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Abstract

This paper introduces an adaptive Convolutional Neural Network (CNN)-based Unscented Kalman Filter for the pose estimation of
uncooperative spacecraft. The validation is carried out at Stanford’s robotic Testbed for Rendezvous and Optical Navigation on the
Satellite Hardware-In-the-loop Rendezvous Trajectories (SHIRT) dataset, which simulates vision-based rendezvous trajectories of a ser-
vicer spacecraft to PRISMA’s Tango spacecraft. The proposed navigation system is stress-tested on synthetic as well as realistic lab ima-
gery by simulating space-like illumination conditions on-ground. The validation is performed at different levels of the navigation system
by first training and testing the adopted CNN on SPEED+, Stanford’s spacecraft pose estimation dataset with specific emphasis on
domain shift between a synthetic domain and an Hardware-In-the-Loop domain. A novel data augmentation scheme based on light ran-
domization is proposed to improve the CNN robustness under adverse viewing conditions, reaching centimeter-level and 10 degree-level
pose errors in 80% of the SPEED+ lab images. Next, the entire navigation system is tested on the SHIRT dataset. Results indicate that
the inclusion of a new scheme to adaptively scale the heatmaps-based measurement error covariance based on filter innovations improves
filter robustness by returning centimeter-level position errors and moderate attitude accuracies, suggesting that a proper representation of
the measurements uncertainty combined with an adaptive measurement error covariance is key in improving the navigation robustness.
� 2023 Published by Elsevier B.V. on behalf of COSPAR.
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1. Introduction

Nowadays, more than 30,000 monitored pieces of debris
are orbiting the Earth, including non-functional spacecraft,
abandoned launch vehicle stages, and fragmentation
debris1. Altogether, this debris pose a threat to commercial
1 https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_
the_numbers.
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satellites as well as human spaceflight, undermining safety
and operations in orbit. At the same time, autonomous
refueling and repairing is regarded as the most viable solu-
tion to extend the lifetime of active satellites in orbit. In this
context, advancements in the field of autonomous naviga-
tion were made in the past years to enable key technologies
for future In-Orbit Servicing (IOS) and Active Debris
Removal (ADR) missions (Tatsch et al., 2006; Wieser
et al., 2015). For such scenarios, the estimation of the pose
(relative position and attitude) of an uncooperative target
object by an active servicer spacecraft represents a critical
navigation task. Compared to cooperative close-
proximity missions, the pose estimation problem is compli-
cated by the fact that the target object does not aid the rel-
ative navigation and may not be functional. Hence, optical
sensors on the servicer spacecraft are well suited to pose
estimation because they do not rely on any sensing hard-
ware on the target, such as Global Navigation Satellite Sys-
tems (GNSS) sensors and antennas. In this context, pose
estimation systems based solely on a monocular camera
are recently becoming an attractive alternative to systems
based on active sensors or stereo cameras, due to their
reduced mass, power consumption and system complexity
(Sharma et al., 2018; Pasqualetto Cassinis et al., 2019).
However, a significant effort is still required to comply with
most of the demanding requirements for a robust and accu-
rate monocular-based relative navigation system. Notably,
the aforementioned navigation system cannot rely on
known visual markers, as they are typically not available
on an uncooperative target. Since the extraction of visual
features is an essential step in the pose estimation process,
advanced Image Processing (IP) techniques are required to
extract keypoints (or interest points), corners, and edges on
the target body, such as the Speeded Up Robust Features
(SURF) Bay et al. (2008), the Scale Invariant Feature
Transform (SIFT) (Lowe, 2004), and the Oriented FAST,
Rotated BRIEF (ORB) Rublee et al. (2011). In model-
based methods, the detected features are then matched with
pre-defined features on an offline wireframe 3D model of
the target to solve for the pose. This is usually achieved
by solving the Perspective-n-Points (PnP) problem
Sharma and D’Amico (2015) with standard pose estima-
tion solvers such as the Efficient Perspective-n-Point
(EPnP) Lepetit and Moreno-Noguer (2009), the Efficient
Procrustes Perspective-n-Point (EPPnP) Ferraz et al.
(2014b), or the multi-dimensional Newton Raphson
Method (NRM) Ostrowsky (1966), additionally using the
RANdom SAmple Consensus (RANSAC) method to
improve the robustness against outliers. Essentially, a reli-
able detection of key features is critical to guarantee safe
operations around an uncooperative target, e.g. under
adverse illumination conditions.

Unfortunately, standard IP algorithms usually lack fea-
ture detection robustness when applied to space images
D’Amico et al. (2014), undermining the overall navigation
system and, in turn, the close-proximity operations around
the uncooperative target. From a pose initialization stand-
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point, the extraction of target features can in fact be jeop-
ardized by external factors, such as adverse illumination
conditions, low Signal-to-Noise ratio (SNR) and Earth in
the background, as well as by target-specific factors, such
as the presence of complex textures and features on the tar-
get body. Moreover, most of the IP methods are based on
the image gradient, detecting textured-rich features or
highly visible parts of the target silhouette Pasqualetto
Cassinis et al. (2019). As such, the detected features are
image-specific and can vary in number and typology
depending on the image histogram. This means that most
of these techniques cannot accommodate an offline feature
selection step, resulting in a computationally expensive
image-to-model correspondence process to ensure that
each detected 2D feature is matched with its 3D counter-
part on the available wireframe model of the target object.

In recent years, Convolutional Neural Networks
(CNNs) are emerging as a valid alternative to more tradi-
tional pose estimation systems, with two main CNN-
based architectures currently standing out. Initially, end-
to-end architectures in which a single CNN replaced the
entire pose estimation pipeline were adopted Sharma
et al. (2018), Sharma and D’Amico (2020), Shi et al.
(2018), Sonawani et al. (2020). However, since the pose
accuracies of these systems proved to be lower than the
accuracies returned by standard PnP solvers, especially in
the estimation of the relative attitude Sharma et al.
(2018), keypoints-based architectures stood out as the pre-
ferred option. Specifically, degree-level average orientation
errors were achieved by keypoints-based methods as
opposed to average orientation errors one order of magni-
tude larger achieved by end-to-end methods. These aver-
ages were computed across test images of the Tango
spacecraft from the PRISMA mission D’Amico et al.
(2013) as part of the Spacecraft Pose Estimation Dataset
(SPEED) challenge Kisantal et al. (2020), Huo et al.
(2020) (Sharma et al., 2019). In keypoints-based CNN sys-
tems, a CNN is used only at a feature detection level to
replace standard IP algorithms, and the output features
are fed to a PnP solver together with their body coordi-
nates, which are made available through the wireframe
3D model of the target body. Due to the fact that the train-
able features can be selected offline prior to the training,
the matching of the extracted feature points with the fea-
tures of the wireframe model can be performed without
the need of a large search space for the image-model corre-
spondences, which usually characterizes most of the edges/
corners-based methods (D’Amico et al., 2014). However,
due to a lack of availability of representative space images,
these CNN systems often need to be trained with synthetic
renderings of the available target model. As a result, their
feature detection robustness on more realistic images is
usually unknown and difficult to predict. Therefore, the
synthetic datasets used to train the CNNs tend to fail in
representing the textures of the target as well as the exter-
nal illuminations, resulting in inaccurate detections and
low pose estimation accuracies when tested on images from
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different sources, such as spaceborne images (Kisantal
et al., 2020; Pasqualetto Cassinis et al., 2022). In this con-
text, three desirable aspects stand out. First of all, novel
techniques shall be investigated to improve the perfor-
mance of CNN-based pose estimation systems trained
using synthetic images on actual space imagery. This aspect
is referred to as the domain shift problem (Tobin et al.,
2017; Ben-David et al., 2007; Sugiyama and Muller,
2005). Second, the interface between the CNN and the nav-
igation filter shall be explored to assess the performance of
a CNN-based navigation filter on representative relative
trajectories. Third, a proper validation framework shall
be sought to test the robustness of the proposed CNN-
based system against representative images of the target
spacecraft, generated in a laboratory environment which
simulates space-like conditions. Notably, a calibration
framework shall be established which returns an accurate
reference for the pose between the monocular camera and
the target mockup for each generated image (pose labels),
in order to be able to quantify the CNN performance at
both keypoints detection and pose estimation levels.

The domain shift problem in CNNs has been extensively
investigated in recent years to leverage the domain gap
from synthetic training to real test imagery, either via data

augmentation (Tobin et al., 2017; Jackson et al., 2018;
Geirhos et al., 2019) or via domain adaptation (Donahue
et al., 2017, 2016). In relation to the latter, domain adapta-
tion techniques were leveraged by the winners of the recent
Spacecraft Pose Estimation Challenge (SPEC) to tackle the
domain gap challenges in the Next Generation Satellite
Pose Estimation Dataset (SPEED+) (Park et al., 2023).
Although domain adaptation techniques are often effective
and can produce impressive results by adapting the CNN
on a specific target domain post training, they require the
target domain images and synthetic training images simul-
taneously to perform adaptation, and hence they are not
domain-agnostic. On the other hand, data augmentation
techniques consist of introducing variations in the synthetic
training domain without any a priori knowledge of the tar-
get domain. In essence, the idea is to extend the standard
data augmentation effects, such as random cropping,
zooming, rotation, flipping etc. with texture and complex
illumination variations. By doing that, Tobin et al. (2017)
showed that a CNN can generalize from synthetic environ-
ments to new domains by using an unrealistic but diverse
set of random textures. Following this line of reasoning,
Jackson et al. (2018) and Geirhos et al. (2019) further dis-
covered that by randomizing textures during training,
CNNs can learn the shape of objects rather than textures,
improving their robustness to domain shift. By extending
the above methods from terrestrial applications to space
scenarios, some of the authors (Pasqualetto Cassinis
et al., 2022; Park et al., 2021a; Park et al., 2019) already
highlighted that augmenting the CNN training with texture
randomization can lead to a considerable improvement in
the overall pose estimation performance under large
domain gaps in the target’s texture. However, preliminary
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results showed that the CNN performance decreases under
highly adverse illumination conditions, suggesting that
additional augmentation techniques are required to tackle
the domain shift from an illumination standpoint
(Pasqualetto Cassinis et al., 2022).

Besides domain shift, additional challenges arise in rela-
tion to the applicability of CNNs for relative navigation in
space. Notably, both pose initialization and pose tracking
are not well suited to produce pose estimates at high fre-
quencies, especially due to the computationally expensive
IP in combination with pose estimation. Furthermore,
solving for the pose solely from CNN detections can only
provide a prediction from actual sensor data without
accounting for any modeling of the external environment.
Therefore, it is not guaranteed that the estimation can reli-
ably deal with unwanted components in the measurements,
i.e. image noise or adverse illumination conditions. Finally,
quantities such as the translational and rotational velocities
of the target spacecraft with respect to the servicer space-
craft can hardly be estimated together with the pose. There-
fore, filtering techniques are usually used in combination
with the camera measurements and the actual pose esti-
mate in order to return full-state (pose and relative veloci-
ties) solutions at high frequency (Sharma and D’Amico,
2017). Many navigation filters for close-proximity opera-
tions were investigated in recent years in the context of
pose estimation. The reader is referred to Pasqualetto
Cassinis et al. (2019) for a comprehensive overview. How-
ever, limited focus has been given to the interface between a
CNN-based system and a navigation filter. Earlier works
by some of the authors (Pasqualetto Cassinis et al., 2021)
suggested that a tightly-coupled approach should be more
suited than a loosely-coupled one, if a CNN is used to
extract features from the monocular images. As opposed
to a loosely-coupled approach in which the detected fea-
tures are transformed into an estimated pose prior to the
filter, a tightly-coupled approach directly feeds the detected
target features into the filter. However, limited research
was provided on how to model the features detection
uncertainty into a representative measurement error
covariance. Other authors proposed a method based on
projection vector, in which the covariance is associated to
the image gradient magnitude and direction at each feature
location (Cui et al., 2019), or a method in which covariance
information is derived for each feature based on feature’s
visibility and robustness against illumination changes
(Harvard et al., 2020). However, in all these methods the
derivation of features covariance matrices is a lengthy pro-
cess which generally cannot be directly related to the actual
detection uncertainty. This is because it may not be possi-
ble to associate the gradient information to the image pro-
cessing algorithm. Moreover, this procedure could not be
easily applied if CNNs are used in the feature detection
step, due to the difficulty to associate statistical meaning
to the IP tasks performed within the network. In this con-
text, a novel method was recently presented by some of the
authors in Pasqualetto Cassinis et al. (2021), in which the
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output of the CNNs is directly exploited to return relevant
statistical information about the detection step. This
method consists in creating a statistical distribution from
the CNN heatmaps, and to derive a representative covari-
ance matrix from each feature based on the heatmap’s dis-
persion. However, despite the promising preliminary
finding this heatmaps-based method has not been exten-
sively tested on realistic space imagery. Specifically, it is
still unclear whether the magnitude of such a covariance
can effectively represent the feature detection uncertainty.

In the context of on-ground validation, several labora-
tory testbeds exist to generate Hardware-In-theLoop
(HIL) images of a target spacecraft’s mockup with a
monocular camera (Wilde et al., 2019), e.g. the robotic
Testbed for Rendezvous and Optical Navigation (TRON)
at Stanford University (Kisantal et al., 2020), the GNC
Rendezvous, Approach and Landing Simulator (GRALS)
at the European Space Research and Technology Centre
(ESTEC) (Zwick et al., 2018), the European Proximity
Operations Simulator (EPOS) at the German Aerospace
Agency (DLR) (Krüger and Theil, 2010), and the
Platform-art facility at GMV (Dubanchet et al., 2020).
The TRON testbed was the first of its kind to provide
the generation of large-scale pose estimation datasets of a
target mockup satellite under multiple camera-target
geometries and illumination conditions. The resulting
Spacecraft Pose Estimation Dataset (SPEED) and its
extension SPEED+ guarantee a reliable validation of
CNN-based pose estimation systems on static images with
a considerable domain gap from their synthetic counter-
part. However, the validation of a CNN-based navigation
system comes with additional challenges that stem from the
fact that it is hard to recreate representative relative trajec-
tories and realistic illumination conditions on-ground.
Despite the recent advancements in the on-ground genera-
tion of realistic space imagery which led to the creation of
the HIL images of the SPEED+ dataset (Park et al., 2021a)
(Park et al., 2021), the recreation of rendezvous trajectories
on-ground remains a demanding task that has not been
fully explored in most of the mentioned testbeds. The recre-
ation of realistic rendezvous trajectories on-ground has
been showcased by some of the authors at ESTEC’s
GRALS facility (Pasqualetto Cassinis et al., 2022). In their
setup, a v-bar trajectory around a mockup of the Envisat
spacecraft was recreated by controlling both the target
rotation and the translation of the monocular camera
through two robotic arms, thus extending the testbed capa-
bility from the generation of static datasets to actual rela-
tive trajectories. However, only a static sun lamp was
used to illuminate the target, leading to simplified illumina-
tion conditions. Furthermore, the calibration of the overall
system was complicated by an inaccurate calibration of the
target mockup, leading to lower accuracies in the reference
pose labels compared to the TRON setup. In a recent effort
to solve the above issues, the capabilities of the TRON
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facility were extended towards the generation of the Satel-
lite Hardware-In-the-loop Rendezvous Trajectories
(SHIRT) dataset (Park and D’Amico, 2022), a dataset of
synthetic and realistic imagery of two close-proximity tra-
jectories around the Tango spacecraft with high-fidelity
calibration and more realistic illumination conditions of a
typical LEO orbit (Park and D’Amico, 2022).

Building on the previous findings of some of the authors
(Pasqualetto Cassinis et al., 2022; Park et al., 2021a;
Pasqualetto Cassinis et al., 2021), this paper aims at solving
the above-mentioned challenges in a sequential fashion.
First, a data augmentation pipeline centered on light aug-
mentation is introduced to solve the domain shift problem.
An existing technique, proposed by Sakkos et al. (2019) for
terrestrial applications, is exploited to generalize the illumi-
nation conditions during the CNN training. The perfor-
mance of the CNN-based pose estimation system is then
evaluated on realistic imagery of the SPEED+ dataset at
a pose estimation level. Next, the CNN system is combined
with an Unscented Kalman Filter (UKF) to address the
performance of the proposed system at a navigation filter
level. To this end, the SHIRT dataset is used in the evalu-
ation in order to compare the filter performance in syn-
thetic scenarios with the performance on realistic lab
imagery. To cope with the challenges in the representation
of the measurements uncertainty, an adaptive scheme is
proposed in which the measurement error covariance is
estimated online by scaling the heatmaps-based representa-
tion based on the filter innovations.

In summary, the main contributions of this work are:

1. To propose a novel data augmentation scheme based on
light randomization in order to improve the CNN per-
formance on realistic space imagery

2. To propose a new covariance adaptation method based
on CNN heatmaps to capture measurements uncertainty
within the navigation filter

3. To validate a tightly-coupled, CNN-based UKF on real-
istic trajectories generated on-ground using the TRON
facility.

The paper is organized as follows. Section 2 introduces
the proposed navigation framework. The TRON testbed
and the image acquisition procedure are described in Sec-
tion 3. In Section 4, the CNN training, validation and test-
ing phases are detailed, with special focus to the data
augmentation pipeline. Section 5 presents the preliminary
pose estimation results on SPEED+ test datasets. Next,
the proposed navigation filter is described in Section 6
together with the novel adaptive scheme for the measure-
ment error covariance. Sections 7,2,3,4,5,6,7,8 describe
the simulation environment and show the navigation
results on the two recreated close-proximity trajectories.
Finally, Section 9 provides the main conclusions and
recommendations.



Fig. 1. Schematic of the pose estimation problem using a monocular image (a) and representation of the relative motion framework (b) (Curtis, 2005).
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2. System framework

From a high-level perspective, a model-based monocu-
lar pose estimation system receives as input a 2D image
and matches it with an existing wireframe 3D model of
the target spacecraft to estimate the target pose with
respect to the servicer camera. As illustrated in Fig. 1a,
the pose estimation problem consists in determining the
position of the target’s centre of mass tC and its attitude
with respect to the camera frame C, represented by the

inverse of the rotation matrix RC
B . The Perspective-n-

Points (PnP) equations,

rC ¼ xC yC zC½ �T ¼ RC
Br

B þ tC ð1Þ

p ¼ ui; við Þ ¼ xC

zC
f x þ Cx;

yC

zC
f y þ Cy

� �
; ð2Þ

relate the unknown pose with a feature point p in the image
plane via the relative position rC of the feature with respect
to the camera frame. Here, rB is the point location in the
3D model, expressed in the body-frame coordinate system
B, whereas f x and f y denote the focal lengths of the camera

and Cx;Cy

�
) is the principal point of the image.

From these equations, it can already be seen that an
important aspect of estimating the pose resides in the capa-
bility of the IP system to extract features p from a 2D
image of the target spacecraft, which in turn need to be
matched with pre-selected features rB in the wireframe 3D
model. Notably, a wireframe model of the target needs to
be made available prior to the estimation. Notice also that
the problem is not well defined for n < 3 feature points,
and can have up to four positive solutions for n ¼ 3
(Fischer and Bolles, 1981). Generally, more features are
required in presence of large noise or symmetric objects.
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The validation pipeline of the proposed navigation sys-
tem is shown in Fig. 2 and consists of the following main
stages:

1. Calibration Procedure and Image Acquisition: The
adopted monocular camera is calibrated with respect
to a scaled 1:2 mockup model of the Tango spacecraft
via a dedicated procedure, in order to associate accurate
reference labels of the pose between the camera and the
mockup. Once the setup is calibrated, laboratory images
of the target mockup are generated by the camera and
associated to their corresponding pose labels. Trajectory
design and execution is carried out in order to create a
representative laboratory database (SPEED+) as well
as to perform rendezvous trajectories around the
mockup (SHIRT). The calibration procedure and the
trajectory generation pipeline are taken from Park
et al. (2021a) and Park and D’Amico (2022),
respectively.

2. Dataset Augmentation and CNN Training: A keypoints-
based CNN is trained and validated on augmented
SPEED+ datasets. The augmentation is performed
by introducing image noise, random background
and random illuminations into the synthetically-
generated images of SPEED+. The synthetic images
are created using the OpenGL-based graphics
renderer.

3. Online Inference: The keypoints-based CNN is tested on
both synthetic and HIL test images. For the SPEED+
images, the pose is estimated by feeding a PnP solver
with the detected keypoints as well as with the intrinsic
camera parameters and the 3D model of the Tango
spacecraft. Conversely, for the SHIRT images the
detected keypoints are fed into a CNN-based UKF to



Fig. 2. Illustration of the proposed on-ground validation of the CNN-based pose estimation system.
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additionally estimate the relative translational and rota-
tional velocities.

4. Post-Processing and Validation: The results of the pro-
posed CNN-based system on the HIL images are vali-
dated against the reference pose labels, derived from
the calibration setup. This is performed at both pose
estimation and navigation levels.
Fig. 3. TRON simulation room and its components Park et al. (2021b).
2.1. Relative navigation

This work considers a servicer spacecraft flying relative
to a target spacecraft, with the relative motion being
described in a Local Vertical Local Horizontal (LVLH) ref-
erence frame co-moving with the servicer (Fig. 1b). Fur-
thermore, it is assumed that the servicer is equipped with
a single monocular camera. The relative attitude of the tar-
get with respect to the servicer can then be defined as the
rotation of the target body-fixed frame B with respect to
the servicer camera frame C, where these frames are fixed
to each spacecraft’s body. The vector from the origin of
the camera frame to the origin of the target frame defines
their relative position. Together, these two quantities char-
acterize the pose. This information can then be trans-
formed from the camera frame to the servicer’s center of
mass by accounting for the pose of the camera with respect
to the LVLH frame. Beside the Cartesian representation of
the relative motion between the servicer and target space-
craft, the relative state can also be parametrized as a func-
tion of the absolute orbital elements of the two spacecraft.
This paper uses the Relative Orbital Elements (ROE) state
introduced by D’Amico (2010), which are defined in terms
of the classical Keplerian orbital elements as:
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da ¼

da

dk

dex
dey
dix
diy

2666666664

3777777775
¼

at � asð Þ=as
Mt �Msð Þ þ xt � xsð Þ þ cis Xt � Xsð Þ

etcxt � escxs

etsxt � essxs

it � is
sis Xt � Xsð Þ

2666666664

3777777775
ð3Þ

where the subscripts t and s indicate the target and servicer
spacecraft respectively, and si and cw represent the sine and
cosine of the argument of perigee x and inclination i,
respectively. Notice that this set of ROEs is nonsingular
for non equatorial orbits of arbitrary eccentricity, but is
singular for equatorial orbits.
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3. TRON testbed

The TRON facility at SLAB, visualized in Fig. 3,
includes a control room and an 8 � 3 � 3 m simulation
room which consists of various components and machiner-
ies to 1) simulate the vision-based rendezvous trajectory of
a servicer spacecraft with a camera to a target spacecraft,
and 2) emulate the high-fidelity spaceborne illumination
conditions to maximize the realism of the images captured
by the camera. TRON comprises two 6 degrees-of-freedom
KUKA robot arms and a set of Vicon motion track cam-
eras to reconfigure an arbitrary pose between a camera
and a target mockup model, as well as multiple Earth
albedo light boxes and a sun lamp to simulate high-
fidelity spaceborne illumination conditions (Park et al.,
2021b). The calibration of the facility is performed via a
dedicated multi-source Robot/World Hand/Eye (RWHE)
calibration procedure which fuses readings from KUKA
and Vicon to accurately estimate the pose of the adopted
monocular camera with respect to the target mockup.
Millimeter-level position accuracy and millidegree-level
orientation accuracy were obtained on a subset of close-
range images of the Tango mockup. The reader is referred
to Park et al. (2021b) for a detailed description.
3.1. SPEED+ dataset

The SPEED+ dataset was created in the TRON facility
to be used in the ongoing international Satellite Pose Esti-
mation Challenge, with the main objective to evaluate and
compare the robustness of machine learning models trained
on synthetic images (Park et al., 2021a). The dataset is built
upon the existing SPEED dataset (Kisantal et al., 2020) by
increasing the number of synthetic and HIL images, whilst
extending the illumination conditions simulated in the
facility and improving the accuracy of the pose labels.
SPEED+ consists of synthetic images generated in
OpenGL and realistic images generated in TRON with
light boxes and sun lamp (Fig. 4). Fig. 5 illustrates sample
SPEED+ images for the synthetic, lightbox, and
sunlamp domains. Overall, the test images of SPEED+
Fig. 4. Visualization of the TRON facility for the generation of the
SPEED+ images. Light boxes (L1 - L10) and sunlamp locations (S1 - S3)
are noted Park et al. (2021a).
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extend the full orientation space and distance up to 10 m
with realistic re-creation of Earth albedo and direct sun-
light present in spaceborne imagery.

3.2. SHIRT dataset

A detailed overview of the generation of the SHIRT
dataset can be found in Ref. Park and D’Amico (2022).
For the HIL images, the first step is to design a rendezvous
trajectory which resembles a typical close-proximity sce-
nario. Next, the motion of the two KUKA robots is com-
manded in order to recreate the desired trajectory, taking
into account the scale of the target mockup and the con-
straints of the facility. In order to simulate representative
illumination conditions, the true location of the Sun is used
to intermittently switch the light boxes on/off and capture
the correct inclination of the Sun with respect to the
mockup. Fig. 6 shows a comparison of synthetic and
HIL images for the same poses, where the synthetic images
were generated for the same illumination and trajectory
inputs. As can be seen, the TRON illumination manages
to capture the correct inclination of the Sun used in the
synthetic renderings. Besides, a clear domain gap is present
between synthetic and HIL images, ensuring that the vali-
dation of the proposed CNN-based system can be carried
out in challenging domain shifts. Specifically, by compar-
ing the first (a-b) and second (c-d) rows of Fig. 6, it can
be seen that domain gaps can result in either a difference
in the illuminated side of the target (a-b) or in a different
contrast between the illuminated and shadowed parts of
the target (c-d).

4. Convolutional neural network

The main reason for an emerging interest in CNNs for
feature extraction lies in the capability of the convolutional
layers to extract high-level features of objects with
improved robustness against image noise and illumination
conditions as compared to standard IP algorithms
(Pasqualetto Cassinis et al., 2021). As shown in Fig. 7,
the first essential step of keypoints-based CNN systems is
represented by an Object Detection Network (ODN), e.g.
Faster R-CNN Ren et al. (2017), R-FCN Ren et al.
(2016) or MobileNet Howard et al. (2017), placed before
the main CNN. The ODN regresses the coordinates of a
bounding box around the target object, in order to crop
a Region Of Interest (ROI) and to increase robustness to
scale, variation, and background textures. The cropped
ROI is then fed into a Keypoint Detection Network, which
convolves with the input image and outputs a set of feature
maps. These so-called heatmaps are detected around pre-
selected features on the target object, such as corners or
interest points. The 2D pixel coordinates of the heatmap’s
peak intensity characterize the predicted feature location,
with the intensity and the shape indicating the confidence
of locating the corresponding keypoint at this position
(Pavlakos et al., 2017). Notably, the selection of the



Fig. 5. Example images from different domains of SPEED+ Park et al. (2021a).

Fig. 6. Synthetic (Left) and HIL (Right) sample images for two representative poses (a-b/c-d).
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CNN will drive the achievable keypoints detection accu-
racy and robustness. Some architectures, such as the
stacked Hourglass (Newell et al., 2016) and the U-Net
(Ronneberger et al., 2015), perform a downsampling of
the input followed in series by an upsampling, in order to
detect features at different scales. However, recent advances
(Chen et al., 2019) demonstrated that by using parallel sub-
networks across multiple resolutions, rather than multi-
resolution serial stages, the CNN can manage to maintain
a richer feature representation, facilitating more accurate
and precise heatmaps. For this reason, the HRNet Sun
et al. (2019) architecture is chosen in the proposed pose
estimation system. The corners of the main spacecraft body
and the extremities of its three antennas are pre-selected as
keypoint features and used to train the CNN. These fea-
tures are chosen since they already proved reliable in recent
CNN trainings performed on the Tango spacecraft
(Kisantal et al., 2020; Chen et al., 2019).
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4.1. Data augmentation pipeline

In Fig. 8, the first step of the proposed pipeline for the
datasets augmentation and randomization consists in tak-
ing the ideal synthetic images of the Tango spacecraft from
the SPEED+ dataset, which already includes images with
the Earth in the background. Similar to Pasqualetto
Cassinis et al. (2022), a noise pipeline is then applied in
order to augment the training and validation datasets with
the following noise models:Fig. 9.

1. Gaussian, shot, impulse and speckle noise.
2. Gaussian, defocus, motion and zoom blurs.
3. Spatter, color jitter and random erase.

Finally, light augmentation is introduced to generalize
the illumination conditions during training. The proposed
approach uses the data augmentation method introduced



Fig. 7. Proposed CNN architecture and interface with the PnP solver.

Fig. 8. SPEED+ Dataset Augmentation Pipeline.

Fig. 9. Description of light augmentation.
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by Sakkos et al. (2019) for terrestrial applications and
extends it to the SPEED+ dataset. Fig. 8 illustrates the
light augmentation pipeline for a sample image I of the
SPEED+ dataset. First, a ROI is extracted around the tar-
get spacecraft and used to create an illumination mask M

at random locations around the target. The mask consists
of an illumination circle with centre
p ¼ I w; hð Þ;w 2 W ; h 2 H and diameter
d ¼ k �min W ;Hð Þ, where H ;W are the height and width

of the extracted ROI and k 2 1
5
; 1
2

� �
. Since uniformly mod-

ifying all pixels within the illumination circle generate unre-
alistic results, the Euclidean Distance Transform (EDT) is
further applied to the mask in order to model light attenu-
ation (Sakkos et al., 2019). For each pixel in the circle, the
EDT assigns a number that is the distance between that
pixel and the nearest nonzero pixel.

Once the mask is created, the original image is aug-
mented to create three distinct effects:

IAug ¼
I þMz1 Bright filter

I �Mz1 Dark filter

I þMz1 þ z2 Local and global filters

8><>: ð4Þ

where IAug is the augmented image, M is a mask of the
same size as the input image I , and z1; z2 are random inte-
gers. Fig. 10 illustrates the three filters applied to sample
image I. Notably, several illumination effects can be intro-
duced in the datasets by interchanging these filters whilst
varying the disc diameter and location. In the current
implementation, 50% of the synthetic images are aug-
mented with light augmentation, of which 50% have a dark
filter, 25% a bright filter, and 25% local and global filters.

4.2. Train, validation and test

Table 1 lists the number of images used in the Train,
Validation, and Test datasets together with the data aug-
mentation breakdown. The ideal synthetic images of the
SPEED+ dataset are already split into 80:20 train/valida-
tion sets. The augmentation pipeline described in Sec-
tion 4.1 is used to extend both sets. During training, the
validation dataset is used beside the training dataset to
compute the validation losses and avoid overfitting. The
Adam optimizer (Kingma and Ba, 2015) is used with a

cosine decaying learning rate with initial value of 10�3
Fig. 10. Example of different
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and decaying factor of 0.1. Finally, the CNN is tested on
the lightbox and sunlamp sets. In this way, the perfor-
mance of a CNN trained solely on synthetic imagery can
be assessed on the realistic imagery simulated in TRON.

5. Pose estimation

Following the promising pose estimation results
achieved in ADR scenarios in recent studies (Kisantal
et al., 2020; Chen et al., 2019; Sharma and D’Amico,
2017; Sharma and D’Amico, 2015), the Efficient
Perspective-n-Points (EPnP) method followed by Gauss–
Newton refinement (Lepetit and Moreno-Noguer, 2009)
is selected to estimate the pose from a set of detected fea-
tures. This method solves the PnP problem in Eqs. (1, 2)
in closed-form with the EPnP algorithm, and uses the esti-
mated pose as an initial guess for an iterative pose refine-
ment. Notably, the CNN-based extraction of pre-defined
features allows a direct match with the wireframe model,
without the need of a large search-space for the 2D/3D cor-
respondences which characterizes the more standard fea-
ture extractors described in Section 1.

5.1. Error metric

To evaluate the performance of the pose estimation sys-
tem, two separate error metrics are generally adopted, in
accordance with Kisantal et al. Kisantal et al. (2020).
Firstly, the translational error ET between the estimated

relative position t̂C and the ground truth tC is computed as

ET ¼ tC � t̂C
�� ��: ð5Þ

Secondly, the attitude error ER is measured in terms of the
Euler axis-angle error between the estimated quaternion q̂
and the ground truth q,

b ¼ bs bv½ � ¼ q� q̂ ð6Þ
ER ¼ 2 arccos jbsjð Þ; ð7Þ
where � denotes the quaternion multiplication and the
subscripts s; v refer to the scalar an vectorial part of the
error quaternion b. Furthermore, a combined score is cre-
ated by combining both position and attitude errors,

Epose ¼ ER þ ET

tCk k : ð8Þ
light augmentation effects.



Table 1
Description of Train, Validation and Test datasets together with data augmentation breakdown.

Dataset synthetic lightbox sunlamp

Train 47,966 (80% Noise Pipeline) (50% Light Augmentation) - -
Validation 11,994 (80% Noise Pipeline) (50% Light Augmentation) - -

Test - 6,740 2,791
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Note that when evaluated on SPEED+ lightbox and
sunlamp samples, the modified SPEED score E�

pose (Park

et al., 2021a) is used to zero out the errors smaller than
the thresholds based on the TRON calibration, i.e., for
individual sample,

E�
pose ¼

0 if ER < 0:169� and ET
tCk k < 2:173mm=m

Epose otherwise

(
ð9Þ
5.2. Pose estimation results

The pose estimation results of the CNN-based system in
Fig. 7 are presented for the SPEED+ test dataset, in order
to evaluate the capability of the CNN to bridge the HIL
imagery. Additionally, the proposed pose estimation sys-
tem is evaluated on the PRISMA25 dataset, which consists
of 25 flight images of the Tango spacecraft from the
PRISMA mission (D’Amico et al., 2013). Despite the lim-
ited number of images in PRISMA25, the comparative
study between SPEED+ and actual flight images allows
an assessment of the scalability of the proposed data aug-
mentation method to different target domains, whilst pro-
viding insight to the applicability of HIL images as a
surrogate of flight images for validation.
5.2.1. SPEED+

Figs. 11, 12 show the pose estimation results in terms of
the Cumulative Distribution Function (CDF) across the
Fig. 11. Cumulative Distribution Function (CDF) of Position (a) a
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test datasets. Referring to Section 4.1, the results are
reported for an augmentation-free CNN training, a train-
ing with the noise pipeline, and a training with both noise
and light augmentation. This is done in order to assess the
impact of each augmentation on the CNN performance. As
can be seen, the introduction of light augmentation into the
CNN training greatly improves the overall pose estimation
performance on both the lightbox and the sunlamp subsets.
Specifically, pose errors ET < 0:1 tCk k;ER < 10� and
ET < 0:1 tCk k;ER < 13� are achieved in 80% of the lightbox
and sunlamp subsets, respectively (Figs. 11, 12). Fig. 13
illustrates highly accurate pose estimation results on a rep-
resentative subset of HIL images with lightbox illumina-
tions, Earth in the background, and sunlamp
illuminations. Conversely, Fig. 14 illustrates two represen-
tative scenarios characterized by large pose errors. As can
be seen, near-eclipse illumination conditions and highly
adverse sunlamp reflections can still jeopardize the CNN
performance, despite the adopted data augmentation pipe-
line. Notably, similar effects can be observed in some of the
highly accurate pose estimates (Fig. 13), suggesting that the
CNN performance could be affected by small visual arti-
facts not visible by the human-eye.
5.2.2. PRISMA25

Fig. 15 shows the CDF pose estimation results for the
PRISMA25 dataset in terms of the total SPEED score in
Eqn. 9. The results are compared with the lightbox and
sunlamp scenarios in order to assess the scalability of the
proposed light augmentation on flight images. Notably,
nd Attitude (b) errors over the lightbox subset of SPEED+.



Fig. 12. Cumulative Distribution Function of Position (a) and Attitude (b) errors over the sunlamp subset of SPEED+.

Fig. 13. Reprojection of Tango’s wireframe model based on the estimated pose for subsets of the lightbox (Top), lightbox with Earth in the
background (Middle) and sunlamp (Bottom) images.

Fig. 14. Example of inaccurate pose estimates due to near-eclipse illuminations (Left) and adverse sunlamp reflections (Right). The wireframe model is
projected based on the true (red) and estimated (green) poses.
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Fig. 15. E�
pose in PRISMA25 compared to lightbox and sunlamp.
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60% of the images are characterized by highly accurate
poses with mean errors ET ¼ 0:5 m, ER ¼ 2:5�, proving
the effectiveness of the proposed augmentation pipeline.
Notice also that the CDF of PRISMA25 is bounded by
the lightbox and sunlamp CDFs for most of the scores,
suggesting that the TRON illuminations represent realistic
best/worst case bounds for illuminations in actual space
imagery.

Besides, Table 2 lists the mean results associated to the
CDF in Fig. 15, whilst comparing the proposed light aug-
mentation method with another augmentation pipeline
which exploits texture randomization (Jackson et al.,
2018). As can be seen, light augmentation provides a con-
siderable improvement over texture randomization.
6. Navigation filter

In earlier works (Pasqualetto Cassinis et al., 2021;
Sharma and D’Amico, 2017), the so-called Multiplicative
Extended Kalman Filter (MEKF) was used to cope with
the challenges in the attitude parametrization, which either
suffers from the singularity (e.g. Euler angles) or normal-
ization (e.g. quaternion). The latter can happen because a
quaternion representation may cause the associated filter
error covariance to be singular, since the quaternion set
consists of four parameters to describe the 3DOF attitude.
The MEKF, introduced for the first time by Lefferts et al.
(1982), aims at solving the above issue by using two differ-
ent parametrizations of the relative attitude. A three ele-
ment error parametrization, expressed in terms of
Table 2
Pose estimation results on PRISMA25 dataset.

CNN Model Data Augmentation

KRN Park et al. (2021a) None
Texture Rand.

None
HRNet Image Noise

Image Noise/Light Rand.

5073
quaternions, is propagated and corrected inside the filter
to return an estimate of the attitude error. At each estima-
tion step, this error estimate is used to update a reference
quaternion and is reset to zero for the next iteration. Nota-
bly, the reset step prevents the attitude error parametriza-
tion from reaching singularities, which generally occur
for large angles. However, despite its promising results
on ideal rendezvous scenarios with a high measurement fre-
quency and synthetic images as measurements, the MEKF
could considerably decrease its performance under low
measurement frequencies and realistic space imagery,
which is the case for the scenarios investigated in this
paper.

In the proposed navigation system, a UKF Julier and
Uhlmann (2004) is used instead, in order to capture the sys-
tem nonlinearity via the unscented transform, which uses a
finite set of deterministic samples instead of linearizing the
nonlinearity itself. Specifically, the Unscented Quaternion
Estimator (USQUE) introduced by Crassidis and
Markley (2012) is adopted. The USQUE has proven more
robust under low measurement acquisition frequency when
compared to a more standard EKF/MEKF. Furthermore,
the expected error is generally lower than the EKF, and the
unscented transform avoids the derivation of Jacobian
matrices (Crassidis and Markley, 2012). Similar to the
MEKF, a three-component attitude-error vector is used
to represent the quaternion error vector.

In a standard EKF, the state vector for pose estimation
based on ROE is a 13-dimension vector composed of the
relative ROE as well as the relative quaternion and rota-
tional velocity,

x ¼ asdaT qCB
T

xC
B=C

T
h iT

; ð10Þ

where as represents the semi-major axis of the servicer
spacecraft, qCB ¼ q0 qv½ � is the quaternion set that repre-

sents the relative attitude, and xC
B=C is the angular velocity

of the target with respect to the camera, expressed in the
camera frame. In the USQUE, the modified state vector
propagated inside the filter becomes a 12-dimension vector,

~x ¼ asdaT dpT xC
B=C

T
h iT

; ð11Þ

where dp is four times the Modified Rodrigues Parameters
(MRP) r,

dp ¼ 4r ¼ 4
qv

1þ q0
: ð12Þ
E�
pose ET [m] ER [deg]

1.43 4.03 59.7
1.98 7.02 77.5
1.76 11.17 42.1
0.96 4.22 32.1
0.43 2.1 13.5



Fig. 17. Derivation of covariance matrices from CNN heatmaps. Accu-
rate, moderate and coarse detections are represented. The displayed
ellipses are derived from the computed covariances by assuming a
confidence interval 1r ¼ 0:68.
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A high-level description of the proposed navigation pipe-
line is provided in Fig. 16. Each subsystem is described in
the following sections.

6.1. Measurement error covariance computation

Compared to the methods discussed in Section 1 (Cui
et al., 2019; Harvard et al., 2020; Ferraz et al., 2014a),
the proposed method derives a measurement error covari-
ance matrix associated to each feature directly from the
heatmaps detected by the CNN, rather than from the com-
putation of the image gradient around each feature. In this
method, the ith non-zero pixel around the heatmap’s peak
is extracted to derive a covariance matrix C i,

C i ¼
cov x; xð Þ cov x; yð Þ
cov y; xð Þ cov y; yð Þ

� �
; ð13Þ

where

cov x; yð Þ ¼
Xn

i¼1

wi xi � pxð Þ � yi � py
� �

: ð14Þ

Here, wi is a normalized weight based on the gray intensity
I i at each pixel location, n is the number of pixels in each
feature’s heatmap, x; y are the coordinates of each heat-

map’s pixel, and p ¼ px; py
� �

is the heatmap’s peak loca-

tion. Note that an assumption is made that the spread
around the peak can represent the feature covariance,
although the spread of the heat around the peak would give
the expected value of the square of the map instead. Fig. 17
shows the overall flow to obtain the covariance matrix
from the CNN heatmaps. The reader is referred to
Pasqualetto Cassinis et al. (2021) for an exhaustive descrip-
tion of each step of the method.

6.2. Prediction

The first step of the filter is to generate sigma points v i½ �

from the current state vector ~xk by using the standard for-
mulation of the UKF Julier and Uhlmann (2004):

v
i½ �
k ¼

~xk i ¼ 0

~xk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ kð ÞPp� �

i
i ¼ 1; . . . ;N

~xk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ kð ÞPp� �

i
i ¼ N þ 1; . . . ; 2N

8><>: ð15Þ
Fig. 16. High-level description of the UKF flow together wit
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where N ¼ 12 is the dimensionality of the system and k is a
scaling factor tuned offline. The sigma points are then
propagated through the dynamic equations. For the trans-
lational motion, the ROE state is propagated assuming an
unperturbed Keplerian orbit,
dak ¼

1 0 0 0 0 0

�1:5nDt 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2666666664

3777777775
dak�1 ð16Þ
h the measurements processing and adaptive covariance.
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For the attitude, each sigma sample dp i½ � is transformed to

the error-quaternion dq i½ �, which is used to generate the

quaternion multiplicatively via q
þ; i½ �
k ¼ dq i½ � � qk, where �

denotes the quaternion multiplication. The dynamics
update of the quaternion representation of relative orienta-
tion assumes perturbation-free motion,

q�k ¼
cos 1

2
xC

B=C

��� ���Dt
 �
x̂ sin 1

2
xC

B=C

��� ���Dt
 �
264

375qþk�1 ð17Þ

where Dt is the time-step between filter calls and x̂ is the
normalized angular velocity, representing the direction of
the target rotation axis relative to the servicer. Afterwards,

q�; i½ �
k is used to compute dp�; i½ �

k . The mean of dp�k provided
by the unscented transform is used to update the nominal
state quaternion.

The relative angular velocity xC
B=C is propagated via the

following equation (Capuano et al., 2020):

_xC
B=C ¼ RC

B sB � xB
B=E � JBx

B
B=E


 �
� J�1

C sC � xC
C=E � JCx

C
C=E


 �
� xC

C=E � xC
B=C ð18Þ

where J is the target’s inertia matrix, s are the external tor-
ques, and E denotes the Earth-Centered-Inertial (ECI)
frame. Note that in the current implementation no control
torques are modeled for neither the target nor the servicer,
i.e. sB ¼ sC ¼ 0. After propagation, the sigma points are
used to derive a mean state estimate and its associated error
covariance,

�xk ¼
X2N
i¼0

w i½ �v i½ � ð19Þ

Pk ¼
X2N
i¼0

w i½ � v i½ � � �xk

� �
v i½ � � �xk

� �T þQk ð20Þ

where the weights w i½ � are a function of k;N and Qk is the
process noise covariance.
6.3. Correction

The measurement update follows the projections
described in Eqs. (1, 2), in which the sigma points of the rel-
ative position tC are derived from the ROE state given the
knowledge of the servicer’s orbital elements state and its
attitude with respect to the ECI frame. Once the expected

measurements Z i½ � given each sigma point are computed,
the mean expected measurement and innovation covari-
ance can be computed similar to the mean and covariance
of the filter state,

�zk ¼
X2N
i¼0

w i½ �Z i½ � ð21Þ
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Sk ¼
X2N
i¼0

w i½ � Z i½ � � �z
� �

Z i½ � � �z
� �T þ Rk ð22Þ

where Rk represents the measurement error covariance
matrix. In the proposed system, Rk is a time-varying block
diagonal matrix constructed with the heatmaps-derived
covariances C i in Eq. (13),

Rk ¼ ck

C1

. .
.

Cn

2664
3775: ð23Þ

where the scaling coefficient ck is described in Section 6.4.
Notice that C i can differ for each feature in a given frame
as well as vary over time. Preliminary navigation results
(Pasqualetto Cassinis et al., 2021; Pasqualetto Cassinis
et al., 2020) already showed that such heatmaps-derived
covariance matrix can capture the statistical distribution
of the measured features and improve the measurement
update step of the navigation filter.

At this stage, outliers are removed from the mean mea-
surements by computing the Mahalanobis Distance Mi

between the ith feature and its corresponding filter innova-
tion term Dz

k,

Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dz

i;kS
�1
k Dz

i;k
T

q
ð24Þ

where Dz
k ¼ �z� h �xkð Þ and h is the nonlinear transformation

in Eqs. (1, 2). The Mahalanobis distance is a measure of the
distance between a point and a distribution. In this case,
the point is the keypoint detected by the CNN in the image
and the distribution is the reprojected feature and its asso-
ciated covariance. The threshold Mt to select outliers is
determined by

Mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln pmð Þ

p
ð25Þ

where pm is the desired probability that a measurement
would result in Mi P Mt, given that the correspondence
between the detected and reprojected features is correct
(Thrun et al., 2005). In other words, if Mi P Mt it is highly
unlikely that the ith keypoint correlates to its reprojection
as predicted by the filter, and the feature can be rejected. In
this way, filter robustness can be improved during low vis-
ibility periods of the target spacecraft in which wrong CNN
detections may occur. Notably, this feature rejection
scheme reflects an important advantage of incorporating
a navigation filter compared to relying solely on the
CNN detection and PnP solver solution.

Finally, the corrected state estimate x̂k is obtained from
the propagated state ~xk, the innovation Dz

k, and the Kalman
Gain K k,

x̂k ¼ �xk þ K kD
z
k: ð26Þ

where K k is a function of the state error and innovation
covariance, and K kD

z
k represents the state correction.

After correction, the new attitude error dp is reset to
zero at each iteration.
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6.4. Covariance adaptation

The heatmaps-based covariance described in Section 6.1
already proved to accurately represent the measurements
uncertainty of the CNN detections in synthetic images with
ideal illumination conditions (Pasqualetto Cassinis et al.,
2021). However, a reliable representativeness of the heat-
maps cannot always be guaranteed in realistic space images
under challenging illumination conditions. Despite captur-
ing the shape of the distribution, the magnitude of the
heatmpas-derived covariance could indeed fail at represent-
ing the actual detection uncertainty of the CNN. This
could lead the navigation filter to trust inaccurate features
and ultimately diverge.

Referring to Fig. 16, the above challenges are addressed
by adaptively estimating the measurement error covariance
through a new technique which leverages the heatmaps-
based covariance together with existing covariance match-
ing techniques. This approach is based on the adaptive
state noise compensation method for estimating the pro-
cess noise covariance introduced in Stacey and D’Amico
(2021).

By replacing the theoretical covariance of the innova-
tions, also known as pre-fit residuals, in a Kalman filter
with an empirical estimate, the measurement error covari-
ance of the ith pair of pixel measurements at time step k

can be estimated as Myers (1974)

R̂i;k ¼ Dz
i;kD

zT

i;k � �Si;k: ð27Þ
Here, the innovation Dz

i;k is the difference between the true

and expected ith pair of pixel measurement at time step k,
taking into account all measurements through time step

k � 1. The matrix �Sk ¼ Sk � Rk is computed from the
sigma points passed through the nonlinear measurement
models in Eq. (22) (Thrun et al., 2005). The portion of
�Sk corresponding to the ith pair of pixel measurements

is �Si;k 2 R2�2. Eq. (27) assumes a filter at steady state
and that the pixel measurement errors are zero-mean.
Typically, Eq. (27) is averaged over some finite length
sliding window of filter output. Such covariance matching
techniques, also referred to as innovation based estima-
tion, are not guaranteed to converge to the true estimate
of the error covariance. However, they are widely used
and have been shown to work well in practice (Myers
and Tapley, 1976; Sullivan and D’Amico, 2017;
Karlgaard, 2010; Fraser and Ulrich, 2021; Mohamed
and Schwarz, 1999).

Assuming that the pixel measurement errors of different
features are not correlated with each other and that the
associated heatmaps are representative of the shape of their
covariance yields the model

Ri;k ¼ ckCi;k: ð28Þ
Here, ck is introduced to account for the uncertainty in the
magnitude of the covariance. Using all the pixel measure-
ments at a single filter call, a pseudo-coefficient c�k can be
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estimated through a weighted least squares fit between
the diagonal elements of the right hand side of Eq. (28)
and the corresponding elements of Eq. (27). The resulting
solution for c�k is

c�k ¼ argmin
c

jjW�1=2
k Akc� bkð Þjj2 ð29Þ

¼ AT
kW

�1
k bk

AT
kW

�1
k Ak

: ð30Þ

The vector bk is the concatenation of all the main diagonal

elements of the covariance matching estimates R̂i;k 2 R2�2

for all i at time step k. The vector Ak contains the corre-
sponding diagonal elements of each Ci;k.

The weighting matrix Wk is chosen as the theoretical
covariance of bk such that covariance matching estimates
with less uncertainty have a greater influence on the solu-
tion of c�k . The covariance between any two elements of
bk is

Cov bRa
i;k;

bRb
j;k


 �
¼ Cov Da2

i;k;D
b2

j;k


 �
ð31Þ

¼ E Da2

i;kD
b2

j;k

h i
� E Da2

i;k

h i
E Db2

j;k

h i
ð32Þ

¼ 2E Da
i;kD

b
j;k

h i2
: ð33Þ

The scalar bRa
i;k is either the first or second element of the

main diagonal of R̂i;k as denoted by a. Eq. (33) is just an
element of Sk squared multiplied by two. Thus,

Wk ¼ S�2
k ð34Þ

where the factor of 2 from Eq. (33) has been dropped
because it does not change the result of Eq. (30). The
Hadamard power, �, denotes an element-wise power. Eq.
(34) assumes that bk is ordered in the same way as the pixel
measurements are ordered in the measurement vector pro-
vided to the filter. For computational efficiency, the weight-
ing matrix is approximated as diagonal by setting all off-
diagonal elements to zero. As a result, the inverse of the
weighting matrix required in Eq. (30) can be computed
element-wise along the main diagonal.

The variance of a weighted least squares estimate (Gill
and Montenbruck, 2012) is

Pc�k
¼ Var c�k

� � ð35Þ
¼ AT

kW
�1
k Ak

� ��1
: ð36Þ

The final estimate of ck is obtained by combining the c�

estimates over a sliding window of length N through

ck ¼ argmin
c

jj �W�1=2
k

�Akc� �bk
� �jj2 ð37Þ

¼
�AT
k
�W�1

k
�bk

�AT
k
�W�1

k
�Ak

ð38Þ

where
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�Ak ¼ 1N�1; �bk ¼ c�k . . . c�k�Nþ1

� T ð39Þ

�Wk ¼

Pc�
k

0 . . . 0

0 Pc�
k�1

..

.

..

. . .
.

0

0 . . . 0 Pc�
k�Nþ1

26666664

37777775: ð40Þ

Upper and lower inequality constraints are easily added to
Eq. (37) by setting the estimated ck equal to any constraint
that is violated. Note that some lower bound greater than
zero should always be included to guarantee that the mea-
surement error covariance is positive definite. Any filter
calls where no pixel measurements are provided to the filter
are excluded from the sliding window. The weighting
matrix in Eq. (40) is assumed diagonal because the innova-
tions are not correlated in time for a filter at steady state
(Mehra, 1972; Kailath, 1968). After each measurement
update, c�k ; Pc�

k
, and ck are computed through Eqs. (30),

(36), and (38) respectively. The resulting ck is used in the
following measurement update to compute the measure-
ment error covariance of each pixel measurement through
Eq. (28).
7. Simulations

The investigated rendezvous scenarios of the SHIRT
dataset involve the Mango and Tango spacecraft from
the PRISMA mission (D’Amico et al., 2013). The simula-
tions take place in Low Earth Orbit (LEO) with initial
ROEs listed in Table 3. ROE 1 is purely an along-track
separation describing a standard v-bar hold point, whereas
ROE 2 describes a mid-range hold point (Sharma and
D’Amico, 2017), meaning that the relative trajectory
slightly drifts away from the v-bar. The reference truth
motion of each spacecraft is numerically propagated with
1 s interval using rigorous force models including
GRACE’s GGM05S geopotential of order and degree
120 (Ries et al., 2016), NRLMSISE-00 atmospheric model
Picone et al. (2002), analytic lunisolar third-body gravity
(Gill and Montenbruck, 2012), and solar radiation pressure
(SRP) including a conical Earth shadow model. Moreover,
the spacecraft attitude is perturbed via analytical gravity-
gradient (Wertz, 1978), air drag, and SRP effects. The satel-
lite parameters for these forces match the modeled param-
eters of the Mango and Tango spacecraft specified in
D’Amico (2010). The servicer’s angular velocity is initial-
ized to always align the camera boresight with the along-
Table 3
Initial mean servicer orbital elements and reference relative trajectories param

Servicer Orbit a ¼ 7078:1 [km] e ¼ 0:001 i

Initial ROE ada [m] adk [m]

ROE 1 0 �8
ROE 2 �0.25 �8
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track direction, whereas the target’s initial angular velocity

about its principal axes is set to x0 ¼ 1 0 0½ �T �=sð Þ for

ROE1 and x0 ¼ 0 0:4 � 0:6½ �T �=sð Þ for ROE2. The
images are captured every 5 s. However, a measurement
acquisition time of 30 s is used in this work, in order to rep-
resent a severely limited on-board processing power.
Fig. 18 shows a montage of the HIL images for both
ROE trajectories.
8. Results

In this section, the navigation results are presented for
the ROE 1 and ROE 2 trajectories. Similar to the pose esti-
mation error metrics introduced in Section 5.1, the norms
of the estimated translational and rotational velocities are
compared to their ground truth values to return the estima-
tion error. Table 4 reports the obtained navigation results
for both synthetic and HIL scenarios in terms of mean
error at steady state. The mean values after two orbits
are computed across a time interval of 600 s at steady state.
8.1. Synthetic scenarios

Figs. 19, 20 show the navigation performance on both
relative trajectories when synthetic images are used as mea-
surements. Results are reported for the pose estimation
error along with the standard deviation derived from the
state covariance matrix. In these scenarios, centimeter-
level position error and degree-level attitude error are
achieved at steady state after two relative orbits. Also,
notice that the state covariance increases at approximately
half of each relative orbit before quickly decreasing. In
these periods, some of the CNN detections become inaccu-
rate due to the challenging near-eclipse conditions in the
target’s visibility. However, thanks to the adaptive
heatmaps-based measurement error covariance the filter
can capture the detection uncertainty and reflect it in a lar-
ger state covariance. This is a desirable behaviour as it pre-
vents the filter from diverging due to an inaccurate
representation of the measurements uncertainty.
8.2. HIL scenarios

As mentioned in Section 6.4, the magnitude of the
heatmaps-based covariance is not guaranteed to reflect
the actual measurements uncertainty in realistic imagery,
especially under highly challenging illumination conditions.
As such, the state covariance could be updated with an
etrized in ROE space Park and D’Amico (2022).

¼ 98:2� X ¼ 189:9� x ¼ 0� M0 = 0�

adex [m] adey [m] adix [m] adiy [m]

0 0 0 0
0 0.15 0 �0.15



Fig. 18. First five HIL images for ROE 1 (a) and ROE 2 (b) trajectories. The images were generated every 30 s to represent limited-on board processing
power.

Table 4
Mean navigation results after two orbits for ROE 1 and ROE 2 trajectories, computed across a time interval of 600 s at steady state. Results are reported
for both synthetic and HIL scenarios.

Trajectory Measurements ET [m] ER [m] Ev [m/s] Ex [�/s]

ROE 1 synthetic 0.13 
 0.02 0.73 
 0.37 1.2E-11 
 2E-12 0.008 
 0.005
lightbox 0.25 
 0.06 14 
 11 1.3E-11 
 1.6E-12 0.5 
 0.4

ROE 2 synthetic 0.02 
 0.02 0.97 
 0.85 8.5E-12 
 1E-12 0.01 
 0.005
lightbox 0.38 
 0.02 9 
 7.5 4.9E-11 
 6.8E-12 0.3 
 0.2

Fig. 19. Pose Estimation Error in the ROE 1 synthetic scenario. The ROE state is converted to position (left) and the quaternion state is converted to 3–2-
1 Euler angles (right). The errors are shown along with the 3r error bound. Note that the error in the Z direction is characterized and by an initial offset in
the position and a sudden jump in attitude. The position offset is a result of a relatively large error in the initial a priori knowledge of the camera boresight
direction. For the attitude, this could instead be a consequence of filter contamination with wrong measurements, which is not captured by the
measurement covariance matrix.
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inaccurate measurement error covariance (Eq. (22)), lead-
ing to the divergence of the filter immediately after initial-
ization. This was observed for both ROE trajectories when
a simple heatmaps-based covariance was used. However,
the achieved performance of the filter can benefit from
the proposed covariance adaptation scheme. After the esti-
mated scaling factor is introduced (Eq. (28)), the filter
shows an increase in robustness towards inaccurate mea-
surements and does not diverge. Figs. 21, 22 show the nav-
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igation performance on both relative trajectories when the
HIL images are used. Thanks to the covariance adaptation,
centimeter-level position error is achieved after two relative
orbits, which compares well with the results in the synthetic
scenario. However, a larger uncertainty in the attitude esti-
mate can be seen in both trajectories, with steady-state
mean errors ET 	 10� � 15�. A degraded performance in
the relative attitude due to challenging HIL images was
already observed by some of the authors in a similar



Fig. 20. Pose Estimation Error in the ROE 2 synthetic scenario. The ROE state is converted to position (left) and quaternion state to 3–2-1 Euler angles
(right). The errors are shown along with the 3r error bound.

Fig. 21. Pose Estimation Error in the ROE 1 HIL scenario.
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validation setup of a CNN-based pose estimation system
(Pasqualetto Cassinis et al., 2022), suggesting that the
domain shift affects the estimate of the rotational state
more than the translational one. Nevertheless, the velocity
estimates listed in Table 4 indicate that the proposed sys-
tem can estimate the relative rotational velocity with rela-
tively small errors. Note also that, due to a non-ideal
tuning of the process noise covariance Q, the navigation
error exceeds the 3-r bounds in some portions of the orbits.
The same behaviour is observed when varying the initial
conditions for both the state and the covariance. For a
more optimal tuning of the navigation filter, which goes
beyond the scope of this paper, the reader is referred to
Park and D’Amico (2022), in which the process noise
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covariance is adaptively estimated based on the filter
innovation.

Overall, the gained filter robustness highlights the bene-
fits of adaptively correcting the measurement error covari-
ance. Notably, the proposed covariance adaptation scheme
was applied to a more standard, gradient-based covariance
method (Cui et al., 2019) which does not exploit the CNN
heatmaps, in order to compare its performance with the
heatmaps-based method. Preliminary results showed a
much worse navigation performance with mean attitude
errors ER > 100� after one relative orbit, suggesting that
the image gradient does not correlate well with the CNN
uncertainties. This indicates that not only the adaptive
covariance is essential for filter robustness, but also that



Fig. 22. Pose Estimation Error in the ROE 2 HIL scenario.
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a proper representation of the measurements uncertainty is
required beforehand.
9. Conclusions

This paper introduces the validation of an adaptive
Convolutional Neural Network (CNN)-based navigation
filter for the pose estimation of an uncooperative spacecraft
by an active servicer spacecraft equipped with a monocular
camera. First, the performance of the proposed system is
evaluated at a pose estimation level by testing the adopted
CNN on the realistic space imagery of the SPEED+ data-
set, captured from Stanford’s Testbed for Rendezvous and
Optical Navigation (TRON). By adopting a novel data
augmentation pipeline centered on light augmentation,
the system is proven capable of bridging the domain gap
between the synthetic training images and the HIL test
images, showcasing the benefits of generalizing the illumi-
nation conditions during training. Specifically, pose errors
ET < 0:1 tCk k;ER < 10� and ET < 0:1 tCk k;ER < 13� are
achieved in 80% of the lightbox and sunlamp subsets,
respectively. Furthermore, by assessing the pose estimation
performance on both Hardware-In-the-Loop (HIL) images
and actual space imagery from the PRISMA mission, the
data augmentation method is shown to be robust against
changes in the target domain.

At a navigation filter level, the system is validated by
assessing the performance of the proposed CNN-based
Unscented Kalman Filter (UKF) on both synthetic and
HIL images of two representative rendezvous trajectories
around the target spacecraft. Results on the synthetic sce-
narios indicate that the system can accurately estimate
the relative state with centimeter- and sub-degree-level pose
errors, thanks to the heatmaps-based representation of the
CNN detection uncertainty. In the HIL scenarios, the
inclusion of an adaptation scheme for the measurement
5080
error covariance returns centimeter-level position errors
and moderate attitude accuracies (ER 	 10� � 15�) at
steady-state, preventing the filter from diverging during
periods of low measurement accuracy. Remarkably, results
suggest that a proper representation of the measurements
uncertainty combined with an adaptive measurement error
covariance is key in improving the navigation robustness.

Recommendations for future work are identified at dif-
ferent levels of the proposed navigation system. First of all,
other data augmentation techniques shall be investigated
together with other CNN architectures, with the aim to fur-
ther improve the CNN detection accuracy prior to the nav-
igation filter. As an example, the impact of combining
texture and light augmentation on the CNN performance
could be explored. At a filter level, the modeling of the pro-
cess noise covariance should be improved in order to better
capture the uncertainty in the state estimate. Finally, the
applicability of the proposed CNN-based system shall be
demonstrated on a representative space processor in order
to carry out a real-time performance analysis. In this con-
text, the interface of the proposed system with guidance
and control should also be investigated in closed-loop tests.
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Krüger, H., Theil, S., 2010. TRON - hardware-in-the-loop test facility for
lunar descent and landing optical navigation. In: IFAC-ACA Auto-
matic Control in Aerospace, Nara, Japan.

Lefferts, E., Markley, F., Shuster, M., 1982. Kalman filtering for
spacecraft attitude estimation. J. Guidance Control Dyn. 5, 417–429.

Lepetit, F., Moreno-Noguer, P., 2009. Fua, EPnP: an accurate O(n)
solution to the PnP problem. Int. J. Comput. Vision 81, 155–166.

Lowe, D., 2004. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision 60, 91–110.

Mehra, R., 1972. Approaches to adaptive filtering. IEEE Trans. Autom.
Control 17, 693–698.

Mohamed, A.H., Schwarz, K.P., 1999. Adaptive Kalman filtering for
INS/GPS. J. Geodesy 73, 193–203.

Myers, K.A., 1974. Filtering Theory Methods and Applications to the
Orbit Determination Problem for Near-Earth Satellites, Ph.D. thesis.
The University of Texas at Austin.

Myers, K., Tapley, B., 1976. Adaptive sequential estimation with
unknown noise statistics. IEEE Trans. Autom. Control 21, 520–523.

Newell, A., Yang, K., Deng, J., 2016. Stacked hourglass networks for
human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(Eds.), Computer Vision - ECCV 2016, vol. 9912. Springer, Cham, pp.
483–499.

Ostrowsky, A., 1966. Solution of Equations and Systems of Equations,
2nd ed. Academic Press, New York.

Park, T.H., D’Amico, S., 2022. Adaptive neural network-based unscented
Kalman filter for spacecraft pose tracking at rendezvous. In: AAS/
AIAA Astrodynamics Specialist Conference, Charlotte, NC, USA.

Park, T.H., Sharma, S., D’Amico, S., 2019. Towards Robust Learning-
Based Pose Estimation of Noncooperative Spacecraft. In: AAS/AIAA
Astrodynamics Specialist Conference, Portland, ME, USA. https://
doi.org/10.48550/arXiv.1909.00392.

Park, T.H., Martens, M., Jawaid, M., Wang, Z., Chen, B., Chin, T.-J.,
Izzo, D., D’Amico, S., 2023. Satellite Pose Estimation Competition
2021: Results and Analyses. Acta Astronaut 204, 640–665 https://doi.
org/10.1016/j.actaastro.2023.01.002.

Park, T., Martens, M., Lecuyer, G., Izzo, D., D’Amico, S., 2021a. Speed
+: Next-generation dataset for spacecraft pose estimation across
domain gap. In: ArXiv Preprint. https://doi.org/10.48550/
arXiv.2110.03101.

Park, T., Bosse, J., D’Amico, S., 2021b. Robotic testbed for rendezvous
and optical navigation: Multi-source calibration and machine learning
use cases. In: AAS/AIAA Astrodynamics Specialist Conference, Big
Sky, MT, USA.

http://refhub.elsevier.com/S0273-1177(23)00140-0/h0005
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0005
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0010
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0010
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0010
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0010
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0015
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0015
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0015
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0020
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0020
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0020
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0025
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0025
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0030
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0030
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0030
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0035
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0040
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0040
https://doi.org/10.1007/978-1-4614-4541-8
https://doi.org/10.1007/978-1-4614-4541-8
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0050
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0050
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0050
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0060
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0060
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0060
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0060
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0060
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0060
https://doi.org/10.5244/C.28.83
https://doi.org/10.5244/C.28.83
https://doi.org/10.1109/CVPR.2014.71
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0075
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0075
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0075
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0080
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0080
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0080
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0095
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0095
https://doi.org/10.1109/AERO.2018.8396425
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0105
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0105
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0105
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0105
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0110
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0110
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0110
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0120
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0120
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0125
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0125
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0125
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0130
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0130
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0130
https://doi.org/10.2514/6.2018-2100
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0140
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0140
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0140
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0145
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0145
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0145
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0150
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0150
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0155
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0155
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0160
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0160
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0165
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0165
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0170
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0170
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0175
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0175
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0175
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0180
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0180
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0185
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0185
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0185
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0185
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0190
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0190
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0195
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0195
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0195
https://doi.org/10.48550/arXiv.1909.00392
https://doi.org/10.48550/arXiv.1909.00392
https://doi.org/10.1016/j.actaastro.2023.01.002
https://doi.org/10.1016/j.actaastro.2023.01.002
https://doi.org/10.48550/arXiv.2110.03101
https://doi.org/10.48550/arXiv.2110.03101
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0210
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0210
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0210
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0210


L.P. Cassinis et al. Advances in Space Research 71 (2023) 5061–5082
Pasqualetto Cassinis, L. et al., 2022. On-ground validation of a CNN-
based monocular pose estimation system for uncooperative spacecraft:
Bridging domain shift in rendezvous scenarios. Acta Astronaut. 196,
123–138.

Pasqualetto Cassinis, L., Fonod, R., Gill, E., 2019. Review of the
robustness and applicability of monocular pose estimation systems for
relative navigation with an uncooperative spacecraft. Prog. Aerosp.
Sci. 110.

Pasqualetto Cassinis, L., Fonod, R., Gill, E., Ahrns, I., Gil Fernandez, J.,
2020. CNN-based pose estimation system for close-proximity opera-
tions around uncooperative spacecraft. In: AIAA Scitech 2019 Forum,
Orlando, FL, USA. https://doi.org/10.2514/6.2020-1457.

Pasqualetto Cassinis, L., Fonod, R., Gill, E., Ahrns, I., Gil-Fernandez, J.,
2021. Evaluation of tightly- and loosely-coupled approaches in CNN-
based pose estimation systems for uncooperative spacecraft. Acta
Astronaut. 182, 189–202.

Pavlakos, G., Zhou, X., Chan, A., Derpanis, K., Daniilidis, K., 2017. 6-
DoF object pose from semantic keypoints. In: IEEE International
Conference on Robotics and Automation, Marina Bay Sands,
Singapore.

Picone, J., Hedin, A., Drob, D., Aikin, A., 2002. NRLMSISE-00 empirical
model of the atmosphere: Statistical comparisons and scientific issues.
J. Geophys. Res.: Space Phys. 107, SIA 15-1–SIA 15-16.

Ren, S., He, K., Girshick, R., Sun, J., 2016. Object detection via region-
based fully convolutional networks. Adv. Neural Informat. Process.
Syst., 379–387

Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards real-
time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 1137–1149.

Ries, J., Bettadpur, S., Eanes, R.J., Kang, Z., Ko, U.-D., McCullough, C.,
Nagel, P., Pie, N., Poole, S., Richter, T., Save, H., Tapley, B., 2016.
The development and evaluation of the global gravity model GGM05,
Technical Report CSR-16-02, Center for Space Research, The
University of Texas at Austin.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks
for biomedical image segmentation. In: Medical Image Computing and
Computer-Assisted Intervention. Springer, pp. 234–241.

Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: An
efficient alternative to sift or surf. In: International Conference on
Computer Vision, Barcelona, Spain, pp. 2564–2571. https://doi.org/
10.1109/ICCV.2011.6126544.

Sakkos, D., Shum, H., Ho, E., 2019. Illumination-based data augmenta-
tion for robust background subtraction. In: Proceedings of the 2019
International Conference on Software Knowledge Information Man-
agement and Applications (SKIMA).

Sharma, S., D’Amico, S., 2015. Comparative Assessment of techniques for
initial pose estimation using monocular vision. Acta Astronaut. 123,
435–445.

Sharma, S., D’Amico, S., 2017.Reduced-dynamics pose estimation for non-
cooperative spacecraft rendezvous using monocular vision. In: 38th
AAS Guidance and Control Conference, Breckenridge, CO, USA.

Sharma, S., D’Amico, S., 2020. Neural network-based pose estimation for
noncooperative spacecraft rendezvous. IEEE Trans. Aerosp. Electron.
Syst. 56.

Sharma, S., Beierle, C., D’Amico, S., 2018. Pose estimation for non-
cooperative spacecraft rendezvous using convolutional neural net-
works. In: IEEE Aerospace Conference, Big Sky, MT, USA. https://
doi.org/10.1109/AERO.2018.8396425.
5082
Sharma, S., Ventura, J., D’Amico, S., 2018. Robust model-based
monocular pose initialization for noncooperative spacecraft ren-
dezvous. J. Spacecraft Rock. 55, 1–16.

Shi, J., Ulrich, S., Ruel, S., Simulation, CubeSat, 2018. Detection using
monocular camera images and convolutional neural networks. In:
2018 AIAA Guidance, Navigation, and Control Conference, Kissim-
mee, FL, USA. https://doi.org/10.2514/6.2018-1604.

Sonawani, S., Alimo, R., Detry, R., Jeong, D., Hess, A., Ben Amor, H.,
2020. Assistive relative pose estimation for on-orbit assembly using
convolutional neural networks. In: AIAA Scitech 2020 Forum,
Orlando, FL, USA. https://doi.org/10.1109/AERO.2018.8396425.

Stacey, N., D’Amico, S., 2021. Adaptive and dynamically constrained
process noise estimation for orbit determination. IEEE Trans. Aerosp.
Electron. Syst.

Sugiyama, M., Muller, K.-R., 2005. Input-dependent estimation of
generalization error under covariate shift. Stat. Decis. 23, 249–279.

Sullivan, J., D’Amico, S., 2017. Nonlinear Kalman filtering for improved
angles-only navigation using relative orbital elements. J. Guidance
Control Dyn. 40, 2183–2200.

Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep high-resolution
representation learning for human pose estimation. In: 2019 IEEE
Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA.

Tatsch, A., Fitz-Coy, N., Gladun, S., 2006. On-orbit servicing: A brief
survey. In: Proceedings of the 2006 Performance Metrics for Intelligent
Systems Workshop, pp. 21–23.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics. The MIT
Press, pp. 65–71.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.,
2017. Domain randomization for transferring deep neural networks
from simulation to the real world. Int. Conf. Intelligent Robots and
Systems, 23–30. https://doi.org/10.1109/IROS.2017.8202133.

Wertz, J., 1978. Spacecraft Attitude Determination and Control. Reidel
Dordrecht.

Wieser, M., Richard, H., Hausmann, G., Meyer, J.-C., Jaekel, S.,
Lavagna, M., Biesbroek, R., 2015. e.deorbit mission: OHB debris
removal concepts. In: ASTRA 2015–13th Symposium on Advanced
Space Technologies in Robotics and Automation, Noordwijk, The
Netherlands.

Wilde, M., Clark, C., Romano, M., 2019. Historical survey of kinematic
and dynamic spacecraft simulators for laboratory experimentation of
on-orbit proximity maneuvers. Prog. Aerosp. Sci. 110.

Zwick, M., Huertas, I., Gerdes, L., Ortega, G., 2018. ORGL - ESA’s test
facility for approach and contact operations in orbital and planetary
environments. In: International Symposium on Artificial Intelligence,
Robotics and Automation in Space, Madrid, Spain.

Sharma, S., Park, T.H., D’Amico, S., 2019. Spacecraft Pose Estimation
Dataset (SPEED). In: Stanford Digital Repository. Available at
https://purl.stanford.edu/dz692fn7184.https://doi.org/10.25740/
dz692fn7184.

Park, T.H., Martens, M., D’Amico, S., 2021. Next Generation Spacecraft
Pose Estimation Dataset (SPEED+). In: Stanford Digital Repository.
Available at https://purl.stanford.edu/wv398fc4383.https://doi.org/10.
25740/wv398fc4383.

Park, T.H., D’Amico, S., 2022. SHIRT: Satellite Hardware-In-the-Loop
Rendezvous Trajectories Dataset. In: Stanford Digital Repository.
Available at https://purl.stanford.edu/zq716br5462.https://doi.org/10.
25740/zq716br5462.

http://refhub.elsevier.com/S0273-1177(23)00140-0/h0215
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0215
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0215
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0215
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0220
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0220
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0220
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0220
https://doi.org/10.2514/6.2020-1457
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0230
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0230
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0230
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0230
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0235
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0235
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0235
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0235
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0240
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0240
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0240
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0245
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0245
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0245
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0250
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0250
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0250
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0260
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0260
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0260
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0275
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0275
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0275
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0280
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0280
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0280
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0285
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0285
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0285
https://doi.org/10.1109/AERO.2018.8396425
https://doi.org/10.1109/AERO.2018.8396425
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0295
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0295
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0295
https://doi.org/10.2514/6.2018-1604
https://doi.org/10.1109/AERO.2018.8396425
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0310
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0310
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0310
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0315
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0315
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0320
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0320
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0320
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0325
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0325
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0325
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0325
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0335
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0335
https://doi.org/10.1109/IROS.2017.8202133
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0345
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0345
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0350
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0350
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0350
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0350
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0350
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0355
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0355
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0355
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0360
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0360
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0360
http://refhub.elsevier.com/S0273-1177(23)00140-0/h0360
https://purl.stanford.edu/dz692fn7184
https://doi.org/10.25740/dz692fn7184
https://doi.org/10.25740/dz692fn7184
https://purl.stanford.edu/wv398fc4383
https://doi.org/10.25740/wv398fc4383
https://doi.org/10.25740/wv398fc4383
https://purl.stanford.edu/zq716br5462
https://doi.org/10.25740/zq716br5462
https://doi.org/10.25740/zq716br5462

	Leveraging neural network uncertainty in adaptive unscented �Kalman Filter for spacecraft pose estimation
	1 Introduction
	2 System framework
	2.1 Relative navigation

	3 TRON testbed
	3.1 SPEED+ dataset
	3.2 SHIRT dataset

	4 Convolutional neural network
	4.1 Data augmentation pipeline
	4.2 Train, validation and test

	5 Pose estimation
	5.1 Error metric
	5.2 Pose estimation results
	5.2.1 SPEED+
	5.2.2 PRISMA25


	6 Navigation filter
	6.1 Measurement error covariance computation
	6.2 Prediction
	6.3 Correction
	6.4 Covariance adaptation

	7 Simulations
	8 Results
	8.1 Synthetic scenarios
	8.2 HIL scenarios

	9 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


