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Effects of Periodic Location Update
Polling Interval on the Reconstructed
Origin–Destination Matrix: A Dutch Case
Study Using a Data-Driven Method

Zahra Eftekhar1, Adam Pel1 , and Hans van Lint1

Abstract
Global System for Mobile Communications (GSM) data provides valuable insights into travel demand patterns by capturing
people’s consecutive locations. A major challenge, however, is how the polling interval (PI; the time between consecutive
location updates) affects the accuracy in reconstructing the spatio-temporal travel patterns. Longer PIs will lead to lower
accuracy and may even miss shorter activities or trips when not properly accounted for. In this paper, we analyze the effects
of the PI on the ability to reconstruct an origin–destination (OD) matrix. We also propose and validate a new data-driven
method that improves accuracy in case of longer PIs. The new method first learns temporal patterns in activities and trips,
based on travel diaries, that are then used to infer activity-travel patterns from the (sparse) GSM traces. Both steps are data-
driven thus avoiding any a priori (behavioral, temporal) assumptions. To validate the method we use synthetic data generated
from a calibrated agent-based transport model. This gives us ground-truth OD patterns and full experimental control. The
analysis results show that with our method it is possible to reliably reconstruct OD matrices even from very small data sam-
ples (i.e., travel diaries from a small segment of the population) that contain as little as 1% of the population’s movements.
This is promising for real-life applications where the amount of empirical data is also limited.

Keywords
data analytics, machine learning (artificial intelligence), mobility, passive data, supervised learning, telecommuting, transporta-
tion planning analysis and application

The design of transport infrastructure, services, poli-
cies, and technology all starts with an understanding of
travel demand. Travel demand relates to people’s spa-
tial and temporal patterns of activity locations and
associated trips from one location to the next, and are
commonly aggregated into origin–destination (OD)
matrices. One data source in this is Global System for
Mobile Communications (GSM) data as they allow
people to be traced (carrying the mobile phone). The
time between consecutive location updates is called
polling interval (PI), and evidently affects the accuracy
with which we can reconstruct people’s spatio-temporal
travel patterns.

Traditionally, traffic planners use direct methods,
including roadside and household surveys, conducted
every 5 to 10 years (1) for estimating the OD matrix.

While these methods are making essential contributions
to the traffic demand field, exclusively using survey data
makes the estimations liable to sampling bias and report-
ing errors (2–4) because travel surveys provide a high
level of detail (LOD) as regards activity and movement
behavior with minimal sampling ratios. Conversley,
mobile phones have generated a wealth of low-cost GSM
data on people’s movements. These movement traces are
often of reasonable sample size but contain (much) less
detail than survey data. Generally, GSM data contain
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discretized traces of users without precise indicators of
time and location of the underlying activities or activity
types. Therefore, before being used to estimate the OD
matrix, the data need to be analyzed.Combining travel
diaries in such GSM analyses could potentially lead to
the best of both worlds; that is, the high sampling ratio
of mobile phone data combined with the high LOD (con-
cerning spatial and activity patterns) in travel diaries.

Fundamentally, two types of synthetic and real-
world data sets are used in demand estimation research.
Real-world GSM data sets can offer voluminous infor-
mation about millions of mobile phone users. However,
the problem with them is the privacy issue and diffi-
culty of carrying out reliability and validation experi-
ments. In fact, in the early analysis phase of research,
using synthetic data for assisting in the operational tests
and evaluation has been strongly advocated (5).
Conducting experiments using such data helps us to
evaluate the effects of various potential components in
our models. Therefore, in this paper we used synthetic
(travel diary and GSM) data to validate our methods.
Moreover, it enabled us to produce many ground-truth
training sets for statistical learning and reliability
testing.

Our method addresses some key questions concerning
the accuracy and robustness of OD matrices estimated
from GSM data related to the temporal discretization.
Clearly, such discretization errors could be reduced by
choosing smaller PIs between records. However, this is
often not possible since, by their very nature, GSM
records are spatially coarse and temporally infrequent
(e.g., Becker et al. [6], Burkhard et al. [7], and Chen et al.
[8]). To date, few studies have investigated the

relationship between GSM quality and mobility pattern
detection (e.g., Calabrese et al. [9] and Chen et al. [10]).
To the best of our knowledge, no study has looked specif-
ically at the effects of GSM data temporal frequency on
the estimated OD matrix. This paper is the first to exam-
ine these effects. To do this, we quantify the temporal
quality of the data using PI, defined as the time interval
between consecutive records, where a record is an update
on the current location of the mobile device. (Note that
the inverse of the PI is referred to as polling frequency.)

There are two consequences to the temporal record of
events is being descretized (with the PI). The first effect is
that the recorded start and end times of each underlying
event (an activity or travel between activities) occur later
than the actual start and end times. This discretization
error can vary from zero to the PI value. For instance, if
we poll the user epsilon before the actual event time, the
interpreted time is about one PI later.

To illustrate, Figure 1a shows several GSM records of
a user. Note that while the reported locations in the
empirical GSM data belong to the antenna that receives
the cell phone signal, in this example, we assume that
these records are the user’s exact locations. The spatial
changes and errors could be investigated in separate
research—here, we focus on temporal effects only.
Therefore, the person has been observed in five locations
(Figure 1b) named {A, B, C, D, E} with a constant PI of
15min. However, the actual travel diary implies that
only in two of the reported locations (A and D) activities
occur (work and home); thus, understanding whether the
user is traveling or staying (engaging in an activity) in
each record requires developing a separate procedure.
To decide on the event type (travel or stay), one could

Figure 1. An example of the Global System for Mobile Communications (GSM) records of a user: (a) a prototype of GSM traces and (b)
visual representation of traces in (a).
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for instance use each event’s starting time and duration.
Moreover, based on Figure 1a, the user was observed in
A from 15:35 to 16:20, but the actual traces imply that
the user stayed at the mentioned location from 15:23 to
16:15 to work; therefore, owing to time discretization,
delay in observing the start and end of each event is inev-
itable. How PIs affect the resulted OD matrix (under dif-
ferent conditions) is part of this study.

The second—and related—consequence of time dis-
cretization is the discrepancy between observed and
actual activity (or travel) duration. For instance, in
Figure 1, the perceived duration of A is 45min;
whereas, the actual duration is 52min. This duration
discretization error ranges from -PI to PI. In fact, we
may even lose a fraction of OD trips (i.e., observed
with zero duration) because the data might not capture
specific trips with duration less than the PI. For exam-
ple, activities that last less than one minute could easily
be missed from the GSM data with high PI. In many
cases, detecting such short-time activities is not very
useful from a travel demand perspective. However, if
activities are longer (e.g., more than 15min), it might
be insightful to configure them. Consider for example
three activity categories—home, work, and other—rep-
resenting staying at home, working, and engaging in
other types of activities, respectively. One could argue
that for OD matrix estimation, the distinction between
stay (on a specific location) and travel (between loca-
tions) is sufficient. Home and work are major activities
from a traffic planner’s perspective since they account
for a large part of travel diaries. Additionally, they
often have aggregated daily durations of a couple of
hours, making them more likely to be captured, even
with very coarse PIs. However, other encompass all
activities made for less common purposes, such as
shopping, socializing, and health. The duration of these
is usually much shorter than home and work. The max-
imum PI (for having cell phone reception in case of no
network connection) adopted by the telecommunica-
tion company is about 2 h. Consequently, there are
interactions between the mix of activity durations and
PIs, whose effects on the reconstructed OD matrix are
not fully understood. It is our aim to gain a better
understanding of how the reconstructed OD matrix
deteriorates by testing a range of duration–PI combina-
tions (from 1min to 2 h).

To this end, our approach is threefold.

� Pre-processing and ground-truth analysis: First, we
generate synthetic GSM data directly from a
detailed set of ground-truth travel diaries.
Furthermore, to train our GSM interpretation
method (for event-activity type detection), called
the kernel-based approach (KA), we select a

random 1% sub-sample from the ground-truth
travel diaries.

� Developing and applying KA and OD matrix deter-

mination: Second, we develop and validate the KA
algorithm by which we reconstruct the travel diary
of each person for determining the OD matrix
from the interpreted GSM data.

� Comparison of OD matrices: Third, we compare
the reconstructed and actual OD matrices derived
from the interpreted GSM data and ground-truth,
respectively, where we use multiple evaluation
metrics.

This way, our analysis studies the mixed effect of the PI
and temporal criterion. Our method adopts this interac-
tion (derived from the training data) to discern activities
from trips on the reconstructed OD matrix. Therefore,
our results show the causes that affect the accuracy and
robustness of the estimated OD matrix using GSM
traces.

In this research, the following contributions are made:

1. We propose and evaluate a data-driven method
for interpreting GSM data, which does not rely
on a priori assumptions of activity-travel beha-
vior, and therefore is applicable for both
synthetic-experimental analyses (as in this paper)
and empirical-practical implementation.

2. We show that even a small portion of the popula-
tion could train our method for location-activity
type detection of GSM records. This method
could further be trained when more observations
are available.

3. We provide an overview of the effect of the under-
lying PI on the resulting OD matrix. Our analysis
results also imply that the shorter the activity
duration, the less its possibility to be identified
correctly.

4. We show when randomness in the OD matrices
spike relatively to how frequently we poll the
users.

As a case study, the research is performed with the
data of the Amsterdam region in The Netherlands. We
assume to have GSM data of a given population (i.e., we
do not deal with the second-part problem of scaling from
GSM sample toward full population) as well as a limited
amount of travel dairies (i.e., 1% of the given
population).

The next section of this paper explains fundamental
characteristics of GSM data that need to be accounted
for. That is followed by a section that describes the
research data and the implemented method. Next, we
evaluate the proposed method, present the results of
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applying the method on the GSM data for reconstruct-
ing the OD matrix, and compare it with the ground-truth
OD matrix. The paper concludes with a conclusion and
outlook section.

GSM Data in General and as Used in This
Study

Basically, three main types of GSM data are generated
by telecommunication companies:

� The first type is call detail record (CDR), which
constitutes a majority of GSM data in transport
research (e.g., Calabrese et al. [9] and Chen et al.
[10]). It includes event-based history information
on the communication of a specific device, which
consists of calls, SMS (short message service),
internet connections. CDRs consist of the time-
stamp, call duration, type of events (voice call,
SMS, data), and the cell’s code in which the event
occurs. Consequently, recording phone positions
is dependent on the users’ communication beha-
vior. Therefore, we need to assume on how to gen-
erate synthetic CDR. For instance, a random
communication rate derived from a Poisson distri-
bution between a minimum and maximum rate
can be assumed for each user. A more mature and
complex scenario uses discrete choice theory,
which is based on utility maximization; that is, it
couples agent’s decisions to attributes of the alter-
natives and agent’s environment.

� The second type is named signaling data which
informs us of the location area (LA) of the mobile
phone on a permanent basis. Nonetheless, its spa-
tial resolution is much lower than CDR because
each LA includes more than a hundred base sta-
tions (11). Therefore, this type of data does not
seem suitable for demand estimation and activity
analysis for transportation purposes.

� The third type which is called periodic location

update (PLU) contains anonymous user ID code,
time of the day, and location coordinates. Unlike
CDR, PLU does not involve mobile phone users
for storing their records. In fact, the GSM operat-
ing system decides on when to collect all users’
data. Additionally, the spatial resolution is the
same as CDR. Moreover, the PI is constant
among all users independently from their beha-
viors. Thus, the random errors of the data has
been partially eradicated owing to the fixed inter-
val of records. As a result, activity locations would
be detected efficiently and by shorter data collec-
tion time. However, compared to CDR, accessing
such data is an arduous task. Nonetheless, some

research has already used them in mobility
demand estimation (e.g., Zhang et al. [12]).

In this study, we used PLU instead of CDR because it
does not rely on a priori assumptions between GSM data
events and activity-travel behavior (which may otherwise
introduce behavioral biases if not adequately addressed).
Indeed PLU is therefore applicable for both synthetic-
experimental analyses (as in this paper) and empirical-
practical implementation.

As all types of GSM data capture the movement of
vehicles and people, they could be used in estimating the
travel patterns. However, one needs to deal with the new
challenges of developing, and validating of models
adopted for estimating the OD matrix. In fact, despite
the great opportunity of using GSM traces for OD
matrix estimation, several drawbacks cause obstacles
when it comes to practice:

1. Mobile phone data only observe the user’s pres-
ence at a certain point in time in a particular
mobile phone cell. Whether the person was travel-
ing then or attending an activity cannot be
directly concluded (5). Therefore, one must inter-
pret the GSM traces to reconstruct the travel pat-
terns. Several previous researchers have specified
a certain duration (or speed) to make a distinction
between stay and pass-by locations in the GSM
records (e.g., Iqbal et al. [13], Alexander et al.
[14], and Demissie et al. [15]). For instance, Iqbal
et al. (13), Alexander et al. (14), and Demissie
et al. (15) assumed that a trip is recorded if in the
CDR, subsequent entries of the same user indicate
location change with a time difference of more
than 10min but less than 1 h. By contrast, Wang
et al. (16), assumed that if the duration between
two consecutive records is more than the sum of
assumed minimum activity duration (e.g., 2 h)
plus time needed to get from previous location
plus time needed to get to the next location, then
the current location should be identified as a stay
location. In another study, Bachir et al. (17)
grouped stay points according to a speed thresh-
old Dn\10 km/h and a duration threshold Dt.15

min; therefore, a device was stationary if the dura-
tion between the first and last stay points lasted
several minutes, with a low speed. Records not
fulfilling this condition were considered as pass-by
points. However, all the mentioned studies, raise
a question of how to select and validate the clear-
cut duration or speed.

2. Studies that intend using GSM traces are hin-
dered by privacy protection regulations. A con-
ventional procedure obligates the researcher to
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use only the minimum of information needed for
the study in the form of aggregated results that
do not focus on individual phones (6). This kind
of data is regularly achieved by decreasing time
resolution and increasing space granularity (e.g.,
Bianchi et al. [18]); Therefore, the available data
are spatially coarse and temporally sparse (6–8).

3. Another challenge which only results from using
CDR is that mobility analyses based on such data
could be biased (19) since recording phone posi-
tions is based merely on the users’ communication
activities, which are unevenly distributed in space
and time.

This research adopts three strategies to avoid each of
the indicated issues:

� Simulated testbed: Using simulation in the initial
research analysis phase has been vigorously pro-
moted (5). This environment allowed us to set up
a coherent synthetic testbed to evaluate the effects
of various potential components in our models.
This environment promises solutions to the first
deficiency concerning real-world GSM traces since
users’ actual activity locations are available.
Therefore, it is possible to verify our methods of
interpreting GSM data.

� Synthetic instead of empirical data: Synthetic data
is the preferable solution for developing a new
method and comparing its performance with vari-
ous methods to initially decide which models and
methods to use on real-world data. Using syn-
thetic data, no privacy concern is involved.
Moreover, to the best of our knowledge, such

highly detailed empirical data are hardly available,
at least in the Netherlands. Therefore, using the
synthetic data is not only advised but also neces-
sary. There is no doubt that the proposed meth-
ods’ final evaluations and performance
measurements have to be fulfilled using real data.

� PLU instead of CDR: The dependency of the
demand estimation on user’s communication
activities could be dealt with using the second type
of cell phone data, PLU (12). Since PLU has con-
stant PF for the whole participants, independently
from their behaviors, OD estimation’s bias toward
more active GSM users, specific periods, and
areas would be partially eradicated.

Material and Method

Experimental Framework

As discussed in the previous section, to use GSM data in
mobility pattern detection, we need to deal with three
issues (i.e., not reporting actual activity locations,
privacy-related aggregation, and dependency of CDR on
the user’s GSM activities). Considering these three stra-
tegies mentioned in the previous section, Figure 2 repre-
sents the overall experimental design of this research in
six steps:

1. Pre-processing and selecting the intended users;
for example, owing to computational reasons, we
only considered users with the car mode. In this
step, data cleaning, reduction, and transformation
take place.

2. Analyzing the ground-truth, which is twofold:

Figure 2. Overall experimental framework.
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(a) aggregating the travel patterns of the entire
population to form the ground-truth OD
matrix;

(b) developing and evaluating our KA method in
reconstructing users’ traveling patterns from
the PLU; concerning method developing, we
assumed to have PLU of all users. Then, travel
diaries of 1% of the users trained our KA
method. This prior knowledge specified the
temporal routines of travels and activities,
which allowed the Bayesian Classifier in our
method to make distinction between stay and
pass-by. The same way, the overall type of
each activity (home, work, or other) could be
detected.

3. Generating the synthetic PLU directly from the
ground-truth. This is done by applying the PF to
the activity-travel patterns, to derive their loca-
tions at a given interval.

4. Applying the KA method on the synthetic PLU to
reconstruct the travel diaries.

5. Determining the OD matrix from the recon-
structed patterns.

6. Comparing the actual and reconstructed OD
matrices using several measures which are intro-
duced in the next part.

Kernel-Based Approach of Estimating the OD Matrix

In this section, the features of the proposed KA method
are discussed, which mainly focus on the steps 2.b, 4, and
5 of Figure 2. Then, the fundamental concepts of the
Bayesian approach are discussed. The next part explains
kernel density estimation (KDE), which we used for
extracting temporal routines from the training set. The
following part explains the applied spatial aggregation
on the synthetic GSM data. The comparison measures
used in step 6 are also introduced in the last part.

As mentioned previously, PLU periodically observes
each cell phone at certain places. However, figuring out
whether the person engages in an activity or simply
passes by needs further investigations. To identify loca-
tion type (stay or pass-by) and activity category (home,
work, or other), we use a Bayesian classifier. Bayesian
inference is regularly applied to estimate distribution
parameters from data. In our research, a random 1%
sub-sample from the ground-truth data is selected to
train the Bayesian classifier. Furthermore, using
Bayesian inference, it is possible to update conclusions
based on this training set by incorporating new observa-
tions (20).

As indicated before, several studies in the literature
have addressed the problem of location type

identification in GSM data. Additionally, they have
mostly used a time boundary to discern stay from pass-
by (e.g., Iqbal et al. [13], Alexander et al. [14], and
Demissie et al. [15]); that is, they impose a specific
duration as a clear-cut distinction between stay and
pass-by. However, in this research, the Bayesian classi-
fier only learned from a training sub-set, randomly
selected from the entire travel-activity patterns. In fact,
the classifier infers the time boundary from the training
set’s temporal routines and applies it to the PLU to dis-
tinguish each user’s stationary locations. Temporal
routines allude to the distribution of duration and start
time of records that are intended to be classified. The
major merit of Bayesian inference is that the data in
the training set are allowed to ‘‘speak for themselves’’
in determining location type; much more than in the
case when the location type would be detected using
pre-specified duration boundaries.

The primary logic behind selecting the duration and
starting time of events as explanatory variables is that
people’s location and activity types are correlated with
their temporal patterns.

For instance, trips in urban areas often have duration
of less than an hour, whereas stays (i.e., activities) usually
last for a couple of hours. Additionally, activity category
of home mainly starts in the afternoons or early evenings
and takes more than six hours. Work also largely takes
more than 5 h; however, they normally start from the
morning. Systematically considering these differences in
the distributions enabled us to distinguish each event or
activity from others.

To understand how we measure the observed duration
and start time, consider the example in Figure 1. The first
record of each event (i.e., stay or pass-by) is labeled as
the start. Accordingly, the start of A, B, C, D, and E are
15:35, 16:20, 16:35, 16:50, and 17:50, respectively. The
first record of the next event is labeled as the end of each
event, thereby the end times A, B, C, and D are 16:20,
16:35, 16:50, and 17:35, respectively. Since the duration
is the difference between the end and start time, with a
constant PI (here is 15min), the durations would be mul-
tiples of PI.

Bayesian Classifier. The proposed method, considering
pre-specified temporal patterns, estimates the probability
of stay and pass-by or activity categories. This approach
is general in that it can be applied to diverse mobility
patterns and data sources. We leverage the correlation
between people’s location and activity types with the
duration and start times of events, as the event classes
influence their temporal patterns. Given the cause (event
class), the duration and starting time are conditionally
independent (see Russell and Norvig [21]). Therefore, the
full joint distribution can be written as
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P(Y ,X1, � � � ,Xn)=P(Y )
Y

i

P(XijY ), ð1Þ

where Y is the event class and can be either location type,
with two classes—stay and pass-by—or activity type,
with three classes—home, work, and other. Furthermore,
Xi is the effect and consist of two temporal variables:
duration and starting time. Such a probability distribu-
tion is called a naive Bayes model—‘‘naive’’ because it
does not account for cases where the effect variables are
not truly conditionally independent given the event class.
Practically, the naive Bayes method can work surpris-
ingly well, even when the conditional independence
assumption is violated (21).

The naive Bayes model is sometimes called a Bayesian
classifier since often maximum a posteriori (MAP) esti-
mation concept is used for classification (22); that is, the
Bayesian classifier assigns the most probable class ŷ to
the observed data X . Defining P(yjX ) as the probability
of class y given that X = x1, � � � , xn was observed, the
Bayesian classifier evaluates the following maximization
scheme (see Yair and Gersho [23]):

ŷ= argmax
y2f1, ���, Yg

fP(yjX )g= argmax
y2f1, ���, Yg

P(y)
Yn

i= 1

P(xijy): ð2Þ

The quantities P(yjx) are known as the a posteriori (or
class) probabilities, and the Bayesian classifier supplies
the MAP decision.

Kernel Density Estimation. The assessment of the a poster-
iori probabilities using Bayes rule requires an a priori

knowledge about the probability density functions of the
priors. The probability density function of the priors,
which are duration and start time of events (activities
and trips), needs to be estimated. Assuming that the
observed data points in the training set are a sample
from an unknown probability density function, density
estimation is the construction of an estimate of the den-
sity function from the training set. In this regard, KDE
is currently the most popular non-parametric approach
for probability density estimation (24, 25). Non-para-
metric density estimation is an alternative to the para-
metric approach in which a model with a small number
of parameters is specified and, using maximum likeli-
hood, the model is calibrated. However, non-parametric
density estimator is aimed to estimate the density of a
variable from a sample set without assuming any specific
form for the density function (24–27). As we generally
happen to know very little about the given data, a gen-
eral smoothness assumption is a reasonable choice.
Accordingly, we selected the Gaussian kernel estimation
(see Smola et al. [28]). Therefore, our proposed method
is named the kernel-based approach (KA).

Given N independent observations xN =X1, � � � ,XN

from an unknown continuous probability density func-
tion f on X , the Gaussian kernel density estimator is
defined as

f̂h(x)=
1

N

XN

i= 1

f(x,Xi; h)8x 2 IR, ð3Þ

where

f(x,Xi; h)=
1ffiffiffiffiffiffiffiffiffi
2ph
p exp

�(x�Xi )
2

2h

is a Gaussian kernel with location Xi bandwidth
ffiffiffi
h
p

.
Many researchers have focused on the optimal choice of
h, since bandwidth selection greatly affects the estimate
obtained from the KDE (much more than the shape of
the kernel) (e.g., Jones et al. [29], Sheather and Jones [30],
and Botev et al. [31]). In this research, bandwidth selec-
tion was made by a ‘‘rule of thumb’’ following Scott’s
Rule (see Scott [32]), which suggests that the optimal
bandwidth is n

�1
d + 4 in which n is the number of data points

and d is the number of dimensions.

Spatial Aggregation of GSM Data. As already mentioned, the
reported locations in the empirical GSM data generally
belong to the antenna that receives the cell phone signal.
This naturally means that the highest spatial resolution
of the data is the antennas’ coverage areas. Therefore, to
demonstrate such a spatial aggregation effect, we used
the associated OD zones instead of the exact location
coordinates. This means that each OD zone represents
one antenna. Also when users only travel inside a zone,
their movements are not observed because it is like the
person has stayed in one location representing that OD
zone (as shown in Figure 3). Under this setting, the
hypothetical antennas for each zone are shown in the
figure.

In addition to the duration and start time, the location
of each activity provides information about the activity
category. A hierarchical model is applied to the locations
(i.e., OD zones) in the training set to estimate the a priori
for each spatial zone in the Bayesian model. This hier-
archical model estimates the probability of each activity
category in each OD zone. The activity category is drawn
from a categorical distribution with the parameter spe-
cific to each zone. This parameter is drawn from a
Dirichlet distribution with parameter a assumed to be
unique among all the zones (we assumed it be a vector of
one which is equivalent to a uniform distribution).

ud = 1���M ;DirichletK (a) ð4Þ

zd = 1���M , n= 1���Nd
;CategoricalK (ud) ð5Þ
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where
z the activity category of the observation,
a the hyper-parameter vector of the Dirichlet prior,
M the number of zones,
N the number of records, and
K the number of assumed activity categories (three

here).
We investigate whether considering the spatial vari-

able under the mentioned setting will improve the model
accuracy for our data set.

OD Matrix Comparison. To evaluate the performance of
the proposed method for OD matrix estimation, as well
as evaluate the effect of polling frequency hereon, a
metric is needed that measures the accuracy of the esti-
mated OD matrix against the ground-truth OD matrix.
OD matrices can be compared in two complementary
ways. Firstly, the degree to which the estimated OD
matrix correctly represents the absolute amount of
demand between all individual OD pairs. Secondly, the
degree to which the estimated OD matrix correctly rep-
resents the relative demand pattern seen across OD
pairs (33).

For the former absolute comparison, traditional
measures such as mean absolute error (MAE) (see
Ashok and Ben-Akiva [34] and Lo and Chan [35]), and
R-squared (see Tavassoli et al. [36]) can be used. Here
we use MAE to compare the OD pair values in the two
matrices.

For the latter relative comparison, the geographical
window-based structural similarity index (GSSI) (37) is
capable of distinguishing structural differences owing to
the geographical closeness of OD zones. Here we use

GSSI to compare the correlation of OD pair values
across geographical windows (where OD zones with geo-
graphical proximity belong to the same window).

Method Implementation

The experiments are done on daily activity plans of
agents derived from the nationwide activity-based model
ALBATROSS (38). All agents are selected for which at
least one household member uses the mode car to per-
form at least one activity within the Amsterdam region
(39). This leads to the activity plans of 22,000 agents dur-
ing a representative working day.

Note that we use synthetic (model-generated) activity
plans in the KA step, our method estimates temporal
patterns of location and activity types. Therefore, to
ensure generalizability of our method toward empirical
travel diary data, it is important to emphasize that the
ALBATROSS model does not assume any a priori (theo-
retical) distribution of activities, but instead uses decision
trees that are directly calibrated from travel diaries.
ALBATROSS implements a sequential decision-making
process to generate an individual’s schedule. Empirical
demand data are employed to induce a decision tree for
each step in the scheduling process (40). Thus, the model
framework (i.e., decision tree) does not restrict the activ-
ity’s temporal pattern to a specific distribution. Decision
trees can describe discontinuous impacts of discrete attri-
bute variables on decision making. Therefore, our KA
step’s ability to capture the temporal distribution of loca-
tion and activity types is grounded in the underlying
empirical travel diaries. This is important, because other-
wise if the synthetic data were based on a model that
adopts a (parameterized) distribution function to simu-
late activity patterns, then the temporal distributions
might have been artificially imposed by the model struc-
ture (i.e., a model assumption, not a model result).

The agents’ activity plans are simulated using
MATSim (41), which is an open-source agent-based
transport simulation model. The MATSim model output
is used to generate synthetic PLU data as follows.

The experienced plan output contains basically the
traces of each agent in our data set. This file represents
the ground-truth OD matrix. One percent of these agent
traces is sampled to be used as travel diaries in the KA
step of our method (to estimate the Bayes model distin-
guishing stay and pass-by locations, and detecting the
activity category).

The snapshot output contains the records of all agents
per snapshot interval, which is conveniently used (with
slight modifications concerning formatting) to generate
our synthetic PLU traces. The resulting PLU format is
shown in Figure 1a in which the associated OD zone rep-
resents the location.

Figure 3. Origin–destination (OD) zones assumed to represent
the antennas’ coverage areas.
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The OD zoning system is an aggregated version of 4-
digit postal codes in Amsterdam leading to 115 zones
(Figure 4a). When computing the GSSI metric (i.e., struc-
tural similarity between OD matrices) these are aggregated
to 50 geographical windows as displayed in Figure 4b.

Results and Discussion

In the following, we present the KDE results and evaluate
the KA performance in detecting location types and in
detecting activity types. This is done for a random train-
ing set. Then we show how robust these results are against
selecting the training set. Finally, we shows the accuracy
of the reconstructed OD matrices for a range of PIs.

KDE Results

As mentioned in the previous part, the proposed metho-
dology is trained using a 1% subsample of the ground-
truth data, and its performance is tested on the entire
ground-truth data set.

An example result of applying KDE on the training
set (based on one example random seed for selecting the
training set) is given Figures 5 and 6 for location and
activity category detection, respectively. For each loca-
tion/activity type, two distributions of duration and
starting time are calculated. Having assumed two loca-
tion types of stay and pass-by and three activity cate-
gories of home, work, and other, ten distributions are
fitted to the training data. The KDE simply fits a smooth
curve to the data and introduces the likelihood required
for the Bayesian classifier. As we usually happen to know
very little (in our case 1% of the population) about the
ground-truth, a smoothness assumption for the training

set’s density estimation is justifiable. The smoothness
assumption prevents over-fitting caused by sparse sam-
pling when the training data, like in our framework,
come from a small proportion of the population. It is
worth mentioning that the smoothing assumption can be
relaxed in case the training data represent the entire pop-
ulation more thoroughly.

It can be inferred from Figure 5, b and d, that the start
time pattern of trips and activities follow a close distribu-
tion. Consequently, the KA distinguishes the event types
merely based on the duration distributions which follow
different pattern in each event type. As a result when
duration patterns of activity and trip are similar, mispre-
diction of location type takes place. Considering Figure
5, a and c, mispredictions might happen when duration is
less than 45min.

For such cases, the location of the record plus tem-
poral features might give a more precise prediction of the
event and activity category. However, this is only true if
the spatial resolution of the data is high enough to recog-
nize different land-use types from each other. In fact, in
dense urban environments like Amsterdam, assuming
high spatial resolution for GSM data is not realistic.
Because various events and activity categories take place
in a small area and to estimate a reliable probability of
each, the GSM antennas have to be unnecessarily closer
to each other. Perhaps for sparsely developed urban
environments, using spatial variables in the KA model
becomes reasonable.

KA Performance Concerning Location Type

The performance of the KA classifier for location type
detection is shown by the confusion matrix in Table 1.

Figure 4. Zone boundaries applied to this study: (a) Amsterdam origin–destination (OD) zones and (b) high-level boundaries as
geographical windows.

300 Transportation Research Record 2677(9)



The results show that 92% of all stay and 97% of all
pass-by locations were detected correctly, using the pro-
posed methodology (overall, in 94.4% of the time, the
location type was distinguished correctly). Based on
Table 1, KA underestimated the stay locations.
Accordingly, overestimation in pass-by locations occur
at the same time. Therefore, in stay detection, we often
had false-negative errors, and in pass-by detection, false-
positive errors happened the most.

As already mentioned, owing to closeness of stay and
pass-by starts, duration of events has a more significant
role in differentiating them. Observing the results showed
that the minimum duration of correctly recognized stays
was about 44min. Therefore, it seems that KA specifies
a duration threshold to separate stays from pass-bys.
Although this threshold is selected by analyzing the tem-
poral distributions in the training set, it cannot entirely
divide stays and pass-bys owing to overlaps around the
threshold. In fact, our analysis shows that about 88% of
activities have duration of more than 44min, whereas,

96% of trips endure less than 44min. Thus, activities are
less probable to be recognized. This justifies the underes-
timation in activity detection in Table 1.

Variable Selection and Model Performance in Activity
Category Inference

In our model we included predictors that help maximize
the activity category accuracy. To select the model’s
explanatory variables, we considered three states: First,
only spatial variable; second, spatial and temporal vari-
ables together; third, only temporal variables. The associ-
ated confusion matrices are shown in Tables 3, 4, and 5.
The overall performance of the classifier for activity cate-
gory detection for each of these states is shown in Table
2. The precision score is a ratio that shows the quality of
positive predictions made by the model and is defined by
the number of true positives divided by the total number
of positive predictions so that 100% precision implies no
false positives. However, this typically coincides with a

Figure 5. Application of kernel density estimation (KDE) for location type detection: (a) trip duration, (b) trip start time, (c) activity
duration, and (d) activity start time.
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Figure 6. Application of kernel density estimation (KDE) for activity type detection: (a) home duration, (b) home start time, (c) work
duration, (d) work start time, (e) other duration, and (f) other start time.
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lower recall score, which is defined as the number of
true positives divided by the sum of true positives and
false negatives, so that 100% recall implies no false
negatives. In an imbalanced classification, the balanced

accuracy is the average of the recall score obtained in
each class.

The results (Table 2) show that considering only OD
zones leads to accuracy scores as low as 36.6%. Also, based
on Table 3, this model seems to be biased toward detecting
home as more than 80% of other categories are incorrectly
labeled as home. Figure 7 also shows that in most OD zones
the probability of home is more than the other two.

Table 1. Confusion Matrix of Applying the Methodology on the Entire Ground-Truth for Location Type Recognition

Observed stay Observed pass-by Total predicted

Predicted stay 54,231 (91.8%) 1,799 (3%) 56,030 (47.4%)
Predicted pass-by 4,822 (8.2%) 57,254 (97%) 62,076 (52.6%)
Total observed 59,053 (100%) 59,053 (100%) 118,106 (100%)

Table 2. Performance Metrics of the Three States used for Activity Type Recognition

State Only spatial variable Both spatial and temporal variables Only temporal variables

Precision score 0.4211 0.9019 0.9058
Recall score 0.4792 0.8931 0.8969
Balanced accuracy 0.3659 0.9086 0.9144

Table 3. Confusion Matrix of Applying the Method using Only Spatial Variable on the Entire Ground-Truth for Activity Category
Recognition

Observed home Observed work Observed other Total predicted

Predicted home 25,434 (92.8%) 10,952 (80%) 15,242 (84.8%) 51,628 (87.4%)
Predicted work 488 (1.8%) 585 (4.3%) 447 (2.5%) 1,520 (2.6%)
Predicted other 1,476 (5.4%) 2,151 (15.7%) 2,278 (12.7%) 5,905 (10%)
Total observed 27,398 (100%) 13,688 (100%) 17,967 (100%) 59,053 (100%)

Table 4. Confusion Matrix of Applying the Method using Both Spatial and Temporal Variables on the Entire Ground-Truth for Activity
Category Recognition

Observed home Observed work Observed other Total predicted

Predicted home 22,659 (82.7%) 111 (0.8%) 568 (3.2%) 23,338 (39.5%)
Predicted work 223 (0.8%) 12,899 (94.2%) 217 (1.2%) 13,339 (22.6%)
Predicted other 4,516 (16.5%) 678 (5%) 17,182 (95.6%) 22,376 (37.9%)
Total observed 27,398 (100%) 13,688 (100%) 17,967 (100%) 59,053 (100%)

Table 5. Confusion Matrix of Applying the Method using Only Temporal Variables on the Entire Ground-Truth for Activity Category
Recognition

Observed home Observed work Observed other Total predicted

Predicted home 22,458 (82%) 52 (0.4%) 175 (1%) 22,685 (38.4%)
Predicted work 289 (1.1%) 12,963 (94.7%) 248 (1.4%) 13,500 (22.9%)
Predicted other 4,651 (17%) 673 (4.9%) 17,544 (97.6%) 22,868 (38.7%)
Total observed 27,398 (100%) 13,688 (100%) 17,967 (100%) 59,053 (100%)
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Adding temporal variables in Table 2 increases the
overall accuracy to around 90%. However, owing to the
presence of the spatial variable, the results are slightly
biased toward home (Table 4). Table 5 confirms this
because as the accuracy of home detection is reduced, the
accuracy of work and other increase. Overall, the highest
accuracy is achieved by considering only temporal vari-
ables in Table 2. Therefore, using location does not
improve the overall activity category detection under the
considered spatial level of aggregation, and using only
temporal variables suffices. If detecting home is of a
higher priority, considering location alongside temporal
variables becomes a preference.

The results in Tables 5 and 4 also roughly show that
false-negative errors occur mostly for home category.
Moreover, most of the false-positives are revealed for
other. Focusing on when the method fails to detect the
right activity type, Figure 8 presents the distribution of
false-negative error in predictions over duration for home.
Since the long duration of home discriminate this type of
activity from other categories, false negatives mostly
occur when it comes to shorter duration (less than 5h).
Figure 9 shows the actual duration distribution of other.

Similarity of the distributions in Figure 8 and 9 shed
light on why the methodology might confuse home with
other. Moreover, Figure 10 presents the distribution of
false negative error in predictions over start time for
home. Figure 11 displays the actual start time distribu-
tion of other.

The afternoon peak in both figures give rise to confu-
sion of home with other activities. Thus, activity type is
estimated based on the start time and duration of stay,
but under specific conditions such as short activity dura-
tion in the early evening the temporal distributions are
nonconclusive; that is, owing to the sporadic closeness of
the temporal pattern of home and other, misprediction
may occur.

Sensitivity of KA Results to Training Set Sampling

To evaluate the sensitivity of the randomly sampled
training set (seed and size), the analyses in the previous

Figure 7. Average probability of each activity category based only on location origin–destination (OD) zone.

Figure 8. False negatives based on the duration of home.
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sections were repeated using 50 different seeds. Figure 12
presents the KA performance (i.e., accuracy) in location-
activity type detection across these 50 seeds.

The KA performance appears robust for different
random seeds. This is further tested statistically using a
Chi-square test on two random sub-samples each con-
taining the performance for 25 different seeds (i.e.,
training sets). With a significance level of 0.05, the null-
hypothesis that the two sub-samples belong to the same
distribution could not be rejected (i.e., we cannot con-
clude that the KA performance derived from different
sub-samples of random training sets would yield differ-
ent distributions).

In the previous sections we evaluated the KA perfor-
mance for a single random training set. The results of the
Chi-square test indicate that a sample size of 25 is robust
to evaluate the KA performance. Therefore in the follow-
ing section the accuracy of the reconstructed OD matrix
is evaluated based on 25 experiment runs (i.e., across 25
different random seeds for training set sampling).

OD Matrices Comparison Results

This part presents the results of applying KA on the gen-
erated PLU from the ground-truth using MATSim. We
considered 18 various PIs in generating the PLU, which
are 30 and 60 s, every 5min from 5 to 60min, and every
15min from 1 to 2 h. Since non-linearity and variation of
results are high for PIs less than 2 h, these intervals were
selected Moreover, for more clarification on the correla-
tion of randomness of the results and the underlying PI,
all results were calculated for 25 different random seeds
(for selecting the training data from the ground-truth).
Having derived the OD matrices for the morning peak
(6:30 to 9:30) for both PLU and the ground-truth, we
compared the actual and reconstructed outcomes using
two performance indicators:

Figure 10. False negatives based on the start time of home.

Figure 12. Kernel-based approach (KA) performance in
location-activity detection on 50 different random seeds for
selecting the training set.

Figure 9. Actual duration distribution of other activities.

Figure 11. Actual start time distribution of other.
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1. MAE between OD pairs of reconstructed and
ground-truth OD matrices, which compares the
OD pairs values, and

2. GSSI (for further information refer to Behara
et al. [37]), which captures the structural similar-
ity between the two matrices.

Figure 13 describes the MAEs resulted from comparing
the ground-truth OD cells (as the observed values) and
the reconstructed OD cells (as the predicted values)
over a range of PIs. It is reasonable to see that the
average value of MAE gradually increases by reducing
the PF.

Conversely, drops and jumps in the MAE values (from
45 to 120min) might be attributable to the particular tim-
ing pattern of travels and activities (i.e., the context of
the data result in such changes). In fact, it seems that the
reliability of the method drops after PI= 45min.

To clarify the reliability fall, Figure 14 shows an
example of a user’s traces. Assuming that the letters show
the OD zone, the user’s actual traces, in Figure 14a, are
{A, B, C, B}, in chronological order. However, the traces
interpreted from the PLU with PI of 1min (Figure 14b)
are {A, B, B} which lacks the detection of C. This occurs
owing to duration of staying in C (30min), which was
less than the duration threshold (about 45min); thus, the
record was interpreted as pass-by. Likewise, when
PI= 40min (Figure 14c), the traces are {A, B, B}, but
owing to another reason—we lost activity C owing to
stay duration less than the PI value. Since travel demand
derives from people’s needs and desires to participate in
activities, there could be a condition to compensate for
such errors: When the interpreted travel pattern include
similar (close in location coordinates) successive activi-
ties, a missed activity is assumed to be in between. It is
located in the farthest record location between the two
similar activities. The start time and duration could be
derived using speed data and the distances between the
locations.

Important deviations are seen in Figure 14d. Since
PI= 45min exceeded the duration threshold (44min),
any record was considered as stay and the method’s job
was limited to only cluster the similar records.
Therefore, a significant number of imaginary stays
(i.e., activities) were generated; therefore, the traces in
Figure 14d were {A, A, B, B, C, C, B} and instead of
having four activities, we detected seven. The major
issue here is that the travel time between all these activ-
ities is zero, which is not feasible. Moreover, detecting
and alleviating these massive errors is complicated
owing to lack of information. Consequently, it is rec-
ommended to exclude users or scenarios with PI values
exceeding the duration threshold, as this boundary rep-
resents a critical value, after which a sudden change in

the performance of the KA for OD estimation happens.
Approximately 10 minutes after reaching this critical
value, the variance appears to decrease to levels even
lower than before, indicating greater stability of the
results against different random seeds underlying the
training set. This phenomenon happens because in PIs
more than 50min, the KA cannot detect short-time activ-
ities anymore. In other words, the remaining activities are
of long durations. For instance, home is more robust
against random seeds since its duration is much higher
than the PIs discussed here.

As another performance measure indicator, compar-
ing the structure of OD matrices, we derived the GSSI
for each of the PIs with 25 random seeds (Figure 15).
Basically, GSSI is in the range of [0,1] and the higher
GSSI indicate higher structural similarity of matrices.
Therefore, the gradually descending trend is perceivable
(owing to the inability to detect short time activities with
durations less than PIs) before the duration threshold,
but high variation is also noticeable. Concerning this, a
higher PI increases the probability of missing the activ-
ity, even when the PI is still below the activity duration.
In fact, higher PIs increase the delay range of detecting
the start and end of activities. As the range of interpreted
duration increases, the variation also rises, making misi-
dentification more likely to occur. Apart from the indi-
cated rationale, errors owing to the data characteristics
might also produce variation in the results.

To understand the changes in Figure 15, note that the
interpreted duration is a multiple of PI values.
Furthermore, as mentioned previously, about 88% of
activities have duration of more than 44min (the dura-
tion threshold), whereas, 96% of trips endure less than
44min. Thus, activities are more probable to be

Figure 13. Mean absolute errors (MAEs) related to
origindestination (OD) matrices resulted from 25 different
random seeds over 18 different polling intervals (PIs).
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Figure 14. Example traces of a user: (a) ground-truth traces, (b) interpreted traces when polling interval PI = 1 min, (c) interpreted
traces when PI = 40 min, and (d) interpreted traces when PI = 45 min.
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misidentified (i.e., stays have more false negatives than
pass-bys). However, under a special condition, activities’
false negatives decrease.

To take a closer look at the results in Figure 15,
Figure 16 shows the GSSI only for PIs less than the dura-
tion threshold. Since the input of KA is the interpreted
duration, identification of a stay requires to have an
interpreted duration more than the duration threshold
(45min), even if the actual duration is less than the
threshold. For instance, when PI= 10min and inter-
preted duration= 50min, it is probable that the record be
considered as stay even if its duration be in the range of
(40, 45) min. We call this range the fortunate range (FR),
which we define only to explain the results in Figure 16.
The length of FR causes the changes in GSSI value for
PIs less than the threshold. The FRs for our other PIs are
shown in Table 6. Notice that once the interpreted dura-
tion reaches the duration threshold, it is considered as
stay. The longest FR belong to PI= 25min. The same
PI got the highest GSSI in Figure 16.

Conversely, when the interpreted duration falls near
the duration threshold, the variation spikes. Accordingly,
PI= 5,15min have high variances. In fact, this variation
is higher for PI= 15min owing to longer FR—more sto-
chasticity. Naturally, between four PIs of 5, 10, 20, and
40min that have the similar FRs, the lower PI gets the
higher GSSI. PI values of more than the duration thresh-
old are not discussed owing to poor performance of KA
and many unreal generated activities.

Overall, it seems that when false negatives of stays are
more than that of pass-bys, the longest FR with a minimum
PI results in the highest GSSI; the most structurally similar
reconstructed OD matrix to the ground-truth matrix. In our
case, with duration threshold of about 45min, PI=25min
yields the highest GSSI. Basically, under the mentioned

circumstances, with duration threshold of T, the ideal PI is
T=2+ E where E is a very small value.

Research Limitations

This research had several strengths: It certainly adds to
our understanding of the effects of temporal character-
istics of PLU data on the accuracy and robustness of
the resulting OD matrix. It also proposes a data-driven
method for interpreting the raw PLU data.
Nonetheless, these findings must be interpreted with
caution, and several limitations should be borne in
mind as follows:

� Limited synthetic data: Real-world mobile phone
datasets can offer ample information about mil-
lions of mobile phone users. Nevertheless, their
limitation concerns the privacy issue and the diffi-
culty of carrying out reliability and validation
experiments (owing to the unavailability of the
ground-truth). To conduct operational tests and
evaluations, we used synthetic (travel diary and

Figure 16. Geographical window-based structural similarity
index (GSSI) related to origin–destination (OD) matrices resulted
from 25 different random seeds over eight different polling
intervals (PIs).

Table 6. Fortunate Ranges (FRs) for PI = (5, 10, 15, 20, 25, 30, 35,
40)

PI (min) Interpreted duration (min) FR (min)

5 45 (40, 45)
10 50 (40, 45)
15 45 (30, 45)
20 60 (40, 45)
25 50 (25, 45)
30 60 (30, 45)
35 70 (35, 45)
40 80 (40, 45)

Figure 15. Geographical window-based structural similarity index
(GSSI) related to (OD) origin–destination matrices resulted from
25 different random seeds over 18 different polling intervals (PIs).
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GSM) data, thus including the ground-truth by
design and without any privacy concerns.
However, the question is whether our findings are
generalizable toward empirical data. It is worth
mentioning that the ALBATROSS model (based
on which our data are generated) does not assume
any a priori (theoretical) distribution of activities
but instead uses decision trees that are directly cali-
brated from travel diaries. Therefore, the model
structure has not artificially imposed temporal dis-
tributions. However, a sampling bias in the origi-
nal travel diary used to train ALBATROSS might
be affecting the data’s representativeness in
describing the entire population.

� Conversely, the Bayesian model is naturally resis-
tant to non-informative predictors. Nevertheless,
owing to the naive nature of our model, incorpor-
ating the location in addition to temporal vari-
ables in activity category detection slightly
reduced the overall accuracy. This is because, in
naive Bayesian models, different prior variables
are assumed to be conditionally independent. This
assumption can be avoided by establishing the
correlation of prior variables, which usually
require a more extensive data set than the data
available in this study. Therefore, we acknowledge
a need for a future study (e.g., a longitudinal
study) to consider a fully Bayesian model to com-
prehensively describe the relationship between the
explanatory variables.

� Mismatch between traffic analysis zones (TAZ) and

base station coverage zones: This research assumes
that the base station coverage area is the same as
its associated TAZ. However, there is a mismatch
between the antenna’s coverage zone and TAZ in
practice. But we ignored this mismatch because the
base station coverage area is typically much
smaller than a TAZ. In fact, in the urban areas,
the size of a typical TAZ is about 2–5 km, and that
of a base station zone is about 50–200 m (42). To
investigate further, Figure 17 shows the cumulative
density function (CDF) of TAZ sizes. Accordingly,
the average TAZ size is about 15km which natu-
rally contains tens of base stations.

Therefore, the influence of the size of base station
areas on the quality of TAZ division is not significant in
urbanized areas (as is Amsterdam). In other areas and to
generalize the analysis, one needs base station distribu-
tion and location data to account for the errors in the
traffic activity analysis. It is worth pointing out that the
TAZs seem too large to capture short-distance trips.
Figure 18 shows the CDF of the trip distances in our
study. Accordingly, more than 10% of the trip distances

are less than 3 km, despite considering only car mode.
Undoubtedly, adding active modes of transport to the
analysis makes this proportion much higher. Despite the
large extent, coarse-sized TAZs used for transport plan-
ning (as used here) will inevitably eliminate such short-
distance trips.

� Positioning accuracy and disturbance (ping-pong

handover): Overall, OD accuracy is affected by
multiple factors, namely positioning interval, posi-
tioning accuracy, and positioning disturbance
(ping-pong handover). This paper only discusses
the effects of positioning intervals because we
assume this factor can be decoupled from the other
two and investigated in separate studies. Future
studies can empirically study positioning accuracy
in the presence of positioning disturbances.

Figure 17. Cumulative density function (CDF) of the traffic
analysis zone (TAZ) sizes in our study.

Figure 18. Cumulative density function (CDF) of the trip
distances in our study.
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� Disregarding up-scaling the sample OD matrix

toward the OD matrix of the entire population: The
available GSM data typically pertain to a sample
of the population. Therefore, the use of GSM
data to estimate OD matrices is a two-part prob-
lem (e.g., Iqbal et al. [13], Toole et al. [43], and
Mohanty and Pozdnukhov [44]). The first part is
to go from GSM traces of the sample population
to an OD matrix of that sample (usually using
zonal and temporal aggregation). The second step
is to go from the OD matrix of the sample to the
OD matrix of the entire population (usually using
weighted scaling). In this paper, we focus on the
first part of the problem—that is, to derive an OD
matrix for the (sampled) GSM traces—while
addressing how the PI affects the task of zonal
and temporal aggregation.

� Disregarding the mode of transport: Generally, the
Bayesian classifier is sensitive in modeling the
activity pattern with a low sampled mode. This
study only uses the data belonging to users with
the car mode. However, there might be some chal-
lenges to the approach’s generalizability for practi-
cal implementation which can be a direction for
further research in the future. Although it is worth
mentioning that, on analyzing a raw set of GSM
data, the mode of transport can be distinguished
in two ways: (1) by adjusting our model to detect
the mode of transport within the framework and
(2) by considering the mode detection as a separate
problem before our framework. The former way
of addressing mode detection will increase the
model errors significantly as the kernel density esti-
mator uses the features of all modes, with different
spatiotemporal patterns, simultaneously. Different
modes of transport have a different distribution of
features, especially concerning trip duration.
Therefore, the Bayesian classifier adapts itself to
put the cutting edge between stay and pass-by on
an average value for all modes, producing high
deviation relative to associated observed values.

In this regard, Huang et al. (45) reviews the literature
on transport mode detection with mobile phone network
data. Accordingly, mode detection should take place
after location type detection because the trip properties
like speed, duration, start time, and stay location help
detect the mode. However, some studies used geographic
data to extract main transport modes based on proximity
to main roads, shortest paths, or train stations with the
public transport timetable. These map-matching meth-
ods can still be applied before location-type detection. A
suggestion to improve the generalizability of the KA
method is to adapt mode detection inside KA using an

iterative process. The major steps are as follows: (1)
location-type detection for the entire data (containing all
the modes), (2) applying a similar method we used for
activity-type detection to extract the main modes of
transport, and (3) re-detection of location type separately
for each detected mode. This iterative process potentially
leads to simultaneously detecting location types and
modes of transport. Validating the suggested iterative
approach requires another research and data available
on all modes of transport.

Conclusion and Outlook

GSM data allow observing the location of users over time,
but the challenge remains in discerning activity (stay) loca-
tions. For this, additional information is needed. We show
that a KA can provide this location detection when based
on travel diaries of a sample of as little as 1%.

The results presented in this paper describe how tem-
poral characteristics (i.e., aggregation and discretization)
of GSM data affect the accuracy and robustness of the
reconstructed OD matrix. It seems that the PI and tem-
poral criterion (i.e., the duration threshold to distinguish
stay from pass-by locations in each user’s traveling traces)
jointly affect the OD matrix reconstruction.

As perhaps expected, we show that the accuracy of
the reconstructed OD matrix gradually declines with
higher PI. However, we also show that the reliability of
the KA accuracy declines substantially when PI exceeds
the duration threshold. Therefore, the combination of
larger PI (in data collection) than duration threshold (in
OD matrix reconstruction) is best avoided.

Depending on the data context (observable in the
training set), fortunate ranges exist for activities with
durations and PI less than the duration threshold. These
ranges exist owing to the data temporal discretization
and different interpreted and actual durations. In fact,
since the interpreted duration of events defines their
type, if the interpreted duration of a stay is more than
the duration threshold (even if the actual duration of it is
less than the duration threshold), it would be recognized
as a stay. Our results imply that an ‘‘optimal PI’’ seems
to exist which brings about the most structurally similar
OD matrix to the ground-truth one. This PI is the mini-
mum value that results in the longest FR. If the duration
threshold has the value of T (it can be assumed to be the
minimum stay duration resulting from applying KA on
the training set) the optimal PI is about T=2+ E, where E
is a small value. Moreover, the E better be selected in a
way that the interpreted durations are not close to the
duration threshold. This increases the robustness of the
results against the random seeds adopted for selecting
the training set. For instance, when the duration thresh-
old is 45min, we assume the PI to be 25min for which
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the minimum interpreted duration (more than duration
threshold) is 50min.

Unavoidably, as it is inherent to GSM data, short-
duration activities will remain difficult to detect.
Importantly, this study has shown how non-detection or
misidentification mainly occurs in cases of unusual activity-
travel behavior; for example, short-duration home activities
during the afternoon peak are susceptible to be confused
with other activities owing to similar temporal patterns.

Many models, particularly those which are based on
regression slopes and intercepts, will estimate parameters
for every term in the model. Therefore, having non-
informative variables can add uncertainty to the model
performance. However, the Bayesian model is naturally
resistant to non-informative predictors. Still, owing to
the naive nature of our model, one needs to select the
explanatory variables carefully to avoid biased infer-
ences. Depending on the spatial aggregation level, the
location of records might help to infer the activity type.
Spatial aggregation is associated with the density and dis-
tribution of antennas across the network. In our study,
the location of the records does not provide much data
on the activity categories. Therefore, incorporating the
location in addition to temporal variables in activity cate-
gory detection did not significantly change the accuracy.
In fact, it even slightly reduced the overall accuracy. This
may appear counter-intuitive, but is because, in naive
Bayesian models, different prior variables are assumed to
be conditionally independent. This assumption can be
avoided by establishing the correlation of prior variables,
which usually requires a more extensive data set than the
data available in this study.

In addition to temporal characteristics, this method
could use speed and distance between the records to
decide on their type (stay or pass-by). For instance, ini-
tially, we assumed that the travel time is the Euclidean
distance between two location coordinates divided by the
average speed extracted from the training data. However,
this assumption did not improve our estimations (i.e.,
OD matrix) owing to two reasons: First, the actual speed
has a variety of ranges depending on time, space, and
user’s behavior (and mode of transport but here we only
considered cars). Therefore, it seems that the average
speed of the training set is not a proper approximation
for speed at various times, spaces, and users. Second, the
actual route that the user selects to get from the origin to
the destination is generally longer than the Euclidean dis-
tance. Thus, owing to the required extra effort, we did
not modify the travel times in the data. However,
depending on the data availability, future research could
use either the speed with route data or the travel time
approximates directly to enhance the OD travel times.

Future research should be undertaken to explore how
we can improve OD reconstruction accuracy through

data-driven approaches. The authors suggest three ways
to improve the performance of KA in location-type
detection. One is to simultaneously evaluate the travel
motifs of all users in training data to identify the different
feature distributions for each primary activity tour across
the network. This step can be performed using KDE and
the Bayesian modeling we used in this research. Later on,
we can assign the most probable activity motif based on
the features of each individual. Another way of improv-
ing location-type detection is to assess the repetition of
visited locations at the network level (i.e., all users) and
each user. Evidently, evaluating repetition patterns per
user requires data for a longer period.

Another way of improving location and activity type
recognition is adding different features of TAZs to the
analysis. These features include mixed land-use, popula-
tion density, road density, and dominant demographic
information. For instance, a TAZ with large commercial/
industrial areas is more probable to be a stay locating for
work activity. Adding the mentioned spatial features also
helps increase the detail level and detect activity types
more disaggregate. It goes without saying that higher
spatiotemporal resolution might also be required to
increase the LOD in activity category detection. For
instance, given that a particular location holds an enter-
tainment event at a particular interval, observing a close-
by record implies that attending an entertainment activity
is more probable.

The experimental setup and newly developed method
for OD matrix estimation provide more avenues for future
research. Firstly, the framework can be extended toward
CDR data where polling intervals are irregular and endo-
genous (instead of regular and exogenous as with PLU
data). Secondly, the KA model can be adapted to address
the effects of spatial characteristics of GSM data (i.e., spa-
tial accuracy of data as well as OD matrix). Thirdly, the
KA model can be adapted to address the problem of mode
detection (i.e., distinguishing mode of transport for GSM
traces, based on e.g., average speed, location, and time of
day). For the latter two studies again a sub-sample of
travel diaries can be used as the training set.
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man, J. M. Loh, M. Martonosi, J. Rowland, S. Urbanek,

and A. Varshavsky. Human Mobility Characterization

from Cellular Network Data. Communications of the

ACM, Vol. 56, No. 1, 2013, pp. 74–82. https://doi.org/10.

1145/2398356.2398375.
7. Burkhard, O., R. Ahas, E. Saluveer, and R. Weibel.

Extracting Regular Mobility Patterns from Sparse CDR

Data Without A Priori Assumptions. Journal of Location

Based Services, Vol. 11, No. 2, 2017, pp. 78–97. https://

doi.org/10.1080/17489725.2017.1333638.
8. Chen, G., S. Hoteit, A. C. Viana, M. Fiore, and C. Sar-

raute. Enriching Sparse Mobility Information in Call

Detail Records. Computer Communications, Vol. 122,

2018, pp. 44–58. https://doi.org/10.1016/j.comcom.2018.

03.012; http://www.sciencedirect.com/science/article/pii/

S0140366417309234.

9. Calabrese, F., M. Diao, G. Di Lorenzo, J. Ferreira, Jr,

and C. Ratti. Understanding Individual Mobility Patterns

from Urban Sensing Data: A Mobile Phone Trace Exam-

ple. Transportation Research Part C: Emerging Technolo-

gies, Vol. 26, 2013, pp. 301–313.
10. Chen, C., L. Bian, and J. Ma. From Traces to Trajectories:

How Well Can We Guess Activity Locations from Mobile

Phone Traces? Transportation Research Part C: Emerging

Technologies, Vol. 46, 2014, pp. 326–337.
11. Bonnel, P., E. Hombourger, A.-M. Olteanu-Raimond, and

Z. Smoreda. Passive Mobile Phone Dataset to Construct Ori-

gin-Destination Matrix: Potentials and Limitations. Trans-

portation Research Procedia, Vol. 11, 2015, pp. 381–398.
12. Zhang, Y., X. Qin, S. Dong, and B. Ran. Daily OD Matrix

Estimation Using Cellular Probe Data. Technical Report.

Presented at 89th Annual Meeting of the Transportation

Research Board, Washington, D.C., 2010.
13. Iqbal, M. S., C. F. Choudhury, P. Wang, and M. C. Gon-
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