
 
 

Delft University of Technology

Update Scheduling for ADMM-based Energy Sharing in Virtual Power Plants Considering
Massive Prosumer Access

Feng, Cheng ; Zheng, Kedi; Zhou, Yangze ; Palensky, Peter; Chen, Qixin

DOI
10.1109/TSG.2023.3243811
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Smart Grid

Citation (APA)
Feng, C., Zheng, K., Zhou, Y., Palensky, P., & Chen, Q. (2023). Update Scheduling for ADMM-based
Energy Sharing in Virtual Power Plants Considering Massive Prosumer Access. IEEE Transactions on
Smart Grid, 14(5), 3961-3975. https://doi.org/10.1109/TSG.2023.3243811

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSG.2023.3243811
https://doi.org/10.1109/TSG.2023.3243811


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 5, SEPTEMBER 2023 3961

Update Scheduling for ADMM-Based Energy
Sharing in Virtual Power Plants Considering

Massive Prosumer Access
Cheng Feng , Graduate Student Member, IEEE, Kedi Zheng , Member, IEEE,

Yangze Zhou, Student Member, IEEE, Peter Palensky, Senior Member, IEEE,
and Qixin Chen , Senior Member, IEEE

Abstract—With the proliferation of distributed energy
resources (DERs), electricity consumers in virtual power plants
(VPPs) are transitioning into prosumers and are encouraged
to share surplus energy with peers. Nevertheless, large-scale
energy sharing among thousands of prosumers may encounter
communication-related challenges. Communication network con-
gestion may result in a significant increase in the negotiation
waiting time to reach a sharing agreement, and potentially risks
exceeding the deadline of negotiation before the market gate
closes, rendering energy sharing ineffective. This paper pro-
poses an online partial-update algorithm for the alternating
direction method of multipliers (ADMM)-based energy sharing.
By restricting the update connection between the VPP and the
prosumers, the algorithm selects a subset of the prosumers par-
ticipating in ADMM updates each round, hence eliminating the
excessively long waiting time caused by communication con-
gestion. Considering the delay induced by massive prosumer
communication access requests, a method for determining the
optimal number of prosumers participating in updates is pro-
vided. To fully utilize the limited update opportunities, a fair and
efficient prosumer update scheduling policy is designed. The VPP
schedules the participation of prosumers in updates such that the
convergence-critical prosumers receive higher priority, yet every
prosumer is granted sufficient update opportunities. Additionally,
the extra computation and communication overheads brought
by the prosumer scheduling are minimized, allowing the whole
algorithm to be executed in real time. Numerical studies are
conducted to validate the effectiveness of the algorithm and its
performance in reducing the overall convergence time.
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I. INTRODUCTION

W ITH the distributed energy resources (DERs) contin-
uously integrated into the distribution power system,

massive traditional electricity consumers are transforming into
proactive prosumers [1]. Due to their small scales, it is antic-
ipated that the prosumers would be aggregated by the virtual
power plant (VPP), which is immediately seen by the transmis-
sion network operators [2]. Traditionally, prosumers are only
permitted to sell their surplus power to the VPP at a low feed-
in tariff, which inhibits the full utilization of DERs’ energy.
Nowadays, prosumers are encouraged to share their excess
energy with their peers. With a coordinated energy sharing
mechanism, the prosumers and the VPP can all achieve higher
profitability [3].

Prosumers are different stakeholders who make individual
decisions and possess private information [4]. It is difficult
for the VPP to obtain personal data (such as DERs’ capa-
bilities) to perform centralized energy sharing. Consequently,
energy sharing is often implemented in a distributed scheme
with the assistance of a pool-based platform. Under a dis-
tributed sharing scheme, the prosumers and the VPP can only
exchange iterative updates about the quantities and prices of
sharing energy until an agreement is established on the sharing
plan [5]. This approach is equivalently treated as the dis-
tributed solution procedure of a welfare optimization problem.
Among the distributed solution methods, the alternating direc-
tion method of multipliers (ADMM) algorithm is the most
popular method due to its robust convergence performance [6].

Nevertheless, with thousands of prosumers engaged in
energy sharing, communication-related issues may arise. For
the standard ADMM algorithm, the VPP must wait until it
receives update data from all the prosumers. Due to the con-
gestion of the wireless access communication network, the
waiting time may be extremely long. It may result in a sig-
nificant increase in the convergence time and potentially risk
exceeding the deadline of the negotiation/coordination time
before the algorithm reaches a convergence, rendering energy
sharing ineffective [7]. Thereby, it is necessary to develop a
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novel ADMM algorithm, where the connection between the
VPP and the prosumers is limited, and only a subset of pro-
sumers is involved in updates each round. As a coordinator,
the VPP should evaluate how to fully utilize the limited update
opportunities by scheduling updates for prosumers. The pro-
sumers, who are important to accelerating the convergence
rate, should be scheduled more frequently, yet every pro-
sumer should be granted sufficient opportunities to conduct
updates. In this manner, the partial update ADMM algorithm
can achieve efficiency and fairness simultaneously.

Recent works have recognized the critical role of the VPP
in energy systems. Relevant research focused on VPP bid-
ding [8], VPP dispatch [9], VPP formation [10], and VPP
dis-aggregation approaches [11]. Among them, the VPP dis-
patch problem is the closest topic, and several attempts have
been made to address communication-related issues in VPP dis-
patch. Reference [12] designed a distributed economic dispatch
method in sparse communication networks. Reference [13]
presented an attack-robust distributed economic dispatch strat-
egy for possible cyber-attacks. Reference [14] dealt with missing
or delayed information by predicting them based on the autore-
gressive integrated moving average model. Conventional VPP
dispatch strategies organize the DERs in a VPP-centric manner
rather than prosumer-centric energy sharing.

The energy sharing problem has been widely studied along
with peer-to-peer (P2P) trading or transactive energy, which is
jointly referred as energy sharing in this paper [6]. The primary
focus was to design efficient sharing algorithms for different
schemes, including leader-follower, distributed, fully decen-
tralized, hybrid, and grand coalition schemes. Reference [15]
treated the energy sharing mechanism as the leader-follower
game where prosumers respond to the aggregator’s price
signal. Reference [5] designed a sharing mechanism where
prosumers play a distributed generalized Nash game in the
pool-based platform. Reference [16] proposed energy sharing
among prosumers in the form of fully decentralized bilat-
eral trading. Reference [17] investigated that energy sharing
is achieved when both individual prosumers and the prosumer
coalition coexist. Reference [18] treated prosumers as a grand
coalition and designed the profit benefit allocation scheme
using the cooperation game theory. Compared with pure P2P
sharing among only prosumers, energy sharing in the VPP
should also incorporate the VPP’s benefit. Reference [6] sys-
tematically reviewed methods to take the community’s or the
aggregator’s benefit into consideration and presented a uni-
fied math model. Reference [3] included the benefit of the
system coordinator in energy sharing through Nash bargaining.
Reference [19] further incorporated the benefit of the distri-
bution network operator and the physical network constraints
into energy sharing. Most of the research mentioned above
used the ADMM algorithm.

Communication-related issues in energy sharing have
become a growing concern. Reference [20] summarized
the information-related issues in energy sharing, includ-
ing the need for asynchronous computing and privacy-
preserving algorithms. Reference [21] borrowed the idea of
node coloring to reduce the communication of P2P trading.
Reference [22] conducted experiments on the effects of com-
munication connectivity sparsity on convergence optimality.

Reference [23] conducted experiments on how P2P trading
algorithms respond to a larger number of prosumers and the
presence of asynchronicity. It highlighted the need for the spar-
sification of negotiation processes. Reference [7] designed an
asynchronous ADMM algorithm for fully decentralized energy
sharing, where prosumers could freely trade without waiting
for idle or inactive neighboring agents. Most research focused
on fully decentralized P2P energy sharing without considering
the benefit of the coordinator. Besides, it is also critical for the
VPP to actively schedule prosumers to participate in updates
rather than passively waiting for them.

To summarize, this paper makes the following contributions:
1) Develop a partial-update ADMM algorithm for energy

sharing in the VPP, which only requires a subset of
the prosumers to involve in distributed iterations every
round. The number of prosumers participating in updates
is deliberately restricted to avoid communication conges-
tion caused by massive update requests, so the overall
convergence time is minimized.

2) Design a fair and efficient scheduling policy to determine
which prosumers will participate in updates given limited
update opportunities. The policy identifies convergence-
critical prosumers who are important to accelerate the
convergence rate and offers them a higher update priority.
Meanwhile, each prosumer is granted enough opportuni-
ties to conduct updates to promote fairness.

3) Investigate techniques to enhance the online performance
of the complete partial-update ADMM algorithm with
scheduling. The extra complexity induced by prosumer
scheduling, including the additional computation and
communication time, is reduced as much as possible to
eliminate its impact on the convergence time.

The remaining sections are organized as follows: Section II
describes the setting of energy sharing in the VPP and for-
mulates the social welfare maximization problem in energy
sharing. Section III presents the standard ADMM algorithm,
and proposes the partial-update ADMM algorithm to over-
come the shortcomings of the standard ADMM algorithm.
Section IV provides the method to determine the update set
size of prosumers, formulates the scheduling policy, and com-
pletes the online partial update ADMM with the online and
fair scheduling policy. Section V conducts case studies to ver-
ify the effectiveness of the proposed method. Section VI draws
conclusions and gives future research directions.

Notations: Bold italic x denote vectors (column vectors).
x� denotes x’s transpose. Bold verticals X denote matrices.
[x]+ and [x]− denote max(0, x) and min(0, x), respectively.
[x]a

b denotes min(a, max(b, x)) where a > b. �a� denotes the
smallest integer larger than a. ‖x‖ denotes the L2-norm. |A|
is the cardinality of the set A. Ac is A’s complement set. ∅ is
the empty set. ∇ is the gradient operator. ∂ is the subgradient
operator. ∇2

xy denotes the second-order partial derivatives with
respect to variables x and y.

II. ENERGY SHARING PROBLEM FORMULATION

The system consists of the prosumers i = 1, . . . , I and
the VPP coordinator (VPP, for short), as shown in Fig. 1.
Each prosumer i has DERs, including load equipment, rooftop
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Fig. 1. The system structure of partial-update energy sharing in the VPP.

PV panels, and energy storage. They are equipped with an
energy management system (EMS) for monitoring, trading,
and billing. This study considers the situation where energy
sharing is arranged in the pool-based form in the day-ahead
market, where t = 1, . . . , T trading periods are considered.
For communications, cellular-based machine-type communi-
cations (MTCs) are utilized to connect the prosumers’ EMS
to the VPP through base stations [24], as shown in Fig. 1.
The VPP participates in the transmission-level market as a
price-taker. Nash bargaining is used to reach a mutually ben-
eficial energy-sharing plan [3], [16], [19]. At the first step
of Nash bargaining, prosumers communicate with the VPP,
determining the optimal energy sharing plan. It requires the
VPP and the prosumers to cooperatively solve the social wel-
fare maximization problem, which aims to generate the entire
social welfare surplus as much as possible so everyone can
benefit from energy sharing. The imbalance caused by power
loss during sharing can induces an exogenous cost for the VPP
to purchase more power from the transmission-level market.
The cost can be incorporated in the ex-post settlement between
the VPP and the prosumers after the sharing plan is imple-
mented. The method to allocate the exogenous cost caused
by the power loss is also a complex problem and beyond the
scope of this paper.

For prosumer i, its decision variables xi includes xi =
[(PEX

i )�, (PSH
i )�, (PL

i )�, (PCH
i )�, (PDIS

i )�, S�
i ]�, respec-

tively indicating i’s exchanging power with the VPP
PEX

i , sharing power with prosumer peers PSH
i , load

power PL
i , storage’s charging power PCH

i , storage’s dis-
charging power PDIS

i , and storage’s state of charge Si.
In this paper, vectors PEX

i , PSH
i , PL

i , PCH
i , PDIS

i , Si with
the subscript i are in the dimension of T × 1 and
are stacked by prosumer i’s single-period variables. For
example, PEX

i = [PEX
i,1 , . . . , PEX

i,t , . . . , PEX
i,T ]�. Matrix with-

out subscript i are in the dimension of T × I and are
stacked by all the prosumers’ variables. For example,
PEX = [PEX

1 , . . . , PEX
i , . . . , PEX

I ]. The complete social
welfare maximization problem is shown as follows:

max
xi

U = −λb
t

[∑
i

PEX
i,t

]+
− λs

t

[∑
i

PEX
i,t

]−

︸ ︷︷ ︸
=UVPP(PEX)

+
∑

i

Vi
(
PL

i

)− Ci

(
PCH

i , PDIS
i

)
︸ ︷︷ ︸

=Ui(xi)

s.t. xi ∈ �i,
∑

i

PSH
i = 0 (1)

where UVPP(PEX) and Ui(xi) are the equivalent social utilities
for the VPP and the prosumers; xi ∈ �i stands for prosumer i’s
individual constraints and �i is a convex set, which is regarded
as i’s privacy. UVPP(PEX) and Ui(xi) take into account the
utilities from t = 1 to t = T . The concrete constraints of �i

are listed in the Appendix.
∑

i PSH
i = 0 indicates the sharing

power should be balanced within the prosumers for every t.
In UVPP(PEX), λb

t and λs
t are the purchasing price and

selling price of the transmission-level market, which are dif-
ferent λb

t > λs
t due to transmission service charges and tax;

λb
t [
∑

i PEX
i,t ]+ and λs

t [
∑

i PEX
i,t ]− are the money for purchas-

ing/selling power in the transmission-level network. In Ui(xi),
Vi(PL

i ) is the satisfaction for prosumer to use load PL
i , which

should be concave and monotonically increasing for PL
i,t,∀t;

Ci(PCH
i , PDIS

i ) is the storage’s aging cost, which is convex and
monotonically increasing for PCH

i,t , PDIS
i,t ,∀t. The retailing elec-

tricity payments and the sharing rewards are treated as internal
exchanges among the VPP and prosumers, which do not affect
overall social welfare.

III. PARTIAL-UPDATE ADMM ALGORITHM

A. Problem and Algorithm Formulation

The welfare maximization problem (1) contains massive
DERs’ private information. ADMM is frequently utilized to
solve the problem. Auxiliary variables EEX, ESH are intro-
duced to simulate the negotiation process for the VPP and
prosumers to reach a consensus. The optimization is reformu-
lated as Eq. (3):

max
xi,EEX,ESH

U = UVPP
(
EEX)+

∑
i

Ui(xi)

s.t. xi ∈ �i,
∑

i

ESH
i = 0

EEX
i = PEX

i , ESH
i = PSH

i (3)

The corresponding augmented Lagrangian function is:

L = −U +
∑

i

w�
i

(
EEX

i − PEX
i

)+ v�
i

(
ESH

i − PSH
i

)

+ ρ

2

∥∥EEX
i − PEX

i

∥∥2 + ρ

2

∥∥∥ESH
i − PSH

i

∥∥∥2
(4)

where wi, vi are Lagrangian multipliers for consensus con-
straints; ρ is the penalty factor. For brevity, the multipliers
are denoted by αi = [w�

i , v�
i ]�; the prosumer i’s and the

VPP’s variables are unified by Pi = [(PEX
i )�, (PSH

i )�]�,
Ei = [(EEX

i )�, (ESH
i )�]�. The dimension of αi, Pi, and Ei

is 2T × 1. Through decomposition, the VPP’s sub-problem is:

min
EEX,ESH

∑
t

−UVPP
(
EEX)+

∑
i

α�
i Ei + ρ

2
‖Ei − Pi‖2

s.t.
∑

i

ESH
i = 0 (5)

The prosumer i’s sub-problem is:

min
xi∈�i

−Ui(xi) − α�
i Pi + ρ

2

∥∥Pi − Ei

∥∥2 (6)

The complete standard ADMM algorithm is shown as
Algorithm 1. For convenience, the changes between the
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Algorithm 1: Standard ADMM
Input: Initial values αi(0), Pi(0), Ei(0); stopping criterion

ε1, ε2; k = 1
1 while ‖�αi(k,k−1)‖ � ε1 or ‖�xi(k,k−1)‖ � ε2 do
2 Step 1: The VPP solves (5) with αi(k), Pi(k), and

transmits variables Ei(k+1) to every prosumer i;
3 Step 2: The prosumer i receive Ei(k+1) and solve (6)

with αi(k), Ei(k+1);
4 Step 3: The prosumer i update αi(k+1) as:

αi(k+1) = αi(k) + ρ
(
Ei(k+1) − Pi(k+1)

)
(2)

And send updates Pi(k+1),αi(k+1) to the VPP.
Step 4: The VPP waits until it receives all the
prosumers’ updates and sets k = k + 1.

5 end
Result: xi(k),αi(k), Ei(k)

Algorithm 2: Partial-Update ADMM
Input: Initial values αi(0), Pi(0), Ei(0); stopping criterion

ε1, ε2, ε3; k = 1; ki = 1
1 while ‖�αi(ki+1,ki)

‖ � ε1 or ‖�xi(ki+1,ki)
‖ � ε2 or

‖Ei(k) − Pi(k)‖ � ε3 do
2 Step 1-a: The VPP solves (5) with αi(k), Pi(k);
3 Step 1-b: The VPP selects the prosumers i ∈ Ak to

participate in updates, sets ki = k as the latest round
for i ∈ Ak to get updated, and transmits Ei(k+1) to
i ∈ Ak;

4 Step 2: The prosumers i ∈ Ak receive Ei(k+1) and
solve (6) with αi(k), Ei(k+1);

5 Step 3: The prosumers i ∈ Ak update αi(k+1) as
Eq. (2), and uploads Pi(k+1),αi(k+1) to the VPP;

6 Step 4: The VPP waits for τtol time to receive
i ∈ Ak’s updates and sets k = k + 1.

7 end
Result: xi(k),αi(k), Ei(k)

variables’ values at round k1 and k2 will be denoted by
�Pi(k1,k2),�αi(k1,k2),�Ei(k1,k2). The VPP and each prosumer
repeatedly solve sub-problems until the variables’ changes
are within the convergence tolerance ε1, ε2. When massive
(for example, > 104) prosumers try to communicate with
the VPP via establishing connections with base stations, the
communication radio access network will inevitably become
congested [25]. The iterations of the distributed ADMM algo-
rithm become much slower due to the communication network
congestion. It is more reasonable for the VPP to sched-
ule a subset of the prosumers, rather than all prosumers,
to participate in updates, as shown in Fig. 1. Thereby, this
paper proposes the partial-update ADMM algorithm, as shown
in Algorithm 2. The major advantages of the partial-update
ADMM are:

• Partial update: The VPP selects the subset of prosumers
i ∈ Ak 
= ∅,∀k to participate in updates (Step 1-b).
The rest prosumers i ∈ Ac

k stay silent. It prevents the
situation where massive prosumers transmit their updates

simultaneously and the communication network becomes
congested.

• Waiting Deadline: The VPP sets a deadline to wait for
prosumers. The VPP is allowed to proceed when the
waiting time exceeds the threshold τtol. It prevents the
situation where the VPP waits a long time for updates.

Because of the partial update mechanism, there will be
asynchrony between silent prosumers and the VPP, and thus
the stopping condition should be revised. In Algorithm 2,
the latest update round for the prosumer i is recorded as
ki. For the prosumers i ∈ Ac

k−1, their variables will not be
updated �Pi(k,k−1) = 0, �αi(k,k−1) = 0, so the changes are
recorded as their latest changes between round ki + 1 and ki.
Besides, since Ei(k) keeps updating for all prosumers, the
history changes of �α(ki+1,ki)

can not reflect the current con-
sensus errors in round k. The VPP should check the consensus
errors ‖Ei(k) − Pi(k)‖ to ensure the convergence dissensus is
bounded. The partial-update ADMM algorithm equals to the
standard ADMM algorithm when the update set covers all of
the prosumers |Ak| = I.

For further analysis of convergence, Algorithm 2 is con-
verted to the sequential updates from the perspective of the
VPP after it computes Ei(k+1) and determines i ∈ Ak:

Pi(k+1) =
{

arg min (6), i ∈ Ak

Pi(k), i ∈ Ac
k

(7)

αi(k+1) =
{

(2), i ∈ Ak

αi(k), i ∈ Ac
k

(8)

Ei(k+2) = arg min (5) (9)

Then the VPP will select the scheduled prosumers i ∈ Ak+1,
and repeat (7)-(9) until the algorithm converges.

B. Convergence and Optimality

The partial-update ADMM algorithm can be treated as a
special variety of random multi-block ADMM algorithms [26].
The variables of I prosumers are treated as the 1st to Ith
block, and the variables of the VPP are treated as the I + 1
block. The update of prosumers is treated as the update of
different blocks of variables. It is shown that the general
multi-block ADMM lacks a convergence guarantee [27], while
some empirical studies indicate that the multi-block ADMM
is still very effective in solving real problems [28], [29], [30].
Besides, the partial-update algorithm can be treated as a kind
of asynchronous ADMM algorithms [31], [32]. The proof of
convergence for a general asynchronous ADMM algorithm for
constrained optimization problems is still an open problem. It
may raise concerns that the partial-update ADMM algorithm
may deviate to a different solution as the standard ADMM
algorithm and the optimality of energy sharing may be dete-
riorated. Thereby, it is proved that, under mild assumptions,
the fixed points of the partial-update ADMM algorithm is the
KKT point of the energy-sharing problem, which is the same
as the standard ADMM algorithm. In addition, it is proved
that when the given stopping condition of the partial-update
ADMM algorithm is reached, the obtained result must be close
to the optimal value of the energy sharing problem.
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Assumption 1 (Slater Condition and Strong Duality): The
energy sharing optimization problem satisfies the Slater con-
dition: it is strictly feasible. Because the problem is a convex
optimization problem, it also indicates the strong duality holds
for the energy sharing problem.

Assumption 2 (Update Set): At every round, the update set
size is not empty Ak 
= ∅.

Assumption 3 (Update Chance): Every prosumer i will get
at least one update chance every Tmax round. It means every
prosumer will obtain infinite update chances.

Theorem 1 (Optimality Equivalence [33]): Let f (x) and
h(x) be two convex functions from x to R, and let h(x) be
differentiable. Also, let � be a closed convex set. Then,

x	 ∈ arg min
x∈�

f (x) + h(x)

⇔ x	 ∈ arg min
x∈�

f (x) + ∇h
(
x	
)�(x − x	

)
(10)

Let (E	
i , x	

i ) denote any optimal solution of the energy
sharing problem and α	

i denote any dual optimal solution.
Lemma 1: Suppose the fixed point of the algorithm is

αi(k+1) = αi(k) = α̂i, xi(k+1) = xi(k) = x̂i, Ei(k+1) =
Ei(k) = Êi. Under assumptions 1-3, the fixed point (Êi, x̂i, α̂i)

is the KKT point (E	
i , x	

i ,α
	
i ) of the energy sharing problem.

Proof: Please see the Appendix.
Lemma 2: After each round of update, the gap between the

objective and the optimal value can be bounded as follows:

−ŨVPP

(
EEX

(k+2)

)
+
∑

i

−Ũi
(
xi(k+1)

)

−
(

−ŨVPP
(
EEX	

)+
∑

i

−Ũi
(
x	

i

))

≤
∑

i

∥∥αi(k+1)

∥∥∥∥Pi(k+1) − Ei(k+2)

∥∥
+ ρ

∥∥Ei(k+2) − Pi(k+1)

∥∥∥∥E	
i − Ei(k+2)

∥∥ (11)

Proof: Please see the Appendix.
When the algorithm is terminated by satisfying the consen-

sus requirement, ‖Pi(k+1) − Ei(k+2)‖ is small while ‖αi(k+1)‖
and ‖E	

i − Ei(k+2)‖ is bounded. Thereby, the obtained result
when the algorithm stops must be close to the optimal value.

IV. PROSUMER UPDATE SCHEDULING POLICY

The key step in Algorithm 2 is the update scheduling step
1-b. The VPP should determine the number of prosumers par-
ticipating in updates, namely the update set size |Ak|. Besides,
it also should decide which prosumers are included in |Ak|.
Different update set sizes and scheduling policies may signifi-
cantly affect the convergence rate and optimality. This section
deals with the two problems above.

A. Optimal Update Set Size Determination

|Ak| can be time-varying for different rounds k. For sim-
plicity, the update set size Ak is set as the same value
|A| = |A1| = · · · = |Ak| for every round k. Under this set-
ting, the parameter complexity of the algorithm is reduced.
Because Algorithm 2 only involves part of the prosumers to

participate in updates, the number of convergence iterations is
expected to increase. The VPP should select |A| by trading
off the single-round update delay (decreases with a lower |A|)
and the number of convergence iterations (decreases with a
larger |A|) to minimize the overall convergence time.

From the perspective of the VPP, the latency in each round
is mainly composed of 4 parts:

• The downlink transmission delay τ1: the delay to transmit
Ei(k+1) to i ∈ Ak. The data size is usually around 10 kbits,
and the transmission rate of typical cellular-based MTC
(LTE-M) is around 1 Mbits/s [24]. τ1 ≈ 10 ms.

• The prosumer’s computing delay τ2: the delay for i ∈
Ak to solve sub-problems and update multipliers for 0.5-
1.5 s.

• The prosumer’s access delay τ3: the delay for i ∈ Ak to
access base stations before transmitting uplink data. The
more prosumers |A| attempt to establish access, the larger
τ3 will be. τ3 varies from 20 ms to several seconds.

• The uplink transmission delay τ4: the delay for i ∈ Ak

to upload Pi(k+1),αi(k+1) to the VPP. Similar to τ1, the
uplink transmission delay τ4 ≈ 10 ms.

After that, the VPP will use the collected updates to
update Ei(k+2). The computing delay τ0 to solve the VPP’s
optimization problem is 0.5-1.5 s.

The access delay τ3 is the major bottleneck in the massive
MTC. It originates from the random access (RA) process in
cellular communications [34]. In 3GPP standards, at a fixed
interval (the time slot), MTC devices (including EMS devices)
can contend for the uplink access opportunities. Each MTC
device randomly selects one of the sequences (preambles) in
the pool (composed of M preambles). If multiple MTC devices
transmit the same preamble at the same time, then all of them
fail due to preamble collision. The access request can be suc-
cessfully sent only when there is no concurrent transmission
of the same preamble at the same time slot. The successful
requests will be granted with uplink transmission resources
to upload data, while the failed MTCs will keep trying to
establish access to the base station continuously. Under lim-
ited opportunities, massive concurrent access can drastically
increase the collision probability and thus will increase the
access latency [35].

|A| is selected to minimize the overall convergence time:

min
|A|

τK

s.t. τ = τ0 + min(τ1 + τ2 + τ3 + τ4, τtol)

τ3 = FAccess(|A|), K = FIteration(|A|) (12)

where τ is the summed single-round iteration time; K is the
total convergence iterations. The single-round iteration time
τ will not exceed τ0 + τtol because the VPP will not wait
after the time hits the waiting deadline. Neither the access
delay τ3 nor the number of convergence iterations K can be
expressed analytically. The single-round access attempts are
determined by a complex access contest process among pro-
sumers. The number of convergence iterations varies with
the specific prosumer update policy and detail parameters.
Thereby, the optimal set size of prosumers can only be deter-
mined numerically through simulations. Through simulations,
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Fig. 2. (a) The ADMM is to find the saddle point of the Lagrangian function;
(b) the illustration the intuition behind the efficient update policy.

the VPP knows how the access delay FAccess(|A|) and the
total number of iterations FIteration(|A|) vary with the update
set size. The VPP can numerically solve the problem (12)
by enumerating the objective value τK under different |A|
offline. Then it can approximately compute the set size when
the minimum convergence time is reached.

B. Fair and Efficient Scheduling Policy

An efficient scheduling policy for the ADMM algorithm
should help it reach the saddle point of the augmented
Lagrangian function (4) as soon as possible so that conver-
gence iterations are minimized. After one round of updates
via (7)-(9), the changes of the augmented Lagrangian function
can be decomposed as (13):

�L = L
(

x(k+1), E(k+2),α(k+1)

)
− L

(
x(k), E(k+1),α(k)

)
= L

(
x(k+1), E(k+1),α(k)

)
− L

(
x(k), E(k+1),α(k)

)
︸ ︷︷ ︸

=�LPRO

+ L
(

x(k+1), E(k+1),α(k+1)

)
− L

(
x(k+1), E(k+1),α(k)

)
︸ ︷︷ ︸

=�LMUL

+ L
(

x(k+1), E(k+2),α(k+1)

)
− L

(
x(k+1), E(k+1),α(k+1)

)
︸ ︷︷ ︸

=�LVPP

(13)

where �LPRO,�LMUL,�LVPP are the changes brought by
updates of (7)-(9), respectively. �LPRO,�LVPP are brought by
primal variables’ changes and to find the minimum in x’s and
E’s dimensions; �LMUL is brought by Lagrangian multipliers’
changes and to find the maximum in α’s dimensions, shown
as Fig. 2(a).

In the partial-update ADMM algorithm, on x’s dimensions,
only a subset of xi∈Ak of x can be selected. A toy example of
a two-dimension (two-prosumer) case is shown in Fig. 2(b) to
illustrate the intuition behind the efficient policy. The descent
direction is set as d when all prosumers are selected. If it is
limited to selecting one dimension (prosumer) to go descent,
then the dimension with more impact on the direction d should
be selected as d̂. In that way, the descent direction is the steep-
est, and then it can reach the minimum as fast as the full
dimension direction does. Similar results can be obtained for
the multipliers α, whereas the direction is the ascent direction.

Directly analyzing the impacts of different prosumers on
the descent value of �LPRO,�LVPP and the ascent value
�LMUL is difficult. Thereby, by using the convexity of the sub-
problems, �LPRO,�LMUL,�LVPP are substituted by their
bounds as follows:

�LPRO ≤ −ρ

2

∑
i∈Ak

∥∥∥Pi(k+1) − Pi(k)

∥∥∥2
(14)

�LMUL = 1

ρ

∑
i∈Ak

∥∥αi(k+1) − αi(k)
∥∥2 (15)

�LVPP ≤ −ρ

2

∑
i

∥∥∥Ei(k+2) − Ei(k+1)

∥∥∥2
(16)

In (14)-(16), the effects of prosumers on �L are separated,
making it easy to find the steepest update direction. The proof
for Eqs. (14)-(16) is in the Appendix.

Notice that the update of �Ei(k+2,k+1) in (16) depends on
�αi(k+1,k) and �Pi(k+1,k) through (9). Thereby, the bound of
�LVPP can be further scaled as (17):

�LVPP ≤ ρ

2I

∥∥∥∥∥
∑

i

�Pi(k+1,k) − ρ−1�αi(k+1,k)

∥∥∥∥∥
2

− ρ

2

∑
i∈Ak

∥∥∥�Pi(k+1,k) − ρ−1�αi(k+1,k)

∥∥∥2
(17)

The proof for Eq. (17) is in the Appendix.
To find the prosumers to compromise the steepest direction,

the VPP selects the prosumers as follows:

min
ai

−ρ

2

∑
i

ai

∥∥∥�Pi(k+1,k)

∥∥∥2 − 1

ρ

∑
i

ai

∥∥∥�αi(k+1,k)

∥∥∥2

− ρ

2

∑
i

ai

∥∥∥�Pi(k+1,k) − ρ−1�αi(k+1,k)

∥∥∥2

+ ρ

2I

∥∥∥∥∥
∑

i

ai

(
�Pi(k+1,k) − ρ−1�αi(k+1,k)

)∥∥∥∥∥
2

s.t.
∑

i

ai = |A|, ai ∈ {0, 1} (18)

where ai is the binary variable to decide whether the prosumer
i should be selected at this round. Equation (18) is a pure
integer programming problem with I binary variables. It aims
to find the smallest combination of |A| in all I prosumers,
whose complexity is O( I!

|A|!(I−|A|)! ).
Nevertheless, the pure efficient scheduling via Eq. (18) is

biased. Some prosumers may hardly be given any update
chance and may raise concerns about fairness. The fully fair
scheduling policy is the round-robin policy, where prosumers
are scheduled one by one. To improve fairness, this VPP
should spare part rounds for every prosumer to participate
in updates. Therefore, the round-robin and efficient policies
should be switched in different rounds, compromising the
whole scheduling policy. In that way, the combined scheduling
policy is fair and efficient. For example, from round k1 + 1 to
round k2, prosumers are scheduled by the round-robin policy
to promote fairness; during round k2+1 to round k3, prosumers
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are scheduled by the efficient policy Eq. (18) to improve effi-
ciency. The frequency of switching policies are contracted
by the VPP and the prosumers. It is recommended that the
round-robin policy and the efficient policy are switched every
�I/|A|� rounds. Under this setting, every prosumer can get
updated at least once during the �I/|A|� of round-robin policy
rounds. Besides, the maximum update interval for a prosumer
is 2 × �I/|A|� when it does not involve in any update during
the �I/|A|� of efficient policy rounds. The interval is not too
long such that the fairness and the optimality of the algorithm
is guaranteed.

C. The Complete Online Partial-Update ADMM Algorithm
With the Fair and Efficient Policy

Directly using the fair and efficient scheduling policy by
solving Eq. (18) may incur several problems as follows:

• Causality: The problem takes the �αi(k+1,k),�Pi(k+1,k)

as parameters. However, the VPP can not know αi(k+1)

and Pi(k+1) before receiving updates from the prosumer i.
Thereby, the VPP needs a method to estimate the values
�αi(k+1,k),�Pi(k+1,k) before scheduling i.

• Complexity: Eq. (18) is a mixed integer problem, which
is NP-hard and time-consuming. If the scheduling pol-
icy adds too much additional time in each round, then
the benefit brought by efficient scheduling is overridden
and the online performance of the whole algorithm will
degrade.

The problems above are tackled one by one as follows:
1) Gradient-Based Estimation Method: The gradient-based

method is used to estimate �αi(k+1,k),�Pi(k+1,k). The latest
(round k̄i) problem solved by the prosumer i is:

min
xi∈�i

−Ui(xi) − α�
i
(
k̄i
)Pi + ρ

2

∥∥∥Pi − E
i
(
k̄i+1

)∥∥∥2
(19)

If the prosumer i participates in the update of round k, the
optimization problem to be solved by i will be changed. In the
objective function, αi(k̄i)

is changed to αi(k); Ei(k̄i+1) is changed
to Ei(k+1). �Pi(k+1,k) is brought by these two changes. If the
VPP can estimate the sensitivity of Pi(k+1) with respect to the
changes of parameters, namely the gradient Gi, then it can
estimate �Pi(k+1,k) as follows:

�Pi(k+1,k) ≈
[∇EiPi

∇αi Pi

]�[Ei(k+1) − Ei
(
k̄i+1

)
αi(k) − αi

(
k̄i
)

]

= G�
i �θ i (20)

where �θ i = [�Ei(k+1,k̄i+1),�αi(k,k̄i)
] represents parame-

ter changes. Gi can be obtained through the general sen-
sitivity analysis method [36] for the convex optimization
problem (19). Suppose that the equality constraints and the
active inequality constraints are h(xi) in �i, and the corre-
sponding dual multipliers are yi. The Lagrangian function of
Eq. (19) is

Li = −Ui(xi) − α�
i
(
k̄i
)Pi + ρ

2
‖Pi − E

i
(
k̄i+1

)‖2 + y�
i h(xi) (21)

which is named as the individual Lagrangian function to distin-
guish (21) from (4). The optimality condition of the prosumer

Fig. 3. (a) An example of the sparse structure of Mi; (b) an illustration of
the sparsification process of Gi. (Non-zero elements are marked in colors.).

i is ∇xiLi = 0. When E changes, ∇xiLi = 0 still approximately
holds. Thereby, the sensitivity can be obtained by computing
the derivative of ∇xi Li = 0 as:

[ ∇xixi
Li ∇xi h(xi)(∇xih(xi)
)� 0

]
︸ ︷︷ ︸

=Mi

[∇θ i xi

∇θ i yi

]
=
[−∇θ ixi

Li

0

]
︸ ︷︷ ︸

=Ni

(22)

Gi is extracted from the relevant elements of ∇θ ixi.
After �Pi(k+1,k) is estimated, �αi(k+1,k) can be obtained

from (2). To use the estimation method, the prosumers need
to transmit Gi to the VPP to inform the VPP about their
willingness to adjust their sharing plans. Transmitting gradi-
ents is common in distributed algorithms (such as federated
learning [37]) and will not violate prosumers’ privacy.

2) Complexity Reduction: First, prosumer i is required to
compute its gradient matrix Gi through sensitivity analysis
in addition to updating its variables. The extra computa-
tion in this step is to solve the set of linear equations
Mi[(∇θ ixi)

�, (∇θ i yi)
�]� = Ni. The dimension of the pro-

sumer i’s primal variable xi is 6T × 1, and thus the dimension
of the matrix Mi is above 144 when T = 24 considering
there must be some active constraints. Generally, the com-
plexity to solve this linear equation is O( 2

3 D3) where D is the
dimension of the square matrix Mi. However, the matrix Mi

is highly sparse, as shown in Fig. 3(a). Most of the time, there
are only 1-5 non-zero elements in one row of Mi. Thereby, the
inverse of the matrix Mi can be efficiently computed through
the sparse lower–upper (LU) decomposition, whose theoretic
computation cost equal to the same floating-point operations
with the number of non-zero elements (around O(D)) and far
less than O( 2

3 D3). In case studies, we will show the time to
compute M−1

i is extremely short compared with the solution
time of the optimization problem. Thereby, the additional time
to compute matrix Gi can be ignored.

Next, the prosumer i will transmit the gradient matrix Gi

with the update variables Pi,αi to the VPP. The dimensions
of Pi, αi, and Gi are 2T × 1, 2T × 1, 2T × 4T , respectively.
Thereby, transmitting the full matrix Gi greatly increases the
communication payloads. To reduce the communication com-
plexity, the elements across different time slots are dropped:
∂Pi,t1
∂Ei,t2

= 0,
∂Pi,t1
∂αi,t2

= 0, ∀t1 
= t2. The element dropout pro-
cess is also illustrated in Fig. 3(b), where only the ‘diagonal’
elements of Gi are transmitted. The matrix after the dropout
is the sparse gradient matrix G̃i, where the coupling between
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different time slots is ignored. The number of non-zero ele-
ments G̃i is 2T × 8, which is far less than Gi’s dimension
2T × 4T . Considering Pi, αi, G̃i altogether, the total com-
munication payloads are now 2T × 10 floating-point numbers
(2T × 10 × 32 bits). If T = 24, the total data to be updated
is 15360 bits or 15 kbits. Thereby, the size of data to be
transmitted is still around 10-kbit level.

With the data transmitted by the prosumers, the VPP
can estimate �Pi(k+1,k),�αi(k+1,k) and treat them as
parameters to solve the problem Eq. (18). The problem
Eq. (18) is simplified by ignoring the coupled term
ρ
2I ‖

∑
i ai(�Pi(k+1,k) − ρ−1�αi(k+1,k))‖2 among different pro-

sumers. In that way, the scheduling optimization problem is
simplified, Eq. (18) is reformulated as the following problem:

min
ai

∑
i

ai

⎛
⎜⎜⎜⎝−ρ

2
‖�Pi(k+1,k)‖2 − ρ

2
‖�Pi(k+1,k)︸

− �αi(k+1,k)

ρ
‖2 − 1

ρ

∥∥∥�αi(k+1,k)

∥∥∥2

︷︷ ︸
=Λi

⎞
⎟⎟⎟⎠

s.t.
∑

i

ai = |A|, ai ∈ {0, 1} (23)

The simplified problem (23) is a top-|A| problem, which
equivalently finds the |A|th maximum of the value −Λi among
prosumers. The complexity of this problem is O(I × |A|) by
using the classical bubble sorting method. The complexity
satisfies O(I × |A|) � O( I!

|A|!(I−|A|)! ) when 1 < |A| � I.
In summary, the complete online partial-update ADMM

with the fair and efficient update scheduling policy is shown
as Algorithm 3. The details of the round-robin scheduling pol-
icy and the efficient policy are shown in the function form at
the bottom. Notice that before the VPP uses the efficient pol-
icy, it should receive G̃i from each prosumer i at least once.
Thereby, the algorithm should start with the round-robin policy
to collect enough information about G̃i.

V. CASE STUDIES

This section implements numerical experiments to verify
the effectiveness of the proposed method. All the experiments
are implemented using MATLAB software’s parallel workers
on the servers with an AMD EPYC 7H12 @ 2.60GHz CPU
and 384.0 GB of RAM at the Beijing Super Cloud Computing
Center. The optimization solver is the Gurobi software.

The energy sharing is among the VPP and I = 104 pro-
sumers for the next T = 24 hours. The prosumers are evenly
distributed under 10 base stations (103 prosumers for each base
station). The prosumers’ utility function is set to be a quadratic
function Vi(PL

i ) = ∑
t ξi,t(PL

i,t)
2 + i,tPL

i,t. I = 104 randomly
selected load profiles in the Ireland CER project [38] and the
London LCL project [39] are utilized to systematically gener-
ate prosumers’ utility functions. The maximum load PL

i,t is set
to be 3 times of the recorded load profile; PL

i,t is set to be half

Algorithm 3: Online Partial Update ADMM With the Fair
and Efficient Scheduling Policy

Input: Initial values, stopping criterion, k = 1; ki = 0
1 Select |A| via solving the problem Eq. (12);
2 while stopping condition is not met do
3 Step1-a: The VPP solves (5) with αi(k), Pi(k);
4 Step1-b:
5 if k is the fair round then
6 Use the round-robin policy;
7 else if k is the efficient round then
8 Use the efficient policy;
9 Step2: The prosumers i ∈ Ak receive Ei(k+1) and

solve (19) with αi(k), Ei(k+1);
10 Step3: The prosumers i ∈ Ak update multipliers as

Eq. (2);
11 Step4: The prosumers i ∈ Ak conducts sensitivity

analysis of the problem (19) to obtain the gradient
matrix Gi, and send updates Pi(k), αi(k+1), and the
sparse gradient matrix G̃i to the VPP;

12 Step5: The VPP waits for τtol time to receive
i ∈ Ak’s updates and sets k = k + 1.

13 end
14 Function Round-robin Policy:
15 j = max(Ak−1);
16 return Ak = (j + 1 : j + |A|) mod I;
17 End;
18 Function Effcient Policy:
19 Compute �Pi(k+1,k),�αi(k+1,k) with G̃i for all i

through Eq. (20) and Eq. (2), and then compute Λi

for all i shown in Eq. (23);
20 Find the top-|A| elements of −Λi as Ak;
21 return Ak;
22 End;

Result: xi(k),αi(k), Ei(k)

of the recorded load profile. i,t is randomly selected between
[10, 20] ¢/kW. To ensure the utility function is an increas-
ing function, the quadratic coefficient ξi,t is set as −i,t/2PL

i,t
¢/(kW)2. The degrading function of energy storage is set as
Ci(PCH

i + PDIS
i ) = ∑

t ci × (PCH
i,t + PDIS

i,t ) where ci ∈ [2, 4]
¢/kW. The maximum capacity of energy storage is set as 4
times of the average daily load in recorded profiles. The SOC
is limited between [0.1, 1] of its capacity. Si,0 = Si,T is set
as 0.55 times of the storage capacity. The charging and dis-
charging efficiencies are all set as 95%. The price data are the
daily average nodal price in the PJM market from July, 2021
to July, 2022. λb

t is set as twice of the nodal price and λs
t is

1.5 times. For the ADMM algorithm, the penalty factor is set
as ρ = 2. All the stopping condition is set as ε = 0.1. All the
initial values of variables are set as 0.

The welfare maximization problem is first directly solved,
and the solution is set as the optimal point x	. The effect of
energy sharing is presented in Fig. 4. Under the setting of this
case, energy sharing can make full use of the PV generations,
relieve the negative effect of the duck curve, and encourage
prosumers to utilize their storage to arbitrage properly.
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Fig. 4. Loads, loads-PV generations before and after energy sharing, the
storage power after sharing.

Fig. 5. The convergence iterations under different |A| under three cases and
the fitting results of the convergence iterations K against different |A|.

For comparisons, the case settings are as follows:
• Round-robin case: In Algorithm 3, the VPP only uses the

round-robin policy to schedule prosumers for updates.
• Scheduling case: In Algorithm 3, the round-robin pol-

icy and the efficient policy are switched every �I/|A|�
rounds.

The update set size |A| varies in {1, 1.5, 2, 2.5, 3, 3.5,

4, 4.5, 5, 10} × 103. Through computing, some statistics are
recorded as follows: the average sparsity of matrix Mi is
1.05%; the time to solve the prosumers’ sub-problem is
between [0.17, 0.48] seconds; the time to compute Mi’s
inverse is between [0.0073, 0.0078] seconds. The additional
computation time is ignorable compared with the sub-problem
solution problem.

A. Convergence Iteration Numbers

The convergence iterations with different |A| are shown in
Fig. 5. Compared with the pure round-robin case, the schedul-
ing case takes fewer iterations to reach the convergence.
Beyond that, compared with the scheduling with full sensitiv-
ity case, scheduling with sparse sensitivity achieves a similar
convergence rate. It shows that the sparse gradient matrix G̃i is
a close estimate to the full gradient matrix Gi. We will mainly
focus on the case when scheduling with sparse sensitivity
matrix below.

The convergence iterations against different |A| are fitted
by the power function. It shows that K = FIteration(|A|) =
8.77 × 105 × |A|−0.97 for the round-robin case and K =
FIteration(|A|) = 1.44×104 ×|A|−0.49 for the scheduling case.
Thus, the convergence iterations are approximately inverse to
the update set size |A|. The result indicates that enlarging the
update set size to the standard ADMM (|A| = 104) may not
be beneficial as expected. When |A| increases from 5 × 103

to 104, the total convergence iterations decrease from 215 to

Fig. 6. The distribution for the relative optimality gap for prosumers
‖xi−x	

i ‖
‖x	

i ‖
under the scheduling case.

Fig. 7. (a) The average solution gap 1
I
∑

i
‖xi−x	

i ‖
‖x	

i ‖ for different update set

sizes; (b) The social welfare gap U−U	

U	 for different update set sizes.

153. The VPP needs to wait 2× many as prosumers to upload
their updates but only saves 25% of the convergence iterations,
which ends in increasing the total convergence time.

B. Solution Optimality and Accuracy

The relative gap between the convergence result xi and the
optimal point x	

i is computed to check the optimality. The

distribution of relative optimality gaps
‖xi−x	

i ‖
‖x	

i ‖ for prosumers
under the scheduling case are exhibited in Fig. 6. From |A| =
103 to |A| = 104, the optimality gaps decrease, showing that a
larger update size can bring down the overall gap between the
obtained solution and the optimal point. The average solution
gap is further illustrated in Fig. 7(a), where the gaps between
the round-robin case and the optimal point are all exhibited.
It shows that the gaps are all in the 10−4 level. The partial-
update ADMM algorithm when |A| ∈ {1, 1.5, 2, 2.5, 3, 3.5,

4, 4.5, 5} × 103 reaches a similar average average gap with
the standard ADMM algorithm. The social welfare utility gaps
U−U	

U	 for different update set sizes are shown in Fig. 7(b). The
social welfare utility gaps U−U	

U	 all in the 10−6 level, showing
that the result provides the social optimal solution within the
whole VPP. In summary, we can conclude the obtained results
are close enough to the optimal solution.
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Fig. 8. Evolution of 1
I
∑

i ri(p),
1
I
∑

i ri(d) and 1
I
∑

i ri(s) (Round-robin case).

C. Convergence Trend

The variables’ residues and the consensus errors during
iterations are defined as follows:

ri(p) = ∥∥�xi(k,k−1)

∥∥, ri(d) = ∥∥�αi(k,k−1)

∥∥,
ri(s) = ∥∥Ei(k) − Pi(k)

∥∥
ri(p), ri(d), and ri(s) correspond to the three quantities in the
convergence stopping criterion in the partial-update ADMM
algorithm. To ensure convergence, it is required that the
individual ri(p), ri(d), and ri(s) are less than ε1, ε2, and ε3,
respectively. In other words, when the maximum residue
maxi ri(p) ≤ ε1, maxi ri(d) ≤ ε2, and maxi ri(s) ≤ ε3, the algo-
rithm terminates. The average residues 1

I

∑
i ri(p),

1
I

∑
i ri(d)

and 1
I

∑
i ri(s) for the two cases are exhibited in Fig. 8 and

Fig. 9, respectively.
In Fig. 8 with Fig. 9, the standard ADMM achieves the

fastest convergence rate. Partial-update ADMM costs more
iterations to reach convergence since it can only involve a
part of the prosumers into the update. Because the stopping
condition is the same as maxi ri(d) ≤ ε2, maxi ri(d) for differ-
ent cases are nearly the same. However, 1

I

∑
i ri(d) differ, and

the standard ADMM achieves the largest 1
I

∑
i ri(d) among all

the cases. A smaller difference between the maximum residue
maxi ri(d) and the average residue 1

I

∑
i ri(d) indicates that the

residue values are more even among prosumers. This is also
true when comparing the scheduling case with the round-robin
case. The pure round-robin policy is fair but also wastes its
time decreasing the residues that are already small enough,
which will not contribute much to the convergence. On the
contrary, the scheduling case identifies those convergence-
critical prosumers and makes correct efforts to bring them
down.

To see how the scheduling case converges faster, com-
parisons among the evolution of the optimality gaps during
iterations under different |A| are shown in Fig. 10. It can be
seen that the scheduling case has an ‘acceleration effect’: it
can reach closer to the optimal point faster. The less the update

Fig. 9. Evolution of 1
I
∑

i ri(p),
1
I
∑

i ri(d) and 1
I
∑

i ri(s) (Scheduling case).

Fig. 10. The evolution of optimality gaps under various |Ak| (RR stands for
the round-robin case and S stands for the scheduling case).

set size |A| is, the more obvious the ‘acceleration effect’ is.
Fig. 10 proves that the efficient policy helps the partial update
ADMM to update with the steepest direction as expected.

D. Optimal Update Set Size and Convergence Time

Having proved that the scheduling policy in Algorithm 3 is
effective, the effect of the communication congestion is further
elaborated. The additional parameters are as follows: τ1 = 10
ms. τ2 = 1.48 s. τ4 = 10 ms τ0 = 1.5 s. The number of
preambles delicately reserved for the VPP is M = 120. The
length of a time slot is τi,RA = 20 ms. The waiting deadline
τtol is set as 11.5 s such that the prosumer are allowed to
repeat its access establishment request with the base station at
most 500 times (τ3 is less than 10 s).

No Waiting Deadline: First, the single-round waiting dead-
line is removed. The VPP keeps waiting until it receives all the
updates that it wants to collect in each round. The access delay
τ3 under different |A| is simulated and the simulation result
is shown in Fig. 11(a). As the update set size grows, there is
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Fig. 11. (a) Single-round access delay τ3 under different |A| (no waiting
deadline); (b) Total convergence time τK under different |A| (no waiting
deadline).

a great chance that the communication access network gets
congested. Prosumers contest access opportunities with each
other and have to retry establishing connections with the base
stations for more times. Thereby, the access delay increases.

In Fig. 11(a), the access delay increases exponentially. The
simulation results are fitted against the exponential function
and the fitted result is as follows:

FAccess(|A|) = 1.412 × 10−2 exp
(

6.74 × 10−4|A|
)

s

Combined the fitting result of the convergence iterations
FIteration(|A|) and the access delay FAccess(|A|), the total
iteration time can be approximately expressed as:

τK = (3.0 + FAccess(|A|))FIteration(|A|) s (24)

Fig. 11(b) exhibits the total iteration time obtained from the
fitting result obtained by Eq. (24) and the simulation result.
For the full-update ADMM algorithm (|A| = 104), the VPP
involves all the prosumers to update their variables at the cost
of an exponentially longer access delay. Thereby, the total con-
vergence time of the full-update ADMM is not the smallest.
The minimum convergence time can be obtained by listing
the value of Eq. (24) against different |A|. It proves that the
minimum convergence time is achieved when only the update
of partial prosumers is involved (when |A| = 5100). With
the update size |A| = 5100 selected, the trade-off between
the waiting time and the number of convergence iterations is
balanced. It avoids a high iteration number when the partial-
update set is too small and a long acces delay when the
full-update ADMM is adopted.

With Waiting Deadline: When there is a single-round wait-
ing deadline τtol = 11.5 s, the maximum allowed access delay
is 10 s. The VPP will directly move to the next iteration after
the deadline is reached. The access delay τ3 under different
|A| with the waiting deadline is simulated and the simulation
result is shown in Fig. 12(a). The access delay τ3 is always
less than 10 s.

The number of single-round successful updates is shown
in Fig. 12(b). The simulation result shows that when |A| is

Fig. 12. (a) Single-round access delay τ3 under different |A| (with wait-
ing deadline); (b) Single-round successful updates before the deadline under
different |A| (with waiting deadline);(c) Total convergence time τK under
different |A| (with waiting deadline).

larger than 9700, there is a great chance that the prosumers
that participate in updates fail to upload their data successfully
before the deadline. The actual successful updates deviate from
what the VPP expect and are less than |A|. When |A| is less
than 9700, the invited prosumers all succeed in uploading their
updates before the deadline. Fig. 12(b) also shows that when
|A| is larger than 9700, the actual successful updates fluctuate
around the average value (exhibited as the red area), which
may make the performance of the ADMM algorithm uncertain.

Fig. 12(c) exhibits the total convergence time obtained
from the fitting result and the simulation results. The fitting
iteration number when |A| is larger than 9700 is approx-
imated by setting |A| to the average update set size. For
example, when |A| = 104, the average successful update is
2130, so its iteration number is approximately obtained by
FIteration(|2130|). The result shows that the waiting deadline
makes the convergence time become longer when |A| is larger
than 9700. Especially when the full-update ADMM is adopted
(|A| = 104), the convergence time almost doubles due to the
failed updates before the deadline.

In addition, it is noticed that the random time-varying suc-
cessful updates are harmful. The average successful updates
when |A| = 104 is similar to |A| = 2000. However, the
simulation convergence time is much larger than the fitting
convergence time. This is because random successful updates
can not ensure convergence-critical prosumers to get updated
first like that when |A| = 2000. Both the waiting time and the
iteration number rise, together contributing to an extremely
long iteration time. It highlights that waiting deadline should

Authorized licensed use limited to: TU Delft Library. Downloaded on September 11,2023 at 06:33:45 UTC from IEEE Xplore.  Restrictions apply. 



3972 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 5, SEPTEMBER 2023

be carefully designated to guarantee that most of the updates
can successfully arrive before the deadline as the VPP wants.

VI. CONCLUSION AND FUTURE WORKS

The paper proposes to use the online partial-update ADMM
algorithm to perform energy-sharing negotiations. The update
set size is selected to minimize the overall convergence time.
Prosumer scheduling strategy is investigated carefully, includ-
ing the efficient robin policy and the round-robin policy, to
improve the efficiency and fairness of the algorithm. The
whole algorithm is changed to an online version via approxi-
mation and sparsification. Numerical studies highlight that the
proposed scheduling policy can reduce 30% − 50% iterations
while achieving a small optimality gap. It also exhibits that
careful selection of the update set size can drastically reduce
the overall convergence time.

Despite these results, questions remain. Some other
parameters, like the switching round number, also affect
the convergence of the whole algorithm. It deserves a fur-
ther investigation into how to systematically determine these
parameters. The detailed effects of the distribution network
(including the power loss and the nodal voltage) are not
considered in this paper. Incorporating convexified distribu-
tion power flow equations into constraints and loss related
terms into the objective function may help, which deserves
future investigations. A general convergence proof of the asyn-
chronous ADMM algorithms for the constrained optimization
problems is still needed. Further studies, which investigate
the convergence condition of the partial-update ADMM algo-
rithm or a more reliable partial-update ADMM variant with
theoretical convergence guarantees, will need to be under-
taken. Besides, this paper only discusses the communication-
related issues in pool-based energy sharing. Fully decentral-
ized energy sharing is also important, and optimizing its
communication topology is a promising research direction.

APPENDIX

A. The Expressions for �i

1. Power balance equation for the prosumer i (QPV
i,t is the

generation power of PV panels):

PEX
i,t = PL

i,t + PCH
i,t − PDIS

i,t − PSH
i,t − QPV

i,t

2. Storage’s SOC changes, continuity, and limits (ηCH
i , ηDIS

i
are the charging and discharging efficiency; Si, Si are the
SOC’s lower and upper limits):

Si,t = Si,t−1 + ηCH
i PCH

i,t − ηDIS
i PDIS

i,t

Si,0 = Si,T , Si,t ∈ [Si, Si
]

3. Load shift constraints (PL
i , PL

i are the load power’s lower

and upper limits; PL
i� is the minimum total daily loads):

PL
i,t ∈

[
PL

i , PL
i

]
,
∑

t

PL
i,t ≥ PL

i�

4. Other limits (PEX
i,t , PEX

i,t are the lower and upper limits

for exchanged power; PCH
i , PDIS

i are the upper limits for the

storage’s charging and discharging power):

PEX
i,t ∈

[
PEX

i,t , PEX
i,t

]
, PCH

i,t ∈
[
0, PCH

i

]
, PDIS

i,t ∈
[
0, PDIS

i

]

B. Proof for Lemma 1

The trivial steady state-point where no prosumers get
updated is ruled out since the update set cannot be empty.
Besides, since every prosumer has infinite chances to get
updated, we can conclude:

α̂i = α̂i + ρ
(

Êi − P̂i

)
=⇒ Êi = P̂i

which shows the fixed point satisfy the consensus constraint.
The optimality of the VPP’s sub-problem indicates:

Êi
(a)∈ arg min∑

ESH
i =0

L(x̂i, E, α̂i
)

(b)∈ arg min∑
ESH

i =0
− ŨVPP

(
EEX)

+
∑

i

(
α̂i + ρ

(
Êi − P̂i

))�
Ei

(c)∈ arg min∑
ESH

i =0
− ŨVPP

(
EEX)+

∑
i

α̂
�
i Ei

where the reasoning is as follows: (a): the definition of the
augmented Lagrangian function. (b): use Theorem 1 for the
optimization problem. (c): Êi = P̂i.

The minimum further indicates:

− ŨVPP

(
ÊEX

)
+
∑

i

α̂
�
i Êi ≤ −ŨVPP

(
EEX)+

∑
i

α̂
�
i Ei (25)

Similarly, the optimality of the prosumer i’s sub-problem
indicates that:

x̂i ∈ arg min
xi∈�i

−Ũi(xi) −
(
α̂i + ρ

(
Êi − P̂i

))�
Pi

∈ arg min
xi∈�i

−Ũi(xi) − α̂
�
i Pi

The minimum further indicates:

− Ũi
(
x̂i
)− α̂

�
i P̂i ≤ −Ũi(xi) − α̂

�
i Pi,∀i (26)

Sum Eq. (25) and Eq. (26) for every i:

−ŨVPP

(
ÊEX

)
+
∑

i

−Ũi
(
x̂i
)+ α̂

�
i

(
P̂i − Êi

)

≤ −ŨVPP
(
EEX)+

∑
i

−Ũi(xi) + α̂
�
i (Pi − Ei) (27)

Set the right-hand side as the optimal point (E	
i , x	

i ):

−ŨVPP

(
ÊEX

)
+
∑

i

−Ũi
(
x̂i
)+ α̂

�
i

(
P̂i − Êi

)

≤ −ŨVPP
(
EEX	

)+
∑

i

−Ũi
(
x	

i

)+ α̂
�
i

(
P	

i − E	
i

)

⇒ −ŨVPP

(
ÊEX

)
+
∑

i

−Ũi
(
x̂i
)

≤ −ŨVPP
(
EEX	

)+
∑

i

−Ũi
(
x	

i

)
(28)
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where the transformation is due to P̂i = Êi at the fixed point
and P	

i = E	
i at the optimal point. Thereby, the point (E	

i , x	
i )

must be primal optimal and the ≤ in Eq. (27) must be =.
From Eq. (27), it can also be inferred that:

−ŨVPP

(
ÊEX

)
+
∑

i

−Ũi
(
x̂i
)

≤ min
�

−ŨVPP
(
EEX)+

∑
i

−Ũi(xi) + α̂
�
i (Pi − Ei) (29)

where � = {xi ∈ �i,
∑

ESH
i = 0}. Let the dual function be:

d(α) = min
�

− ŨVPP
(
EEX)+

∑
i

−Ũi(xi) + α�
i (Pi − Ei)

Since α	
i is the optimal solution of the dual function, thereby:

d(α) ≤ max
α

d(α) = d
(
α	
)

= −ŨVPP
(
EEX	

)+
∑

i

−Ũi
(
x	

i

)
(30)

where the last equality is due to the strong duality. If we
replace α by α̂i in Eq. (30) and combine Eq. (29), it is proved
that d(α̂i) = d(α	). So α̂i must be dual optimal. In summary,
(Êi, x̂i, α̂i) is the KKT point.

C. Proof for Lemma 2

The optimality of xi(k+1) indicates that:

xi(k+1)

(a)∈ arg min
xi∈�i

−Ũi(xi)

−
(
αi
(
k̄i
) + ρ

(
Ei
(
k̄i+1

) − Pi
(
k̄i+1

)))�
Pi,∀i

(b)∈ arg min
xi∈�i

−Ũi(xi) − (
αi(k+1)

)�Pi,∀i

where the reasoning is as follows: (a): the definition of the
augmented Lagrangian function. (b): use k̄i = k for i ∈ Ak;
use αi(k̄i+1) = αi(k+1) for i /∈ Ak.

The minimum further indicates:

−Ũi
(
xi(k+1)

)− (
αi(k+1)

)�Pi(k+1)

≤ −Ũi
(
x	

i

)− (
αi(k+1)

)�P	
i ,∀i (31)

Similarly, the optimality of Ei(k+2) is equivalent to:

Ei(k+2) ∈ arg min∑
ESH

i =0
−ŨVPP

(
EEX)

+
∑

i

(
αi(k+1) + ρ

(
Ei(k+2) − Pi(k+1)

))�Ei

The minimum further indicates:

−ŨVPP

(
EEX

(k+2)

)
+
∑

i

(
αi(k+1) + ρ

(
Ei(k+2) − Pi(k+1)

))�Ei(k+2)

≤ −ŨVPP
(
EEX	

)
+
∑

i

(
αi(k+1) + ρ

(
Ei(k+2) − Pi(k+1)

))�E	
i (32)

Combing Eq. (31) and Eq. (32), the bound can be obtained.

D. Proof for Inequalities (14)-(16)

Theorem 2 (Minimum Principle): Let a generic convex
optimization problem be minx∈� f (x), where f (x) is a con-
vex and differentiable function from x to R and � is a closed
convex set. A feasible point x	 ∈ � is an optimal solution if
and only if (

x − x	
)�∇f

(
x	
) ≥ 0, ∀x ∈ � (33)

The proof is based on the theorem above. For �LPRO:

�LPRO = L
(

x(k+1), E(k+1),α(k)

)
− L

(
x(k), E(k+1),α(k)

)
(a)=
∑

i

−Ũi
(
xi(k+1)

)− α�
i(k)Pi(k+1) + ρ

2

∥∥Ei(k+1) − Pi(k+1)

∥∥2

−
(
−Ũi

(
xi(k)

)− α�
i(k)Pi(k) + ρ

2

∥∥Ei(k+1) − Pi(k)
∥∥2
)

(b)=
∑
i∈Ak

−Ũi
(
xi(k+1)

)− α�
i(k)Pi(k+1) + ρ

2

∥∥Ei(k+1) − Pi(k+1)

∥∥2

−
(
−Ũi

(
xi(k)

)− α�
i(k)Pi(k) + ρ

2

∥∥Ei(k+1) − Pi(k)
∥∥2
)

(c)≤
∑
i∈Ak

∂Ũi
(
xi(k+1)

)�(xi(k) − xi(k+1)

)− α�
i(k)�Pi(k+1,k)

+ ρ

2

(
Pi(k+1) − Pi(k)

)�(
Pi(k+1) + Pi(k) − 2Ei(k+1)

)
(d)≤ −

∑
i∈Ak

ρ

2

∥∥∥Pi(k+1) − Pi(k)

∥∥∥2

where the reasoning is as follows: (a): the definition of the
augmented Lagrangian function. (b): for i /∈ Ak, xi(k+1) =
xi(k), Pi(k+1) = Pi(k). (c): use the convexity of −Ũi(xi) shown
as follows:

Ũi
(
xi(k)

)− Ũi
(
xi(k+1)

) ≤ ∂Ũi
(
xi(k+1)

)�(xi(k) − xi(k+1)

)
(d): since xi(k+1) is the optimal solution, use Theorem 2 for
∀xi, Pi ∈ �i:(−∂Ũi

(
xi(k+1)

))�(
xi − xi(k+1)

)
+
(
−α�

i(k) + ρ
(

Pi(k+1) − Ei(k+1)

))�(
Pi − Pi(k+1)

) ≥ 0

and replacing xi, Pi with xi(k),Pi(k) prove Eq. (14).
For the second term �LMUL:

�LMUL = L
(

x(k+1), E(k+1), α(k+1)

)
− L

(
x(k+1), E(k+1), α(k)

)
(a)=
∑

i

(
αi(k+1) − αi(k)

)�(
Ei(k+1) − Pi(k+1)

)
(b)=

∑
i∈Ak

1

ρ

∥∥∥αi(k+1) − αi(k)

∥∥∥2

where the reasoning is as follows:
(a): the definition of the augmented Lagrangian function.

(b): use the updating rule for multipliers. For i ∈ Ak, αi(k+1)−
αi(k) = ρ(Ei(k+1) − Pi(k+1)); for i /∈ Ak, αi(k+1) = αi(k).

For the third term �LVPP, similar results can be obtained
just like �LPRO and the proofs are omitted for simplicity.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 11,2023 at 06:33:45 UTC from IEEE Xplore.  Restrictions apply. 



3974 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 5, SEPTEMBER 2023

E. Proof for Inequality (17)

The solution of the VPP’s sub-problem is:

ESH
i,t(k+1) = PSH

i,t(k) − vi,t(k)

ρ
−
∑

i PSH
i,t(k)

I
+
∑

i vi,t(k)

Iρ︸ ︷︷ ︸
=μt(k)/ρ

EEX
i,t(k+1) = PEX

i,t(k) − wi,t(k)

ρ
−
[∑

i PEX
i,t(k)

I
−
∑

i wi,t(k)

Iρ

] λb
t
ρ

λs
t

ρ︸ ︷︷ ︸
=νt(k)/ρ

where the part in the brackets are the same for every pro-
sumer i. For brevity, they are expressed as μt(k)/ρ and νt(k)/ρ,
respectively. For convenience, they are expressed in the vector
form as β(k) = [μ�

t(k), ν
�
t(k)]

�. Thereby:

∑
i

∥∥∥�Ei(k+1,k)

∥∥∥2

=
∑

i

∥∥∥∥�Pi(k,k−1) − �αi(k,k−1)

ρ
+ �β(k,k−1)

ρ

∥∥∥∥
2

It can be proved that

∑
i

∥∥∥∥�Pi − �αi

ρ
− ζ

∥∥∥∥
2

(34)

≥
∑

i

∥∥∥∥�Pi − �αi

ρ

∥∥∥∥
2

− 1

I

∥∥∥∥∥
∑

i

�Pi − �αi

ρ

∥∥∥∥∥
2

(35)

where ζ is any real vector in same the dimension with Pi.
Replace ζ by �β i/ρ and the bound can be obtained.
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