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A B S T R A C T   

Depleted gas reservoirs are attractive sites for Carbon Capture and Storage (CCS) due to their huge storage ca-
pacities, proven seal integrity, existing infrastructure and subsurface data availability. However, CO2 injection 
into depleted formations can potentially lead to hydrate formation near the wellbore due to Joule-Thomson 
cooling, which might cause injectivity issues. Some challenges encountered when modeling and simulating 
this process are the computational time caused by Newton’s convergence issues and instability. The objective of 
this work is to propose a novel approach for hydrate risk assessment during CO2 injection into depleted gas 
reservoirs using physics-based Machine Learning (ML) approach. First, the selection of input parameters for the 
ML models is performed based on sensitivity study results using an analytical solution for different operational 
and petrophysical values. Then the ML models are tuned and tested using datasets from numerical reservoir 
simulation results based on a wide range of input parameter values. To the best of our knowledge, this is the first 
time that an ML approach is used for risk assessment of CO2 hydrate in its storage in depleted gas reservoirs. The 
ML models developed in this study presented an efficient performance to predict hydrate-forming events. The 
deep neural network model performed best with a 95% recall value and 84% precision value. These results show 
that the ML model can be further utilized for risk assessment in the screening stage, and the combination of 
screening by ML, followed by detailed analysis with numerical simulation in high-risk cases can be an efficient 
probing workflow for future CCS projects.   

1. Introduction 

To achieve the goal of the Paris Agreement [1], reducing greenhouse 
gas (GHG) emissions is inevitable. Carbon dioxide (CO2) is the most 
common GHG, and reducing its emissions is critical [2]. Carbon capture 
and storage (CCS) is one of the methods that can reduce the excessive 
amount of CO2 in the atmosphere. 

Depleted gas reservoirs are suitable candidates for CO2 storage 
because of storage capacities, proven seal integrity, existing infrastruc-
ture and subsurface data availability, making the capital-intensive 
project more feasible. However, because of the pressure difference be-
tween the injection well and the reservoir, injected CO2 expands, 
resulting in significant reduction in temperature. This phenomenon is 

called Joule-Thomson (J-T) cooling effect. This cooling of CO2 can be so 
high that solid hydrates can form in the presence of brine [3], impairing 
the injectivity of CO2 into the well and reservoir. In addition, injectivity 
issues caused by hydrate formation could also lead to loss of well 
integrity [4]. Therefore, it is critical to know in advance if hydrate for-
mation would happen under the operational conditions. Furthermore, 
the injection temperature will also impact the kinematic viscosity of the 
injected CO2 which is inversely proportional to the injectivity [5]. 
Hence, a reduction in temperature will increase injectivity for the 
gaseous CO2 whereas the injectivity will decrease if liquid CO2 is 
injected into the reservoir. The injection of cold CO2 can also have 
geomechanical impacts with changes in both thermal and tensile 
stresses which can lead to change in the formation fracturing pressure as 
well [6]. In the work from Khurshid and Fujii [6], the injection of cold 
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CO2 lead to a significant reduction in the formation fracturing pressure. 
To investigate the risk of hydrate formation within a reservoir for-

mation, it is necessary to have an approach capable of computing both 
the pressure and temperature fields within the reservoir formation over 
time. The injection of CO2 in aquifers and oil and gas reservoirs has been 
extensively investigated in the literature [7], with approaches specially 
developed for modeling and simulating the complex isothermal 
compositional fluid flow of brine, oil, and gas in subsurface porous 
media promoted by CO2 flooding [8], and further extended for condi-
tions in which a fourth CO2 rich liquid phase is formed [9,10]. However, 
the number of analytical and numerical approaches that can handle the 
heat and fluid flow in porous media is more limited [3,11–23]. 
Analytical and numerical solutions can both be used for the hydrate risk 
assessment. 

One of the approaches for predicting the formation of hydrates is 
with phase diagrams. Estimating the hydrate phase diagrams of mixture 
of gases (i.e., CO2 and methane) including the effect of salinity is quite 
challenging. Van der Waals and Platteeuw [24] used an adsorption 
model based on statistical thermodynamics to calculate the chemical 
potential of water in the hydrate phase which was further improved by 
many authors [25–28]. Coelho et al. [29] presented a compositional 
wellbore simulator capable of assessing the potential hydrate formation 
risk using the model from van der Waals and Platteeuw [24], but the 
formation of hydrates within the porous formation was not considered. 
Another way for modeling the formation of hydrates is with kinetic 
models for the formation and dissociation of hydrates. Since Kim et al. 
[30], many other studies were proposed for modeling hydrate growth/ 
dissociation in water/gas systems through kinetics with different as-
sumptions [31–33]. Kinetic models have been used for quantitatively 
model the formation of hydrates in wellbore [34–36] and reservoir 
formations [22,23]. For example, Janicki et al. [22] presented a kinetic 
based modeling approach for the methane hydrate dissociation coupled 
with heat and mass transfer for simulating the production of methane 
from hydrate deposits with an in-house simulator (UMSICHT HyReS) 
and CMG STARS [20]. It is not clear from their modeling and results 
whether Janicki et al. [22] took the J-T effect into consideration. While 
the formation of hydrates poses a risk for the injectivity of CO2 during 
CCS, Ahmad et al. [23] suggested to store CO2 in the hydrate form at 
depleted methane hydrate bearing formations. The authors presented a 
coupled mass, momentum, and heat transfer model along with a hydrate 
growth kinetic model. A term to account for the J-T effect was not 
considered in the energy balance presented and their results suggested 
that hydrate plugging of the formation was not an issue for the cases 
presented by the authors. While the phase diagram approach can only 
evaluate the formation of hydrates qualitatively, it is an adequate 

approach for hydrate risk assessment and has been used before [37]. 
Machine Learning (ML) algorithms are powerful tools capable of iden-
tifying and reproducing patterns in large datasets. This technology has 
already been applied in different scientific and engineering applications. 
Several studies show successful implementation of machine learning for 
CO2 injection projects and prediction of CO2 storage performance [38], 
prediction of fluid properties [39], and operational optimization [40]. 
Khanal et al. [41] developed a proxy saline aquifer model based on 
machine learning using a large set of simulated data. Their model could 
correctly forecast the CO2 sequestered under various trapping mecha-
nisms. Furthermore, Acharya and Bahadur [42] used machine-learning 
algorithms to predict hydrate-stable regions which would offer 
another option besides the approach by van der Waals and Platteeuw 
[24]. 

In this study, a machine learning model was developed for per-
forming risk assessment of hydrate formation in the reservoir rock for-
mation during the CO2 storage processes in depleted gas reservoirs as a 
pre-screening tool. To train and test the machine learning tool, a dataset 
is required. Two approaches were used to create the hydrate risk 
assessment dataset based on the hydrate phase equilibrium diagram. 
The first approach considered the computation of the reservoir condi-
tion during the injection of CO2 with an analytical solution, while the 
second approach considered a simplified numerical simulation model. 
The dataset is used for parameter importance analysis and calibration of 
the different machine learning models: random forest, gradient boost-
ing, neural network, and deep neural network. To the best of our 
knowledge, this has been the first-time machine learning is used to 
develop a tool capable of assessing the risk of hydrate formation during 
CO2 sequestration in depleted gas reservoirs from operation conditions 
and petrophysical and fluid properties. Furthermore, the tool developed 
provides the ranges of operational conditions with a risk of hydrate 
formation without the need for a complex numerical model set up. In 
this work, we assume the injected CO2 is pure. It is important to mention 
that the presence of impurities in the injected CO2 will affect the hydrate 
phase equilibrium [37]. Special attention should be given to the water 
content present in the injected CO2 which can lead to plugging due to 
hydrate formation and corrosion [29,43]. 

2. Methods 

2.1. Potential hydrate formation analysis 

This study analyzes hydrate formation using the hydrate phase dia-
gram which is a common approach because of its simplicity [44]. Fig. 1 
shows the phase equilibrium diagrams for CO2 and CH4 hydrates (P-T 

Nomenclature 

c Specific heat capacity, J/(kg K) 
H Reservoir thickness, m 
k Absolute permeability, m2 

kr Relative permeability, dimensionless 
M Injection mass rate, kg/s 
n Relative permeability exponent, dimensionless 
P Pressure, Pa 
re Drainage radius, m 
rw Well radius, m 
S Saturation, dimensionless 
Swr Water residual saturation, dimensionless 
Slr Liquid residual saturation, dimensionless 
Sgr Gas residual saturation, dimensionless 
t Time, sec 
T Temperature, K 

Greek 
α Gas Joule-Thomson coefficient, K/Pa 
ρ Density, kg/m3 

ϕ Porosity, dimensionless 
μ Gas viscosity, Pa.s 

Subscript 
g Gas property 
inj Injection fluid property 
l Liquid CO2 property 
min Minimum 
r Rock property 
res Reservoir property 
w Water property 

Superscript 
0 End-point relative permeability  
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diagrams) and the impact of the salinity [37]. These curves define the 
onset pressure and temperature conditions when hydrate forms, which 
allows a simple comparison of the hydrate curve and calculated pres-
sure–temperature profile to analyze hydrate formation, as shown in 
Fig. 2. This method cannot evaluate the severity of hydrate formation, 
such as its accumulation and impacts on injectivity since it lacks hydrate 
formation/dissociation (kinetic) reactions [45] or other mechanisms to 
quantify the amount of hydrate. However, the main purpose of this 
study is to assess the hydrate formation risk through initial screening to 
be followed by a more comprehensive quantification analysis. Hence, 
the proposed method is fit-for-purpose. 

In this study, we assume fresh water (zero salinity), corresponds to 
the worst-case scenario regarding the risk of hydrate formation. The CO2 
hydrate curve at zero salinity from Fig. 1 was digitized and fitted to 

Thyd =

{
0.1696P3 − 2.1877P2 + 10.952P + 262.69 (P < 4.5MPa)
0.1714P + 282.39 (P ≥ 4.5MPa)

, (1)  

where Thyd is hydrate curve temperature in degree K and P is reservoir 
pressure in MPa. In addition, it is observed that the temperature front is 
considerably slower than the CO2 front, to the point that the tempera-
ture changes are only observed within the CO2-saturated area [3]. The 
temperature front retardation is caused by the specific heat capacity of 
the rock and residual water, as presented in [11]. These assumptions 
reduce the hydrate formation problem to computing pressure and tem-
perature profiles during the CO2 injection at specific operational and 
reservoir conditions. 

2.2. Temperature and pressure estimation 

2.2.1. Analytical solution 
The first approach to calculate temperature and pressure is based on 

an analytical solution [11] where the pressure diffusivity equation due 
to cold CO2 injection is solved considering the J-T cooling effect. 
Assuming a steady-state pressure, single-phase flow, and constant 
thermodynamic properties, the minimum temperature at the tempera-
ture front at any given time can be computed as [11] 

Tmin = −
αMμg

4πkkrgHρg  

×ln
[{

cg

ϕ(1 − Sw)ρgcg + ϕSwρwcw + (1 − ϕ)ρrcr

}
Mt

πHr2
w
+ 1

]

+min
(
Tres,Tinj

)
(2)  

where α is the Joule-Thomson coefficient, M is the mass injection rate, μg 

is the gas viscosity, k is the permeability, krg is the gas relative perme-
ability, H is the formation thickness, ρg is the gas density, cg is the gas 
specific heat capacity, ϕ is the porosity, Sw is the water saturation, ρw is 
the water density, cw is the water specific heat capacity, ρr is the rock 
density, cr is the rock specific heat capacity, t is the time, rw is the well 
radius, Tres is the reservoir temperature, and Tinj is the bottomhole 
temperature of the injected fluid. Also, the distance from the well at 
which the minimum temperature is located is given by 

rTmin = rw

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅{
cg

ϕ(1 − Sw)ρgcg + ϕSwρwcw + (1 − ϕ)ρrcr

}
Mt

2πHr2
w
+ 1

√

. (3) 

It is important to emphasize that the water is assumed to be always 
immobile in the analytical solution, meaning that the water saturation in 
Eqs. (2) and (3) corresponds to the residual water saturation. 

While the analytical solution is adequately verified with the fully 
coupled non-isothermal numerical simulator TOUGH2/EOS7C [3], 
Mathias et al. [11] implied the potential overestimate of temperature 
decrease caused by J-T cooling due to their assumption of constant 
thermodynamic properties. 

As for pressure, while the original analytical solution assumes a 
steady-state pressure difference (pressure in any location within the 
reservoir minus wellbore pressure was constant over time), the actual 
pressure is needed for our approach. For this purpose, a drainage radius 
re is assumed where the pressure does not change from its initial value. 
Hence, the pressure at the location where the minimum temperature 
occurs is computed as 

PTmin = Pres +
Mμ

2πkkrHρf
ln
[

re

rTmin

]

, (4)  

where Pres is the reservoir pressure. 

2.2.2. Numerical solution 
The second approach to obtain the temperature and pressure fields is 

using a numerical reservoir simulator. A significant advantage of nu-
merical simulation is that it can consider more realistic reservoir prop-
erties and phase behavior than the analytical solution. This study uses 
the non-isothermal compositional reservoir simulator CMG GEM to 
simulate CO2 injection in methane reservoirs. Although some re-
searchers [22,46] conducted hydrate formation analysis using CMG- 
STARS because it can model hydrate kinetic reactions, STARS has lim-
itations in modeling such a process. In STARS, the liquid CO2 phase is 
modeled as a slightly compressible fluid. Also, the phase equilibrium 
between the vapor and liquid phase uses K-Values, unlike GEM, which 
combines stability analysis and flash calculation. Furthermore, 
including the liquid CO2 phase in STARS can lead to convergence issues 
and inaccurate results when there is a wide range in pressure and 

Fig. 1. Equilibrium curves of methane hydrate and carbon dioxide hydrates for 
different brine salinities [22]. 

Fig. 2. Hydrate formation analysis comparing hydrate curve and reservoir 
pressure–temperature profile. 
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temperature. Therefore, GEM is selected when the calculated amount of 
formed or dissociated hydrates is not required. Phenomena such as 
geomechanics, geochemistry, and CO2 dry-out can be modeled by GEM 
but were neglected in this study. Each of these phenomena can add 
significant complexity to both the simulation models and the machine 
learning and will be carefully investigated in future work. 

2.3. Machine learning 

This study aims for the development of ML model to classify CO2 
injection problems as “potential risk of hydrate” or “limited risk of hy-
drate” based on operational and reservoir conditions. This is a binary 
classification problem. First, the input parameters were carefully 
selected depending on their importance to the output to avoid degrading 
the ML performance due to overfitting. This was followed by the crea-
tion of the training/testing dataset. The quality and size of the dataset 
strongly impact the ML performance. In this study, we applied four 
different ML methods for binary classification problems: random forest, 
gradient boosting, neural network, and deep neural network, and 
compared their performance. Further details regarding the techniques 
can be found in ref. [47]. 

The ML performance is evaluated by the number of cases the model 
correctly or incorrectly predicts against the real values present in a test 
dataset. A confusion matrix summarizes them by categorizing all cases 
into four types, which are true-positive, true-negative, false-positive, 
and false-negative, as shown in Fig. 3. 

This study focuses on two evaluation metrics to measure ML per-
formance: the recall value and the precision value calculated by the 
equations below [48]. 

RECALL =
TruePositive

TruePositive + FalseNegative
(5)  

PRECISION =
TruePositive

TruePositive + FalsePositive
(6) 

In the recall value, the numerator is the number of correctly pre-
dicted potential hydrate cases, and the denominator is the total true 
potential hydrate cases, so it represents the fraction of actual potential 
hydrate cases that the ML model correctly screened. On the other hand, 
in the precision value, the numerator is the same as in the recall, but the 
denominator is the number of total predicted potential hydrate cases, so 
it measures the fraction of correct answers in the predicted potential 
hydrate cases. In this study, recall is more important than precision 
because this ML model is supposed to be used as a risk assessment 
screening tool. In the case of suspected potential hydrate risk the 
screening process should be followed by detailed analysis. Our main 
objective in ML training and testing is to obtain models with high recall 
while retaining a reasonable precision value. 

The ML model classifies a case by calculating a probability value and 
using a threshold value to identify it as positive (1) or negative (0). 
Therefore, each ML model performance can be optimized by calibrating 
the threshold value. A lower threshold enables the prediction of a pos-
itive case (potential hydrate risk) even when the ML model predicts a 
low probability of a potential hydrate case, which results in a higher 

recall value. In contrast, a higher threshold tends to predict positive 
cases more strictly, resulting in a higher precision value. Considering 
that our target is obtaining a high recall while retaining reasonable 
precision, we optimized the threshold value in each ML model. More-
over, the trade-off relationship between precision and recall according 
to the threshold can be drawn in a Precision-Recall (P-R) curve, as 
shown in Fig. 4. The larger the area under the P-R curve is, the higher 
both precision and recall are. The Area Under Curve (AUC) is used to 
compare the performance of different ML models. 

3. Results 

3.1. Workflow 

This study follows a general machine learning model development 
procedure described in Section 2.3, consisting of selecting key param-
eters, dataset development, machine learning model development, and 
performance check (Fig. 5). 

3.2. Parameter selection 

Since CO2 hydrate forms depending on a variety of parameters, this 
step aims to rank the importance of these parameters and select the 
input parameters for the machine learning model. We perform sensi-
tivity analysis using the analytical solution to evaluate the parameter 
importance. Although there are limitations with the analytical method 
as described in Section 2.2.1, it still provides qualitative values and is a 
preferred method because of its simplicity. 

There are 20 input parameters in the analytical model for obtaining 
the temperature and pressure profiles. All parameters and their value 
settings are summarized in Table 1. Parameters 1 to 10 are used as 
impactful parameters, and their ranges are based on ongoing CCS pro-
jects [49]. Thermodynamic properties Nos. 11 to 14 are calculated based 

Fig. 3. Description of the confusion matrix.  

Fig. 4. Precision–Recall curve and Area Under Curve.  
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on the bottomhole injection temperature and initial reservoir pressure. 
Dranchuk and Abou-Kassem’s equation [50] is used to calculate the 
compressibility factor, the Jossi et al. model [51] is used for viscosity, 
and the Joule-Thomson coefficient is calculated by its definition. In 
addition, parameters 15 to 20 are fixed because they usually have less 
variations in temperature and pressure ranges considered here. 

The dataset with 10 sensitivity parameters were randomly sampled 
from a uniform distribution within their value ranges. Additionally, a 
uniform distribution for the log of permeability was used. Then cases in 
which the combination of Tinj and Pres are within the hydrate region in 
the phase diagram were excluded since these conditions always lead to a 
potential risk of hydrate formation. The hydrate risk for these cases is 
not affected by the pressure drawdown and the J-T effect and including 
such cases in the ML training degrades the model performance by 
reducing its ability to capture the complex fluid flow and cooling 
behavior in favor of simply tagging if specific parameters are within the 
hydrate region. This also means that there is no need to use the ML 

model for performing a risk assessment of cases in which Tinj and Pres are 
within the hydrate region since these can be instantly assigned as 
potentially high-risk cases. Finally, twenty thousand cases were pre-
pared and a sensitivity analysis was performed using an analytical 
solution. 

The Kendall’s correlation coefficient was used to rank the impor-
tance of the parameters as shown in Fig. 6. Reservoir pressure, rock 
permeability, bottomhole injection temperature, reservoir thickness, 
and CO2 mass injection rate were observed to have high importance, 
unlike the other five parameters. Hydrate formation events were 
observed to often occur near the wellbore due to slow temperature front 
speed and the reservoir radius was only used to guarantee the imposed 
boundary condition of infinite reservoir. Time is also less important 
because hydrate forms during the early injection time since CO2 injec-
tion into the initial (low) reservoir pressure has high J-T cooling effects 
[37]. As for the initial water saturation, despite of Creusen’s [37] 
observation of its importance for the near wellbore conditions such as 
the multiphase flow, salt precipitation, and drying-out effect, our study 
assumes a simpler reservoir model and these effects are not investigated 
in this study. However, the increase in salinity and the drying-out effect 
both mitigate the hydrate risk leading our approach to consider the 
worst scenario for hydrate risk (zero salinity and no water dry-out). One 
may notice that porosity and reservoir temperature also have low 
importance. However, the initial reservoir temperature will have an 
impact on the properties of the gas in-place in the numerical model 
which is not considered by the analytical solution. We also kept the 
porosity since rock compressibility will be considered for the numerical 
model. Therefore, the reservoir radius, time, and initial water saturation 
(equivalent here to the residual water saturation) were removed from 
the input list for the ML models based on the results of numerical 
simulations. 

Fig. 5. Workflow to develop machine learning model.  

Table 1 
Properties used in the sensitivity analysis.  

No. Parameter Range No. Parameter Value 

1 t(days) 1 – 3650 11 ρg(kg/m3) Calculated from 
correlations 2 M(kg/s) 1 – 50 12 μg(Pa • s) 

3 Pres(MPa) 1 – 20 13 cg(J/kg/K) 
4 Tinj(oC) 10 – 40 14 α(K/Pa) 
5 Tres(oC) 60 – 120 15 rw(m) 0.1 
6 re(m) 103 – 106 16 krg(− ) 1 
7 H(m) 10 – 200 17 ρw(kg/m3) 992 
8 ϕ(− ) 0.05 – 0.3 18 cw(J/kg/K) 4037 
9 k(mD) 5 – 1000 19 ρr(kg/m3) 2600 
10 Sw(− ) 0.2 – 0.5 20 cr(J/kg/K) 1000  

Fig. 6. Parameter importance ranking – absolute value of Kendall’s coefficient to potential hydrate formation occurrence.  
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3.3. Dataset development 

Numerical simulations using CMG GEM [21] were performed to 
develop an extensive dataset for the machine learning model. The hy-
drate formation equation, Eq. (1), is implemented in CMG-CMOST [52] 
to identify potential hydrate formation risk cases if any of the reservoir 
gridblock has the pressure and temperature conditions within the hy-
drate region. The reservoir model is assumed to be homogeneous 
depleted gas reservoir with infinite boundary (re), modeled through a 
pore volume multiplier at the outermost gridblock, as shown in Fig. 7. 
One should keep in mind that assuming a homogeneous reservoir will 
limit the accuracy of the model. However, the effects of heterogeneity 
are quite complex to include. For instance, the risk of hydrate may 
decrease in a layered reservoir because the flow will be diverted to the 
layer with the highest permeability. On the other hand, the heteroge-
neity can create flow barriers leading to an increase in the injection 
pressure and more J-T cooling. The model is initially saturated with 
methane and water is at the residual saturation (immobile water). Pure 
CO2 is injected for a period of 1 year since hydrates are formed at an 
early time of injection. We performed a total of 17,697 sensitivity sim-
ulations varying seven parameters to create the dataset in a similar 
manner to before. The parameter ranges and basic properties are sum-
marized in Table 2. 

The numerical simulations resulted in 844 cases of potential hydrate 
formation risk and 16,784 cases of limited hydrate formation risk. Also, 
69 cases were terminated and discarded due to exceeding the simulation 
time limit (20 times larger than usual) or abnormal temperature (the 
simulator will stop the run if temperatures lower than 0 ◦C are reached). 
The results are summarized in Fig. 8 as a plot of the initial reservoir 
pressure versus the injection temperature. The red region in Fig. 8 is 
limited by the CO2 hydrate PT diagram at zero salinity presented in 
Fig. 1 at zero salinity. As mentioned before, a combination of Tinj and Pres 
within this region is immediately assumed to be a potential hydrate risk 
and the ML models are not used to predict cases within it. Such cases are 
not included in the training/testing dataset in favor of better prediction 
related to fluid flow and J-T cooling, as discussed before. The key 
findings from Fig. 8 are: 

• Potential risk of hydrate formation increases at low bottomhole in-
jection temperature and low initial reservoir pressure.  

• The size of the dots represents the temperature reduction caused by 
the J-T cooling effect, and it is larger in the cases with gaseous CO2 
due to its higher J-T coefficient. This may cause hydrate formation 
even when the injection temperature is greater than 25 ◦C.  

• All simulation terminations occur when Pres and Tinj are in the vapor 
region. These cases require small time-steps due to large temperature 
change by J-T cooling effect and CO2 phase transitions. Also, some 
cases resulted in temperatures less than 0 ◦C (outside the modeling 
capability of GEM. 

Fig. 9 shows the ranking of parameter importance to hydrate for-
mation from the numerical solution based on Kendall’s correlation co-
efficient (similar to Fig. 6). 

The order of parameter importance is (1) injection temperature, (2) 
reservoir pressure, (3) permeability, (4) reservoir thickness, (5) mass 
flow rate, and reservoir temperature and porosity are less important. 
These results are similar to the analytical solution. Furthermore, Fig. 10 
shows the frequency of hydrate formation versus the parameter values in 
the top 5 important parameters. Each parameter has a clear relationship 
with the hydrate formation, but injection temperature and reservoir 
pressure have a strong relation containing clear thresholds at 15 ◦C and 
4 MPa, respectively. These results can lead to two recommendations for 
hydrate formation risk mitigation. The first one is that a bottomhole 
injection temperature higher than 15 ◦C significantly reduces the 
probability of hydrate formation, consistent with the general rule of 
thumb presented by Le Goff et al. [49]. The second one is that at an 
initial reservoir pressure higher than 4 MPa, the probability of hydrate 
formation is reduced since the CO2 J-T coefficient decreases as the 
pressure increases [37]. 

3.4. Machine learning model development 

Four different types of ML models are tested and compared in this 
study. The free ML model library (scikit-learn) is used to develop the ML 
models. The seven input parameters used in the numerical simulation 
are normalized, and the output is either 0 (hydrate does not form) or 1 
(hydrate does form). Here, 80% of the results from the numerical sim-
ulations are used for the training process of the ML model, while the 
other 20% are used for the ML model performance test. Hyper param-
eters in each model are optimized by using a grid search algorithm 3-fold 
cross-validation [53] within the training dataset, and tuned parameters 
that were changed from the default value in the library are summarized 
in Table 3. The development was conducted using Python 3.9.16 and 
scikit-learn 1.2.2 on a Mac device with a Core i7-9750H processor and 
16 GB memory. 

3.5. Machine learning model performance 

Fig. 11 shows the Precision-Recall (P-R) curve for the four ML 
models. The AUC (Area Under Curve) in each model is summarized in 
Table 4. Since a larger AUC suggests a better model performance, the 
models can be ordered according to best to worst performance as deep 
neural network, neural network, random forest, and gradient boosting. 

In addition, we maximize ML performance by optimizing the 
Fig. 7. Homogeneous radial reservoir model used in this study. The injection 
well is in the center. 

Table 2 
Properties used in the sensitivity analysis.  

No. Sensitivity 
parameter 

Range  Fixed 
parameters 

Value 

1 M(kg/s) 6.5 – 
50  

Grid number 
(r, θ, z)

(100, 1, 1) 

2 Pres(MPa) 1 – 20  Well radius, rw 

(m) 
0.1 

3 Tinj(oC) 5 – 40  Residual water 
saturation,Swr 

0.2 

4 Tres(oC) 60 – 
120  

Initial gas 
saturation 

CH4 

5 H(m) 10 – 
200  

Injection fluid Pure CO2 

6 ϕ(− ) 0.05 – 
0.3  

Relative 
permeability 
(water-liquid) 

Swr = 0.2, Slr =

0.2, k0
rw = 0.2, 

k0
rl = 0.9, nw = 2, 

nl = 2 
7 k(mD) 5 – 

1000  
Relative 
permeability 
(liquid–gas) 

Slr = 0.4, Sgr =

0.05, k0
rl = 0.9, 

k0
rg = 1.0, nl = 2, 

ng = 2  
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threshold in each model. Since our target in ML performance is a high 
recall value with retaining a reasonable precision value, the threshold is 
tuned to obtain a recall value of 95%. Tuned threshold values and 
resultant precision values are summarized in Table 4. Deep neural 
network and neural network model show great performance 84% and 
76% of precision value, respectively, while retaining more than 95% of 
recall value. The third highest precision value was obtained by the 
random forest and gradient boosting with both presenting a value 
around 60%. These results suggest that neural network has a better 
prediction capability for complex phenomena such as the potential 

hydrate formation considered in this study than a simpler machine 
learning algorithm, and the deep neural network adds further capability 
to improve their performance. 

Fig. 12 shows the confusion matrix from the testing dataset obtained 
by the deep neural network model with an optimal threshold of 0.299. It 
shows that 160 out of 168 true hydrate cases are correctly estimated, 
and the resultant recall value reaches 95.2%. Fig. 13 shows the hydrate 
prediction by deep neural network model in the initial reservoir pressure 
and injection temperature map. Another point to emphasize is that un-
like the numerical simulations, the ML does not require long calculations 

Fig. 8. Potential hydrate formation map for reservoir pressure vs. injection temperature (Tinj).  

Fig. 9. Parameter importance ranking from simulation results - absolute value of Kendall’s coefficient to potential hydrate formation occurrence.  

Fig. 10. Frequency of potential hydrate formation vs. input parameter values.  

K. Yamada et al.                                                                                                                                                                                                                                



Fuel 357 (2024) 129670

8

under any condition, and can provide answers in less than one second. 
These results indicate that this ML model can correctly predict 95% of 
the potential hydrate formation cases with just seven input parameters 
without numerical issues (i.e. convergence issues, large material balance 
error, simulation failure), which provides an efficient hydrate risk 
screening tool. 

For the testing data, out of 16% of the hydrate cases predicted by the 
deep neural network were false positives. However, considering the 
amount of time and effort that needs to be dedicated to factors such as 
model setup and CPU time, the ML quick hydrate risk screening model 

will efficiently support the site selection process for future CCS projects. 

4. Conclusions 

This study presented the development of an efficient screening tool 
to assess the risk of hydrate formation during CO2 injection into depleted 
gas reservoirs using a machine learning model. 

Hydrate formation analysis using a hydrate phase diagram is a 
practical approach to determine whether the operation and reservoir 
conditions will result in potential hydrate formation. It simplifies hy-
drate formation problems to a comparison of the hydrate curve and 
pressure–temperature profile due to CO2 injection. 

Here, an analytical solution was first used to generate a dataset 
utilized for the parameter importance analysis. This was followed by 
conducting non-isothermal numerical simulations to generate a 
training/testing dataset for the ML models through 17,697 simulations. 
Four ML models were generated: random forest, gradient boosting, 
neural network, and deep neural network. The key insights observed in 
this study are:  

• The analytical solution was useful for calculating the pressure and 
temperature profile during CO2 injection, but it considers several 
simplifying assumptions. Numerical simulation might show more 
realistic results, but it requires more time and effort, and sometimes 
there are numerical issues near the CO2 phase transition. 

• Numerical simulations suggest that bottomhole injection tempera-
ture and reservoir pressure have the greatest impact on potential 
hydrate formation events. 

Table 3 
Key hyperparameter settings in ML models.  

No. Model Key hyperparameters 

1 random forest n_estimators: 275, class_weight: balanced 
2 gradient 

boosting 
learning_rate: 0.05, n_estimators: 300, subsample: 0.9, 
min_samples_split: 10, min_samples_leaf: 2, max_depth; 7, 
random_state: 42, max_features: sqrt, 

3 neural network Hidden_layer_sizes: 100, batch_size: 128, learning_rate: 
adaptive, learning_rate_init: 0.01, max_iter: 1000, beta_1: 
0.8, beta_2: 0.9, n_iter_no_change: 25 

4 deep neural 
network 

Hidden_layer_sizes: 200,100, batch_size: 128, 
learning_rate: adaptive, learning_rate_init: 0.01, max_iter: 
1000, beta_1: 0.8, beta_2: 0.9, n_iter_no_change: 25  

Fig. 11. Precision-Recall curve in the performance test.  

Table 4 
ML performance comparison in four different methods.  

Model AUC Optimized Performance (Recall > 95%) 

Precision (%) Threshold 

Deep Neural Network 0.97 84 0.299 
Neural Network 0.96 76 0.054 
Random Forest 0.90 60 0.139 
Gradient Boost 0.90 60 0.019  

Fig. 12. Confusion matrix of test performance by deep neural network model.  

Fig. 13. Potential hydrate formation risk map calculated by deep neural 
network model for reservoir pressure vs. injection temperature (Tinj). 
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• The ML model developed in this study has seven input parameters 
selected based on the results of sensitivity studies, and the model is 
trained and tested using numerical simulation results.  

• The deep neural network model with a tuned threshold shows the 
best performance, with 95% of recall value without 84% of precision 
value. This means that the ML model can instantly predict 95% of the 
hydrate case without numerical issues with just seven input 
parameters. 

The ML model should be improved for early risk assessment in the 
screening stage. The combination of screening by ML followed by 
detailed analysis with numerical simulation can be an efficient workflow 
for future CCS projects. 
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