,Exp. = 1

|V |
∑

k∈V
Ek ·L(I 4,k)+λreg. ·Lreg.(Ek) (4.5)

Another approach considers the content-aware mask and homography transforma-
tion as parameters of a Laplacian probability distribution. The nature of the mask is an
uncertainty map. This approach was adopted for structure from motion [29, 40] and opti-
cal flow estimation [43]. Given the Laplacian probability density function (PDF)

p(x|µ,b) = 1

2b
e

−|x−µ|
b , (4.6)

since we use L1 loss in Eq. (4.4), the term |x−µ| can be replaced by photometric matching
loss L(I 4,k) calculated from the homography prediction. The parameter b in Eq. (4.6) is
related to the varianceσ2 = 2b2 of the Laplacian distribution. The predicted mask is made
of the bk that corresponds to the kth pixel of the photometric matching map I 4. The
learning objective is to maximize the PDF, i.e., minimize the NLL loss

LCA,Lap. = 1

|V |
∑

k∈V

L(I 4,k)

bk
+ logbk . (4.7)

bk can be understood intuitively as the uncertainty of the indirectly predicted L(I 4,k),
i.e. photometric matching uncertainty. From the perspective of the uncertainty of net-
work prediction, bk encodes the predictive uncertainty induced by the content-related
observation noise. If pixel k potentially violates the assumptions and is too difficult for
photometric matching, Eq. (4.7) allows the learning process to increase the value of bk to
down-weight L(I 4,k) and reduce the overall loss. logbk prevents bk to overgrow.

Table 4.1: Comparison of content-aware homography networks (CAHN).

Setups No Mask Lap. Exp. (λreg. = 10−3) Exp. (2×10−3) Exp. (3×10−3)

Avg. Ek - - 0.383 0.640 0.779

Avg. Error (pixel) ↓ 0.8768 0.8477 0.8483 0.8471 0.8487

The content-aware networks are trained and tested on the MYNT Dataset. Except for
the randomly initialized mask prediction decoder, all parameters are initialized by the Ba-
sic Model. The average error of the predicted ftotal, CA of each setup is shown in the 3rd

4

74
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

row of Table 4.1. The 2nd column is the baseline network without mask prediction and
trained by the original loss function in Eq. (4.3). The network of the 3rd column is trained
by Eq. (4.7). The rest three columns correspond to networks trained by Eq. (4.5) with
different hyperparameters λreg.. Their pixel-wise average values of the predicted explain-
ability maps on the training set are listed in the 2nd row. A bigger value means that more
photometric error is taken into account in the loss function.

It is noticeable that the value of explainability map is sensitive to the manually set
λreg., though the effect on prediction accuracy is small. Despite that 3-d structures dis-
tribute densely in the MYNT Dataset, the prediction accuracy of all setups is only slightly
improved from the baseline. As shown in the 6th row of Fig. 4.6, the example photometric
error maps of the baseline look very similar to the 2nd and 4th rows that are outputs of
the content-aware networks. The reason behind the minor contribution of content-aware
learning can be that the original loss function Eq. (4.3) minimizes the total photometric
error, which drives the network to abandon the minority assumption-violating pixels.

As shown in Fig. 4.6, the uncertainty map (3rd row) is clear and corresponds well to the
photometric error (2nd row) caused by non-homography image content. The explainabil-
ity mask (5th row) is very noisy and prone to discount the textures because they cause big-
ger photometric errors than uniform regions. Besides, the sensitivity of the explainability
mask toward λreg. may induce extra work of parameter tuning. Therefore, we believe that
the uncertainty map trained by Eq. (4.7) is the better choice for content-aware learning.

The 2nd and 3rd rows of Fig. 4.6 show the positive correlation between the predicted
uncertainty maps and the photometric error maps. Photometric error can be caused by
non-homography image content and inaccurate homography transformation. When ob-
vious non-homography pixels exist, we can observe that most pixels with high predicted
uncertainty fall on 3-d structures as shown in the three columns on the left. When the
scene is perfectly planar, as shown in the rightmost column, the non-zero uncertainty pre-
dictions are totally caused by the homography prediction error. So content-aware mask
is not ideal for semantic plane segmentation. Its only duty is to down-weight the non-
homography pixels in training.

4.5. UNCERTAINTY ESTIMATION
In Subsection 4.2.2, we introduced practical approaches for estimating predictive uncer-
tainty and empirical uncertainty. In this section, they are implemented for uncertainty
estimation of the homography network. We gain the knowledge of their uncertainty esti-
mation quality, effects on prediction accuracy, and additional time consumption. In this
section, the uncertainty-aware homography networks (UAHN) are trained and evaluated
on the Basic Dataset. Content-aware learning is not involved.

4.5.1. CONFIGURATIONS

The correlations between the uncertainty of network outputs are often neglected in prac-
tice. The covariances between the pixel-wise predictions are not considered in monoc-
ular depth and semantic segmentation [33, 40, 42]. The uncertainty of u and v compo-
nents of an optical flow vector are separately estimated in [43]. As for pose prediction
[15, 18, 22, 39], the six elements are modelled as independent of each other. In this work,

4.5. UNCERTAINTY ESTIMATION

4

75

Original Image

Photo. Err. (Lap. Mask)

Lap. Mask

Photo. Err. (Exp. Mask)

Exp. Mask

Photo. Err. (No Mask)

Figure 4.6: From the top row to the bottom row: original image, photometric error maps of the
network trained by Eq. (4.7), uncertainty maps (bk) in Eq. (4.7), photometric error maps of the
network trained by Eq. (4.5), explainability maps (Ek) in Eq. (4.5) (λreg. =2e-3), and photometric
error maps of the baseline network. The photometric error map is made of |Ip,k − Ĩc,k |, where Ĩc is
the warped Ic according to the predicted ftotal and k is the pixel index. Dark blue means a low error.
The 5th row shows the maps of 1−Ek . Pixels having small weight in the loss are in yellow, consistent
with other rows. The three columns on the left show example images from the MYNT Dataset. The
object in the center of the leftmost column is an artificial plastic tree with leaves swaying due to the
downwash. The rightmost column shows an image from the Basic Dataset.

4

76
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

we neglect the covariances as well and leave them for potential future works. A scalar
variance is estimated for each element of the 8-d mean prediction of homography trans-
formation ftotal.

As introduced before, our network has four cascaded blocks that infer from their own
inputs. It is not necessary for all of them to estimated the prediction uncertainty. The
uncertainty of f4 estimated by the last (4th) block is enough to obtain the uncertainty of
ftotal by the following way. The 4th block infers from Ĩc,3 and Ip and outputs the mean
prediction f4, j and the variances σ2

u, j , σ2
v, j of the endpoint of f4, j in the 2-d image plane

of Ĩc,3. j indexes over the four corner pixels. Σ4, j is a 3-by-3 diagonal matrix whose diag-
onal elements are σ2

u, j , σ2
v, j and zero. The coordinate of the pixel in Ic that has the same

intensity as the endpoint of f4, j can be obtained by Eq. (4.2). Thus the variance of this
pixel coordinate, i.e., the variance Σtotal, j of ftotal, j , is calculated as

λ2Σtotal, j = Hinteg.,3 ·Σ4, j ·H T
integ.,3. (4.8)

Note that the λ here has the same value as the λ in Eq. (4.2). Based on the above explana-
tion, the first three blocks of UAHN stay the same as the Basic Model. Only the 4th block
is modified for uncertainty estimation.

Σ4, j is a diagonal matrix butΣtotal has non-zero non-diagonal elements because of the
matrix multiplication. These non-diagonal elements are two orders of magnitude smaller
than the diagonal elements in general. So we neglect them and form up the error-variance
pair for evaluation by the 2-d error of ftotal, j and the first two diagonal elements ofΣtotal, j .
In this way, a testing image pair has eight error-variance pairs.

Same as [42, 43], we adopt Area Under the Sparsification Error (AUSE) as a metric to
evaluate the quality of uncertainty estimation. AUSE derives from the “sparsification plot”
that reflects how well high errors and high uncertainty coincide. To form a sparsification
plot, error-variance pairs are descendingly sorted according to variance. Pairs with the
highest variances are removed gradually. If the variances and errors coincide well, the
average error of the remaining pairs should decrease while we are removing the data. In
contrast, there would be little change in the average error if the variance does not correlate
with the error. The ideal sparsification i.e., oracle sparsification, is obtained by removing
data pairs with the highest errors gradually. An example is the rightmost subplot of Fig.
4.8. The horizontal and vertical coordinates are respectively the ratio of removed data and
the average error of remaining data.

The difference between the sparsification formed up by the estimated variances and
the ideal sparsification reflects the quality of variance estimation. A sparsification error
curve is calculated by subtracting the ideal sparsification from the estimated one. AUSE
is the area of the region below the error curve. A lower AUSE means better variance esti-
mation. In practice, to reduce the computation, data pairs are removed in batches. In this
chapter, we remove ten pairs at each step to get a data point of the sparsification curve.
An AUSE value shown later is the sum of the vertical axis coordinates of all the data points
of the sparsification error curve.

AUSE only reflects the relative values among the variances without showing how well
their values reflect the values of the errors. For example, for three errors, 1, 2, and 3, the
corresponding variances estimated by two approaches are 0.1, 0.2 0.3, and 10, 20, 30, re-
spectively. In this case, their sparsification plots are the same but obviously the former

4.5. UNCERTAINTY ESTIMATION

4

77

approach underestimates and the latter overestimates the uncertainty. So we use another
metric as a complement. It is the percentage of the testing errors falling into the three
standard deviations (3σ) interval, abbreviated as “Inside Rate”. A low Inside Rate means
that the uncertainty is underestimated.

4.5.2. MODEL DISTILLATION FOR PREDICTIVE UNCERTAINTY
As introduced in Subsection 4.4.3, an additional decoder network predicts the photomet-
ric matching uncertainty per image pixel, with the purpose of content-aware learning.
Here we shift the focus to the predictive uncertainty of the homography transformation
parameterized as the 8-d corner flow f4. The approach proposed in [34] is adopted. A
subnetwork of two fully-connected (FC) layers is added to the 4th block to infer the pre-
dictive uncertainty from input. It has the same architecture and input tensor as the lay-
ers predicting the mean values. The outputs are eight logarithmic variances, logσ2

u, j and

logσ2
v, j . The training loss is the NLL loss

LGaus. =
8∑

n=1

1

2σ2
n(I 3)

||tn −µn(I 3)||2 + 1

2
logσ2

n(I 3). (4.9)

tn denotes the learning target of the mean value. µn and σ2
n are respectively the means

and variances inferred from the input I 3. n indexes over the elements of f4.
Since we aim to build a self-supervised pipeline, ground-truth tn is not available. In-

spired by the Self-Teach scheme proposed in [42], the pseudo label tn can be generated
by a network trained in self-supervised fashion. A student network predicting both mean
and variance can be trained by Eq. (4.9) under the supervision of the trained teacher net-
work that outputs only the mean predictions. The student is trained to imitate the teacher
by outputting µn closer and closer to tn . The predictive variance σ2

n learns to capture how
good is the imitation. Thus σ2

n only reflects the imitation error ||tn −µn ||2 instead of the
true error of µn w.r.t. the ground truth.

The Basic Model has decent accuracy and thus is an option for the teacher network.
We referred to it as Self-Teach, same as [42]. Besides, we propose an enlarged version of
the Basic Model called the Master Model. It has six network blocks in total. The first three
are the same as the Basic Model. The following three blocks have the same architecture
as the 4th block of the Basic Model. They together can be treated as a more capable “last
block”. In the refining training of the Master Model, we initialized the last three blocks by
the parameters of the 4th block of the Basic Model. A small improvement in accuracy was
achieved and the final testing average error is 0.144 pixels, better than the Basic Model
(0.275). The scheme using the Master Model as teacher is called Master-Teach.

Self-Teach and Master-Teach are compared in Table 4.2. To gain more insight, we also
trained a student network supervised by ground-truth tn , abbreviated as GT-Teach. tn,GT,
i.e. f4,GT, is calculated from ftotal, GT and Hinteg.,3 that is predicted by the first three blocks.
The 4th blocks of all the student networks in Table 4.2 are randomly initialized before
training. When a training epoch has been finished, the average imitation error is calcu-
lated on the validation set. The set of network parameters achieving the smallest average
imitation error are recorded for testing.

Table 4.2 shows that GT-Teach has the lowest prediction accuracy but the highest In-
side Rate and average variance. The AUSE of Master-Teach is the lowest but its advantage

4

78
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Table 4.2: Comparison of supervision signals for predictive uncertainty.

Supervision
Avg. Error
(pixel) ↓

Avg. Imitation
Error (pixel)

Avg. Var.⋆

(pixel)
AUSE ↓ Inside Rate

(%) (3σ) ↑
GT-Teach 0.454 0.489 16.66 370.0 97.63

Master-Teach 0.428 0.336 7.69 357.3 86.96
Self-Teach 0.408 0.208 1.83 565.9 79.08

⋆ The networks predict rare unreasonably big variances. The averages are cal-
culated after removing the 0.1% biggest values.

Figure 4.7: Comparison of different approaches to learning predictive uncertainty. The two sub-
plots at the top and the bottom-left subplot: three times of the predictive standard deviations σ and
the corresponding prediction errors (absolute values) of GT-Teach, Master-Teach, and Self-Teach,
sorted according to the errors of GT-Teach. The 5,000 samples with the biggest testing errors are
shown. Because 3σ is very noisy, a Gaussian filter is adopted to produce the smoothed curves (in
dark red) that allow more intuitive views. Bottom-right subplot: comparison of the sparsification
error curves of the three supervision schemes.

4.5. UNCERTAINTY ESTIMATION

4

79

over GT-Teach is small. For all other metrics, Master-Teach achieved the middle places.
The smallest imitation error and variance indicate that the student model imitates the
teacher best in the Self-Teach scheme. But the AUSE and Inside Rate tell us the predictive
uncertainty of Self-Teach is the poorest. The low Inside Rate and average variance show
that the uncertainty is underestimated.

To visualize the comparison better, we plot the prediction errors and predictive vari-
ances in Fig. 4.7. For most testing samples, their error and predictive variance are both
small. Here we show the 5,000 error-variance pairs with the biggest errors. Inaccurate pre-
dictions like them are dangerous for VIO if the corresponding high variances are not cor-
rectly predicted. The error-variance pairs from different supervision schemes are aligned
by data indexes and sorted according to the errors of GT-Teach. In this way, the data points
with the same index in the three subplots correspond to the same element of the corner
flow of the same image pair. We can observe that the three schemes have similar errors
for the same testing sample, consistent with the similar average errors in Table 4.2. 3σ
grows with error as a general trend. 3σ of GT-Teach is the noisiest and biggest. In con-
trast, Self-Teach has the smallest σ that is sluggish toward the increasing error and tends
to underestimate especially the big errors. The sparsification error curves shown in the
rightmost subplot have peaks at a very low ratio, which means that, statistically, the qual-
ity of predictive variance is poor when the prediction error is big. For most of the testing
data, predictive variance is effective, as evidenced by the low sparsification error curves.

In training, the prediction error of a student network is caused by two factors, the im-
itation error ||tn −µn ||2 and the prediction error of the teacher. As mentioned before, σ2

n
can only capture the imitation error. So when the imitation errors are big and the teacher
errors are small, σ2

n well reflects the prediction errors. Conversely, when imitation error is
small but the teacher predictions are inaccurate, σ2

n keeps a small value and becomes al-
most irrelevant to the student prediction error. Master-Teach and Self-Teach respectively
correspond to the former and latter cases above. Thus Master-Teach produces better pre-
dictive uncertainty.

For a sparsification curve, when the ratio of removed data goes higher, remaining data
pairs have smaller σ2

n . As shown in the bottom-right subplot of Fig. 4.7, Self-Teach has an
increasing sparsification error curve, which indicates that a smaller σ2

n coincides worse
with the actual error. The reason for a small σ2

n can be that the student network is con-
fident that its mean value prediction is close to the teacher network that supervised it in
training. In this case, the student prediction error is close to the unknown teacher error
that is not reflected by σ2

n .

Fig. 4.8 diagrams how the predictive variances cover the prediction errors in a differ-
ent view from Fig. 4.7. The left subplot shows around 90% of the testing data. Most data
points fill up the area between −3σ and 3σ. The local Inside Rate is 86.02%. In the middle
subplot, it is noticeable that the variances are much bigger for the remaining 10% of the
data. Although the distribution of the errors becomes broader, but not as much as 3σ in-
creases, i.e. the extent of overestimation grows with 3σ. The local Inside Rate is 95.38%. As
observed in the sparsification plot (right subplot of Fig. 4.8), when the data pairs with the
biggest predictive variances (less than 5% of the total) are removed, the average error dras-
tically drops to less than 0.1 pixels. It indicates that, for most testing samples, the Master-
Teach student network achieves high prediction accuracy. The uncommon outliers can

4

80
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Figure 4.8: Predictive uncertainty of the randomly initialized Master-Teach model (1st row of Table
4.3). Error-variance pairs of the testing set are sorted according to the variances. To avoid overly
dense data points in plots, we show one point every ten pairs. Small and big variances are shown
respectively in the left and middle subplots with different ranges of y-axis for better visualization.

be revealed by the big predictive variances. The above results corroborate that the quality
of Master-Teach predictive uncertainty is generally satisfactory. All the uncertainty-aware
networks in the rest of this chapter are trained in Master-Teach scheme.

Table 4.3: Comparison of different initializations of network parameters.

Conv.
Layers

FC Layers
(mean value)

Avg. Error
(pixel) ↓

Avg. Imitation
Error (pixel)

Avg. Var.
(pixel)

AUSE ↓ Inside Rate
(%) (3σ) ↑

Random Random 0.428 0.336 7.69 357.3 86.96
Basic Random 0.376 0.282 5.98 400.0 57.05
Basic Basic 0.352 0.258 4.37 387.9 62.65

Besides random initialization, the student network can be initialized with the trained
parameters of the Basic Model. It is clearly shown in Table 4.3 that initializing both convo-
lutional layers and FC mean prediction layers (3rd row) with the Basic Model is better than
convolutional layers alone (2nd row). Random initialization (1st row) has the best predic-
tive uncertainty and worst prediction accuracy. The high prediction accuracy of the 3rd
row comes from the initial parameters. They also make the imitation error smaller. Thus
the predictive variances are smaller and reflect the prediction errors less well, leading to
worse predictive uncertainty.

4.5.3. EMPIRICAL UNCERTAINTY

Deep ensembles [36] and MC-Dropout [38] are implemented on the student networks
with predictive uncertainty. They both require multiple forward passes to get the sam-
ples from the distributions of network parameters. The variance is calculated empirically
from the outputs of the forward passes. Same as [33, 42, 43], we combine empirical and
predictive uncertainty. The total varianceσ2

n of the nth element of f4 is shown in Eq. (4.11)
as the sum of the empirical variance of the mean value predictions µm,n and the average

4.5. UNCERTAINTY ESTIMATION

4

81

of predictive variances σ2
m,n . m indexes over the network model samples.

µn = 1

M

M∑
m=1

µm,n (4.10)

σ2
n =σ2

n,pred. +σ2
n,emp.

σ2
pred. =

1

M

M∑
m=1

σ2
m,n , σ2

emp. =
1

M

M∑
m=1

(µm,n −µn)2
(4.11)

The idea of deep ensembles is to train M network models independently as the sam-
ples. Training the models with different bootstrapped subsets of the training data en-
hances independence. But meanwhile, less training data harms the prediction accuracy.
We follow the practice of [36] that using the entire training set for every model, assum-
ing random initialization along with random shuffling of training data produce sufficient
independence. We trained eight independent models respectively for the 1st and 3rd ini-
tialization schemes in Table 4.3. An ensemble combines eight models at most because the
increasing time consumption makes it impossible for real-time inferencing on a mobile
processor.

For MC-Dropout, we implement two schemes and two dropout rates. One scheme
randomly initializes all parameters and performs dropout before all layers. The other ini-
tializes the convolutional layers with the parameters of the trained Basic Model. Following
the practice of [44], that is deploying dropout only before layers that are randomly initial-
ized, dropout is only effective before FC layers.

The above-introduced schemes are compared in Fig. 4.9 by four metrics. We find that
performing dropout before all layers leads to much worse accuracy and AUSE, besides
long inference time. So it is eliminated without being shown. The top-left subplot shows
that increasing the number of sampled network models only slightly improves prediction
accuracy. While, the AUSE values shown in the top-right subplot vary with the number of
samples significantly, especially for deep ensembles. The same trend is observed in Inside
Rate (bottom-left subplot). An ensemble of three network models has significantly better
uncertainty estimation than a single one. In contrast, more forward passes of MC-Dropout
networks produce relatively smaller improvements. The higher dropout rate (10%) per-
forms worse than the lower one (5%) in terms of both accuracy and AUSE, while better in
Inside Rate.

As for the two initialization schemes, random initialization has better and bigger pre-
dictive uncertainty as shown before. Thanks to more randomness in network parameters,
random initialization in theory has better and bigger empirical uncertainty as well and
thus has better overall uncertainty estimation. As shown in Fig. 4.9, the two initialization
schemes are respectively advantageous in prediction accuracy and uncertainty estimation
quality.

For deep ensembles, the time consumption increases significantly with the number
of sampled networks. We failed to find a way in our current implementation to speed
up, though the samples of the 4th network block are independent and, in theory, can run
in parallel. Due to the real-time requirement of VIO, we only consider the ensembles of
less than three network samples. For MC-Dropout, instead of inferencing multiple times
temporally serially, the intermediate tensors can be duplicated along the batch dimension

4

82
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Figure 4.9: Comparison of approaches for empirical uncertainty in terms of prediction accuracy,
uncertainty estimation quality (AUSE and Inside Rate), and inference time consumption. The x-axis
for deep ensembles is the number of independent network models. For MC-Dropout, the x-axis
is the number of forward passes. Deep ensembles indicated by blue stars and magenta triangles
correspond respectively to the 1st and 3rd row of Table 4.3. The inference time was measured on a
TX2 processor running network inference in a C++ environment. We show the inference time of
one of the two networks using MC-Dropout because the other has the same in theory. Same for the
deep ensembles.

4.6. VISUAL-INERTIAL ODOMETRY

4

83

before dropout to obtain the same effect. The time consumption increases insignificantly
as shown in the bottom-right subplot of Fig. 4.9. Based on the overall consideration of the
four metrics, we select three candidates that act as the VIO vision front-end and are com-
pared in terms of the resulting VIO accuracy in Subsection 4.7.2. They are 1) the ensemble
of randomly initialized models (indicated by the blue stars in Fig. 4.9), 2) the ensemble of
models initialized by the Basic Model (magenta triangles), and 3) 5% dropout before FC
layers with 16 forward passes (red squares).

Subsection 4.9.9 in the Appendix of this chapter shows the magnitudes of σ2
emp. and

σ2
pred. and their correlation for interested readers.

4.6. VISUAL-INERTIAL ODOMETRY

4.6.1. HOMOGRAPHY-NETWORK-BASED VISION FRONT-END
We have introduced how to train CAHN (Section 4.4) and UAHN (Section 4.5). In the fol-
lowing, we describe the way of combining both to get a content-and-uncertainty-aware
homography network (CUAHN), and how it acts as the vision front-end of a VIO system.

As discussed in the previous section, Master-Teach is a good choice for the student net-
work to learn the predictive uncertainty. To gain higher accuracy through the robustness
toward non-homography image content, we train the Master Model by the content-aware
loss Eq. (4.7), different from the Master Model in Subsection 4.5.2 that minimizes the
photometric error of all the pixels. Three upsampling decoders are respectively attached
to the last three blocks to predict the content-related photometric matching uncertainty
maps, as introduced in Subsection 4.4.3. The decoders share parameters. In this way, each
of the last three blocks has its predicted uncertainty map and the photometric matching
map obtained from the integrated homography transformation prediction Hinteg.,i . The
training loss is the sum of the content-aware losses of the three blocks.

It is important for the training set to have enough non-homography contents and also
be generic. In this chapter, the six sequences with public available ground truth of UZH-
FPV are used for evaluation. We take the 6,070 image pairs from the rest four sequences
without ground truth for training and name them the UZH-FPV training set. Together with
the generic Basic Dataset, the aggregated dataset is used for training CUAHN.

As introduced in Section 4.5, an uncertainty-aware network estimates the 8×8 covari-
ance matrix Rnet. of the corner flow prediction. Theoretically, it should be used directly as
the measurement noise covariance matrix Rmeas. in the measurement update of EKF. But
because the performance of the EKF is under the effects of noise matrices, it is better to
have the freedom of tuning the measurement noise. Thus we introduce a manually tuned
scalar hyperparameter kvar. to linearly scale Rnet. as Rmeas. = kvar. ·Rnet.. In practice, it is
easy to tune since the system is not very sensitive to kvar..

4.6.2. EKF-BASED BACK-END
The VIO back-end is a simple and very efficient EKF. IMU measurements drive the state
propagation and network outputs drive the visual measurement updates. To simplify the
filter, we assume that a single plane is observed by the camera throughout the whole video
and the plane is orthogonal to the gravity vector. These assumptions apply to many flight
arenas, especially indoor environments. The origin of the world frame lies on the plane

4

84
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

and the z-axis is parallel to the gravity vector as shown in Fig. 4.2. The EKF state vector is
defined as:

x := [
p , q , v ,ba ,bg , f j

]
, j ∈ {ul ,bl ,br,ur }. (4.12)

p is the position of IMU relative to the origin of the world frame, expressed in the IMU
frame. q is the Hamilton quaternion reflecting the relative rotation between the world
frame and the IMU frame. v is the translational velocity of IMU expressed in the IMU
frame. ba and bg are respectively the additive bias on accelerometer and gyroscope. f j

indicates the optical flow vector of the j th corner pixel between two consecutive frames.
It is expressed in the current frame, pointing from the corner to the pixel that is supposed
to have the same intensity as the corner of the previous frame. The foot markers of f j are
respectively the abbreviations of upper left, bottom left, bottom right, and upper right.

As shown in Eq. (4.13), IMU measurements are modelled as the sum of the desired
actual value (â and ω̂), additive bias (ba and bg), and white Gaussian noise (wa and wg).

am = â +ba +wa , ωm = ω̂+bg +wg (4.13)

The initialization of q , ba , and bg is based on the average IMU measurements within a
period of time when the MAV stays stationary, implemented in the code of [7].

ṗ =−[ω̂]×p +v +wp ,

v̇ =−[ω̂]×v + â +R(q)−1g ,

q̇ = 1

2
q ⊗

[
0
ω̂

]
,

ḃa = wba , ḃg = wbg ,

ḟ j =−(I − (c j + f j)eT
z)H(c j + f j)

(4.14)

Eq. (4.14) shows the IMU-driven state dynamics (ẋ). [ω̂]× is the skew-symmetric ma-
trix associated with ω̂. wp is the process noise in position integration. R(q) is a transfor-
mation function from q to SO3 rotation matrix that maps a vector expressed in the IMU
frame to its expression in the world frame. g = [0,0, g]T is the gravity vector expressed in
the world frame. ⊗ denotes quaternion product. We utilize the techniques introduced in
[55] for quaternion-related calculation. The propagation of f j is based on the continuous
homography transformation. The formula derivation can be found in [52]. c j stands for
the 2-d coordinate of the j th corner pixel. It is a constant parameter calculated from the
camera intrinsics. I is a 3×3 identity matrix. ez = [0,0,1]T . In our implementation, f j

and c j are homogeneous coordinates in the camera frame instead of pixel coordinates,
which means that they are expressed on the z = 1 plane of the camera frame. So camera
intrinsics are not needed in state propagation.

H ∈R3×3 relates the camera motion to the optical flow ḟ j . It is known as the continuous
homography matrix:

H = [ω̂c]×+ 1

dc
vcµ

T
c (4.15)

where
ω̂c = RC I ω̂,

vc = RC I (v + [ω̂]×tIC),
(4.16)

4.7. EVALUATION

4

85

and
µT

c = RC I R−1(q)ez ,

dc =−eT
z R(q)(p + tIC).

(4.17)

ω̂c and vc are respectively the angular and translational velocity vectors of the camera ex-
pressed in the camera frame. µc is the normal vector of the plane expressed in the camera
frame. Based on our assumption, it has the same direction as the gravity vector. dc is the
distance from the camera to the plane. We define the z-axis to be downward as shown in
Fig. 4.2. In the cases where the z-axis points up, minus signs should be added to the right
of the equal signs in Eq. (4.17).

The visual measurement of f j is modelled as

z j ,t = f j ,t |t−1 +w j ,t (4.18)

where f j ,t |t−1 is the a priori estimation of f j propagated by Eq. (4.14). z j ,t is the mean
value prediction of the whole homography transformation from the network. When ft |t−1

is used for pre-warping as shown in Fig. 4.3, the network predicts a part of the transfor-
mation and z j ,t is the combination of the network prediction and ft |t−1. w j ,t is the mea-
surement noise. The covariance matrix of w j ,t is Rmeas. = kvar. ·Rnet.. Note that network
outputs are in pixels. So z j ,t and Rnet. are required to be scaled by the camera intrinsics
(focal length) to convert to the homogeneous coordinates in the camera frame, the coor-
dinate system same as f j ,t |t−1.

f j is a temporary state reflecting the transformation between two consecutive frames.
It has been propagating from zero since the acquisition of the last frame. When a new
frame is available, the network inferences from the newest two frames and the difference
between the propagated prior f j ,t |t−1 and z j ,t acts as the measurement residual in EKF
update. After updating, f j and its corresponding elements in the covariance matrix of the
state vector are reset to zeros.

4.7. EVALUATION
We first compare the proposed VIO with open-sourced SOTA VIO approaches, followed
by an ablation study. Then, a generic and efficient variant UAHN-VIO is demonstrated
competent for feedback control of autonomous MAV flight in an unseen test environment.
Lastly, we compare CUAHN-VIO with a feature-point-based VIO approach MSCKF [4, 7],
focusing on analyzing the processing latency and robustness toward fast motion.

The evaluation is mainly by means of the six indoor 45-degree downward-facing se-
quences trajectories from a public MAV dataset UZH-FPV [2]. It is known for its high flight
speed and big optical flow. Another dataset is recorded in autonomous MAV flights by the
same hardware as the MYNT Dataset. It features frequent significant motion blur and is
utilized in robustness evaluation. KITTI [31] is wildly utilized by works of ego-motion esti-
mation. While it does not suit this work because it is recorded by forward-facing cameras
mounted on a car. The cameras captured rich 3-d content. By contrast, CUAHN-VIO is de-
signed for a downward-facing camera mounted on an MAV and requires most of the scene
in the field of view to be a single planar surface. EuRoC [32], a popular dataset captured
by a forward-facing camera of an MAV, cannot be used in this work for the same reason.

4

86
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

As is common in VIO studies, the root-mean-square error (RMSE) of absolute transla-
tion errors (ATE) acts as the metric for VIO accuracy. We utilize an open-sourced tool [56]
for the calculation. The estimated trajectory and the ground truth are aligned by the 4-
DoF yaw-only rigid body transformation (1-DoF rotation and 3-DoF translation, posyaw)
corresponding to the four unobservable DoFs for VIO [56]. It reveals how well the scale
of the estimated trajectory matches the metric scale. The Sim3 alignment widely used by
other works cannot.

4.7.1. COMPARISON OF ACCURACY WITH SOTA VIO APPROACHES

Table 4.4: Comparison with SOTA VIO approaches. Bold represents the best and underline repre-
sents the best one in SOTA approaches.

VIO
RMSE (meter) of Absolute Translation Errors (ATE) ↓

Seq. 2 Seq. 4 Seq. 9 Seq. 12 Seq. 13 Seq. 14

UAHN (6-3) 0.3371 0.3139 0.3392 0.5837 0.4066 1.7905
CUAHN (6-4) 0.3479 0.3138 0.3214 0.5843 0.4095 1.7790
CUAHN (4-4) 0.3475 0.2739 0.3200 0.5826 0.3985 1.7903

OpenVINS [7] 0.3438 0.3937 0.3772 0.6252 0.5542 1.7392
LARVIO [8] 1.0584 0.8085 0.5069 0.8100 0.8370 2.0767

MSCKF [4, 7] 0.3718 0.3704 0.4189† 0.6347 0.5424 1.7405
ROVIO [12] 0.9175† 0.4233 0.7837† 0.6234 0.4217 1.8286†

VINS-Fusion [6] 0.4040 0.4533† 0.6439 0.6021 0.4544 1.7988†

† Without online calibration.

Based on the ablation study shown later, three setups of CUAHN-VIO (6-3, 6-4, and 4-
4 in Table 4.6) are selected to compare with open-sourced SOTA VIO approaches in Table
4.4. The numbers in the 1st row are the sequence numbers. The maximum speeds of the
sequences in meters per second (m/s) are shown in the brackets following the sequence
numbers in the 1st row of Table 4.6. We used a laptop computer to run the VIO approaches
to guarantee no frame was discarded because of slow processing. We tried to get as good
as possible results from the SOTA approaches by tuning the parameters*, e.g. IMU noise
density and the starting time of the data sequences. For approaches having the function
of online calibration, we tried both with and without this function and put the better re-
sults in the table. ORB-SLAM3 [3] was also tried but it failed to initialize the map or keep
tracking it on any sequence. For five sequences out of six, the smallest errors are achieved
by UAHN or CUAHN. For Seq. 4 and 9, the advantage is relatively obvious. In general, the
proposed VIO rivals the SOTA approaches.

We also compared with DRIOD-SLAM [57], an open-sourced learning-based VO that
can run on the evaluation dataset without requiring retraining. Since it is a monocular
VO system, the estimated trajectories do not have the metric scale. So we used the 7-
DoF Sim3 trajectory alignment for the comparison of DRIOD-SLAM and UAHN-VIO, as
shown in Table 4.5. The preprocessing and frame rate of the input videos are the same for
DRIOD-SLAM and UAHN. The global bundle adjustment of DRIOD-SLAM was disabled

4.7. EVALUATION

4

87

Table 4.5: Comparison with a learning-based VO approach. The accuracy metric is based on Sim3
trajectory alignment. Bold represents better.

VIO / VO
RMSE (meter) of Absolute Translation Errors (ATE) ↓

Seq. 2 Seq. 4 Seq. 9 Seq. 12 Seq. 13 Seq. 14

UAHN (6-3) 0.3355 0.2941 0.3382 0.5800 0.4057 1.7672

DRIOD-SLAM [57] 1.3882 1.1096 1.4307 7.3421 1.2826 4.3682

in our testing. Table 4.5 shows that UAHN has an advantage in accuracy over DRIOD-
SLAM. Regarding time efficiency, we run DRIOD-SLAM on a partition of a multi-Instance
Nvidia A100 GPU (four instances). The average processing frame rate is around 10 fps. The
input videos have 30 fps, so DRIOD-SLAM did not run in real-time. As to be shown later,
CUAHN-VIO ran in real-time on a small-size mobile GPU processor. Thus CUAHN-VIO
outperforms DRIOD-SLAM in terms of time efficiency.

4.7.2. ABLATION STUDY
In this ablation study, we aim to gain insights into how the components and setups of
CUAHN-VIO contribute to VIO accuracy. The VIO variants are shown in Table 4.6. The
2nd column shows the network acting as the vision front-end of a VIO variant. The 3rd
column indicates the initialization method of a network. The last network block can be
initialized randomly or by the Basic Model, as introduced in Subsection 4.5.2. The number
of network blocks running in a VIO variant is shown in the 4th column. The 5th and 6th
columns tell about the measurement covariance matrix Rmeas. and the estimation method
of empirical uncertainty.

VIO variants are divided into six groups according to the shared setups. The VIO vari-
ants in Group 1 have no uncertainty estimation, which means that Rmeas. stays constant
for all network predictions. The shown value in the 5th column is the identical diagonal
element of Rmeas.. For Group 2 to Group 6, uncertainty estimation is available. The 5th
column shows the kvar.. Most EKF parameters, e.g. Q , stay fixed and are the same for all
the VIO variants. Rmeas. is the only manually-tuned parameter for different VIO variants.
For each VIO variant, we run it on Seq. 2 several times to find the Rmeas. or kvar. that yields
good accuracy. The same value is used for all sequences. In practice, we found that the
ATE is not sensitive to kvar.. Increasing kvar. can produce a little bit smoother estimated
trajectory while slightly enlarging the ATE.

First, we look at the benefits of having predictive uncertainty. The VIO accuracy is
improved substantially. This can be seen by comparing Group 1 (light yellow colored)
with Group 2 and 3 (light blue colored).

4

88
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Ta
b

le
4.

6:
E

va
lu

at
io

n
o

fV
IO

va
ri

an
ts

o
n

in
d

o
o

r
45

-d
eg

re
e

d
ow

n
w

ar
d

-f
ac

in
g

se
q

u
en

ce
s

o
ft

h
e

U
Z

H
-F

P
V

d
at

as
et

.B
o

ld
re

p
re

se
n

ts
th

e
b

es
t.

ID
N

et
-

w
o

rk
In

it
ia

l-
iz

at
io

n
B

lo
-

ck
s

R
m

ea
s.

/k
va

r.

E
m

p
ir

i-
ca

lU
n

c-
er

ta
in

ty

A
vg

.
T

im
e

C
o

st
⋆ ↓

R
M

SE
(m

et
er

)
o

fA
b

so
lu

te
Tr

an
sl

at
io

n
E

rr
o

rs
(A

T
E

)
↓

2(
6.

97
)

4(
6.

55
)

9(
11

.2
3)

12
(4

.3
3)

13
(7

.9
2)

14
(9

.5
4)

1-
1

B
as

ic
ra

n
d

.
4

12
5.

0
N

o
n

e
20

.7
55

5.
32

98
4.

96
16

2.
63

23
3.

09
57

2.
54

65
4.

35
32

1-
2

C
A

H
N

B
as

ic
4

35
.0

N
o

n
e

-
3.

79
62

5.
50

64
2.

66
58

3.
30

70
2.

84
77

7.
80

38
1-

3
B

as
ic

ra
n

d
.

3
10

.0
N

o
n

e
19

.6
58

1.
15

26
1.

00
22

0.
57

77
0.

93
79

1.
25

72
1.

64
55

1-
4

C
A

H
N

B
as

ic
3

1.
5

N
o

n
e

-
1.

10
91

1.
54

02
0.

42
82

0.
76

13
0.

78
73

1.
67

54
2-

1
U

A
H

N
ra

n
d

.
4

1.
0

N
o

n
e

23
.2

89
0.

40
33

0.
51

21
0.

35
29

0.
56

96
0.

41
71

1.
75

97
2-

2
C

U
A

H
N

ra
n

d
.

4
10

.0
N

o
n

e
-

0.
37

47
0.

35
29

0.
32

49
0.

60
17

0.
38

84
1.

78
13

2-
3

U
A

H
N

ra
n

d
.

3
0.

5
N

o
n

e
22

.0
43

0.
44

12
0.

54
35

0.
37

96
0.

53
90

0.
42

88
1.

77
86

2-
4

U
A

H
N

+
ra

n
d

.
3

10
.0

N
o

n
e

-
0.

40
53

0.
29

65
0.

31
45

0.
55

18
0.

42
49

1.
78

86
2-

5
C

U
A

H
N

ra
n

d
.

3
10

.0
N

o
n

e
-

0.
34

96
0.

29
30

0.
31

95
0.

59
54

0.
39

50
1.

78
69

3-
1

U
A

H
N

B
as

ic
4

30
.0

N
o

n
e

-
0.

36
28

0.
38

27
0.

37
79

0.
58

23
0.

42
90

1.
77

32
3-

2
C

U
A

H
N

B
as

ic
4

15
.0

N
o

n
e

-
0.

36
01

0.
34

17
0.

32
25

0.
58

77
0.

41
25

1.
77

06
3-

3
U

A
H

N
B

as
ic

3
30

.0
N

o
n

e
-

0.
36

06
0.

36
14

0.
37

38
0.

58
66

0.
43

29
1.

78
21

3-
4

C
U

A
H

N
B

as
ic

3
20

.0
N

o
n

e
-

0.
35

48
0.

31
44

0.
32

31
0.

58
79

0.
41

89
1.

77
53

4-
1

U
A

H
N

ra
n

d
.

3
0.

5
E

n
se

m
.(

2†)
26

.0
75

0.
46

64
0.

44
97

0.
34

94
0.

57
25

0.
41

56
1.

77
31

4-
2

C
U

A
H

N
ra

n
d

.
3

5.
0

E
n

se
m

.(
2†)

-
0.

34
93

0.
28

46
0.

32
06

0.
58

65
0.

39
37

1.
78

80
4-

3
U

A
H

N
ra

n
d

.
3

0.
5

E
n

se
m

.(
3†)

31
.5

19
0.

42
64

0.
38

63
0.

33
35

0.
57

49
0.

41
96

1.
77

20
4-

4
C

U
A

H
N

ra
n

d
.

3
5.

0
E

n
se

m
.(

3†)
-

0.
34

75
0.

27
39

0.
32

00
0.

58
26

0.
39

85
1.

79
03

5-
1

U
A

H
N

B
as

ic
3

65
.0

E
n

se
m

.(
2†)

-
0.

35
75

0.
31

70
0.

38
25

0.
61

86
0.

40
47

1.
80

08
5-

2
C

U
A

H
N

B
as

ic
3

50
.0

E
n

se
m

.(
2†)

-
0.

34
45

0.
31

79
0.

34
77

0.
60

59
0.

40
35

1.
78

52
5-

3
U

A
H

N
B

as
ic

3
50

.0
E

n
se

m
.(

3†)
-

0.
36

62
0.

31
26

0.
41

99
0.

61
48

0.
40

33
1.

80
52

5-
4

C
U

A
H

N
B

as
ic

3
30

.0
E

n
se

m
.(

3†)
-

0.
35

44
0.

30
72

0.
33

53
0.

59
92

0.
40

42
1.

78
11

6-
1

U
A

H
N

B
as

ic
‡

4
10

.0
D

ro
p.

5%
(1

6†)
23

.6
05

0.
35

77
0.

36
07

0.
36

23
0.

59
76

0.
38

71
1.

79
03

6-
2

C
U

A
H

N
B

as
ic

‡
4

10
.0

D
ro

p.
5%

(1
6†)

-
0.

39
06

0.
34

37
0.

33
56

0.
60

90
0.

39
45

1.
78

16

co
n

ti
n

u
ed

o
n

n
ex

tp
ag

e

4.7. EVALUATION

4

89

Ta
b

le
4.

6
–

co
n

ti
n

u
ed

fr
o

m
p

re
vi

o
u

s
p

ag
e

ID
N

et
-

w
o

rk
In

it
ia

l-
iz

at
io

n
B

lo
-

ck
s

R
m

ea
s.

/k
va

r.

E
m

p
ir

i-
ca

lU
n

c-
er

ta
in

ty

A
vg

.
T

im
e

C
o

st
⋆ ↓

R
M

SE
(m

et
er

)
o

fA
b

so
lu

te
Tr

an
sl

at
io

n
E

rr
o

rs
(A

T
E

)
↓

2(
6.

97
)

4(
6.

55
)

9(
11

.2
3)

12
(4

.3
3)

13
(7

.9
2)

14
(9

.5
4)

10
.0

0.
33

60
0.

29
76

0.
37

61
0.

59
89

0.
39

70
1.

80
03

6-
3

U
A

H
N

B
as

ic
‡

3
5.

0
D

ro
p.

5%
(1

6†)
-

0.
33

71
0.

31
39

0.
33

92
0.

58
37

0.
40

66
1.

79
05

10
.0

0.
34

36
0.

29
15

0.
34

17
0.

59
59

0.
40

67
1.

78
54

6-
4

C
U

A
H

N
B

as
ic

‡
3

5.
0

D
ro

p.
5%

(1
6†)

-
0.

34
79

0.
31

38
0.

32
14

0.
58

43
0.

40
95

1.
77

90
6-

5
U

A
H

N
B

as
ic

‡
2

5.
0

D
ro

p.
5%

(1
6†)

19
.4

19
0.

35
33

0.
30

15
0.

33
59

0.
59

35
0.

39
64

1.
78

81
6-

6
C

U
A

H
N

B
as

ic
‡

2
5.

0
D

ro
p.

5%
(1

6†)
-

0.
35

56
0.

30
44

0.
32

14
0.

58
42

0.
40

57
1.

77
59

6-
7

U
A

H
N

B
as

ic
‡

1
5.

0
D

ro
p.

5%
(1

6†)
17

.4
55

0.
58

62
0.

36
12

0.
38

87
0.

60
50

cr
as

h
6.

16
02

6-
8

C
U

A
H

N
B

as
ic

‡
1

5.
0

D
ro

p.
5%

(1
6†)

-
0.

41
85

0.
36

92
0.

34
32

0.
60

05
0.

44
30

8.
86

27
⋆

A
ve

ra
ge

n
et

w
o

rk
in

fe
re

n
ce

ti
m

e
co

n
su

m
p

ti
o

n
,m

ea
su

re
d

o
n

a
T

X
2

p
ro

ce
ss

o
r

in
M

ax
-P

A
R

M
p

ow
er

m
o

d
e.

N
et

w
o

rk
s

w
it

h
th

e
sa

m
e

ar
ch

it
ec

tu
re

s
w

er
e

o
n

ly
m

ea
su

re
d

o
n

ce
.F

o
r

in
st

an
ce

,t
h

e
d

at
a

o
f3

-2
is

o
m

it
te

d
si

n
ce

,t
h

eo
re

ti
ca

lly
,i

ts
h

o
u

ld
b

e
th

e
sa

m
e

as
2-

1.
†

T
h

e
n

u
m

b
er

o
fi

n
d

ep
en

d
en

tn
et

w
o

rk
m

o
d

el
s

in
an

en
se

m
b

le
o

r
th

e
n

u
m

b
er

o
ff

o
rw

ar
d

p
as

se
s

w
it

h
d

ro
p

o
u

t.
‡

O
n

ly
to

in
it

ia
li

ze
th

e
co

n
vo

lu
ti

o
n

al
la

ye
rs

.T
h

e
F

C
la

ye
rs

ar
e

ra
n

d
o

m
ly

in
it

ia
liz

ed
an

d
h

av
e

d
ro

p
o

u
tl

ay
er

s
b

ef
o

re
th

em
.

4

90
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Second, we investigate whether it gives better results when empirical uncertainty is
also estimated, by comparing Group 2 and 3 (light blue) with Group 4 to 6 (light green).
Here, the differences are less pronounced. However, most lowest ATEs are in light green
groups, which do have empirical uncertainty. Comparing deep ensembles (Group 4 and
5) with MC-Dropout (Group 6) does not lead to clear conclusions either. Given their simi-
lar accuracy, MC-Dropout is preferable due to its lower time consumption. Another phe-
nomenon we observed but is not shown in the table is that more than 16 times of sampling
of MC-Dropout produces no noticeable improvement.

Third, we evaluate the effects of content-aware learning. CAHN of Group 1 is initial-
ized by the Basic Model and further trained on the UZH-FPV training set in the same way
as the networks in Subsection 4.4.3. In other groups, CUAHN is trained with the aggre-
gated dataset. Compared with UAHN which is trained with the Basic Dataset, CUAHN
not only performs content-aware learning but also has seen more in-domain data, i.e. the
UZH-FPV training set. To see how much content-aware learning alone helps, we trained
a master network on the aggregated dataset. Eq. (4.3) instead of Eq. (4.7) is the loss func-
tion thus it does not conduct content-aware learning. The student network 2-4 is trained
by this master network on the aggregated dataset. The plus sign indicates that it has the
bigger training set than other UAHNs. Comparing 2-4 and 2-5 that are trained on the
same dataset, 2-5 is trained with the content-aware loss while 2-4 is not. 2-5 wins on four
sequences out of six. But, in general, the differences are small. We conclude that the con-
tribution of content-aware learning is small, the same as what is observed in Subsection
4.4.3.

Fourth, we assess the effects of exploiting a priori homography for image pre-warping
as shown in Fig. 4.3. In Table 4.6, except for the VIO variants with four network blocks,
a priori homography is exploited for all other variants with less blocks. Running three
blocks leads to comparable performance to four blocks with a small computational time
gain (∼1ms). Reducing the number of blocks further leads to additional time gains. But
using only one block results in worse VIO accuracy, as shown in Group 6. Pre-warping with
a priori homography facilitates VIO accuracy especially in high speed, as illustrated in Fig.
4.10. The 3rd row shows an example of high-speed flight. The 1st network block fails to
predict the homography transformation well, which is not corrected by the subsequent
blocks. Big estimated variances (top right of the rightmost image) indicate the network’s
low confidence in its prediction. The 4th row shows how the a priori homography initial-
izes the image pair. They are close to good alignment and further refined by the network
blocks.

Fifth, we study the influence of the initialization of the student network. Group 2 to
Group 5 show no clear influence of this variable. This may mean that the trade-off be-
tween more accurate mean value prediction and better variance estimation is equitable
and leads to similar VIO accuracy. We notice that the manually tuned parameter kvar. is
quite different between the initialization schemes. This tuning may be the partial cause of
the similar accuracy. The higher values of kvar. for the “Basic” initialization may compen-
sate to a certain extent for the underestimation of uncertainty, although a simple scaling
factor does not intrinsically improve the quality of uncertainty estimation. Since we think
proper uncertainty estimation is one of the keys to good generalization and robustness,
we have a light preference for random initialization.

4.7. EVALUATION

4

91

Original Image (Seq. 12)

Original Image (Seq. 14)

Photo. Err. (1st block)

Photo. Err. (1st block)

Photo. Err. (2nd block) Photo. Err. (3rd block) Photo. Err. (4th block)Photo. Err. (EKF Prior)

Photo. Err. (EKF Prior)

Photo. Err. (Orig. Pair)

Photo. Err. (Orig. Pair)

Avg. Var. : 49.73

Avg. Var. : 16.72

Avg. Var. : 3.87

Avg. Var. : 500.32

Figure 4.10: The top two rows show an example image pair captured at a relatively slow speed (Seq.
12 of UZH-FPV). The bottom two rows show a high-speed example (Seq. 14). The two image pairs
film the same scene. The 1st column shows the original images and the original photometric er-
ror maps of the image pairs. The 2nd column shows the photometric error maps of (Ĩt ,1, It−1) or
(Ĩt ,prior, It−1). The 3rd to 5th columns show the photometric error maps of (Ĩt ,i , It−1), i is the index
of network block and ranges from 2 to 4. The performance of the network 6-2 in Table 4.6 is shown
in the 1st and 3rd rows, and network 6-4 in the 2nd and 4th rows.

4

92
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

4.7.3. ONBOARD DEPLOYMENT FOR FEEDBACK CONTROL
UAHN-VIO, 6-5 of Table 4.6, is deployed onboard an autonomous MAV to produce odom-
etry information required by the close-loop feedback control. Sparse non-planar objects
are randomly laid on the planar floor of the flight arena. Images from this environment are
not involved in network training. Thanks to the wide distribution of the Basic Dataset and
the robustness toward non-planar content of the network as shown in Subsection 4.4.3,
theoretically, UAHN-VIO should work in any environment requiring no fine-tuning.

The MAV for flight experiments is a quadrotor equipped with a TX2 processor. An
MYNT-EYE visual-inertial sensor is mounted to the bottom of the MAV, downward-facing
at 90 degrees with the propeller planes. The image stream and IMU measurement stream
are published at 30Hz and 200Hz respectively. UAHN-VIO subscribes to sensor data and
publishes the estimated attitude, velocity, and position once it has processed the latest
image. So the odometry information has the same frequency as the image stream. We
did not compensate for the processing latency* because it is low and stable, as introduced
later. The flight controller is a basic proportional-integral-derivative (PID)-based position
and velocity controller. It generates thrust and attitude control commands that are sent to
Betaflight4 for low-level control.

We tested three kinds of flights, hover*, tracking a circle trajectory*, and shuttle flight
between two waypoints. During autonomous flights, the sensor data was recorded for
offline replay. During the two-waypoint shuttle flight, the controller was badly tuned on
purpose to induce larger motions, resulting in a variety of captured images. The velocity
and trajectory plots of the two-waypoint shuttle flight are shown in Fig. 4.13. The link to
the flight video is in Subsection 4.9.16.

4.7.4. TIME EFFICIENCY AND PROCESSING LATENCY
We have shown the network inference time consumption in Table 4.6. In the following, we
further discuss the detailed time consumption and processing latency of the whole VIO
system. The 1st row of Table 4.7 shows the time-consumption-related indicators. We log
the time consumption of the three main computing procedures (visual processing, IMU
propagation, and EKF updating) of each frame. The mean and variance of the total time
consumption are calculated. Besides, we compare the total time cost of processing each
frame with the standard time interval of the 30Hz video (33.3ms). The 3rd column from the
right shows the percentage of frames that take more than 33.3ms in all frames. In the im-
plementation of both MSCKF and UAHN-VIO, only when a frame has been processed, the
filter state at this timestamp is recorded and used to calculate ATE. The Average Processed
Frame Rate (2nd column from the right) equals to the number of processed frames divided
by the video duration in seconds. This is a metric for how many frames are skipped. The
cause of skipping a frame is the limited fixed size of the image buffer. In the implementa-
tion, if the VIO processing is too slow and more than five images are waiting for processing
in the buffer, the oldest one will be discarded to make room for the new image.

4.7. EVALUATION

4

93

Ta
b

le
4.

7:
T

im
e

co
n

su
m

p
ti

o
n

in
d

ic
at

o
rs

m
ea

su
re

d
o

n
a

T
X

2
p

ro
ce

ss
o

r
p

ro
ce

ss
in

g
Se

q
.2

o
fU

Z
H

-F
P

V.
B

o
ld

re
p

re
se

n
ts

th
e

b
es

t.
U

n
d

er
li

n
e

m
ar

ks
th

e
fr

am
e

ra
te

s
an

d
AT

E
s

va
li

d
fo

r
ac

cu
ra

cy
ev

al
u

at
io

n
.

V
IO

Im
ag

e
R

es
o

lu
-

ti
o

n
(p

ix
el

s)

N
u

m
.o

f
P

ts
/

N
et

w
o

rk
B

lo
ck

s

H
is

to
gr

am
E

q
u

al
iz

a-
ti

o
n

(H
E

)

V
is

u
al

P
ro

ce
ss

in
g

T
im

e
(m

s)

IM
U

P
ro

p
-

ag
at

io
n

T
im

e
(m

s)

E
K

F
U

p
-

d
at

in
g

T
im

e
(m

s)

To
ta

l
T

im
e

M
ea

n
(m

s)
↓

To
ta

lT
im

e
V

ar
ia

n
ce

(m
s2

)
↓

R
at

io
o

f
Lo

n
g

P
ro

ce
ss

in
g

T
im

e
(%

)
↓

A
vg

.
P

ro
ce

ss
ed

Fr
am

e
R

at
e

(f
p

s)
↑

R
M

SE
(m

)
o

f
AT

E
↓

M
SC

K
F

64
0×

48
0

30
0

✓
38

.3
7

19
.3

8
8.

43
66

.1
9

3.
95

e4
66

.3
0

18
.0

6
0.

31
42

M
SC

K
F

32
0×

24
0

18
0

✓
24

.4
7

2.
29

6.
04

32
.8

0
47

1.
61

25
.9

4
23

.7
8

0.
40

58
M

SC
K

F
64

0×
48

0
10

0
✓

26
.1

4
2.

47
3.

94
32

.5
7

54
9.

43
29

.8
8

23
.1

4
0.

33
86

M
SC

K
F

64
0×

48
0

10
0

22
.8

5
2.

09
3.

80
28

.7
4

46
0.

15
24

.9
3

24
.2

4
0.

31
78

M
SC

K
F

64
0×

48
0

10
✓

15
.8

1
1.

66
1.

28
18

.7
5

23
3.

38
12

.2
1

26
.2

3
0.

41
12

M
SC

K
F

32
0×

24
0

10
✓

11
.5

7
1.

78
1.

48
14

.8
3

15
7.

05
7.

01
26

.2
3

0.
60

00

U
A

H
N

-
V

IO
32

0×
22

4
2

24
.0

0
1.

48
0.

12
25

.6
1

3.
32

0.
44

26
.1

1
0.

35
44

U
A

H
N

-
V

IO
32

0×
22

4
3

27
.3

0
1.

46
0.

12
28

.8
9

2.
66

0.
78

26
.1

1
0.

33
80

4

94
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

The MSCKF [4] in Table 4.7 is implemented by [7]. We choose it instead of other SOTA
approaches because our C++ implementation is based on the open-sourced code of [7].
Thus the comparison is as fair as possible due to the similarities in code. Besides, the
efficiency of MSCKF is also advantageous as a filter-based approach. We change the image
resolution, the number of processed feature points, and histogram equalization of the
MSCKF because all of them observably affect the time consumption. The data in Table
4.7 is measured on a TX2 processor in the power mode that the VIO approach runs faster.
MSCKF computes everything with the CPU. It runs faster in the Max-N power mode. The
network of UAHN-VIO runs on GPU and is faster in Max-P ARM mode. According to our
observation, it applies to CUDA-accelerated DNNs implemented in PyTorch and LibTorch
running on TX2 processors.

The MSCKF of the 2nd row of Table 4.7 has the same settings as the one in Table 4.4.
When running on a TX2 processor, the average time cost of processing a frame is around
two times the standard time interval. We reduce the number of feature points and down-
scale the images to lower the average time to just below 33.3ms, as shown in the 3rd and
4th rows. But the variance of the total time is still very big. 25% to 30% frames require a
longer time than 33.3ms to process. And there are still frames skipped. The 4th and 5th
rows tell us that the better robustness toward motion blur (to be introduced later) brought
by histogram equalization comes at an expense of ∼3.3ms extra processing time.

The number of feature points is further reduced to only ten as shown in the 6th and 7th
rows to minimize the time cost. Only the bottom four rows of Table 4.7 manage to process
all the frames. The subtle difference between 26.23 and 26.11 is caused by the different
stop time of the two VIO approaches. The frame rates are less than 30 because irregular
frame drops exist in the original 30-fps video of UZH-FPV. Comparing ATEs of trajectories
at very different frequencies is not informative. So the ATEs in the top four rows are out
of the discussion. Comparing the ATEs of UAHN-VIO in Table 4.7 and Table 4.4, they are
almost the same on different machines. The accuracy of MSCKF processing ten points is
only slightly worse than when processing 300 points as shown in Table 4.4.

It is clear that for both approaches in Table 4.7, visual processing takes most of the
time. For MSCKF, the visual processing time is significantly affected by the number of
feature points and image resolution. The variance of total time decreases with the mean
value, but it is still very big compared with the ones of UAHN-VIO. Even if the number
of points is only ten, there are still around 10% of frames whose processing cannot be
finished before the next frame comes. In comparison, UAHN-VIO’s variance of total time
cost is very small, which indicates that the processing time is almost constant for every
frame. The very few (less than 1%) frames that take longer processing time for UAHN-
VIO are the first several of the video. The cause of it is likely to be library related, i.e., the
warm-up phase of the network object of LibTorch. Besides the stable network inference
time, UAHN-VIO has low and constant state propagation and updating time cost because
of its very simple filter design. Most computation is the network inference on the GPU. As
a result, the CPU usage of UAHN-VIO is very low.

Fig. 4.11 shows the processing latency measured on a TX2 processor. It is the time gap
between capturing a new image and updating the filter states according to the image. The
latency of UAHN-VIO is very stable thanks to the image-content-independent network in-
ference time cost and the simple filter design. The big variation in the latency of MSCKF

4.7. EVALUATION

4

95

La
te
n
cy

Figure 4.11: Processing latency within 20 seconds of Seq. 2, UZH-FPV dataset.

corresponds to the big variance of time consumption shown in Table 4.7. MSCKF using
original images (yellow curve) has smaller latency than its peer that conducts histogram
equalization (blue curve). When the number of points is reduced to only ten and the im-
ages are downscaled to half resolution (green curve), latency significantly decreases but is
still noisy and often beyond 33.3 ms.

The above discussion about the processing time consumption of MSCKF only applies
to the current CPU implementation. There are GPU-based implementations for hand-
crafted feature points such as [58], and learning-based feature points [59–61]. VIO ap-
proaches based on feature points adopting such techniques can achieve lower and scene-
independent stable latency in their vision front-ends. But the complicated back-ends that
utilize the pixel trajectories of the vanished points [4], BA [6], or iterative EKF [12] still
require serial computing and the required CPU resources can be considerable and scene-
dependent. As far as we know, most traditional VIO approaches only have CPU imple-
mentations. So before their GPU versions are widely recognized, CUAHN-VIO has an ad-
vantage in processing latency. Besides, it requires small CPU resources and thus allows
the deployment of computationally heavy iterative planning and control approaches that
run better on CPUs.

4.7.5. ROBUSTNESS TOWARD HIGH-SPEED FLIGHT
A bad effect of high-speed flight on VIO is the huge optical flow in the image plane, es-
pecially when the distance to the ground is small. Due to the fixed sample interval and
non-neglectable exposure duration of a frame-based camera, visual disparities between
consecutive images and motion blur correspondingly grow with optical flow. Regarding
big visual disparities, in Fig 4.10, we show a failure case that is solved by the a priori ho-
mography. Confronting motion blur, in the following, we demonstrate the advantage of
using a network as the vision front-end over processing handcrafted feature points. Same

4

96
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

as before, we compare UAHN-VIO and MSCKF. A big percentage of images captured dur-
ing the two-waypoint shuttle flight (Fig. 4.13) have significant motion blur thus this se-
quence is used to evaluate the robustness toward blur. The quadrotor MAV maximized
its tilt angle to speed up and down. When the speed reached a peak, the MAV rotated to
slow down. In this case, the optical flow was caused together by the fastest translation and
rotation thus it achieved a peak.

Corner Flow

Figure 4.12: The outputs of UAHN-VIO (6-5 of Table 4.6) and MSCKF (2nd row of Table 4.7) process-
ing the two-waypoint shuttle flight sequence. The average of the network-estimated variances of
the eight elements of the corner flow and the average of the absolute values of the eight elements
of the corner flow are downscaled for better illustration. The well-tracked points are the ones that
fulfill the epipolar constraint calculated within a RANSAC scheme.

A well-known problem of handcrafted visual feature points is that detection and track-
ing become more difficult in the presence of growing motion blur. The bottom subplot of
Fig. 4.12 shows the sharp declines in the number of points when optical flow was around
its peaks. With histogram equalization, the number of points drops to less than 20% of
before. Without histogram equalization, the number drops to and stays at zero until the
speed is slow enough. The lack of visual updating causes the MSCKF to drift as shown in
the left subplot of Fig. 4.13. Fig. 4.14 shows an image captured when the optical flow is
close to a peak. It is too blurry for FAST feature point [62] that relies on local gradients.
Histogram equalization increases the image gradients and produces several points with-
out lowering the threshold for feature detection and tracking. But it also induces noise.
Most point trajectories only have two frames and very few have three, which indicates
that it is hard to keep tracking the already hard-to-detect points. In contrast, despite the
severe reduction of local gradients, there are remaining gradients at bigger scales that can

4.7. EVALUATION

4

97

−4

−2

0

2

4

−3 −2 −1 0 1 2 3

Groundtruth
Estimate

Figure 4.13: UAHN-VIO (6-5 in Table 4.6) and MSCKF (100 feature points) with and without his-
togram equalization are evaluated on the two-waypoint shuttle flight sequence, running on a TX2
processor. The left subplot shows the velocity expressed in the body frame. The right subplot is the
trajectory evaluation of UAHN-VIO plotted by [56]. The groundtruth was recorded by an Optitrack
motion capture system. The average and maximum speeds during the flight are respectively 2.87
m/s and 5.41 m/s. The distance to the ground (z-axis) is stabilized at one meter.

be captured by the network. As shown by the photometric error map (bottom right of Fig.
4.14), the network is able to retrieve a reasonable homography transformation that aligns
the images well.

A clear phenomenon shown by the top subplot of Fig. 4.12 is that the network is more
likely to have big uncertainty estimation at high speed. On most occasions when the
network-estimated variance grows, the number of feature points dramatically declines or
is already low, which is an indicator of emerging motion blur. Motion blur can be treated
as noise in the input of the network and thus it outputs big predictive uncertainty. Fig. 4.10
shows an example that for similar image content with different amounts of blur, based on
the reasonable ranges speculated from the photometric error map, the variance is over-
estimated when the blur is more. Overestimated variances make the relatively accurate
mean predictions less trusted in the measurement updates of EKF and thus cause subop-
timal results. More examples of uncertainty estimation for blurry images and the positive
correlation between speed and estimated uncertainty are available in Subsection 4.9.10 in
the Appendix of this chapter for interested readers.

To summarize, VIO approaches that utilize feature points would not necessarily drift
because of the lack of points caused by motion blur. Histogram equalization as image
pre-processing can significantly increase the number of useful points. Besides, the well-
designed VIO back-ends compensate for the effect of fewer points to some extent. We did
not use datasets with long periods of ongoing motion blur in this chapter, but expect that
these would be more problematic for feature-based approaches. The network suffers from
the overestimated uncertainty caused by motion blur. But we have not observed that the

4

98
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Figure 4.14: An example of the highly blurry images captured during the two-waypoint shuttle flight.
Feature point tracking results of MSCKF with and without histogram equalization are shown on the
left and middle respectively. These two images are from the visualization module of [7]. In the left
image, there are a few point tracking trajectories visualized by small points and thin line segments
in red color. They are better to be viewed after zooming in. There is no point tracking trajectory
in the middle image. The top right is the undistorted and resized image that is the input of the
network. The bottom right is the photometric error map corresponding to the prediction of network
6-5 in Table 4.6. Dark blue indicates small photometric error. The average of the network-estimated
variances of the eight elements of the corner flow is 31.12 (pixel2). Images in this figure are shown
in the actual resolutions when being fed into the VIO approaches. The network uses the smaller
resolution.

accuracy of mean prediction is noticeably affected. Also because of the higher accuracy
of UAHN-VIO than other approaches in most tests in this chapter, we believe that the
proposed network has advanced robustness toward motion blur.

4.7.6. POTENTIAL IMPROVEMENTS
About reaching the end of this chapter, we discuss the shortcomings of CUAHN-VIO and
ideas that can possibly improve its performance. In this work, we mainly focus on the net-
work that is the vision front-end. Compared with other VIO solutions, the EKF back-end
of CUAHN-VIO is very simple and toy-like. The benefit is high time efficiency. However,
it lacks a recovery mechanism. One failure case was observed in a real-world flight exper-
iment when the MAV was landing and very close to the ground. The shadow of the body
of the MAV was captured by the downward-facing camera and caused an outlier network
output. The estimated height was wrongly updated as a minus value, and the VIO crashed.
A proper recovery mechanism requires more research.

CUAHN-VIO only updates the current filter state. Keyframe achieved big success in
many VIO solutions. It can also be applied to CUAHN-VIO following the similar scheme
proposed in [11]. Besides, involving camera poses at multiple time steps into a sliding
window may help achieve smoother estimated trajectories.

Note that the CUAHN-VIO introduced in this chapter can only be applied to environ-
ments where the planar surface is orthogonal to the gravity vector. But it is possible to
extend the application scenario to a slope by improving the EKF back-end. An interested
reader can refer to [52] and [11], whose proposed methods estimate the unit normal vector
of the plane in the field of view and thus can be applied to a slope.

In the training of CUAHN, the four network blocks are trained to handle the whole ho-

4.8. CONCLUSIONS

4

99

mography transformation. When the a priori corner flow propagated by the EKF is utilized
for pre-warping, the distribution of the network input can be different from the training
set. It can be helpful to fine-tune the network when running the whole VIO on a video.
We do not implement this idea mainly due to the concern of overfitting to the scene and
motion pattern of the fine-tuning videos.

4.8. CONCLUSIONS
In this chapter, we propose CUAHN-VIO. Its vision front-end is a homography transforma-
tion network with uncertainty awareness and the back-end is a simple EKF. Evaluations
show its comparable accuracy to SOTA traditional VIO approaches and its advantages
in processing latency. The robustness toward motion blur, a trait of learning-based ap-
proaches, is observed again in this chapter. The synthetic big-scale training set is proven
to enable a homography network to generalize well to the real world. Comparative stud-
ies show that, in our context, content-aware learning helps the accuracy to a small ex-
tent while uncertainty estimation from the network contributes significantly. Most impor-
tantly, different from pursuing better performance through deeper networks and compli-
cated loss functions, this work points out that, without requiring ground truth, a small-size
network with a practical training scheme for uncertainty estimation can also stand out.

4.9. APPENDIX

4.9.1. NETWORK ARCHITECTURE

A network block is made of several convolutional layers followed by one or two (only the
last block has two) fully-connected layer(s). All the layers except for the output layer of
each block are followed by a Leaky ReLU activation with a negative slope of 0.1. There is
no normalization layer.

4.9.2. MODEL SIZE

The Basic Model has 5,228,280 parameters. The Master Model is an enlarged version of
the Basic Model. It has 6,897,840 parameters. For the student model that outputs pre-
dictive uncertainty, a subnetwork of two fully-connected layers with 1,313,032 param-
eters is added to the 4th block. The total number of parameters of a student model is
6,541,312, among which 3,612,312 belong to the 4th block. These parameters are trained
in uncertainty-aware learning. The convolutional decoder network for mask prediction
has 1,090,681 parameters that are trained in content-aware learning.

4.9.3. IMPLEMENTATION AND TRAINING

We implement the networks by PyTorch [63] v1.7.1. The training is executed on a server
with GTX1080ti GPU and CUDA v10.1. The AdamW [64] optimizer withβ= (0.9,0.999) and
weight decay λ = 0.01 is utilized during the 50 training epochs. The batch size is 16. The
initial learning rate is 2e-4 and it is divided by 2 after 10, 20, 30, 35, 40, and 45 epochs. The
weight parameters are initialized by Kaiming initialization [65] and bias parameters are
initialized to zero. The network performs inference on the validation set after each training
epoch. The set of parameters that achieve the smallest average validation error are saved

4

100
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

as the best model and evaluated on the testing set. Most networks in this chapter follow
the above training procedure, except that Master Model has a smaller initial learning rate
(5e-5).

To run a network in a C++ environment, we utilize PyTorch C++ API. We use Torch-
Script to trace the trained network model in the Python environment to generate a file
that can be loaded by C++ code. Further, we use LibTorch in the C++ environment to load
the traced model and run the network.

The visual processing time of VIO shown in Table 4.7 of the main body of this chapter
is higher than pure network inference (Table 4.6 of the main body of this chapter). The
reason is that visual processing includes network inference and other processes support-
ing it. The processes are image undistortion and resize, and data type conversion between
C++ double, OpenCV Mat, and LibTorch tensor. Their total time consumption is around
4.0 to 4.5 milliseconds.

In the training of the content-aware mask based on Laplacian probability distribution,
we tried to train the network to directly output logbk (Eq. (4.7) of the main body of this
chapter) in order to avoid zero values of bk . However, the training became unstable. Good
results were achieved when bk is the sum of the square of the network output and a small
value (2e-6).

4.9.4. COMPARISON OF BASIC HOMOGRAPHY NETWORKS

We compared different network architectures and downsample methods in the early stage
of this work. The first architecture utilizes the feature pyramid extractor (FPE) network in-
spired by the PWC-Net [66]. The FPE is made of three convolutional layers. It processes
both images independently and outputs pyramidal feature maps. When the pyramid level
is one higher, the height and width of the feature map are halved and the number of chan-
nels is doubled. This architecture has 5,466,320 parameters. The second architecture gets
the image pyramid by downsampling the images to half/one-fourth/one-eighth of their
height and width by average pooling or bilinear interpolation. To achieve a similar model
size and inference speed to the first architecture, there are more channels in some of the
intermediate tensors in the 3rd block and one more convolutional layer in the 4th block.
This architecture has 5,228,280 parameters. We compare these two architectures because
they achieved similar performance in translational motion prediction and outperformed
others in [16].

Table 4.8: Comparison of basic homography networks.

Network Input Downsample
Avg. Error (pixel) Time Cons. (ms)

Model 1 Model 2 Python C++

Feature Maps FPE 0.409 0.388 28.66 21.66
Pyramidal Images Avg. Pooling 0.275 0.285 28.20 21.16
Pyramidal Images Bilinear Interp. 0.280 0.281 29.06 21.65
Pyramidal Images Bilinear Interp. 0.498* 0.501* 21.24* 18.27*

* Directly regress to homography matrix

4.9. APPENDIX

4

101

We trained two models of each architecture to exclude the influence of individual cir-
cumstances. The time consumption of network inference is measured on the GPU of an
Nvidia Jetson TX2 mobile processor in Max-P ARM power mode. The shown values in the
Python column are the averages of one thousand times of inference on the validation set
of the Basic Dataset when the batch size is one. The C++ time consumption values are
measured when processing the downward-facing Seq. 2 of the UZH-FPV dataset. From
Table 4.8 we can conclude that the architecture using pyramidal images is more accurate
and faster than its peer utilizing FPE. Downsampling by average pooling is slightly faster
than bilinear interpolation. Their accuracy is very close. Besides corner flow, directly re-
gressing to the eight elements of H (the last diagonal element is 1.0) is also implemented
for the first three blocks (bottom row of Table 4.8). It does not require DLT solving so it
runs faster. But obviously, it is less accurate.

Model 1 of the network using pyramidal images and average pooling in Table 4.8 is
selected as the Basic Model in the main body of this chapter.

4.9.5. DIRECT LINEAR TRANSFORMATION (DLT) SOLVER
DLT solver aims at solving the homography matrix H that has 8 degrees of freedom from
at least four pairs of corresponding points. As Eq. (4.19) shows, H relates the pixel coordi-
nates in two images of a point lying on a planar surface.

λ

 u2

v2

1

= H

 u1

v1

1

 , H =
 h1 h2 h3

h4 h5 h6

h7 h8 1

 (4.19)

From Eq. (4.19), we have λ = h7u1 +h8v1 +1, then we can form up a linear equation set
Ai h = bi , where

Ai =
[

u1 v1 1 0 0 0 −u2u1 −u2v1

0 0 0 u1 v1 1 −v2u1 −v2v1

]
h = [

h1 h2 h3 h4 h5 h6 h7 h8
]T

bi =
[

u2 v2
]T

(4.20)

Since we only have the predicted offsets of four corner pixels, i ranges from 1 to 4. Then by
forming up the 8 × 8 matrix A and 8-d vector b from Ai and bi , and calculating the inverse
matrix of A, h can be solved as h = A−1b.

4.9.6. WHY LEARNING REQUIRES A TEACHER NETWORK?
In Subsection 4.4.3 of the main body of this chapter, we introduce how to perform content-
aware learning by the predictive uncertainty of photometric matching. A reader may think
that the error of homography transformation prediction can be reflected by the photo-
metric matching uncertainty, which is true. Here we explain the reason why we do not use
the photometric matching uncertainty map to calculate the uncertainty of homography
transformation prediction.

The predictive uncertainty map bk explains the uncertainty of photometric match-
ing that is affected by both image content and the accuracy of homography transforma-

4

102
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

tion. For a well-trained content-aware network, bk mainly reflects the content informa-
tion in complicated scenes as shown in Fig. 4.6 of the main body of this chapter. Because
the photometric error induced by the prediction error is much smaller compared to the
non-homography content. Since it is unknown whether a pixel belongs to the single non-
reflective plane, it is not tractable to decouple the prediction error and the image content.
Even if bk is determined by the prediction error alone, e.g., the pixels on the plane are ac-
curately semantically segmented or the input images have no unfavorable content, it is
not clear to us how to calculate the prediction uncertainty from bk .

Therefore, we follow the common practice of using the negative log-likelihood (NLL)
loss to learn the predictive uncertainty. The teacher network is supposed to have high
accuracy to provide the learning targets of mean values.

4.9.7. COMPARISON OF DIFFERENT OUTPUT DIMENSIONS

In addition to predicting eight different values for each logσ2
n (8-d variance), inspired by

the concise approach utilized in [40], we also implement predicting a generalized single
value that represents the overall uncertainty (1-d variance) and duplicating it eight times
to fill in all dimensions. It assumes that noise in the input affects all dimensions of f4

equally, neglecting the difference among them. Two types of variance representation un-
der different supervisions are compared in Table 4.9. The 4th block of the student model
is randomly initialized. The best model in one training attempt is the one achieving the
smallest average imitation error on the validation set. In terms of the prediction accuracy
of the mean values, 1-d variance is slightly better. While 8-d variance has obvious advan-
tages in predictive uncertainty as evidenced by lower AUSE and higher inside rate.

Table 4.9: Comparison of predictive uncertainty.

Super-
vision

Dim. of
Var.

Avg. Error
(pixel)

Avg. Imitation
Error (pixel)

Avg. Var.*

(pixel)
AUSE

Inside
Rate (3σ)

GT 1 0.454 0.490 28.16 455.9 96.46
GT 8 0.454 0.489 16.66 370.0 97.63

master 1 0.419 0.329 11.80 445.7 80.83
master 8 0.428 0.336 7.69 357.3 86.96

self 1 0.406 0.210 2.59 756.7 76.93
self 8 0.408 0.208 1.83 565.9 79.08

* The networks predict rare unreasonably big variances. The averages are calcu-
lated after removing the 0.1% biggest values.

4.9.8. DIFFICULT TESTING SAMPLES
Fig. 4.15 shows several difficult testing samples from which we explore what leads to high
prediction error and high predictive uncertainty. Comparing the Basic Model and the
Master Model, the Master Model achieves accurate predictions except for the 1st and 5th
images. Significant blur (1st and 2nd columns) and lack of texture (4th and 5th columns)
cause big prediction errors of the Basic Model that has less model capacity. The master

4.9. APPENDIX

4

103

model achieves high accuracy on the images of the 2nd and 4th columns, while the errors
of the Master-Teach student model are big. It indicates that the student fails to imitate the
teacher well. From the appearance of the images, we speculate that the difficulty in imita-
tion is due to the unfavorable image contents from which extracting desired information
is hard for a network. That is to say, the big predictive variances are caused by unfavorable
image contents. It corroborates the definition of predictive uncertainty, which is that it
captures the uncertainty in network output caused by the content-determined observa-
tion noise. Based on our observations, the noise is mainly caused by textureless image
content and blur.

Figure 4.15: Five testing samples from the Basic Dataset that contain unfavorable content: signifi-
cant blur (1st to 4th) and lack of texture (4th and 5th). 1st row shows one of the input images Ip .
The 2nd to 5th rows show the photometric error map of (Ip , Ĩc), where dark blue means a low error.
The data shown at the bottom left corner of a photometric error map includes the error of the 1st
element of ftotal (i.e. the u component of the upper-left corner) and its predictive variance below it
if the network is a student. The 2nd and 4th rows correspond to the teacher networks. The 3rd and
5th rows respectively correspond to the student networks in Self-Teach and Master-Teach. The red
ellipses in the 1st column highlight one of their nuances.

4.9.9. CORRELATION BETWEEN PREDICTIVE AND EMPIRICAL UNCERTAINTY

The predictive variance σ2
pred. and empirical variance σ2

emp. are logged and plotted in Fig.

4.16. The idea of estimating empirical uncertainty is to model the distribution of param-
eters by independent network samples. The randomly initialized networks are more in-

4

104
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Figure 4.16: Predictive variance σ2
pred. and empirical variance σ2

emp. of three network models in an

ensemble. The σ2
pred.- σ

2
emp. pairs of each model are sorted according to σ2

pred. and separated into

two groups. 90% of the data that has smallerσ2
pred. is shown in the subplots on the left. The rest 10%

that has big σ2
pred. is shown in the subplots on the right. Note that the scales of y-axes of the right

subplots are much bigger than the left ones. The numbers around the top left corner of each plot
are statistical values of the data in the group, which are the averages of σ2

pred., the averages of σ2
emp.,

and the average ratio of σ2
emp. in the total variance σ2

pred. +σ2
emp.. 10% of the total data is plotted to

avoid overly dense points.

4.9. APPENDIX

4

105

dependent from each other than the networks initialized by the same parameter set from
the Basic Model. For the MC-Dropout networks, due to the initialization of convolutional
layers being the same, the independence is compromised. Thus the randomly initialized
ensemble has the best knowledge of the parameter distributions and captures the biggest
σ2

emp.. Comparing σ2
emp. and σ2

pred., in general σ2
emp. has smaller values. For all three mod-

els, σ2
emp. accounts for roughly one-third of the total variance for 90% of testing data as

shown in the left three subplots.
In the right subplots, with σ2

pred. rapid grows, σ2
emp. also has the trend to increase. The

correlation can also be observed in the left subplots. The reason behind the correlation
is discussed as follows. A small σ2

pred. means that the network models in the ensemble

“think” that their predictions are close to the teacher network with the same input. Thus
the networks have similar predictions that lead to small σ2

emp.. Similarly, a big σ2
pred. indi-

cates the predictions are far different from the teacher’s. Different models may have very
different predictions due to the randomness in training. Thus a bigger σ2

emp. is produced.

In the perspective of data distribution of the dataset, the testing data leading to bigσ2
pred. is

the minority. Such images are likely to have unfavorable content that is rare in the training
set. Network’s unfamiliarity with such contents increases σ2

emp..

Table 4.10: Uncertainty estimation on UZH-FPV.

Average Value 4 (6.55) 2 (6.97) 9 (11.23) 12 (4.33) 13 (7.92) 14 (9.54)

Pred. Var.
Emp. Var.

Ratio Emp. Var.

92.4
0.043
0.203

106.8
0.061
0.171

332.1
0.108
0.120

41.3
0.030
0.217

177.5
0.071
0.177

552.5
0.124
0.139

Pred. Var.
Emp. Var.

Ratio Emp. Var.

102.4
0.130
0.316

161.9
0.191
0.275

438.5
0.327
0.187

47.6
0.060
0.329

165.9
0.120
0.232

415.0
0.245
0.178

In order to gain more insight, we log theσ2
pred. andσ2

emp. on UZH-FPV and show the av-

erage values in Table 4.10. The light yellow group shows the results of VIO 6-2 in Table 4.6
of the main body of this chapter. The light green group shows the results of a variant of 4-4
with four blocks and without a priori. The three sequences on the left were recorded when
there are crowded low objects on the ground. The other three sequences were filmed in
the same flight arena but the ground is relatively cleaner from objects. We respectively sort
the sequences of the two environments in ascending order of speed. Because the network
input image can vary with a priori homography transformation, we run all four network
blocks and the inputs are the original images. Thus different networks have identical in-
puts. The data in Table 4.10 tells that both predictive and empirical variances increase
with speed. The growth in σ2

pred. is more significant and thus the ratio of σ2
emp. decreases

with speed. It is related to the motion blur considered as observation noise by the network,
as discussed before. The positive correlation between σ2

pred. and σ2
emp. is observable. For

bothσ2
pred. andσ2

emp., deep ensembles produce bigger values, implying more comprehen-

sive uncertainty estimation that contributes to better AUSE and Inside Rate, as shown in

4

106
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Fig. 4.9 in the main body of this chapter.

Snapshot Ensemble [67] learns multiple models faster than deep ensembles. Since
it shares the disadvantage of high inference time cost with deep ensembles (limited by
our current implementation), it is not separately discussed. The approach proposed in
[68] that enhances model diversity in the ensemble by altering hyperparameters is not
discussed for the same reason.

4.9.10. NETWORK UNCERTAINTY AND VELOCITY

As supplementary to Fig. 4.12 in the main body of this chapter, Fig. 4.17 illustrates the
statistically positive correlation between the magnitude of optical flow and network un-
certainty estimation. We do not know the exact magnitude of optical flow but it is deter-
mined by the speed divided by the distance to the ground and the rotation rate. Since the
rotation in the dataset is mostly slow, the height-scaled speed can serve as an approxi-
mate equivalent of the magnitude of optical flow. For both sequences, estimated variance
is more likely to have a big value when the speed is high. In the slow sequence, most es-
timated variances have very small values thanks to the clear and sharp images. While in
the fast sequence where blurry images are common, the positive correlation between the
estimated variance and height-scaled speed is obvious. Fig. 4.18 shows cases where the
network has big variance estimations.

Corner Flow

Figure 4.17: The outputs of CUAHN-VIO (6-4 of Table 4.6 in the main body of this chapter) evaluated
on a slow sequence (Seq. 12) and a fast sequence (Seq. 14) of UZH-FPV dataset. Both sequnces were
collected in the same environment.

4.9. APPENDIX

4

107

Figure 4.18: Example images from the high-speed two-waypoint shuttle flight sequence. The top
row shows the original images and the bottom row shows the photometric error maps of the im-
age pairs warped according to the network predictions of homography transformation. Significant
motion blur causes big predictive uncertainty. The average values of the variance estimations of
the eight elements of the corner flow are respectively 394.99, 106.41, 59.80, 183.90, 190.22, 221.72
(pixel2) for the six examples.

4.9.11. UAHN-VIO FOR FEED-BACK CONTROL

Two of the common practices for VIO to obtain better performance in autonomous flights
are 1) publishing the estimated states in higher frequency, e.g., IMU measurement fre-
quency, and 2) propagating the states to the current time using the IMU measurements
that come after the latest image to compensate for the image processing latency. Since
we aim to evaluate the VIO instead of pursuing the overall performance of autonomous
flight, the above methods are not deployed in this chapter. Nevertheless, thanks to the
short and almost constant processing time of UAHN-VIO, the MAV performed stable con-
trolled flights. The RMSE of the ATE of the estimated trajectory by UAHN-VIO is 0.1521
in the two-waypoint shuttle flight (Fig. 4.13 of the main body of this chapter). The tra-
jectories of autonomous flights of tracking a circle trajectory and fixed-point hovering are
shown in Fig. 4.19. The RMSEs of the ATEs are respectively 0.2775 and 0.0155.

4.9.12. EKF STATE PROPAGATION

In our implementation, we use the simple zeroth-order integration Eq. (4.21). When prop-
agating the states from t to t +1, we use the average of the IMU measurements sampled
at the two time points Eq. (4.22).

pt+1 = pt +∆t (−[ω]×pt +vt),

vt+1 = vt +∆t (−[ω]×vt +a +R−1(qt)g),

qt+1 = qt ⊗q
{
ω∆t

}= qt ⊗
 cos(

∥∥ω∥∥∆t/2)
ω∥∥ω∥∥sin(

∥∥ω∥∥∆t/2)

 ,

ba,t+1 = ba,t , bg ,t+1 = bg ,t ,

f j ,t+1 = f j ,t −∆t (I − (c j + f j ,t)eT
z)H(c j + f j ,t)

(4.21)

a = 0.5 · (ât + ât+1), ω= 0.5 · (ω̂t + ω̂t+1) (4.22)

4

108
4. CUAHN-VIO: CONTENT-AND-UNCERTAINTY-AWARE HOMOGRAPHY NETWORK FOR

VISUAL-INERTIAL ODOMETRY

Figure 4.19: Trajectories of circle trajectory tracking and fixed-point hovering.

4.9.13. a Priori HOMOGRAPHY
As shown in Fig. 4.10 of the main body of this chapter, the variance estimations for both
image pairs are smaller when utilizing a priori homography. In the 2nd row, a noticeable
phenomenon is that the photometric error map of (Ĩt ,2, It−1) is bigger than (Ĩt ,prior, It−1).
The reason can be that, in training, the networks are trained to infer the whole homog-
raphy transformation from the original image pairs. The 2nd block often handles bigger
disparities in training than the ones between Ĩt ,prior and It−1 and thus tends to output
bigger values.

4.9.14. ITERATIVE EKF
Inspired by [12, 52], we tried the iterative EKF scheme. After the first EKF update, the
corner flow is updated. The image pair is then warped according to the updated corner
flow and input to the network again to estimate the remaining visual disparities. And
then EKF is updated once more according to the outputs of the second network inference.
However, this scheme fails to improve accuracy.

4.9.15. PARAMETER TUNING OF SOTA VIO APPROACHES
For OpenVINS, we use the open-sourced code of it and modified all the parameters men-
tioned in the report† from the original values in the launch file. For MSCKF, we use the
same code as OpenVINS by setting the number of SLAM points to zero.

At the beginning of each sequence of UZH-FPV, the MAV was swung by the human
operator and then put on the ground. For sequences No. 2, 9, and 12, when we started
ROVIO at the very beginning of the sequences, the estimated trajectories showed huge

†https://rpg.ifi.uzh.ch/uzh-fpv/ICRA2020/reports/open-vins.pdf

https://rpg.ifi.uzh.ch/uzh-fpv/ICRA2020/reports/open-vins.pdf

REFERENCES

4

109

drifts. By changing the starting time of ROVIO to after the MAV is swung and before taking
off, we obtained much better results on these sequences. We tried the IMU noise param-
eters given by UZH-FPV and the parameters in the ROVIO’s configuration file for EuRoC.
After several attempts, we found that the combination of IMU noise densities for EuRoC
and the IMU random walk parameters given by UZH-FPV yielded good results.

We modified the source code of VINS-Fusion to get odometry output at frame rate.
We observed occasional big drifting in the estimated trajectories of VINS-Fusion. So we
ran VINS-Fusion several times on each sequence until we got two or more good estimated
trajectories, and used the best one in comparison. We used the IMU noise parameters
given by UZH-FPV for VINS-Fusion. We observed that multiplying the given white noise
standard deviation of the gyroscope and the accelerometer by 0.005 yields better results.

For LARVIO, we use the parameters mentioned in the report‡. The IMU noise parame-
ters are the same as the ones in EuRoC.yaml of the open-sourced code. The VIO started at
the beginning of Seq. 9. But for other sequences, the VIO started after the hand-swinging
part.

ORB-SLAM3 initializes a map when the drone slowed down to make turns and the
optical flow was relatively small. But it lost tracking very soon when the drone speeded
up. We tried to lower the thresholds for the feature extraction but it made little difference.

4.9.16. SUPPLEMENTARY MATERIALS
The code developed for CUAHN-VIO will be open-sourced at
https://github.com/tudelft/CUAHN-VIO upon the publication of this chapter. A video of
VIO runtime performance is available at https://youtu.be/_NgDkgON-nE.

REFERENCES
[1] Y. Xu and G. C. de Croon, Cuahn-vio: Content-and-uncertainty-aware homography

network for visual-inertial odometry, arXiv preprint arXiv:2208.13935 (2022).

[2] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza, Are we ready
for autonomous drone racing? the uzh-fpv drone racing dataset, in 2019 International
Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 6713–6719.

[3] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, Orb-slam3:
An accurate open-source library for visual, visual–inertial, and multimap slam, IEEE
Transactions on Robotics 37, 1874 (2021).

[4] M. Li and A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odometry,
The International Journal of Robotics Research 32, 690 (2013).

[5] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, Keyframe-based
visual–inertial odometry using nonlinear optimization, The International Journal of
Robotics Research 34, 314 (2015).

[6] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial
state estimator, IEEE Transactions on Robotics 34, 1004 (2018).

‡https://fpv.ifi.uzh.ch/wp-content/uploads/sourcenova/uni-comp/2019-2020-uzh-fpv-
benchmark/submissions/20/details.pdf

https://github.com/tudelft/CUAHN-VIO
https://youtu.be/_NgDkgON-nE
https://fpv.ifi.uzh.ch/wp-content/uploads/sourcenova/uni-comp/2019-2020-uzh-fpv-benchmark/submissions/20/details.pdf
https://fpv.ifi.uzh.ch/wp-content/uploads/sourcenova/uni-comp/2019-2020-uzh-fpv-benchmark/submissions/20/details.pdf

4

110 REFERENCES

[7] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, Openvins: A research platform
for visual-inertial estimation, in 2020 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2020) pp. 4666–4672.

[8] X. Qiu, H. Zhang, and W. Fu, Lightweight hybrid visual-inertial odometry with closed-
form zero velocity update, Chinese Journal of Aeronautics (2020).

[9] J. Engel, T. Schöps, and D. Cremers, Lsd-slam: Large-scale direct monocular slam,
in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part II 13 (Springer, 2014) pp. 834–849.

[10] J. Engel, V. Koltun, and D. Cremers, Direct sparse odometry, IEEE transactions on
pattern analysis and machine intelligence 40, 611 (2017).

[11] S. Zhong and P. Chirarattananon, An efficient iterated ekf-based direct visual-inertial
odometry for mavs using a single plane primitive, IEEE Robotics and Automation Let-
ters 6, 486 (2020).

[12] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, Iterated extended kalman
filter based visual-inertial odometry using direct photometric feedback, The Interna-
tional Journal of Robotics Research 36, 1053 (2017).

[13] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, Svo: Semidi-
rect visual odometry for monocular and multicamera systems, IEEE Transactions on
Robotics 33, 249 (2016).

[14] W. Wang, Y. Hu, and S. Scherer, Tartanvo: A generalizable learning-based vo, in Con-
ference on Robot Learning (PMLR, 2021) pp. 1761–1772.

[15] B. Wagstaff, E. Wise, and J. Kelly, A self-supervised, differentiable kalman filter for
uncertainty-aware visual-inertial odometry, arXiv preprint arXiv:2203.07207 (2022).

[16] Y. Xu and G. C. de Croon, Cnn-based ego-motion estimation for fast mav maneu-
vers, in 2021 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2021) pp. 7606–7612.

[17] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, Exploring representation learn-
ing with cnns for frame-to-frame ego-motion estimation, IEEE robotics and automa-
tion letters 1, 18 (2015).

[18] S. Wang, R. Clark, H. Wen, and N. Trigoni, End-to-end, sequence-to-sequence prob-
abilistic visual odometry through deep neural networks, The International Journal of
Robotics Research 37, 513 (2018).

[19] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, Vinet: Visual-inertial odome-
try as a sequence-to-sequence learning problem, in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31 (2017).

[20] C. M. Parameshwara, G. Hari, C. Fermüller, N. J. Sanket, and Y. Aloimonos, Diff-
posenet: Direct differentiable camera pose estimation, arXiv preprint arXiv:2203.11174
(2022).

REFERENCES

4

111

[21] L. Han, Y. Lin, G. Du, and S. Lian, Deepvio: Self-supervised deep learning of monoc-
ular visual inertial odometry using 3d geometric constraints, in 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019) pp. 6906–
6913.

[22] C. Li and S. L. Waslander, Towards end-to-end learning of visual inertial odometry
with an ekf, in 2020 17th Conference on Computer and Robot Vision (CRV) (IEEE,
2020) pp. 190–197.

[23] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, Unsupervised learning of depth and
ego-motion from video, in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017) pp. 1851–1858.

[24] Z. Yin and J. Shi, Geonet: Unsupervised learning of dense depth, optical flow and
camera pose, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018) pp. 1983–1992.

[25] Y. Chen, C. Schmid, and C. Sminchisescu, Self-supervised learning with geometric
constraints in monocular video: Connecting flow, depth, and camera, in Proceedings
of the IEEE International Conference on Computer Vision (2019) pp. 7063–7072.

[26] R. Mahjourian, M. Wicke, and A. Angelova, Unsupervised learning of depth and ego-
motion from monocular video using 3d geometric constraints, in Proceedings of the
IEEE conference on computer vision and pattern recognition (2018) pp. 5667–5675.

[27] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid, Unsupervised
scale-consistent depth and ego-motion learning from monocular video, Advances in
neural information processing systems 32 (2019).

[28] R. Li, S. Wang, Z. Long, and D. Gu, Undeepvo: Monocular visual odometry through
unsupervised deep learning, in 2018 IEEE international conference on robotics and
automation (ICRA) (IEEE, 2018) pp. 7286–7291.

[29] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry, in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (2020) pp. 1281–1292.

[30] Y. Almalioglu, M. Turan, M. R. U. Saputra, P. P. de Gusmão, A. Markham, and
N. Trigoni, Selfvio: Self-supervised deep monocular visual–inertial odometry and
depth estimation, Neural Networks 150, 119 (2022).

[31] A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vi-
sion benchmark suite, in 2012 IEEE conference on computer vision and pattern recog-
nition (IEEE, 2012) pp. 3354–3361.

[32] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart, The euroc micro aerial vehicle datasets, The International Journal of
Robotics Research 35, 1157 (2016).

4

112 REFERENCES

[33] A. Kendall and Y. Gal, What uncertainties do we need in bayesian deep learning for
computer vision? in Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems (2017) pp. 5580–5590.

[34] D. A. Nix and A. S. Weigend, Estimating the mean and variance of the target proba-
bility distribution, in Proceedings of 1994 ieee international conference on neural net-
works (ICNN’94), Vol. 1 (IEEE, 1994) pp. 55–60.

[35] R. M. Neal, BAYESIAN LEARNING FOR NEURAL NETWORKS, Ph.D. thesis, University
of Toronto (1995).

[36] B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable predictive un-
certainty estimation using deep ensembles, Advances in Neural Information Process-
ing Systems 30 (2017).

[37] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson, A simple baseline
for bayesian uncertainty in deep learning, Advances in Neural Information Processing
Systems 32, 13153 (2019).

[38] Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, in international conference on machine learning (PMLR,
2016) pp. 1050–1059.

[39] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scara-
muzza, Beauty and the beast: Optimal methods meet learning for drone racing, in
2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp.
690–696.

[40] M. Klodt and A. Vedaldi, Supervising the new with the old: learning sfm from sfm, in
Proceedings of the European Conference on Computer Vision (ECCV) (2018) pp. 698–
713.

[41] V. Peretroukhin, B. Wagstaff, and J. Kelly, Deep probabilistic regression of elements
of so (3) using quaternion averaging and uncertainty injection. in CVPR Workshops
(2019) pp. 83–86.

[42] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, On the uncertainty of self-supervised
monocular depth estimation, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020) pp. 3227–3237.

[43] E. Ilg, O. Cicek, S. Galesso, A. Klein, O. Makansi, F. Hutter, and T. Brox, Uncertainty
estimates and multi-hypotheses networks for optical flow, in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV) (2018) pp. 652–667.

[44] A. Kendall and R. Cipolla, Modelling uncertainty in deep learning for camera relo-
calization, in 2016 IEEE international conference on Robotics and Automation (ICRA)
(IEEE, 2016) pp. 4762–4769.

[45] D. DeTone, T. Malisiewicz, and A. Rabinovich, Deep image homography estimation,
arXiv preprint arXiv:1606.03798 (2016).

REFERENCES

4

113

[46] F. Erlik Nowruzi, R. Laganiere, and N. Japkowicz, Homography estimation from im-
age pairs with hierarchical convolutional networks, in Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops (2017) pp. 913–920.

[47] H. Le, F. Liu, S. Zhang, and A. Agarwala, Deep homography estimation for dynamic
scenes, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2020) pp. 7652–7661.

[48] T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, and V. Kumar, Unsupervised
deep homography: A fast and robust homography estimation model, IEEE Robotics
and Automation Letters 3, 2346 (2018).

[49] J. Zhang, C. Wang, S. Liu, L. Jia, N. Ye, J. Wang, J. Zhou, and J. Sun, Content-aware un-
supervised deep homography estimation, in European Conference on Computer Vision
(Springer, 2020) pp. 653–669.

[50] M. Jaderberg, K. Simonyan, A. Zisserman, et al., Spatial transformer networks, Ad-
vances in neural information processing systems 28 (2015).

[51] S. Baker, A. Datta, and T. Kanade, Parameterizing homographies, in Technical Report
CMU-RI-TR-06-11 (2006).

[52] S. Zhong and P. Chirarattananon, Direct visual-inertial ego-motion estimation via it-
erated extended kalman filter, IEEE Robotics and Automation Letters 5, 1476 (2020).

[53] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, Digging into self-supervised
monocular depth estimation, in Proceedings of the IEEE/CVF international conference
on computer vision (2019) pp. 3828–3838.

[54] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical
image segmentation, in International Conference on Medical image computing and
computer-assisted intervention (Springer, 2015) pp. 234–241.

[55] J. Sola, Quaternion kinematics for the error-state kalman filter, arXiv preprint
arXiv:1711.02508 (2017).

[56] Z. Zhang and D. Scaramuzza, A tutorial on quantitative trajectory evaluation for vi-
sual (-inertial) odometry, in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2018) pp. 7244–7251.

[57] Z. Teed and J. Deng, Droid-slam: Deep visual slam for monocular, stereo, and rgb-d
cameras, Advances in neural information processing systems 34, 16558 (2021).

[58] S. Heymann, K. Müller, A. Smolic, B. Froehlich, and T. Wiegand, Sift implementation
and optimization for general-purpose gpu, (2007).

[59] A. B. Laguna and K. Mikolajczyk, Key. net: Keypoint detection by handcrafted and
learned cnn filters revisited, IEEE Transactions on Pattern Analysis and Machine In-
telligence (2022).

4

114 REFERENCES

[60] D. DeTone, T. Malisiewicz, and A. Rabinovich, Superpoint: Self-supervised interest
point detection and description, in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops (2018) pp. 224–236.

[61] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, Superglue: Learning fea-
ture matching with graph neural networks, in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (2020) pp. 4938–4947.

[62] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in
Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9 (Springer, 2006) pp. 430–443.

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep
learning library, in Advances in neural information processing systems (2019) pp.
8026–8037.

[64] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, arXiv preprint
arXiv:1711.05101 (2017).

[65] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, in Proceedings of the IEEE international
conference on computer vision (2015) pp. 1026–1034.

[66] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume, in Proceedings of the IEEE conference on computer vision
and pattern recognition (2018) pp. 8934–8943.

[67] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger, Snapshot en-
sembles: Train 1, get m for free, arXiv preprint arXiv:1704.00109 (2017).

[68] Z. Y. Ding, J. Y. Loo, V. M. Baskaran, S. G. Nurzaman, and C. P. Tan, Predictive
uncertainty estimation using deep learning for soft robot multimodal sensing, IEEE
Robotics and Automation Letters 6, 951 (2021).

5
LIGHTWEIGHT VISUAL-INERTIAL

ODOMETRY AND MONOCULAR

DEPTH LEARNED FROM

SELF-SUPERVISED

STRUCTURE-FROM-MOTION

Learning-based approaches for the visual navigation of micro air vehicles (MAVs) are play-
ing increasingly important roles. Among them, ego-motion estimation and obstacle detec-
tion are two essential capacities for safe autonomous flights. In this chapter, we propose
efficient solutions based on a pose network and a lightweight monocular depth network,
respectively. A supervision signal for training the two networks is the simultaneous self-
supervised learning of pose and depth, i.e., self-supervised structure-from-motion (SfM),
which has big-size networks and an iterative mechanism to pursue higher accuracy in both
pose and depth predictions. For ego-motion estimation, the pose network predicts the rela-
tive motion of the camera between consecutive image frames and estimates the prediction
uncertainty. The distributions of visual measurements are then fused with inertial mea-
surements by an extended Kalman filter (EKF), making up efficient visual-inertial odome-
try (VIO). For training the lightweight monocular depth network, we utilize the supervision
signals of both the photometric error based on view synthesis and the knowledge distillation
from a deeper depth network. Evaluations show that the proposed VIO and the monocular
depth network have passable accuracy, given their lightweight designs that fit the require-
ments of real-time onboard processing.

Parts of this chapter have been accepted by the International Micro Air Vehicle Conference and Competition
(2023), and the rest parts have been accepted by the 22nd World Congress of the International Federation of
Automatic Control (2023).

115

5

116
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

5.1. INTRODUCTION
Ego-motion estimation of micro air vehicles (MAVs) is essential for autonomous flight and
has been a major research topic in the robotics domain. Monocular cameras are often
used for ego-motion estimation of lightweight MAVs in environments without stable GPS
signals, because of their small size, lightweight, low energy consumption, and rich en-
vironmental information captured. After years of research, ego-motion estimation ap-
proaches that use vision in conjunction with inertial measurement unit (IMU), i.e., visual-
inertial odometry (VIO), are widely applied to MAVs. Many mainstream VIO approaches
[1–3] use visual feature points as the vision processing front-end. Assuming the scene
is stationary, information about the camera motion can be obtained by tracking the two-
dimensional (2-d) pixel locations of the same feature point in multiple temporally consec-
utive images. Therefore, extracting a sufficient number of feature points and then tracking
or matching them accurately across frames is the key to accurate ego-motion estimation.
However, because of the dependence on appearance consistency and image gradient, vi-
sual feature points are susceptible to varying illumination and image blur.

Besides feature points, researchers have been exploring deep learning for visual ego-
motion estimation. Learning-based approaches train one or multiple artificial neural net-
work(s) (ANN) to predict the relative pose [4–6] between temporally consecutive images
or visual correspondences that encode ego-motion, i.e., optical flow [7, 8]. A pose network
can be trained by the ground-truth relative pose in supervised learning. But the acquisi-
tion of accurate camera position and orientation in the real world often requires external
sensors such as motion capture systems (MCSs) [9]. So the scenes of captured images
for training are restricted to the range of the stationary motion capture sensors. Thus it
limits the size of the training dataset and deteriorates the generalization capacity of the
pose network. In contrast, self-supervised learning is an attractive alternative for freeing
the need for ground truth. The first self-supervised learning scheme of a pose network
was proposed in [4], where a monocular depth network is trained simultaneously. It is
sometimes referred to as self-supervised structure-from-motion (SfM) in the literature.
According to the predicted dense depth and relative camera pose, a virtual view can be
synthesized by reprojecting the world points into the image frame. The photometric er-
ror between the synthesized view and the actually captured image is the main supervision
signal. This scheme has been further developed by many follow-up works and is adopted
in this chapter. A more detailed description is provided in Section 5.2.

It has been observed that ANNs show better robustness towards unfavorable con-
ditions such as illumination change, motion blur, and dynamic scenes [5, 6, 8]. There
are learning-based approaches [7, 8, 10] achieving better accuracy on the EuRoC MAV
datasets [11] than traditional approaches [12, 13]. But general challenges exist in learning-
based approaches. Firstly, many works train and test on the same dataset without consid-
ering the network’s generalization capability. Secondly, achieving high accuracy requires a
significant amount of computational power, making such approaches unsuitable for com-
putationally constrained MAVs. Thirdly, many works cannot be directly deployed on MAVs
due to various limitations. For example, translational motion lacks scale in [8]. The scale
is ambiguous in the case of self-supervised learning with monocular videos [14–16]. The
scale is also unknown in the case of self-supervised VIO that processes IMU measure-
ments with an ANN [17]. Because the loss function has no constraint on the scale, the

5.1. INTRODUCTION

5

117

metric-scale accelerometer measurements can be scaled arbitrarily by the ANN. Another
problem in using an IMU network is that, when the supervision signal only regularizes
the relative pose [17, 18], the gravity information encoded in the accelerometer measure-
ments is not exploited. So the gravity direction remains unknown, though it is observable
for a monocular visual-inertial system [19].

The first topic of this chapter aims to address the above-mentioned challenges by in-
troducing a learning-based VIO. It can be directly deployed on an MAV due to its notable
characteristics, such as efficiency in real-time processing on a mobile processor, transla-
tional motion estimation with metric scale, estimating the direction of gravity, and gener-
alizing to new environments. The vision front-end is a pose network that infers the relative
rotation and translation of the camera from an image pair. It is capable of estimating the
prediction uncertainty. In addition, the network’s training can be conducted with or with-
out ground-truth labels.

In addition to ego-motion estimation, obstacle avoidance is essential for autonomous
MAVs. For an MAV equipped with a monocular camera, there are multiple ways to avoid
obstacles. A visual simultaneous localization and mapping (V-SLAM) system can incre-
mentally build a map of the environment [20, 21]. A trajectory planner can output collision-
free trajectories based on the map for the MAV to track [22]. This kind of scheme fully
utilizes available visual information about the environment and is more likely to pro-
duce optimal flight trajectories. But a significant amount of computational power is re-
quired for mapping and planning. Instead of explicitly mapping the environment, there
are learning-based approaches predicting the desired motion command based on the in-
put image. The end-to-end navigation network proposed in [23] was trained by human
driving actions and can directly generate an obstacle-avoiding navigation policy. The dis-
advantage of end-to-end networks is that it is hard to understand the strategy they follow,
which makes it harder to predict the strategy’s capability of generalizing to unknown en-
vironments.

A simpler way is to consider only the obstacles in the current field of view. Optical flow
can reflect the environmental structure, assuming stationary surroundings. The authors
of [24] focused on substantially reducing neural network size while retaining sufficient
performance for dense optic flow estimation. The network was applied to obstacle avoid-
ance, by simply comparing the left and right halves of the flow map. The disadvantage of
using optic flow for obstacle avoidance is that sufficient motion is essential and that obsta-
cles in the direction of motion are hard to detect. Another way is resorting to a dense depth
map that reflects the distances of the environmental structures relative to the camera. The
pixels with small depths point out the nearby obstacles. Pixel depth can be obtained using
a stereo camera and a stereo matching algorithm, or an RGB-D (depth) camera. Thanks
to recent developments in monocular depth estimation with deep learning, an accurate
dense depth map can be inferred from a single image.

There are not only works pursuing higher accuracy with large networks [14, 25] but
also works focusing on networks that are small in size and have fast inference speed, aim-
ing to be deployed on memory-and-computation-constrained mobile devices. Many of
them adopt self-supervised learning [26–28] jointly with a pose network. To better train
a small-size network, learning from a larger network via knowledge distillation is also a
popular choice [29–32]. The second topic of this chapter is investigating how to use the

5

118
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

self-supervised learning framework of camera pose and monocular depth in training a
lightweight depth network that achieves the highest possible accuracy. The network is
trained on a small training set collected in a cluttered environment and is expected to
navigate an MAV safely. Note that, unlike the pose network, the depth network studied
does not pursue cross-dataset generalization capacity.

In summary, focusing on general 3-d environments, we study both the camera pose
network and the monocular depth network in this chapter. Both networks are required
to be lightweight to reduce the demand for computational power. Self-supervised learn-
ing schemes for pose and depth [14–16] are adopted to train teacher networks with high
prediction accuracy. On the basis of the teacher networks, lightweight pose and depth
networks are trained as student networks. Our main contributions are:

1. We explore the way to an efficient learning-based monocular VIO based on a pose
network and an extended Kalman filter (EKF). Specifically, the pose network pre-
dicts the relative pose between the newest image pair and estimates its prediction
uncertainty. The effects of three elements of the pose network design are evaluated
and analyzed. They are the supervision signal (with vs. without ground truth), the
scale of translational motion prediction (with metric scale vs. direction only), and
with vs. without fine-tuning on the target dataset.

2. The training of a lightweight depth network combines two supervision signals, which
are respectively self-supervised learning using pose-dependent and reprojection-
based view synthesis, and knowledge distillation from a bigger-size network. Better
accuracy is achieved than using either one of them solely.

The structure of this chapter is as follows. In Section 5.2, the self-supervised learning
scheme for pose and depth teacher networks is introduced. In Section 5.3, the training of
the uncertainty-aware pose network is first introduced, followed by the description of the
EKF-based VIO. The evaluations of the VIO include cross-dataset generalization, and the
ablation study comparing learning from the teacher networks with supervised learning by
ground-truth labels. After ego-motion estimation, the topic moved to monocular depth.
In Section 5.4, we compare and combine the two learning schemes for the lightweight
depth network on three datasets, each collected in a single environment. Lastly, the con-
clusions are summarized in Section 5.5.

5.2. TEACHER NETWORKS

5.2.1. IMPROVED SELF-SUPERVISED SFM
The captured scenes usually overlap for two temporally consecutive images in a video.
Camera motion can be deduced by the correspondences of pixels filming the overlapping
scene. In self-supervised SfM, the pose network predicts the relative pose (rotation and
translation) Tt→s between the source image Is and the target image It , using the image
pair of Is and It as input. The depth network predicts D t , the pixel-wise depth map of
It , using the single image It as input. A point cloud can be established from D t . The ap-
pearance of each point is the corresponding pixel intensity. Given the relative pose Tt→s ,
the expression of the 3-d coordinates of the point cloud in the camera frame of Is can be

5.2. TEACHER NETWORKS

5

119

obtained. Reprojecting the point cloud to the image plane of Is and warping Is by differen-
tiable bilinear interpolation [33] produce a synthesized image Ĩs . When both D t and Tt→s

are accurate, assuming the scene is static, brightness is constant, and the pixels are visible
in both images, the pixel intensities of Ĩs reflect the observation by Is . Further, assum-
ing the scene appearance is constant, i.e., constant illumination and camera sensitivity
and a Lambertian scene whose brightness does not vary with the observer’s angle of view,
Ĩs and It should have the same pixel intensities. So, under the assumptions mentioned
above, maximizing the similarity between Ĩs and It leads to accurate D t and Tt→s . The
loss function adopted by [14] is shown in Eq. (5.1).

Lphoto = 1

|V |
∑

k∈V

α

2
(1−SSIM(It , Ĩs)k)+ (1−α) · |It ,k − Ĩs,k | (5.1)

V denotes the set of all pixels. The loss function combines the L1 loss of pixel-wise pho-
tometric error and the structured similarity index measure (SSIM) loss, with α = 0.85. Eq.
(5.1) is referred to as the reprojection-based loss in some works and in this chapter. Since
there is no constraint on the scale, training with Eq. (5.1) leads to D t and the translational
part of Tt→s having the same ambiguous scale.

For a general 3-d scene in the real world, the assumptions required by learning correct
pose and depth using the loss function Eq. (5.1) are not always met. A correct loss can be
established on a pixel of It only when the world point captured by the pixel is static, not
occluded in Is , and its appearance keeps constant in Is and It . In addition, the camera
needs to have enough translational motion to constrain D t . Otherwise, arbitrary depth
predictions lead to the same loss. The strategy proposed in Monodepth2 [14] filters out
pixels that violate some of the assumptions. It uses more than one Is to construct mul-
tiple photometric error maps with It . For a pixel, only the smallest photometric error in
the error maps is minimized in network training. It can avoid minimizing the incorrect
photometric error derived from a world point occluded in one of the source images. For
instance, if a point p is occluded in Is,i but visible in It and Is,i+1, and D t and Tt→s are
close to being accurate, then the corresponding photometric difference (Ĩs,i , It)p is very
likely to be big and bigger than (Ĩs,i+1, It)p . So in the training, we should exclude (Ĩs,i , It)p

and only minimize (Ĩs,i+1, It)p . Another strategy is to exclude pixels at whose locations the
intensities have little change in consecutive images. The constant intensity can be caused
by objects moving at the same velocity as the camera, a stationary camera, or a texture-
less image region. The first situation violates the static-scene assumption. In the second
situation, arbitrary depth predictions lead to the same loss. In the third situation, a rela-
tive pose prediction that is close to zero and an arbitrary depth prediction will produce a
small photometric error of a pixel that is far away from image textures. To summarize, the
photometric errors of such pixels cannot validly constrain the network predictions. Given
the higher robustness brought by the auto-masking strategies, we select Monodepth2 as
the base of training the teacher networks and develop our code based on its open-sourced
code.

Eq. (5.1) utilizes scene appearance consistency. Bian et al. [15] proposed another loss
term that constrains the depth predictions. It is based on the geometry consistency of
the 3-d positions of the world points. The depth maps D t and Ds of both images It and
Is are predicted by the depth network. The loss can be constructed in three steps. First,

5

120
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

from D t , pixel locations, and camera intrinsics, the 3-d positions [xt , yt ,D t]T of the world
points pt captured by the pixels of It can be obtained. [xt , yt ,D t]T is expressed in the
camera frame of It . Second, by Tt→s , we can calculate the position of pt expressed in the
camera frame of Is , as [s xt ,s yt ,s D t]T = SE3(Tt→s) · [xt , yt ,D t]T . The depth map s D t of pt

relative to the camera of Is is thus obtained. A pixel at the location (u, v) of s D t encodes the
depth of the pt captured by the pixel (u, v) of It . s D t is a function of D t and Tt→s . Third,
according to [s xt ,s yt ,s D t]T , pt is reprojected into the image plane of Is and warp Ds to
synthesize a depth map D̃s . A pixel at the location (u, v) of D̃s encodes the depth of the
pt captured by the pixel (u, v) of It . D̃s is calculated by warping Ds using [s xt ,s yt ,s D t]T ,
so it is a function of Ds , D t , and Tt→s . In the two depth maps s D t and D̃s , the two pixels
at the same location encode two depth predictions of the same world point. The loss
derives from the difference between s D t and D̃s . It explicitly encourages the scale of D t ,
Ds , and Tt→s to be the same within a training batch. For a sequence of images, this means
that Di , Di−1, and Ti→i−1 have the same scale, Di+1, Di , and Ti+1→i have the same scale.
With training going on, scale consistency can propagate to the entire sequence. For the
relative pose predictions, the integration will lead to globally scale-consistent trajectories.
For depth, scale consistency allows directly comparing depth across images, which gives
more information in obstacle detection. This chapter adopts this geometry consistency
loss Lgeo, as shown in Eq. (5.2). The expression of Lgeo is taken from [15].

In Chapters 3 and 4, multiple network blocks run consecutively to refine the network
prediction incrementally. Similarly, in [34] and [16], the pose network inference is con-
ducted for multiple times by iterative view synthesis that relies on the depth map predic-
tion. In the first run of the iteration, the inputs of the pose network are the original Is and
It . With the first pose prediction Tt→s and D t , the warped source image Ĩs,1 can be syn-
thesized. With network predictions becoming increasingly accurate as the training goes
on, It is expected to have smaller visual disparities with Ĩs,1 than with Is . In the second
run, the pose network infers the relative pose Tt→s,1 from the inputs Ĩs,1 and It . Tt→s,1 is
then composed to Tt→s . The composed transformation is used to synthesize the Ĩs,2 that
is an input of the third iteration, and so on. The reason why this iterative mechanism is
adopted by us is the higher accuracy in pose prediction. Instead of predicting the total
transformation by a single inference, the pose network incrementally refines the relative
pose prediction by inferring from input images that are more and more similar, making
the problem more tractable. Because the depth map D t is involved in synthesizing the
input image of the pose network, the final pose prediction is a product of both the pose
network and the depth network.

In summary, the self-supervised learning of the teacher networks enhances Eq. (5.1)
by the auto-masking strategies from Monodepth2, the geometry consistency loss, and the
iterative pose predictions, as shown in Eq. (5.2).

L =λgeo ·Lgeo +
N∑

i=1
λi ·Lphoto,i

Lphoto,i =
1

|V |
∑

k∈V
Mauto(

α

2
(1−SSIM(It , Ĩs,i)k)+ (1−α) · |It ,k − Ĩs,i ,k |)

Lgeo = 1

|V |
∑

k∈V

|s D t ,k − D̃s,k |
s D t ,k + D̃s,k

(5.2)

5.2. TEACHER NETWORKS

5

121

N is the total number of iterations. The geometry consistency loss Lgeo is computed only
once by the s D t and D̃s that are computed using the final pose prediction after all iter-
ations. Hyperparameters λgeo and λi are scalar weights of loss terms. Mauto(·) stands
for applying the auto-masking strategies of Monodepth2 to the pixels. The smoothness
loss for depth prediction is the edge-aware smoothness. It is implemented by the open-
sourced code of Monodepth2. We omit its expression in Eq. (5.2). An interested reader
can refer to [14].

Instead of predicting depth maps at four scales as Monodepth2 does, we predict a sin-
gle depth map at the full resolution. It results in higher accuracy in both depth and pose
predictions. To better learn how to handle fast motion, our implementation uses a bigger
temporal step in loading image snippets. There is 25% possibility to load Ii−2, Ii , and Ii+2

and 75% possibility to load the neighboring images Ii−1, Ii , and Ii+1. Because the relative
translational motion between Ii and Ii+2 is usually bigger than Ii and Ii+1, it is better for
learning depth. When learning depth is the first priority, as in Section 5.4, the possibility
of using the bigger temporal step is increased to 75%.

5.2.2. DATASETS AND NETWORK TRAINING

TartanVO [8] and Droid-SLAM [7] are two of a few works that achieve good performance
of cross-dataset generalization. Both of them use TartanAir [35] dataset for training. It is
a large-scale dataset that has 369 image sequences collected in 18 photo-realistic simu-
lation environments with the presence of dynamic objects, varying illumination, diverse
motion patterns, and various weather conditions. We take most of the images (296,899) for
training and a small number (1,522) for in-domain testing. Testing images are randomly
sampled from all the sequences.

A pose network infers relative pose from raw images, so camera intrinsics affect the
prediction. Such a pose network requires the input image to always have the specific im-
age resolution and camera intrinsics. Therefore, in cross-dataset testing and real-world
deployment, the images need to be preprocessed to be the same as training images in
terms of resolution and camera intrinsics. In this chapter, input images to a pose network
are required to be grey-scale and have a resolution of 192 × 352 and intrinsics fx = 176,
fy = 176, cx = 176, cy = 96. This setting fits both the training set (TartanAir) and the ego-
motion estimation testing set (the EuRoC MAV dataset [11]). Images of TartanAir lose pix-
els near the top and bottom edges after being transformed to this setting. But if we trans-
form the images of EuRoC to have the same resolution and camera intrinsics as TartanAir,
the characteristics of the lens and optic sensor of the camera used in collecting the EuRoC
dataset lead the images to have black curving edges. This phenomenon reveals the lack
of cross-camera generalization of pose networks. A solution based on preprocessing the
input optical flow map is proposed in [35], while the pose network in this paper uses raw
images as input. So the cross-camera generalization is not solved.

The networks in this section are trained on the entire TartanAir dataset for 100 epochs.
We utilized the 1 cycle learning rate policy [36] with the maximum learning rate of 2.5e-4
in self-supervised learning. The architectures of the pose and depth networks are based
on ResNet-18, the same as Monodepth2. The number of iterations N = 3. The weights of
the loss for each iteration are λ0 = 0.25, λ1 = 0.5, and λ2 = 1.0. The weight for geometry
consistency λgeo = 0.2. The batch size is 32.

5

122
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

The purpose of training the teacher networks using the entire TartanAir dataset is to
have as-accurate-as-possible pose predictions. They are used as the learning targets of an
uncertainty-aware pose network, as is introduced in Section 5.3. We compare the pose
prediction accuracy of the iterative teacher networks trained by the enhanced loss func-
tion (Eq. (5.2)) with the original Monodepth2 in Table 5.1. The accuracy metric is the
average of the norms of error vectors, e = 1

N

∑ ||vGT − vPred.||2. The rotation is expressed
by axis-angle and implemented in the open-sourced code of Monodepth2. The predicted
translation and the ground-truth translation are normalized to 3-d unit vectors before cal-
culating the error because the scale of the translation prediction is ambiguous. When the
translation predictions are used as the learning targets of the uncertainty-aware pose net-
work, they are also normalized.

Table 5.1: Average pose prediction errors on TartanAir testing set and EuRoC testing set. “FT” indi-
cates that the networks are fine-tuned on the EuRoC training set based on the parameters trained
on the TartanAir training set. Bold represents the best.

Network TartanAir Rot. TartanAir Trans. EuRoC Rot. EuRoC Trans.
ours 1.99e-03 8.77e-02 3.09e-03 2.39e-01

ours-FT - - 1.73e-03 1.62e-01
Monodepth2 2.21e-03 1.23e-01 4.08e-03 2.89e-01

Monodepth2-FT - - 3.18e-03 2.48e-01

As shown in Table 5.1, we perform an in-domain test on the TartanAir testing set and
an out-of-domain test on a part of the EuRoC MAV dataset [11]. There are 11 sequences
in the EuRoC dataset. The EuRoC training set is made of all sequences except for Vicon
Room 1 03, Vicon Room 2 03, and Machine Hall 05. These three sequences are used for
testing. From the first and third rows of Table 5.1, we can see that our networks have
smaller average errors in pose predictions on both tests.

We finetune the networks trained on the TartanAir dataset on the training set of EuRoC
and test them on the three testing sequences, as shown in the second and fourth rows
of Table 5.1. Although TartanAir is a large-size dataset with a wide distribution, we still
observe that fine-tuning brings obvious improvement in pose prediction accuracy. In Fig.
5.2, we show the trajectories estimated by integrating the pose network predictions on the
Machine Hall 05 sequence of the EuRoC dataset as an example of the improvement from
fine-tuning. The estimated trajectories of sequence Machine Hall 05 by the four networks
in Table 5.1 are shown in Fig. 5.1.

5.3. EFFICIENT VIO BASED ON POSE NETWORK AND EKF
The previous section introduces the methodology to train the self-supervised teacher net-
work. As already explained in the introduction, the teacher networks are not suitable for
the ego-motion estimation of an MAV. Specifically, the pose prediction of the teacher net-
works relies on one forward pass of the depth network and multiple forward passes of the
pose network, which require considerable computational power. ,In addition, the transla-
tional predictions have an ambiguous scale and the gravity direction is not estimated.

5.3. EFFICIENT VIO BASED ON POSE NETWORK AND EKF

5

123

Figure 5.1: The trajectories are obtained by integrating relative pose predictions on the Machine
Hall 05 sequence of the EuRoC dataset. They are aligned with the ground-truth trajectory by the
7-DoF (degree-of-freedom) Sim3 alignment (3-d rotation, 3-d translation, 1-d scale) using an open-
sourced toolkit [37].

(a) Before Fine-tuning. (b) After Fine-tuning.

Figure 5.2: Predicted trajectories by the networks trained by the loss function Eq. (5.2). Comparison
between with and without fine-tuning on the EuRoC training set. These two trajectories are also
shown in Fig. 5.1.

5

124
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

In this section, we introduce a computationally efficient VIO that can estimate metric-
scale translational motion and the gravity direction. Its vision front-end is a pose network.
It performs a single forward pass for a pose prediction. The back-end is a simple EKF.
We train several front-end pose networks using two supervision signals and compare the
resulting VIO accuracy. They are, respectively, the ground-truth poses and the teacher
networks’ pose predictions. When using the teacher networks, the front-end pose network
is a student pose network, and the whole learning pipeline does not require ground-truth
labels of the pose. Different from the teacher networks, the front-end pose network not
only predicts the relative pose but also estimates the uncertainty of its prediction. So it is
called an uncertainty-aware pose network.

5.3.1. UNCERTAINTY-AWARE POSE NETWORK
The architecture of the pose network is based on the pose network used by Monodepth2. It
has an encoder based on ResNet-18. We modify the architecture of the decoder part to en-
able it for uncertainty estimation. The output tensor of the last convolutional layer is the
input to two fully connected (FC) subnetworks. One FC network predicts the mean value,
and the other predicts the aleatoric uncertainty that reflects the noise inherent in the net-
work input. It is referred to as predictive uncertainty in Chapter 4 and this chapter. The
two FC networks have the same architecture of two FC layers. There is a 5% dropout for
the input of each FC layer, to estimate the epistemic uncertainty using MC-Dropout [38].
Epistemic uncertainty captures the ignorance about the ideal network that maps noiseless
input to the desired output. It is called empirical uncertainty in Chapter 4 and this chap-
ter. The total uncertainty is the sum of predictive uncertainty and empirical uncertainty.
The uncertainty estimation of the front-end uncertainty-aware pose network follows the
same methodologies as in Chapter 4. An interested reader can read Chapter 4 for more
details. We introduce the most important steps in the following.

Treating the observed pose as a sample from a Gaussian distribution, the loss function
for learning predictive uncertainty is the negative log-likelihood (NLL) loss, as shown in
Eq. (5.3). This loss function is used for the same purpose in [39].

LNLL =
6∑

n=1

1

2σ2
n,pred.

∥Tn −µn∥2 + 1

2
log(σ2

n,pred.) (5.3)

µn is the prediction of the mean value of the relative pose vector. σ2
n,pred. is the variance

prediction corresponding to the predictive uncertainty. n indexes over the six dimensions
of relative pose (3-d rotation and 3-d translation). Tn denotes the learning target of the
mean prediction µn . Tn can be the ground-truth relative pose or the pose prediction of
the trained teacher networks. The pose network can be trained to predict translational
motion with the metric scale. It can also be trained to predict normalized translation ex-
pressed by a unit vector that indicates the motion direction without scale. We implement
both of them and compare them in Subsection 5.3.3. When the pose network is trained to
predict translational direction, its prediction of the mean translation is normalized. The
translational part of Tn is normalized accordingly.

MC-Dropout [38] requires multiple forward passes to sample from the distributions
of network parameters. m indexes over the forward passes. We set the number of MC-
Dropout sampling M=8. After each forward pass, a mean prediction µn,m is obtained, as

5.3. EFFICIENT VIO BASED ON POSE NETWORK AND EKF

5

125

well as a variance prediction of predictive uncertainty σ2
pred.,n,m . As Eq. (5.4) shows, the

variance of empirical uncertaintyσ2
emp.,n is calculated empirically from the multiple mean

predictions µn,m . The total variance σ2
n is the sum of the empirical variance σ2

emp.,n and

the average of predictive variances σ2
Avg., pred.,n .

σ2
n =σ2

Avg., pred.,n +σ2
emp.,n

σ2
Avg., pred.,n = 1

M

M∑
m=1

σ2
pred.,n,m , σ2

emp.,n = 1

M

M∑
m=1

(µn,m −µn)2

µn = 1

M

M∑
m=1

µn,m

(5.4)

5.3.2. EKF-BASED BACK-END
The VIO back-end is an EKF. It is a simplified variant of the EKF-based back-end of the
robocentric VIO [40]. The robocentric VIO keeps a window of the previous camera poses
in the state vector. Our simplified variant only estimates the relative pose between the
current IMU frame and the local frame of reference. The EKF state vector is defined as

x :=
[

Rk pG , Rk
G q , gRk , It pRk , It

Rk
q , v It , ba , bg

]
. (5.5)

It is the current IMU frame at time t . When a new image has been captured, the new
reference frame R is set to be the same as the It at the time. Rk is the current reference
frame. It is the kth reference frame since the VIO is initialized. G stands for the global
frame. It is the first reference frame R0, i.e., the IMU frame when the first image is captured
after the initialization of the VIO. Rk pG is a translation vector pointing from the origin of
G to the origin of Rk , expressed in Rk . It is about the global position of Rk . It pRk is a
translation vector pointing from the origin of Rk to the origin of It , expressed in It . It is

about the local position of It relative to Rk . Rk
G q is the Hamilton quaternion reflecting

the relative rotation between G and Rk . It
Rk

q reflects the relative rotation between Rk and
It . gRk indicates the gravity vector expressed in Rk . v It is the translational velocity of the
IMU expressed in It . ba and bg are respectively the additive bias on accelerometer and
gyroscope.

As shown in Eq. (5.6), IMU measurements are modeled as the sum of the desired actual
value (â and ω̂), additive bias, and white Gaussian noise (wa and wg).

am = â +ba +wa , ωm = ω̂+bg +wg (5.6)

It ṗRk =−[ω̂]× · It pRk +v It +wp ,

v̇ It =−[ω̂]× ·v It + â +R(It
Rk

q)T ·gRk ,

It
Rk

q̇ = 1

2
It
Rk

q ⊗
[

0
ω̂

]
,

ḃa = wba , ḃg = wbg .

(5.7)

Eq. (5.7) shows the IMU-driven state dynamics (ẋ). [ω̂]× represents the skew-symmetric
matrix associated with ω̂. wp is the process noise in position integration. R(It

Rk
q) is a

5

126
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

transformation function from It
Rk

q to SO3 rotation matrix that maps a vector expressed
in It to its expression in Rk . ⊗ denotes quaternion product. We utilize the techniques
introduced in [41] for quaternion-related calculation.

The filter states in Eq. (5.7) are propagated by the IMU measurements until a new
image Ik+1 is captured. The pair of Ik+1 and the previous image Ik are the inputs of the
uncertainty-aware pose network that is introduced in Subsection 5.3.1. The network out-
puts µt ,σ2

t , µθ, andσ2
θ

. They are the mean µ and varianceσ of translation t and rotation
θ, respectively.

zµt = RC
I · (tIC + It pRk −R(It

Rk
q)T · tIC)+wt , zµθ = RC

I ·θ(It
Rk

q)+wθ. (5.8)

The measurement equations are shown in Eq. (5.8). RC
I is the rotation matrix from the

IMU frame to the camera frame. tIC is the translation vector points from the IMU to the
camera, expressed in the IMU frame. θ(·) converts a quaternion to an axis-angle expres-
sion. Elements of σ2

t and σ2
θ

are used as the diagonal elements of the measurement noise

matrix. After the measurement update, the a posterior relative pose estimation It p̂Rk and
It
Rk

q̂ is composed to the global pose, as shown in Eq. (5.9).

Rk+1
G q =It

Rk
q̂ ⊗Rk

G q , Rk+1 pG = R(It
Rk

q̂)T ·Rk pG +It p̂Rk (5.9)

The current IMU frame It becomes the new reference frame Rk+1. The expression of the
gravity vector gRk+1 in Rk+1 is calculated as gRk+1 = R(It

Rk
q̂)T · ĝRk . It pRk+1 and It

Rk+1
q are

set to a zero vector and a unit quaternion whose vector part is a zero vector, respectively.
Their corresponding elements in the covariance matrix are set to zeros too. Readers who
are interested in the filter design can refer to [40] for more details.

For the EKF, whenµt is the normalized translation, the propagated camera translation
is normalized accordingly. The measurement equation of translational motion is then

zµt = RC
I ·

tIC + It pRk −R(It
Rk

q)T · tIC

∥tIC + It pRk −R(It
Rk

q)T · tIC∥
+wt (5.10)

5.3.3. EVALUATION
In the previous part of this section, we have successively introduced the vision front-end
which is the uncertainty-aware pose network and the EKF-based robocentric back-end.
The VIO system consisting of them is referred to as PoseNet-VIO in this chapter. In this
subsection, PoseNet-VIO is evaluated on the EuRoC MAV dataset [11]. The PoseNet-VIO
variants in Table 5.2 have the same parameters in the EKF-based back-end. Their vision
front-ends, the pose networks, are different. They are trained by the NLL loss (Eq. (5.3))
with different learning targets. The learning targets of the pose networks of 1⃝ and 2⃝ are
the pose predictions of the self-supervised teacher networks. The remaining four net-
works learn from the ground truth. The translation prediction of 1⃝ to 4⃝ in Table 5.2 are
normalized to a unit vector that indicates the direction of translational motion. In con-
trast, 5⃝ and 6⃝ predict translational motion with the metric scale that is learned from
the ground-truth labels of the relative poses. Since we use monocular videos to train the

5.3. EFFICIENT VIO BASED ON POSE NETWORK AND EKF

5

127

Table 5.2: Accuracy of the proposed method (top group, rows 1 to 6) compared with the baseline
method (bottom group, rows 7 and 8). The name of the EuRoC dataset flight sequences (Vicon Room
101 to 103, 201 to 203, and Machine Hall 01 to 05) are abbreviated to fit the page width. “V” stands for
Vicon Room, and “MH” stands for Machine Hall. Data below the sequence names shows the root-
mean-square errors (RMSE) of the absolute translation errors (ATEs) of the estimated trajectories.
Bold represents the overall best and underline represents the best of the proposed method.

ID FT1 GT2 MS3 V11 V12 V13 V21 V22 V23 MH1 MH2 MH3 MH4 MH5
1⃝ 4.24 2.34 3.04 4.05 4.97 5.88 6.42 3.92 4.79 14.1 4.04
2⃝ ✓ - - 2.23 - - 4.33 - - - - 4.25
3⃝ ✓ 3.48 2.51 2.74 4.07 5.49 7.73 5.60 3.93 6.18 17.7 19.8
4⃝ ✓ ✓ - - 2.42 - - 7.99 - - - - 8.16
5⃝ ✓ ✓ 1.23 2.86 3.74 1.86 4.37 4.27 7.24 5.06 4.26 3.24 3.68
6⃝ ✓ ✓ ✓ - - 1.55 - - 4.36 - - - - 3.04
7⃝ MSCKF (51 pts) 0.16 0.13 0.12 245 0.13 0.16 38.0 5.20 130 2.35 1.00
8⃝ MSCKF (199 pts) 0.09 0.09 0.11 0.12 0.10 0.20 0.34 0.24 58.5 0.65 1.54
1 Fine-tuning (FT) the pose network on the training sequences of the EuRoC dataset.
2 Using ground-truth (GT) labels as the learning targets in the NLL loss. If not using GT,

the learning targets are the predictions of the self-supervised teacher networks.
3 The pose network learns to predict translational motion with the metric scale (MS).

Otherwise, the prediction is the normalized translation, a unit vector.

teacher networks, their prediction of translational motion has an ambiguous scale. There-
fore, the pose networks trained by the teacher networks can only have normalized trans-
lational motion predictions.

The root-mean-square error (RMSE) of absolute translation errors (ATE) is the metric
of VIO accuracy. The calculation is conducted by [37]. The alignment of the estimated
trajectory and the ground-truth trajectory has 4-DoF (yaw and 3-d translation). PoseNet-
VIO is compared with a state-of-the-art (SOTA) VIO MSCKF [1] implemented by [42]. The
C++ code of PoseNet-VIO is implemented based on the open-sourced code of [42]. Here
we only compare with one SOTA VIO since the gap in accuracy is big, as shown in Table
5.2. The comparison of MSCKF with other VIO solutions can be found in [43].

At the beginning of the five EuRoC sequences collected in the Machine Hall, the MAV
was moved by a human operator and then stayed stationary for a while before taking off.
For a PoseNet-VIO whose front-end pose network has normalized translation predictions,
the lack of translational motion leads to drift. So, when testing PoseNet-VIO variants 1⃝ to

4⃝, the starting time points of the Machine Hall sequences are about one second before
the takeoff. For MSCKF, if there was a significant drift in the beginning, we did the same.

A design target of PoseNet-VIO is high efficiency. Thus it has non-iterative network in-
ference and a basic EKF. The time consumption is constant. But since MSCKF uses feature
points, the number of points affects the time consumption. The time consumptions of
PoseNet-VIO and MSCKF are measured during the tests on Machine Hall 05 sequence of
EuRoC. For PoseNet-VIO, the average total time cost is 7.811 ms, of which 6.036 ms is for
network inference. For the default setting of MSCKF (8⃝ in Table 5.2), the average total
time cost is 17.415 ms, with 7.583 ms for processing feature points. The average number

5

128
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

of points is around 199. We modified the number of feature points to track to a smaller
number than the default to make the average of the total time consumption of process-
ing a frame close to the time consumption of PoseNet-VIO. When the average number of
maintained points in an image frame is around 51 (7⃝ in Table 5.2), the average total time
cost is 7.933 ms, with 3.821 ms for feature point tracking and detection.

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0

Euler Angles

Roll GT
Roll Esti.

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0
Pitch GT
Pitch Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1
0
1

Yaw GT
Yaw Esti.

(a) VIO Euler Angles Estimation (rad).

520 540 560 580 600 620
+1.4036380000e9

0

2

4
Velocity in Body Frame

x GT
x Esti.

520 540 560 580 600 620
+1.4036380000e9

2

0

2

y GT
y Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1

0 z GT
z Esti.

(b) VIO Velocity Estimation Expressed in MAV Body
Frame (m/s).

540 560 580 600 620
+1.4036380000e9

0.00

0.05
Network Mean Prediction and Variance Estimation (Rotation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

0.05

0.00

0.05

y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0.025

0.000

0.025

z GT
z Pred.
Std*3

(c) Pose Network Rotation (Axis–Angle) Predictions
(rad).

540 560 580 600 620
+1.4036380000e9

2

0

2
Network Mean Prediction and Variance Estimation (Translation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

2

0

2
y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0

2

z GT
z Pred.
Std*3

(d) Pose Network Normalized Translation Predictions.

Figure 5.3: Results of PoseNet-VIO variant 1⃝, tested on Machine Hall 05. The top two subplots
show the EKF a posterior estimations (VIO outputs) of the MAV attitude and translational velocity
expressed in the MAV body frame. The attitude is relative to the global frame whose z-axis is op-
posite to the gravity direction. The bottom two subplots show the outputs (mean prediction and
uncertainty estimation of the relative pose) of the front-end pose network.

In the sequences Vicon Room 2 01, Machine Hall 01, and Machine Hall 03, MSCKF
drifts after very slow motion, which leads to big trajectory errors. But in general, as shown
in Table 5.2, PoseNet-VIO is far less accurate than MSCKF. Comparing the variants of
PoseNet-VIO, a noticeable phenomenon is that networks predicting translational motion
with metric scale lead to better VIO accuracy than networks predicting normalized trans-
lation. Comparing the ATEs of 3⃝ and 5⃝, we can see that 5⃝ has advantages in seven
out of the eleven sequences. This is further evidenced by Fig. 5.4 (b) and Fig. 5.5 (b),
where the estimated velocity of 5⃝ is more accurate. Without utilizing the knowledge of
objects’ sizes in the scene, the metric scale is unobservable for a monocular video. The
metric-scale translation prediction is based on the knowledge of the training set. It can be
problematic when generalizing to a different dataset. But Fig. 5.5 (d) shows that the errors
of translational motion predictions are acceptable. The generalization is fine. We attribute
it to the large number and wide distribution of the training samples. Subplot (b) for VIO
velocity estimations of Fig. 5.4 shows that using normalized translation (3⃝) leads to big

5.3. EFFICIENT VIO BASED ON POSE NETWORK AND EKF

5

129

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0

Euler Angles

Roll GT
Roll Esti.

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0 Pitch GT
Pitch Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1
0
1

Yaw GT
Yaw Esti.

(a) VIO Euler Angles Estimation (rad).

520 540 560 580 600 620
+1.4036380000e9

0

5

10
Velocity in Body Frame

x GT
x Esti.

520 540 560 580 600 620
+1.4036380000e9

5

0

5

y GT
y Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1

0

1

z GT
z Esti.

(b) VIO Velocity Estimation Expressed in MAV Body
Frame (m/s).

540 560 580 600 620
+1.4036380000e9

0.00

0.05
Network Mean Prediction and Variance Estimation (Rotation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

0.05

0.00

0.05

y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0.025

0.000

0.025

z GT
z Pred.
Std*3

(c) Pose Network Rotation (Axis–Angle) Predictions
(rad).

540 560 580 600 620
+1.4036380000e9

1

0

1
Network Mean Prediction and Variance Estimation (Translation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

1

0

1
y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

1

0

1
z GT
z Pred.
Std*3

(d) Pose Network Normalized Translation Predictions.

Figure 5.4: Results of PoseNet-VIO variant 3⃝, tested on Machine Hall 05. See the caption of Fig. 5.3
for more information on the states shown in the subplots.

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0

Euler Angles

Roll GT
Roll Esti.

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0
Pitch GT
Pitch Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1
0
1

Yaw GT
Yaw Esti.

(a) VIO Euler Angles Estimation (rad).

520 540 560 580 600 620
+1.4036380000e9

1

0

1

Velocity in Body Frame

x GT
x Esti.

520 540 560 580 600 620
+1.4036380000e9

2

0

2

y GT
y Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1

0
z GT
z Esti.

(b) VIO Velocity Estimation Expressed in MAV Body
Frame (m/s)..

540 560 580 600 620
+1.4036380000e9

0.00

0.05
Network Mean Prediction and Variance Estimation (Rotation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

0.05

0.00

0.05

y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0.025

0.000

0.025

z GT
z Pred.
Std*3

(c) Pose Network Rotation (Axis–Angle) Predictions
(rad).

540 560 580 600 620
+1.4036380000e9

0.0

0.2

Network Mean Prediction and Variance Estimation (Translation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

0.2

0.0

0.2
y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0.2

0.0

0.2

z GT
z Pred.
Std*3

(d) Pose Network Translation Predictions (m).

Figure 5.5: Results of PoseNet-VIO variant 5⃝, tested on Machine Hall 05. See the caption of Fig. 5.3
for more information on the states shown in the subplots.

5

130
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0

Euler Angles

Roll GT
Roll Esti.

520 540 560 580 600 620
+1.4036380000e9

0.2

0.0
Pitch GT
Pitch Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1

0

1

Yaw GT
Yaw Esti.

(a) VIO Euler Angles Estimation (rad).

520 540 560 580 600 620
+1.4036380000e9

1

0

1

Velocity in Body Frame

x GT
x Esti.

520 540 560 580 600 620
+1.4036380000e9

2

0

2

y GT
y Esti.

520 540 560 580 600 620
time(s) +1.4036380000e9

1

0
z GT
z Esti.

(b) VIO Velocity Estimation Expressed in MAV Body
Frame (m/s).

540 560 580 600 620
+1.4036380000e9

0.00

0.05
Network Mean Prediction and Variance Estimation (Rotation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

0.00

0.05

y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0.025

0.000

0.025

z GT
z Pred.
Std*3

(c) Pose Network Rotation (Axis–Angle) Predictions
(rad).

540 560 580 600 620
+1.4036380000e9

0.1

0.0

0.1

Network Mean Prediction and Variance Estimation (Translation)

x GT
x Pred.
Std*3

540 560 580 600 620
+1.4036380000e9

0.05

0.00

0.05
y GT
y Pred.
Std*3

540 560 580 600 620
time(s) +1.4036380000e9

0.05
0.00
0.05

z GT
z Pred.
Std*3

(d) Pose Network Translation Predictions (m).

Figure 5.6: Results of PoseNet-VIO variant 6⃝, tested on Machine Hall 05. See the caption of Fig. 5.3
for more information on the states shown in the subplots.

drifts in the beginning before the estimations converge after around 35 seconds. For 1⃝, it
takes around 10 seconds for the velocity estimation to converge, as shown in subplot (b)
of Fig. 5.3. While using metric-scale translation does not have this problem, as shown in
the two subplots (b) of Fig. 5.5 and Fig. 5.6. In summary, given the current design, using
normalized translation leads to worse VIO accuracy in cross-dataset evaluation.

Another phenomenon worth noticing is the effect of fine-tuning. Fine-tuning brings
better accuracy for all the variants, indicating that although we have a big-scale and widely
distributed training set, the generalization capacity can still be improved. When the trans-
lation predictions have the metric scale, we can see better accuracy in all subplots of Fig.
5.6 than Fig. 5.5. Especially for the pose network’s predictions of translational motion
shown in subplot (d), the predictions are more accurate after fine-tuning. The possible
reason is that the network further learns the metric scale of the objects captured in the
EuRoC training set.

The PoseNet-VIO variant 1⃝ interests us most because the training does not use any
ground-truth labels or in-domain data. Given the not-excellent but acceptable accuracy
in Euler angle estimation and velocity estimation after the convergence, as shown in Fig.
5.3, we think this PoseNet-VIO variant can act as an attitude and velocity estimator and be
used for short-term navigation. From Table 5.2, Fig. 5.3, and Fig. 5.4, we notice that using
the ground-truth poses in the training of the front-end pose network (3⃝) does not im-
prove the VIO accuracy over using the predictions of the self-supervised teacher networks
(1⃝). In eight out of eleven sequences, PoseNet-VIO variant 1⃝ has better accuracy. The
accuracy of network predictions of rotation has no clear difference, as shown in the two

5.4. LIGHTWEIGHT MONOCULAR DEPTH NETWORK

5

131

subplots (c) of Fig. 5.3 and Fig. 5.4. But for the translation prediction shown in the two
subplots (d), 1⃝ performs better than 3⃝, especially in terms of uncertainty estimation.
The three-time standard deviations of 1⃝ better reflect the errors of the mean predictions.
This phenomenon indicates that self-supervised teacher networks are powerful replace-
ments for ground-truth labels.

As shown in the subplot (c) of Fig. 5.3, the network predictions of relative rotation
are aligned with the ground truth, as also shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6. The
translation predictions are relatively worse and noisier. Around 585, 595, and 610 seconds,
translation predictions are obviously inaccurate, as shown in subplot (d) of Fig. 5.3. From
subplot (b), we can see that the velocity is slow during those time slots. Slow velocity is a
possible trigger of inaccurate translation prediction. More research is required to enable
the network that predicts translation direction to better handle slow motion. We leave it
to potential future work. About potential ways of improving the PoseNet-VIO, one way
is a VIO back-end that utilizes network predictions of multiple time steps instead of only
the newest network prediction (current design). Another way is to learn the metric scale
from the self-supervised teacher networks. It requires the teacher networks to be trained
on stereo videos.

5.4. LIGHTWEIGHT MONOCULAR DEPTH NETWORK
After studying ego-motion estimation, in the rest of this chapter, we explore approaches
to train a lightweight monocular depth network and improve its prediction accuracy us-
ing the self-supervised teacher networks. The architecture of the lightweight depth net-
work (LDN) is shown in Fig. 5.7. It is a simplified variant of the depth network used
in [14], which is based on ResNet-18. Most depth networks in the literature have the
downsampling encoder and upsampling decoder architecture, predicting a depth map
with the same resolution as the input image. On the contrary, our network performs
three times downsampling to reach 1/8th resolution without any upsampling layer. It has
391,793 trainable parameters in total. According to our knowledge of the literature, only
the MiniNet [26] has fewer parameters than the proposed network. MiniNet has an iter-
ative recurrent module, while our network performs a one-time forward pass. Note that
we do not compare the proposed depth network with other lightweight depth networks in
the rest of this chapter because our focus is on ground-truth-free training schemes instead
of network architecture design. The training schemes studied can be applied to a depth
network with any architecture.

The main reason for such a network architecture is that the network is developed to
run onboard a nano quadcopter. The network architecture has to be hardware-compatible
with the Crazyflie nano quadcopter. It is equipped with a Bitcraze AI-deck [44] that carries
a tiny camera and a GAP8 processor where the depth network can be deployed. A PyTorch-
trained network model is required to be converted by the software [45, 46] to be flashed
into the onboard processor. The proposed network architecture is empirically optimized
under the given hardware/software constraints. The resolution of the images captured by
the onboard camera is 324×244. They are cropped to 320×224 before input to the depth
network. The 1/8th resolution depth map has 40×28 pixels. The resolution may seem
low, but it provides adequate information to detect nearby obstacles. For training, the low
resolution brings no significant problems to either self-supervised learning or knowledge

5

132
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

Figure 5.7: Architecture of the lightweight CNN for monocular depth prediction. “+” denotes
element-wise summation and “//” stands for tensor concatenation along the channel dimension.
Blue color denotes that the convolutional layer is followed by a batch normalization layer and a
ReLU activation function. Color yellow denotes that the convolutional layer is followed by a ReLU6
activation function. Color green denotes a max pooling layer with stride=2.

distillation.

5.4.1. TRAINING SCHEMES

To explore the best way to train LDN, we tried different loss functions, hyperparameters,
and teacher networks, as shown in Table 5.3. We compare five training schemes by training
on three datasets, corresponding to the three groups divided by horizontal lines in Table
5.3. The Teacher networks shown in the first row of each group are trained from scratch
on the individual dataset using the hyperparameters introduced in Section 5.2, except that
the batch size is 8. They are the pre-trained teacher (PTT) networks in the training of LDN-
2, LDN-3, and LDN-4. The teacher networks perform only inference in the training of an
LDN with their parameters fixed. LDN-5 also learns from its teacher networks. But the
teacher networks of LDN-5 are not pre-trained. They are trained from scratch simulta-
neously with LDN-5. The training setup of LDN-5’s teacher networks is the same as the
Teacher networks in the first row of Table 5.3. During the training, LDN-5 and its teacher
networks have the same inputs at each step. The predictions of the teacher networks are
used to train the LDN-5, which means, at the beginning of training, LDN-5 learns from
the random predictions of the randomly initialized teacher networks. As the training goes
on, the teacher networks’ predictions have higher and higher accuracy and LDN-5 utilizes
these better predictions in its training.

There are two supervision signals for training an LDN. The first is self-supervised learn-
ing using the enhanced reprojection-based loss (Eq. (5.2)). The photometric matching
difference between the synthesized image by image warping and the actually captured
image is the main supervision signal. Image warping requires both depth map prediction
and relative pose prediction. In the training of an LDN, the depth map is predicted by the
LDN. For the pose prediction, we implement and compare two sources. The first one is

5.4. LIGHTWEIGHT MONOCULAR DEPTH NETWORK

5

133

to train a pose network from scratch simultaneously with the LDN and use the prediction
of the pose network to construct the loss. The training of LDN-1 uses this scheme. In
Section 5.2, the teacher networks use the reprojection-based loss (Eq. (5.2)) with a weight
λgeo = 0.2 for the geometry consistency loss and three iterations of pose network inference
(N = 3). For training an LDN-1, we found that a smaller weight for geometry consistency
loss λgeo = 0.02 leads to better accuracy. As for the number of pose predictions, the pose
network infers only once in each training step of LDN-1. The reason follows. Both the
depth network and the pose network take full-resolution grey-scale images as inputs. In
constructing the photometric matching loss, the grey-scale images are downsampled to
1/8th resolution to have the same resolution as the predicted depth maps DLDN. The res-
olution of the synthesized images is also 1/8th of the original images. But the pose network
infers from the images with full resolution. The low-resolution synthesized images cannot
act as the pose network input, and thus the iterative pose prediction cannot be used in the
training of LDN-1, which means N = 1 in Eq. (5.2). The second option for getting the rela-
tive pose is using the pose predictions of the teacher networks. LDN-3, LDN-4, and LDN-5
use this scheme. For LDN-3 and LDN-4, the teacher networks are pre-trained, so the pose
prediction accuracy is high from the beginning. For LDN-5, the teacher pose prediction
accuracy keeps increasing while training.

The second supervision signal is the knowledge distillation (KD) loss from the deeper
teacher depth network. The teacher depth network predicts depth maps DT with the same
resolution as the input image. A low-resolution depth map DLDN predicted by an LDN is
upsampled via bilinear interpolation to have the same resolution as DT that serves as the
proxy label. We use the L1 loss. The weight of KD loss is a constant value of 1.0. As shown
in Table 5.3, LDN-2, LDN-3, LDN-4, and LDN-5 use this KD loss. For LDN-2, the KD loss
is the only supervision signal. For LDN-3, LDN-4, and LDN-5, both the KD loss and the
reprojection-based self-supervised loss are used in combination, as shown in Eq. (5.11).

LLDN,comb. =λgeo ·Lgeo +Lphoto. +LKD, LKD = |DT −up(DLDN)| (5.11)

We take three subsets from the TartanAir [35] dataset to evaluate the training schemes.
Raw images and ground-truth depth maps are resized to the resolution of 320×224. The
subset of the top group is made of office and office2 environments. It has 18,505 and 3,135
images for training and testing, respectively. The networks are trained for 120 epochs. The
second subset is collected in the neighborhood environment. There are 27,466 training
items and 4,647 validation items. The number of training epochs is 80. The subset of the
group at the bottom of the table contains the seasonsforest and seasonsforest winter en-
vironments. We randomly split the images into 14,251 training samples and 2,408 testing
samples. The trainings last for 155 epochs. The batch size is 8 for all three datasets.

Ground-truth depth maps are downsampled to the same resolution as LDN predic-
tions for accuracy evaluation. Many images have pixels filming the sky, which have infi-
nite depths. Because the sky is mostly texture-less, the self-supervised learning scheme
cannot learn the correct depth. Therefore we exclude from the evaluation all pixels whose
ground-truth depth is more than 100 meters. We follow the same evaluation procedure
as [14]. Predicted depth maps have ambiguous scales. A scalar factor is calculated by di-
viding the median of the depths in the ground-truth map by the median of the depths
in the predicted map. Then the depths in the predicted map are linearly scaled by this

5

134
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

factor to align with the scale of the ground truth. The seven metrics of depth prediction
accuracy are shown in the first row of Table 5.3. The first four count the error of all pix-
els. δ < 1.25n indicate the ratio of the predictions whose differences to the ground-truth
values lay within the thresholds, i.e., close enough to the ground truth. A down arrow in-
dicates that a lower value means higher accuracy, and an up arrow denotes that a higher
value means higher accuracy.

From the data in Table 5.3, we notice that using KD as the only supervision signal
(LDN-2) may lead to outlier depth predictions that are very inaccurate, as indicated by
the big Sq Rel values in the first and the third groups. Using both KD and SSL but without
the geometry consistency loss (LDN-3) leads to outliers as well. Using SSL loss alone to
train the LDN and a pose network from scratch (LDN-1) produces few apparent outliers.
Comparing LDN-1’s accuracy with LDN-4, the gap is evident, especially in the metrics
δ < 1.25n . Combining all loss terms, LDN-4 has the overall best performance. In all met-
rics, the accuracy of LDN-5 is only slightly worse than LDN-4. An advantage of LDN-5
over LDN-4 is that LDN-5 requires only one training process. There is no need to wait
for the training of the teacher networks to be finished and then train the LDN. It shortens
the time consumption for deploying in a new target environment. Another phenomenon
we observed from Table 5.3 is that for all the metrics except for δ < 1.25, LDN-4 is not
much worse than the Teacher networks. It shows that under the experimental conditions,
the performance of an LDN with only 391,793 parameters does not fall much behind the
much bigger teacher depth network with ∼37 times more parameters (14,833,945). This
increases the confidence in LDN and nano quadcopters for obstacle detection in a known
environment. Examples of the predictions of LDN-4 on the testing datasets are shown in
Fig. 5.8.

5.4. LIGHTWEIGHT MONOCULAR DEPTH NETWORK

5

135

Figure 5.8: The depth map predictions of LDN-4 (middle column) and Teacher depth network (right
column). The first two rows are examples of the office environment. The third and fourth rows
show the neighborhood environment. The two rows at the bottom correspond to the seasonsforest
environment.

5

136
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

Ta
b

le
5.

3:
A

b
la

ti
o

n
st

u
d

y
o

n
q

u
an

ti
ta

ti
ve

d
ep

th
p

re
d

ic
ti

o
n

ac
cu

ra
cy

.
T

h
re

e
gr

o
u

p
s

o
fc

o
m

p
ar

at
iv

e
ex

p
er

im
en

ts
ar

e
ru

n
o

n
th

re
e

d
if

fe
re

n
t

d
at

as
et

s.
A

b
o

ld
n

u
m

b
er

in
d

ic
at

es
th

e
b

es
ta

cc
u

ra
cy

m
et

ri
c

ac
h

ie
ve

d
b

y
an

LD
N

.

M
o

d
el

SS
L1

λ
ge

o
K

D
2

P
T

T
3

A
b

s
R

el
↓

Sq
R

el
↓

R
M

SE
↓

R
M

SE
lo

g↓
δ
<

1.
25

↑
δ
<

1.
25

2
↑

δ
<

1.
25

3
↑

Te
ac

h
er

✓
0.

2
0.

09
25

0.
80

52
4.

77
85

0.
23

78
91

.3
0

%
95

.7
5

%
97

.2
0

%
LD

N
-1

✓
0.

02
0.

27
35

1.
36

16
5.

93
09

0.
43

99
57

.3
8

%
82

.7
8

%
91

.7
4

%
LD

N
-2

✓
✓

0.
25

42
26

0.
60

22
.0

72
0.

31
15

83
.7

6
%

93
.6

7
%

96
.2

6
%

LD
N

-3
✓

0.
0

✓
✓

0.
25

37
39

7.
25

21
.4

15
0.

31
24

83
.3

0
%

93
.6

4
%

96
.2

4
%

LD
N

-4
✓

0.
2

✓
✓

0.
15

74
1.

07
26

5.
46

06
0.

31
04

82
.8

0
%

93
.3

0
%

96
.1

0
%

LD
N

-5
✓

0.
2

✓
0.

16
17

1.
10

24
5.

49
25

0.
31

65
81

.7
7

%
92

.9
9

%
95

.9
6

%
Te

ac
h

er
✓

0.
2

0.
23

73
2.

17
78

7.
16

47
0.

31
84

71
.1

5
%

86
.2

3
%

92
.5

7
%

LD
N

-1
✓

0.
02

0.
38

88
4.

27
36

10
.5

52
0.

51
67

45
.7

2
%

70
.6

0
%

82
.7

3
%

LD
N

-2
✓

✓
0.

32
02

3.
77

68
8.

28
85

0.
39

36
57

.8
7

%
80

.1
2

%
89

.7
0

%
LD

N
-3

✓
0.

0
✓

✓
0.

31
86

7.
74

72
8.

45
81

0.
39

25
57

.9
1

%
80

.2
0

%
89

.8
0

%
LD

N
-4

✓
0.

2
✓

✓
0.

32
04

2.
86

55
8.

55
41

0.
40

44
56

.8
8

%
79

.0
0

%
88

.8
7

%
LD

N
-5

✓
0.

2
✓

0.
32

32
2.

90
12

8.
58

83
0.

40
64

56
.5

8
%

78
.7

6
%

88
.7

6
%

Te
ac

h
er

✓
0.

2
0.

45
96

5.
14

82
10

.5
96

0.
52

82
58

.0
6

%
76

.0
1

%
84

.1
8

%
LD

N
-1

✓
0.

02
0.

53
74

7.
75

69
14

.0
00

0.
65

15
47

.3
2

%
65

.9
7

%
76

.0
4

%
LD

N
-2

✓
✓

0.
59

45
48

.2
37

13
.8

78
0.

57
53

52
.9

1
%

72
.2

9
%

81
.6

1
%

LD
N

-3
✓

0.
0

✓
✓

0.
56

59
33

.6
97

16
.3

51
0.

56
83

53
.5

4
%

72
.6

5
%

81
.8

9
%

LD
N

-4
✓

0.
2

✓
✓

0.
58

04
6.

95
44

12
.6

73
0.

60
03

50
.8

4
%

69
.8

0
%

79
.2

8
%

LD
N

-5
✓

0.
2

✓
0.

58
65

7.
04

96
12

.7
00

0.
60

26
50

.7
1

%
69

.6
4

%
79

.0
9

%
1

T
h

is
co

lu
m

n
in

d
ic

at
es

w
h

et
h

er
th

e
n

et
w

o
rk

tr
ai

n
in

g
u

se
s

se
lf

-s
u

p
er

vi
se

d
le

ar
n

in
g

(S
SL

).
W

h
en

th
e

te
ac

h
er

n
et

w
o

rk
s

ar
e

av
ai

la
b

le
,t

h
e

re
la

ti
ve

p
o

se
p

re
d

ic
ti

o
n

th
at

co
n

st
ru

ct
s

th
e

re
p

ro
je

ct
io

n
-b

as
ed

lo
ss

fo
r

th
e

LD
N

is
th

e
p

re
d

ic
ti

o
n

o
f

th
e

te
ac

h
er

n
et

w
o

rk
s.

2
M

o
d

el
D

is
ti

lla
ti

o
n

(K
D

).
T

h
e

LD
N

ac
ts

as
a

st
u

d
en

t
n

et
w

o
rk

th
at

im
it

at
es

th
e

o
u

tp
u

ts
o

f
th

e
te

ac
h

er
d

ep
th

n
et

w
o

rk
u

si
n

g
L

1
lo

ss
.T

h
is

co
lu

m
n

al
so

in
d

ic
at

es
w

h
et

h
er

th
er

e
is

a
te

ac
h

er
n

et
w

o
rk

in
vo

lv
ed

in
tr

ai
n

in
g.

3
P

re
-t

ra
in

ed
Te

ac
h

er
(P

T
T

).
It

is
th

e
Te

ac
h

er
m

o
d

el
in

th
e

fi
rs

t
ro

w
o

f
ea

ch
gr

o
u

p.
T

h
e

p
ar

am
et

er
s

o
f

P
T

T
st

ay
fi

xe
d

d
u

ri
n

g
th

e
tr

ai
n

in
g

o
f

LD
N

.W
h

en
th

e
te

ac
h

er
m

o
d

el
is

n
o

t
p

re
-t

ra
in

ed
,

as
in

th
e

ca
se

o
f

LD
N

-5
,

it
is

tr
ai

n
ed

b
y

SS
L

fr
o

m
sc

ra
tc

h
al

o
n

g
w

it
h

th
e

LD
N

.

5.4. LIGHTWEIGHT MONOCULAR DEPTH NETWORK

5

137

5.4.2. REAL-WORLD TESTING

(a) CyberZoo environment. The obstacles include screens,
chairs, artificial plants, pillars, humans, etc.

(b) A typical Corridor in an office building where there are
trashcans and chairs.

Figure 5.9: Real-world testing environments.

We collect two datasets in two real-world environments. The grey-scale images cap-
tured by the tiny camera onboard the quadcopter were transmitted via wireless communi-
cation to a laptop computer. During data collection, we held the quadcopter in hand and
performed random motion. One environment is a controllable experimental environment
CyberZoo (Fig. 5.9 (a)). In this environment, the layout of objects is easy to change in or-
der to test with different conditions, e.g., density and type of obstacles. 9,151 images were
captured in total. Another environment is a typical corridor in an office building (Fig. 5.9
(b)). Here we captured 2,717 images. There is no ground-truth label available and all the
images are used for training. Two LDNs are trained from scratch for 480 epochs on these
two datasets, respectively, by the training scheme of LDN-5 in Table 5.3. These two trained
LDNs are for flight experiments, aiming to detect the obstacles in the environments where
the training datasets are collected. Two testing examples of the LDN trained on the corri-
dor dataset are shown in the top two rows of Fig. 5.10. Example predictions of the LDN

5

138
5. LIGHTWEIGHT VISUAL-INERTIAL ODOMETRY AND MONOCULAR DEPTH LEARNED FROM

SELF-SUPERVISED STRUCTURE-FROM-MOTION

trained on the CyberZoo dataset are shown in the bottom two rows of Fig. 5.10. The cam-
era distortion is ignored in both training and testing to lower the computation for image
preprocessing. During flight experiments, the LDN directly infers from the cropped raw
images.

Figure 5.10: The depth map predictions of LDN-5 (middle column) and Teacher depth network
(right column). The top two rows show example images of the corridor environment. The bot-
tom two rows correspond to the cyberzoo environment.

The trained LDNs are then used for obstacle detection in flight experiments of a nano
quadcopter. The captured grey-scale images by the onboard camera were transposed
via wireless communication to a laptop computer, where the network inferred from the
images and a flight controller generated high-level control commands according to the
depth map predictions. In this chapter, the depth network runs offboard. Onboard de-
ployment is left for potential future work. The network inference frequency is around 7
Hz, mainly restricted by the time consumption of image transfer. Example images and

5.5. CONCLUSIONS

5

139

predicted depth maps logged during the flight experiments are shown in Fig. 5.10.
During a flight experiment in the CyberZoo, we placed objects that were not captured

by the training dataset in the flight arena. The quadcopter avoided all of them successfully
in multiple runs. In Fig. 5.11, we show examples of detecting unknown obstacles. In the
first row, a running human with motion blur was successfully detected, although humans
stood still in the training dataset. The second row shows an example of a partially detected
unseen obstacle. We speculate that the network’s generalization to the unknown objects
can be attributed to the familiar background in the environment. To further explore the
generalization capacity, we use an LDN trained on the CyberZoo dataset to navigate the
quadcopter through the Corridor environment. As shown in the third row in Fig. 5.11, the
network detects a part of the wall. A possible reason is that the wall and floor structures
also appear in the CyberZoo environment. The quadcopter flew safely through the corri-
dor until it crashed on an undetected trashcan, as shown in the fourth row of Fig. 5.11.

5.5. CONCLUSIONS
For ego-motion estimation, we proposed the PoseNet-VIO based on an uncertainty-aware
pose network and an EKF. The accuracy of PoseNet-VIO is worse than mainstream VIO so-
lutions, but it may act as an efficient attitude and velocity estimator for short-term naviga-
tion. Based on the cross-dataset evaluation and the comparison between different types
of supervision, we have the following findings. a) The simulation-to-reality generaliza-
tion capacity of the pose network is generally satisfactory, also for the metric-scale trans-
lation prediction. b) Training an uncertainty-aware pose network using the predictions
of self-supervised teacher networks leads to rivaling VIO accuracy to using ground-truth
pose. c) Metric-scale translational motion predictions produce better VIO accuracy than
normalized translation predictions. These findings can be valuable to future research on
learning-based visual ego-motion estimation.

For depth prediction, we verify that the combination of knowledge distillation and
reprojection-based self-supervised learning leads to the decent accuracy of a lightweight
monocular depth network. We focus on the case that the network is trained on a dataset
collected in a known target environment. Experiments show that the proposed network
has some generalization capability. As for works [25, 29] that pursue outstanding gener-
alization by exploiting huge training datasets, our network is not comparable. When the
flight environment is unknown and network generalization has high priority, the workflow
proposed in [29] can be followed to train our depth network. The workflow is to generate
proxy labels for images in the target environment by a trained big-size depth network.
The proxy labels are expected to be accurate enough because the big-size depth network
is trained on a large number of images of a big distribution, and thus it is generalization-
capable. An LDN can be trained using the proxy labels.

REFERENCES
[1] M. Li and A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odometry,

The International Journal of Robotics Research 32, 690 (2013).

[2] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial

5

140 REFERENCES

Figure 5.11: From top to bottom: dynamic obstacle (running human), unknown obstacle (carton),
unknown environment (corridor) and a failure case of detecting an unknown obstacle (trashcan).

REFERENCES

5

141

state estimator, IEEE Transactions on Robotics 34, 1004 (2018).

[3] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, Orb-slam3:
An accurate open-source library for visual, visual–inertial, and multimap slam, IEEE
Transactions on Robotics 37, 1874 (2021).

[4] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, Unsupervised learning of depth and
ego-motion from video, in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017) pp. 1851–1858.

[5] S. Wang, R. Clark, H. Wen, and N. Trigoni, End-to-end, sequence-to-sequence prob-
abilistic visual odometry through deep neural networks, The International Journal of
Robotics Research 37, 513 (2018).

[6] B. Wagstaff, E. Wise, and J. Kelly, A self-supervised, differentiable kalman filter for
uncertainty-aware visual-inertial odometry, arXiv preprint arXiv:2203.07207 (2022).

[7] Z. Teed and J. Deng, Droid-slam: Deep visual slam for monocular, stereo, and rgb-d
cameras, Advances in neural information processing systems 34, 16558 (2021).

[8] W. Wang, Y. Hu, and S. Scherer, Tartanvo: A generalizable learning-based vo, in Con-
ference on Robot Learning (PMLR, 2021) pp. 1761–1772.

[9] Bitcraze, Motion capture positioning, https://www.bitcraze.io/
documentation/system/positioning/mocap-positioning/ (2023), accessed
on 3rd April 2023.

[10] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry, in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (2020) pp. 1281–1292.

[11] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart, The euroc micro aerial vehicle datasets, The International Journal of
Robotics Research 35, 1157 (2016).

[12] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, Orb-slam: a versatile and accurate
monocular slam system, IEEE transactions on robotics 31, 1147 (2015).

[13] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, Svo: Semidi-
rect visual odometry for monocular and multicamera systems, IEEE Transactions on
Robotics 33, 249 (2016).

[14] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, Digging into self-supervised
monocular depth estimation, in Proceedings of the IEEE/CVF international conference
on computer vision (2019) pp. 3828–3838.

[15] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid, Unsupervised
scale-consistent depth and ego-motion learning from monocular video, Advances in
neural information processing systems 32 (2019).

https://www.bitcraze.io/documentation/system/positioning/mocap-positioning/
https://www.bitcraze.io/documentation/system/positioning/mocap-positioning/

5

142 REFERENCES

[16] B. Wagstaff, V. Peretroukhin, and J. Kelly, On the coupling of depth and egomotion
networks for self-supervised structure from motion, IEEE Robotics and Automation
Letters 7, 6766 (2022).

[17] Y. Almalioglu, M. Turan, M. R. U. Saputra, P. P. de Gusmão, A. Markham, and
N. Trigoni, Selfvio: Self-supervised deep monocular visual–inertial odometry and
depth estimation, Neural Networks 150, 119 (2022).

[18] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, Vinet: Visual-inertial odome-
try as a sequence-to-sequence learning problem, in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31 (2017).

[19] G. Huang, Visual-inertial navigation: A concise review, in 2019 international confer-
ence on robotics and automation (ICRA) (IEEE, 2019) pp. 9572–9582.

[20] R. Mur-Artal and J. D. Tardós, Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras, IEEE transactions on robotics 33, 1255 (2017).

[21] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial
state estimator, IEEE Transactions on Robotics 34, 1004 (2018).

[22] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen, Autonomous aerial
navigation using monocular visual-inertial fusion, Journal of Field Robotics 35, 23
(2018).

[23] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, Dronet: Learning
to fly by driving, IEEE Robotics and Automation Letters 3, 1088 (2018).

[24] R. J. Bouwmeester, F. Paredes-Vallés, and G. C. de Croon, Nanoflownet: Real-time
dense optical flow on a nano quadcopter, arXiv preprint arXiv:2209.06918 (2022).

[25] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, Towards robust monocu-
lar depth estimation: Mixing datasets for zero-shot cross-dataset transfer, IEEE trans-
actions on pattern analysis and machine intelligence (2020).

[26] J. Liu, Q. Li, R. Cao, W. Tang, and G. Qiu, Mininet: An extremely lightweight convolu-
tional neural network for real-time unsupervised monocular depth estimation, ISPRS
Journal of Photogrammetry and Remote Sensing 166, 255 (2020).

[27] M. Xiong, Z. Zhang, T. Zhang, and H. Xiong, Ld-net: A lightweight network for real-
time self-supervised monocular depth estimation, IEEE Signal Processing Letters 29,
882 (2022).

[28] M. Poggi, F. Tosi, F. Aleotti, and S. Mattoccia, Real-time self-supervised monocular
depth estimation without gpu, IEEE Transactions on Intelligent Transportation Sys-
tems (2022).

[29] F. Aleotti, G. Zaccaroni, L. Bartolomei, M. Poggi, F. Tosi, and S. Mattoccia, Real-
time single image depth perception in the wild with handheld devices, Sensors 21,
15 (2020).

REFERENCES

5

143

[30] J. Hu, C. Fan, H. Jiang, X. Guo, Y. Gao, X. Lu, and T. L. Lam, Boosting light-weight
depth estimation via knowledge distillation, arXiv preprint arXiv:2105.06143 (2021).

[31] M. K. Yucel, V. Dimaridou, A. Drosou, and A. Saa-Garriga, Real-time monocular depth
estimation with sparse supervision on mobile, in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2021) pp. 2428–2437.

[32] Y. Wang, X. Li, M. Shi, K. Xian, and Z. Cao, Knowledge distillation for fast and accu-
rate monocular depth estimation on mobile devices, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2021) pp. 2457–2465.

[33] M. Jaderberg, K. Simonyan, A. Zisserman, et al., Spatial transformer networks, Ad-
vances in neural information processing systems 28 (2015).

[34] M. Hosseinzadeh, R. Fahimi, Y. Wang, et al., Unsupervised learning of camera pose
with compositional re-estimation, in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (2020) pp. 11–20.

[35] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor, and S. Scherer,
Tartanair: A dataset to push the limits of visual slam, in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 4909–4916.

[36] L. N. Smith and N. Topin, Super-convergence: Very fast training of neural networks
using large learning rates, in Artificial intelligence and machine learning for multi-
domain operations applications, Vol. 11006 (SPIE, 2019) pp. 369–386.

[37] Z. Zhang and D. Scaramuzza, A tutorial on quantitative trajectory evaluation for vi-
sual (-inertial) odometry, in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2018) pp. 7244–7251.

[38] Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, in international conference on machine learning (PMLR,
2016) pp. 1050–1059.

[39] B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable predictive un-
certainty estimation using deep ensembles, Advances in Neural Information Process-
ing Systems 30 (2017).

[40] Z. Huai and G. Huang, Robocentric visual-inertial odometry, The International Jour-
nal of Robotics Research 41, 667 (2022).

[41] J. Sola, Quaternion kinematics for the error-state kalman filter, arXiv preprint
arXiv:1711.02508 (2017).

[42] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, Openvins: A research platform
for visual-inertial estimation, in 2020 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2020) pp. 4666–4672.

[43] J. Delmerico and D. Scaramuzza, A benchmark comparison of monocular visual-
inertial odometry algorithms for flying robots, in 2018 IEEE international conference
on robotics and automation (ICRA) (IEEE, 2018) pp. 2502–2509.

5

144 REFERENCES

[44] Bitcraze, Ai deck 1.1, https://www.bitcraze.io/products/ai-deck/ (2023), ac-
cessed on 3rd April 2023.

[45] F. Conti, Technical report: Nemo dnn quantization for deployment model, arXiv
preprint arXiv:2004.05930 (2020).

[46] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and F. Conti, Dory: Auto-
matic end-to-end deployment of real-world dnns on low-cost iot mcus, IEEE Transac-
tions on Computers , 1 (2021).

https://www.bitcraze.io/products/ai-deck/
http://dx.doi.org/10.1109/TC.2021.3066883
http://dx.doi.org/10.1109/TC.2021.3066883

6
CONCLUSION

6.1. ANSWERS TO RESEARCH QUESTIONS
Chapters 2 to 5 show the research outcome with respect to the research questions raised
in Chapter 1. The following presents the summarized answers to each question.

Research Question 1

How to design an ego-motion estimator that uses as little computing power as pos-
sible while maintaining acceptable accuracy?

Integration of inertial measurements for ego-motion estimation suffers from drifting
over time due to the existence of sensor bias and noise. Vision measurement can correct
for accumulated error at the cost of computationally heavy visual processing. Chapter 2
tackles this problem by involving an additional information source, a simple aerodynamic
model, in ego-motion estimation. It achieves estimations with bounded errors in two out
of three dimensions of attitude and velocity. The rest dimension is corrected at the frame
rate by the vision information. The calculation of the epipolar constraints of the visual
feature point correspondences takes the rotation estimation as known information and
outputs relative pose. Utilizing the rotation estimation increases robustness and reduces
the computation demand. Experiments show that the proposed estimator satisfies the
balance of accuracy and efficiency, and the accuracy did not drop significantly after the
image stream was cut.

Research Question 2

Can an ANN maintain the accuracy of inferring translation velocity from blurry
images captured by a downward-facing camera while achieving real-time perfor-
mance on an onboard processor and generalization to unknown environments?

Chapter 3 shows that the network architecture of cascaded network blocks connected

145

6

146 6. CONCLUSION

by image warping is able to infer 3-d translational motion in real time and has better pre-
diction accuracy than other architectures. The training dataset is made up of a large num-
ber of real-world scenes captured by a simulated camera in fast motion and with realistic
motion blur. This dataset contributes to the network’s generalization and robustness to-
wards motion blur. Experiments show that the accuracy of network predictions is better
than that of feature points when there is significant motion blur. Another finding is that
self-supervised learning based on photometric error leads to better performance than us-
ing ground-truth labels. The proposed network demonstrates its practicality by running
onboard an MAV in autonomous flights. The appearance of the environment is not in-
cluded in the training dataset. Network-based ego-motion estimation is used for feedback
flight control.

Research Question 3

How to train a planar homography network without using ground-truth labels, es-
timate the prediction uncertainty of the network, and build an efficient and accu-
rate VIO upon it?

Based on the answer to Research Question 2, it is evident that cascaded network blocks
can be trained in a self-supervised fashion and exhibit robustness towards motion blur. In
Chapter 4, the self-supervised loss function for the 8-d planar homography transforma-
tion network is based on image synthesis by differentiable image warping, similar to the
loss function in Chapter 3. To enable the network to estimate its prediction uncertainty,
more output neurons are required for the uncertainty related to input noise. Dropout is
implemented for the last two layers to estimate the uncertainty reflecting ignorance of
the ideal network model. First, a big-size self-supervised network is trained to produce
predictions close to the ground truth. Its predictions then act as the learning targets of
the smaller-size uncertainty-aware network. With high-quality uncertainty estimation,
the homography network output can be fused with inertial measurements by an EKF. The
homography transformation used in the EKF updating is about only two temporally con-
secutive frames instead of considering more frames in a sliding window, as in many VIO
solutions. As a result, the back-end processing is highly efficient. The total time consump-
tion of the proposed VIO processing one frame is 25~29 milliseconds on a mobile proces-
sor. The evaluations show that the proposed VIO generalizes to real-world datasets, and
its accuracy is on-par with state-of-the-art VIO methods.

Research Question 4

How to obtain accurate network predictions of pose and depth without ground
truth and use them to train a lightweight uncertainty-aware pose network and a
lightweight depth network for a forward-facing camera?

The answer to Research Question 3 reveals that in order to train an uncertainty-aware
network without using ground truth, a big-size self-supervised network with high predic-
tion accuracy is required. Different from planar scenes where camera motion is encoded
in the homography transformation, for general 3-d structures, depth information is neces-

6.2. DISCUSSION

6

147

sary for view synthesis besides the camera pose. In the context of simultaneously learning
pose and depth, in Chapter 5, iterative pose network inference based on depth-dependent
view synthesis is adopted in the joint training of a pose network and a monocular depth
network. The iteratively refined pose predictions allow for the training of a lightweight
uncertainty-aware pose network using negative log likelihood loss. As for the lightweight
depth network, a combination of pose-dependent photometric matching loss and knowl-
edge distillation loss from the big-size depth network leads to better accuracy. Note that
given the current small network sizes, the lightweight networks for depth and pose have
limited accuracy. Experiments show that they merely meet the basic expectations when
the tasks are simple. More research is required to reach better performance.

After answering the above research questions, let us look back to the general research
goal:

Research Goal

To develop real-time onboard-processing visual ego-motion estimation solutions
for autonomous MAVs deployable in unknown environments. The visual process-
ing must maintain robustness during agile maneuvers.

This dissertation investigates approaches to robust ego-motion estimation in agile
maneuvers for an autonomous MAV with limited onboard processing resources. In terms
of efficiency, all four solutions are suitable for real-time processing on an onboard proces-
sor. Three out of four solutions (Chapters 2 to 4) utilized additional information about the
platform and environment in addition to raw sensor measurement to mitigate the harm to
accuracy from the shortage of computational power. For learning-based solutions (Chap-
ters 3 to 5), we examined the generalization capacities by cross-dataset testing. In terms
of robustness, motion blur is set as the main challenge in two solutions (Chapters 3 and
4) and is proven to be well tackled. In summary, the solutions examined by experiments
support the conclusion that the research goal is basically achieved.

6.2. DISCUSSION
Before reaching the end, let us return to the starting point of this research journey and
confront the ultimate question again. Is visual ego-motion estimation for MAV a solved
problem? In other words, how far are we from the ideal solution for ego-motion estimation
of a lightweight and agile MAV?

Indeed, the approaches proposed in this dissertation show promising performance in
the testing scenarios for which they are designed. However, gaps exist between the cur-
rent stage and the ideal solution. In the following, they are elaborated on in four aspects.
Potential solutions are also discussed.

6.2.1. COMPUTATIONAL DEMAND
Artificial neural networks (ANNs) with more layers tend to produce better accuracy, yet
increase the computational demand. Although GPU accelerates network inference, GPU
itself is a challenge for a lightweight MAV. Deep network [1] or iterative network inferences
[2] can run in real time only on standard-size GPUs designed for desktop computers. The

6

148 6. CONCLUSION

lightweight networks in this dissertation are affordable for a mobile GPU (Nvidia Jetson
TX2) that can be carried by a middle-size quadrotor MAV. But when it comes to smaller
MAVs, for example, the 72-gram racing MAV from [3], the networks already quickly be-
come computationally too heavy.

In Chapters 3 and 4, the networks predict the planar homography transformation that
provides enough information for view synthesis of a planar surface. So the prediction
can be iteratively refined by multiple network inferences and achieves better accuracy. In
Chapter 5, similar iterative refinement is also implemented for pose estimation using a
forward-facing camera. But it is not adopted for onboard deployment given the fact that
the dense depth map is required for view synthesis. Depth network inferencing means
more computational demand onboard.

A potential way to run a deep network onboard a lightweight MAV is to further research
network acceleration technologies at both the software and hardware level. For instance,
training a network to have higher activation sparsity [4] can lead to a significant decrease
in the computation of an event-driven processor [5].

6.2.2. SCALE AMBIGUITY
In the case of monocular vision, the scale is ambiguous. Pose networks in most literature
are trained to memorize the metric scale of the training set and place a pitfall for general-
ization. When the network predicts the scale-less 2-D translation direction, stationary or
pure rotation motion cannot be well handled.

The accelerometer is supposed to recover the metric scale in Chapter 5. But the ac-
curacy is less good than expected. A better-designed VIO back-end than a basic EKF may
improve accuracy. Another approach is to use optical flow as the constraint in the opti-
mization of camera motion [2]. Both approaches have the cost of much higher computa-
tional demand. Utilizing the kinematic or dynamics model of the platform may be a way to
introduce additional information about the metric scale at a relatively low computational
cost.

6.2.3. NETWORK UNCERTAINTY ESTIMATION
In Chapter 4, it is shown that the network uncertainty estimation approaches reflect the
accuracy of network prediction well in general. Although small in number, outliers of un-
certainty estimation exist. There is no well-accepted theoretical guarantee of the reliabil-
ity of the current uncertainty estimation approaches yet. More insights into the general
problem of the uncertainty of artificial neural networks can be helpful not only for visual
ego-motion estimation but also for almost all ANN applications.

6.2.4. ROBUSTNESS TOWARDS MOTION BLUR
In Chapter 3 and 4, the networks are trained with blurry images and show the robustness
towards motion blur in testing. The network can output reasonable predictions when only
a few handcrafted feature points can be reliably detected or tracked. However, this is far
from enough to conclude that ANNs are immune to motion blur. More research is required
to reveal the key element that affects blur robustness. Additionally, because motion blur is
a function of camera motion and scene depth, it is also interesting to study how to recover
camera motion from motion blur in a single image [6].

REFERENCES

6

149

REFERENCES
[1] W. Wang, Y. Hu, and S. Scherer, Tartanvo: A generalizable learning-based vo, in Con-

ference on Robot Learning (PMLR, 2021) pp. 1761–1772.

[2] Z. Teed and J. Deng, Droid-slam: Deep visual slam for monocular, stereo, and rgb-d
cameras, Advances in neural information processing systems 34, 16558 (2021).

[3] S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. de Croon, Visual model-
predictive localization for computationally efficient autonomous racing of a 72-g drone,
Journal of Field Robotics 37, 667 (2020).

[4] M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin, W. Leiserson, S. Moore,
N. Shavit, and D. Alistarh, Inducing and exploiting activation sparsity for fast inference
on deep neural networks, in International Conference on Machine Learning (PMLR,
2020) pp. 5533–5543.

[5] A. Yousefzadeh, G.-J. Van Schaik, M. Tahghighi, P. Detterer, S. Traferro, M. Hijdra, J. Stu-
ijt, F. Corradi, M. Sifalakis, and M. Konijnenburg, Seneca: Scalable energy-efficient neu-
romorphic computer architecture, in 2022 IEEE 4th International Conference on Artifi-
cial Intelligence Circuits and Systems (AICAS) (IEEE, 2022) pp. 371–374.

[6] S. Dai and Y. Wu, Motion from blur, in 2008 IEEE Conference on Computer Vision and
Pattern Recognition (IEEE, 2008) pp. 1–8.

ACKNOWLEDGEMENTS

On the morning of 18th September 2018, I landed at Schipol airport in an Airbus 380 air-

craft operated by China Southern airline. At the end of 2022, I read the news that the

aircraft had been retired by the airline. Time flies, especially during the Covid period. I

realized that it had been four and a half years I had been living and working in the Nether-

lands as a PhD candidate. I said to myself it might be time that I should try to finish my

PhD, though I was not satisfied with my research outcome and struggling to trade off my

efforts in two unfinished projects. At the beginning of this Acknowledgment, I would like

to thank myself for accepting that sometimes “good enough” is good enough.

Secondly, I sincerely appreciate my promotors, Guido de Croon and Christophe De

Wagter. As my promotor and daily supervisor, Guido accompanied me throughout my

PhD career with his excellent research skill and visionary guidance. Almost every time we

had a project meeting, I was impressed that Guido not only understood the big picture but

also located details and gave feasible suggestions for my next step. I appreciate his efforts

in advancing my research progress and the detailed feedbacks on my every scientific writ-

ings. Guido is open-minded towards research topics. I started researching deep learning

under his advice and happily found interest in it. I appreciate Guido’s efforts in arranging

my external research stay with IMEC the Netherlands. This experience opened my door

to neuromorphic, a boosting research field. What is also worth mentioning is that he has

a great sense of humor that relaxed me during research discussions. Christophe has ex-

tremely rich experience in designing flying robots. I thank him for helping with the drone

platforms I used in my research. I also appreciate his insightful comments on this disser-

tation and the propositions. My promotors set examples as superior lifelong researchers.

I have always been impressed by their endless passion for learning and open-mind think-

ing.

Thirdly, I would like to thank my colleagues I directly worked with. Shuo Li, as a senior

colleague, guided me through the details of autonomous drone racing. Sihao Sun sup-

ported me mentally and technically during the competition in Macau. I had my first long-

term teamwork with Nilay Sheth and Federico Paredes-Vallés. I gained robust oral English

communication skills and my first international friendship from them. Later, I worked

with Julien Dupeyroux, Jesse Hagenaars, Stein Stroobants, and Federico on the neuro-

morphic project. It is a good memory of having work dinners together. Special thanks to

Julien, who influenced me positively in both work and life. And I thank his invitation to

his wonderful Christmas dinner in the middle of Covid time. I thank Cheng Liu for being a

great teammate in the drone obstacle avoidance project, in tennis and snow skiing as well.

I also thank Ziqing Ma for her help in the above-mentioned activities. During my research

151

6

152 REFERENCES

stay at IMEC the Netherlands, I worked with Manolis Sifalakis, Amirreza Yousefzadeh, and

Guangzhi Tang. I appreciate their support and guidance when I was diving into a new

knowledge domain.

It is my honor to work in the MAVLab. Here I worked with a group of researchers and

engineers who have rich knowledge and a great passion for flying robots. I can always gain

new knowledge from our meetings and discussions. MAVLab gives me a sense of belong-

ing. I would like to thank the MAVLab members that have not been mentioned before:

Kimberly McGuire, Kirk Scheper, Mario Coppola, Diana Olejnik, Tom van Dijk, Shushuai

Li, Matěj Karásek, Sven Pfeiffer, Stavrow Bahnam, Robin Ferede, Matthew Yedutenko, Sun-

you Hwang, Ewoud Smeur, Alessandro Mancinelli, Hang Yu, Yilun Wu, Salua Hamaza,

Sunyi Wang, Liming Zheng, Anton Bredenbeck, Jane Ramirez, Chaoxiang Ye, Erik van der

Horst, Freek van Tienen, and Dennis van Wijngaarden. My special thanks to Erik for his

help on my first Ubuntu installation and drone repair, and to Shushuai who helped me

with embedded hardware and dissertation writing.

In addition, I want to thank all the PhD students at the C&S department, for our leisure

time such as coffee breaks, lunch time, BBQs, PhD drinks, PhD events, etc. We had fun

and learned from each other in brainstorming a variety of research topics. My thanks

go to: Dirk van Baelen, Jaime Junell, Malik Doole, Noor Nabi, Daniel Friesen, Jelmer Re-

itsma, Bo Sun, Jerom Maas, Isabel Metz, Sarah Barendswaard, Paolo Scaramuzzino, Dyah

Jatiningrum, Annemarie Landman, Junzi Sun, Ye Zhang, Yingzhi Huang, Ying Yu, Marta

Ribeiro, Wei Fu, Xuerui Wang, Rowenna Wijlens, Gijs de Rooij, Yifei Li, Yiyuan Zou, Tiago

Monteiro Nunes, Jan Groot, Jiayu Chen, and Wenying Lyu. And thank you, Max Mulder

and Bertine Markus, for leading our section and running the administration. I also wish to

thank my friends outside the C&S department. They are: Jingwei Dong, Chengpeng Jiang,

Xiujie Shan, Yi Zhang, Zhou Nie, Xiaohuan Lyu, Yujie Tang, Jing Chang, Langqing Sun, Ze

Chang, Rui Feng, Haicheng Liu, Kai Wu, Jingyi Liu, and Wenxiu Wang. I sincerely thank

my girlfriend, Cai Huang, who accompanied and supported me through the hardest time

of my PhD career.

Before the end, I express my deepest gratitude to my parents, Wenying Li and Jun Xu,

for their selfless love and support.

CURRICULUM VITÆ

Yingfu XU徐英夫

09-01-1994 Born in Tieling, China.

EDUCATION

2009–2012 Tieling High School

2012–2016 B.Sc. in Flight Vehicle Design and Engineering
Harbin Institute of Technology

2016–2018 M.Sc. in Aeronautical and Astronautical Science and Technology
Harbin Institute of Technology

Since 2018 Ph.D. candidate in Aerial Robotics
Delft University of Technology

AWARDS

2015 Merit Student of Heilongjiang Province

2018 Distinguished Master Student

153

LIST OF PUBLICATIONS

7. Guangzhi Tang, Kanishkan Vadivel, Yingfu Xu, Refik Bilgic, Kevin Shidqi, Paul Detterer, Ste-
fano Traferro, Mario Konijnenburg, Manolis Sifalakis, Gert-Jan van Schaik, Amirreza Youse-
fzadeh, SENECA: building a fully digital neuromorphic processor, design trade-offs and chal-
lenges, Frontiers in Neuroscience 17 (2023).

6. Federico Paredes-Vallés, Jesse Hagenaars, Julien Dupeyroux, Stein Stroobants, Yingfu Xu,
Guido C.H.E. de Croon, Fully neuromorphic vision and control for autonomous drone flight,
Under review.

5. Cheng Liu*, Yingfu Xu*, Erik-Jan van Kampen, Guido C.H.E. de Croon, Nano Quadcopter Ob-
stacle Avoidance with a Lightweight Monocular Depth Network, Accepted by the 22nd World
Congress of the International Federation of Automatic Control (2023). * Equal contribution.

4. Yingfu Xu, Guido C.H.E. de Croon, A Lightweight Learning-based Visual-Inertial Odometry,
Accepted by the International Micro Air Vehicle Conference and Competition (IMAV), 2023.

3. Yingfu Xu, Guido C.H.E. de Croon, CUAHN-VIO: Content-and-Uncertainty-Aware Homogra-
phy Network for Visual-Inertial Odometry, Under review.

2. Yingfu Xu, Guido C.H.E. de Croon, CNN-based Ego-Motion Estimation for Fast MAV Maneu-
vers, In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7606-
7612. IEEE, 2021.

1. Yingfu Xu, Guido C.H.E. de Croon, Efficient Model-Aided Visual-Inertial Ego-Motion Estima-
tion for Multirotor MAVs, Accepted by the International Micro Air Vehicle Conference and
Competition (IMAV), 2023.

155

	Summary
	Introduction
	Challenges brought by Agile Manuevers
	Previous Research
	Traditional Methods
	Learning-based Methods

	Research Objectives and Questions
	Dissertation Outline
	titleReferences

	Efficient Model-Aided Visual-Inertial Ego-Motion Estimation for Multirotor Micro Air Vehicles
	Introduction
	Estimator Framework
	Definitions
	Linear Drag Model
	State Propagation
	Acceleration Measurement Update
	Relative Visual Measurement Update
	Composition and Resetting for New Keyframe

	Visual Relative Pose Estimation
	Keyframe-based Feature Tracking
	Linear Relative Yaw Calculation
	Linear Relative Translation Direction Calculation

	Experimental Results
	Data Pre-processing
	Results and Discussion

	Conclusion and Future Work
	titleReferences

	CNN-based Ego-Motion Estimation for Fast MAV Maneuvers
	Introduction
	Methodology
	Homography Transformation
	Cascaded Network Blocks Connected by Image Warping
	Dataset Generation

	Networks
	ICSTN-based Networks
	Pyramidal Images and Feature Maps in ICSTN
	Self-Supervised Learning
	Networks for Tilt Angle Prediction

	Evaluation
	Simulated Dataset
	Flight Dataset

	Conclusion
	Appendix
	Networks with Sharing Parameters among Blocks
	Error Distribution of Network's Prediction
	Public High-Speed Flight Dataset and Prior Pose
	CNN-based VIO for Real-Time Feedback Control
	Supplementary Materials

	titleReferences

	CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for Visual-Inertial Odometry
	Introduction
	Related Works
	Learning-based Visual Ego-Motion Estimation
	Network Uncertainty Estimation in Computer Vision
	Deep Planar Homography

	System Overview
	Planar Homography Network
	Datasets
	Self-Supervised Cascaded Network Blocks
	Content-Aware Learning

	Uncertainty Estimation
	Configurations
	Model Distillation for Predictive Uncertainty
	Empirical Uncertainty

	Visual-Inertial Odometry
	Homography-Network-based Vision Front-end
	EKF-based Back-end

	Evaluation
	Comparison of Accuracy with SOTA VIO Approaches
	Ablation Study
	Onboard Deployment for Feedback Control
	Time Efficiency and Processing Latency
	Robustness toward High-Speed Flight
	Potential Improvements

	Conclusions
	Appendix
	Network Architecture
	Model Size
	Implementation and Training
	Comparison of Basic Homography Networks
	Direct Linear Transformation (DLT) Solver
	Why Learning Requires a Teacher Network?
	Comparison of Different Output Dimensions
	Difficult Testing Samples
	Correlation between Predictive and Empirical Uncertainty
	Network Uncertainty and Velocity
	UAHN-VIO for Feed-Back Control
	EKF State Propagation
	a Priori Homography
	Iterative EKF
	Parameter Tuning of SOTA VIO Approaches
	Supplementary Materials

	titleReferences

	Lightweight Visual-Inertial Odometry and Monocular Depth Learned from Self-Supervised Structure-from-Motion
	Introduction
	Teacher Networks
	Improved Self-Supervised SfM
	Datasets and Network Training

	Efficient VIO based on Pose Network and EKF
	Uncertainty-Aware Pose Network
	EKF-based Back-end
	Evaluation

	Lightweight Monocular Depth Network
	Training Schemes
	Real-World Testing

	Conclusions
	titleReferences

	Conclusion
	Answers to Research Questions
	Discussion
	Computational Demand
	Scale Ambiguity
	Network Uncertainty Estimation
	Robustness towards Motion Blur

	titleReferences

	Acknowledgements
	Curriculum Vitæ
	List of Publications

