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7
Traffic flow theory and modelling

Victor L. Knoop and Serge Hoogendoorn

7.1	 INTRODUCTION

When do traffic jams emerge? Can we predict, given certain demand levels, when queuing will 
occur, how long the queues will be, how they will propagate in space and time, and how long 
it takes for the congestion to resolve? Why does an overloaded traffic network underperform? 
This chapter gives a basic introduction in traffic flow theory which can help to answer these 
kinds of questions.

 We start this chapter with explaining how this chapter connects with the other chapters in 
this book (see Figure 7.1). Top left in the figure the reader recognizes the conceptual model 
introduced in Chapter 2 in highly simplified form to explain transport and traffic volumes.

One of the results of the interplay between people’s and shippers’ needs and desires, the 
locations of activities, and the transport resistance factors (Figure 7.1, top left) is a certain 
volume of road traffic (Figure 7.1, middle left). Road traffic, and here starts this chapter, can be 
described using flow variables such as speed and density (Figure 7.1, middle right). The density 
of traffic is the number of vehicles that is present on a roadway per unit distance. Road traffic 
flows on certain road stretches during certain time periods can either be free or congested and/
or the flows can be unreliable. In the latter two cases, the transport resistance on these road 
stretches will be relatively high as explained in Chapter 6 using, among others, concepts such 
as the value of time and value of reliability. Consequently, high transport resistance implies 
negative repercussions on road traffic volumes (see the arrow from flow variables to transport 
resistance, Figure 7.1, top).

To be clear, this chapter focuses solely on the road traffic flow variables and the interactions 
with aspects as driving behaviour, weather, information technology, and so forth (the grey 
areas in Figure 7.1). Thus, traffic flow operations on a road facility are explained for a given 
traffic demand profile. Factors such as weather and information technology (e.g., navigation 
systems) can influence traffic flow characteristics via driving behaviour. Additionally, policies 
such as road expansions and traffic management measures can also have an impact on traffic 
flow operations, either directly or indirectly by influencing driving behaviour.

 Traffic flow theory entails the knowledge of the fundamental characteristics of traffic flows 
and the associated analytical methods. Examples of such characteristics are road capacities, the 
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relation between flow and density, and headway distributions. Examples of analytical methods 
are shockwave theory and microscopic simulation models.

Using the presented material, the reader will be able to interpret, analyse, and – for simple 
situations – predict the main characteristics of traffic flows. For the larger part, the chapter 
considers traffic flow operations on simple infrastructure elements (uninterrupted traffic 
flow operations, simple discontinuities), although an important side step is made to network 
dynamics. In doing so, the chapter takes both a microscopic and a macroscopic perspective. 
The microscopic perspective reflects the behaviour of individual drivers interacting with 
surrounding vehicles, while the macroscopic perspective considers the average state of traffic. 
We discuss empirical facts, and some well known analytical tools, such as shockwave theory, 
kinematic wave models, and microscopic simulation models. We will also discuss the appli-
cation of traffic flow theory to bicycle traffic and will consider the impact of the technology of 
automated vehicles on the traffic stream.

Figure 7.1	 The connection of this chapter (grey area) with the simplified conceptual 
framework (top left) as described in Chapter 2
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Section 7.2 introduces the basic variables on the microscopic level (the vehicle level), 
and Section 7.3 the macroscopic variables (i.e. the flow level). Section 7.4 discusses flow 
characteristics. Section 7.5 looks into the future developments and discusses the effect of 
autonomous vehicles. Then, in Section 7.6 traffic flow dynamics and the (self-) organization 
of traffic are discussed. Section 7.7 presents several theories on multi-lane vehicular traffic 
(i.e., motorways). Section 7.8 discusses microscopic flow models, while Section 7.9 discusses 
the macroscopic flow models. Section 7.10 adds the dynamics of networks to this. Section 7.11 
shows how all theories and methods can be applied to bicycle traffic. Finally, in Section 7.12 
the conclusions are presented.

7.2	 VEHICLE TRAJECTORIES AND MICROSCOPIC 
FLOW VARIABLES

The vehicle trajectory (often denoted as xi(t)) of vehicle (i) describes the position of the vehicle 
over time (t) along the roadway. The trajectory is the core variable in traffic flow theory which 
allows us to determine all relevant microscopic and macroscopic traffic flow quantities. Note 
that for the sake of simplicity, the lateral component of the trajectory is not considered here.

To illustrate the versatility of trajectories, Figure 7.2 below shows several vehicle trajectories. 
From the figure, it is easy to determine the distance headway Si, and the time headway hi,, over-
taking events (crossing trajectories), the speed vi = dxi/dt, the size of the acceleration (see top 
left where one vehicle accelerates to overtake another vehicle), the travel time TTi, and so forth.

However, although the situation is rapidly changing due to so-called floating car data 
becoming more common, trajectory information is seldom available. Floating car data is 
information from mobile phones in vehicles that are being driven. In most cases, vehicle 
trajectory measurements only contain information about average characteristics of the traffic 
flow, provide only local information, or aggregate information in some other way (e.g., travel 
times from automatic vehicle identification or licence plate cameras).

Most commonly, traffic is measured by (inductive) loops measuring local (or time–mean) 
traffic flow quantities, such as (local) traffic flow q, and local mean speed u. First, we will 
discuss the main microscopic traffic flow variables in detail. This type of flow variables reflects 
the behaviour of individual drivers interacting with surrounding vehicles.
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7.2.1	 Gross and Net Headways

The (gross) time headway (h) is one of the most important microscopic flow variables. It 
describes the difference between passage times ti at a cross-section x of the rear bumpers of 
two successive vehicles:

​​​h​ i​​​ (x) ​  ​=  ​t​ i​​​ (x) ​ − ​t​ i−1​​​ (x) ​� ​ (7.1) ​​​

The time headway, or simply headway, is directly determined by the behaviour of the driver, 
vehicle characteristics, flow conditions, etc. Its importance stems from the fact that the 
(minimal) headways directly determine the capacity of a road, a roundabout, and so forth. 
Typically, these minimal headways are around 1.5 seconds in dry conditions. Time headways, 
combined with the speeds, leads to the distance headways (see below).

The net time headway or gap is defined by the difference in passage times between the rear 
bumper of the lead vehicle and the front bumper of the following vehicle. This value is in par-
ticular important for driving behaviour analysis, for instance when analysing and modelling 
the amount of space drivers need to perform an overtaking manoeuvre (so-called critical gap 
analysis).

Figure 7.2	 Vehicle trajectories and key microscopic flow characteristics
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7.2.2	 Gross and Net Distance Headways

We have seen in the preceding subsection that time headways are local microscopic variables: 
they relate to the behaviour of an individual driver and are measured at a cross-section. On the 
contrary, distance headways (often denoted with the symbol s) are instantaneous (measured at 
one moment in time) microscopic variables, measuring the distance between the rear bumper 
of the leader and the rear bumper of the follower at time instant t:

​​​s​ i​​​ (t) ​  =  ​x​ i−1​​​ (t) ​ − ​x​ i​​​ (t) ​� ​ (7.2) ​​​

In congested conditions, distance headways are determined by the behaviour of drivers, which 
in turn depends on the traffic conditions, driver abilities, the vehicle characteristics, weather 
conditions, and so forth. In free flow with no interaction between the drivers, the headways are 
determined largely by the demand (that is: they are determined by the moments drivers enter 
the freeway).

 Net distance headways are, similar to the net time headways, defined as the distance 
between the position of the rear bumper of the leader and the front bumper of the follower.

It should be clear that the time headways and the distance headways are strongly correlated. 
If vi-1 denotes the speed of the leading vehicle, it is easy to see that:

​​​s​ i​​  ​=  ​v​ i−1​​ ​h​ i​​ � ​ (7.3) ​​​

7.3	 MACROSCOPIC FLOW VARIABLES

So far, we have mainly looked at microscopic traffic flow variables. Macroscopic flow variables, 
such as flow, density, speed, and speed variance, reflect the average state of the traffic flow in 
contrast to the microscopic traffic flow variables which focus on individual drivers. Let us take 
a closer look at the most important variables.

7.3.1	 Traditional Definitions of Flow, Density, and Speed

In general, the flow q (also referred to as intensity, or volume) is traditionally defined by 
the “average number of vehicles (n) that passes a cross-section during a unit of time (T)”. 
According to this definition, flow is a local variable (since it is defined at a cross-section). We 
have:

​​q  ​=  ​ n _ T ​  ​=  ​  n ______ 
​∑ i​=1​ n  ​ ​h​ i​​​

 ​  ​=  ​ 1 _ ​ 
_

 h ​ ​ � ​ (7.4) ​​​

This expression shows that the flow can be computed easily by taking the number of vehicles 
n that has passed the measurement location during a period of length T. The expression also 
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shows how the flow q relates to the average headway ​​ 
_
 h ​​, thereby relating the macroscopic flow 

variable to average microscopic behaviour (i.e., time headways).
In a similar way, the density k (or concentration) is defined by the “number of vehicles per 

distance unit”. Density is, therefore, a so-called instantaneous variable (i.e., it is computed at 
a time instant), defined as follows:

​​k  ​=  ​ m _ X ​  ​=  ​  m _ ​∑ i​=1​ m  ​ ​s​ i​​​
 ​  ​=  ​ 1 _ ​ _ s ​ ​ � ​ (7.5) ​​​

This expression shows that the density can be computed by taking a snapshot of a roadway 
segment of length X and counting the number of vehicles m that occupy the road at that time 
instant. The expression also shows how density relates to average microscopic behaviour (i.e., 
distance headways, s). Note that contrary to the flow, which can generally be easily determined 
in practice using cross-sectional measurement equipment (such as inductive loops), the 
density is not so easily determined since it requires observations of the entire road at a time 
instant (e.g., via an aerial photograph).

Similarly to the definitions above, average speeds u can be computed in two ways: at 
a cross-section (local mean speed or time–mean–speed uL), or at a time instant (instantane-
ous mean speed or space–mean-speed uM). As will be shown in the following paragraph, the 
difference between these definitions can be very large. Surprisingly, in practice the difference 
is seldom made. For instance, the Dutch motorway monitoring systems collects time–mean 
speeds, while for most applications (e.g., average travel time) the space–mean speeds are more 
suitable.

7.3.2	 Continuity Equation

An important relation in traffic flow theory is the continuity equation: q = ku (flow equals 
density times the speed). This equation is used to relate the instantaneous characteristic 
density to the local characteristic flow. The derivation of this equation is actually quite 
straightforward (Figure 7.3).

Consider a road of length X. All vehicles on this road drive at an equal speed u. Let us define 
the period T by T = X/u. Under this assumption, it is easy to see that the number of vehicles 
that are on the road at time t = 0 – which is equal to the density k times the length X of the 
roadway segment – is equal to the number of vehicles that will pass the exit at x = X during 
period [0,T] – which is in turn equal to the flow q times the duration of the period T. That is:

​​kX  ​=  qT   ⟺   q  ​=  k ​ X _ 
T
 ​  ​=  ku� ​ (7.6) ​​​

Clearly, the continuity equation holds when the speeds are constant. The question is whether 
the equation q = ku can also be applied when the speeds are not constant (e.g., u represents 
an average speed), and if so, which average speed (time–mean or space–mean speed) is to be 
used. It turns out that q = ku can indeed be applied, but only if u = uM, that is, if we take the 
space mean speed.
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Intuitively, one can understand this as follows (a mathematical proof can be found in May, 
1990). A detector lies at location xdet. Now we reconstruct which vehicles will pass in the time 
of one aggregation period. For this, the vehicle must be closer to the detector than the distance 
it travels in the aggregation time tagg:

​​​x​ det​​ − ​x​ j​​  ≤  ​t​ agg​​ ​v​ i​​ � ​ (7.7) ​​​

In this formula, x is the position on the road. For faster vehicles, this distance is larger. 
Therefore, if one takes the local arithmetic mean, one overestimates the influence of the faster 
vehicles. If the influence of the faster vehicles on speeds is overestimated, the average speed u 
is overestimated (compared to the space mean speed um).

The discussion above might be conceived as academic. However, if we look at empirical 
data, then the differences between the time–mean speeds and space–mean speeds become 
apparent. Figure 7.4 shows an example where the time–mean speed and space–mean speed 
have been computed from motorway individual vehicle data collected at the A9 motorway 
near Amsterdam, the Netherlands. Figure 7.4 clearly shows that the differences between the 
speeds can be as high as 100%; for more details we refer to Knoop et al. (2009). Also note that 
the space–mean speeds are always lower than the time–mean speeds. Since in most countries 
where inductive loops are used to monitor traffic flow operations, arithmetic–mean speeds 
are computed and stored, average speeds are generally overestimated, affecting travel time 
estimations. Furthermore, since q = ku can only be used for space–mean speeds, we cannot 
determine the density k from the local speed and flow measurements, complicating the use of 
the collected data from, e.g., traffic information and traffic management purposes.

Figure 7.3	 Derivation of the continuity equation
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7.3.3	 Generalized Traffic Flow Variables

Alternate measurement methods, such as automatic vehicle identification (AVI), radar, and 
floating-car measurements, provide new ways to determine the flow variables described above. 
One of the benefits of these new methods is that they provide information about the temporal 
and spatial aspects of traffic flow. For instance, using video we can observe the density in 
a region directly, rather than determine the density from local observations.

For the relation between instantaneous and local variables, the work of Edie (1965) is very 
relevant. Edie (1965) introduces generalized definitions of flow, density, and speed.

Consider a rectangular region in time and space with dimensions T and X respectively (see 
Figure 7.5). Let di denote the total distance travelled by vehicle i during period T and let ri 
denote the total time spent in region X. Let us define the total distance travelled by all vehicles 
by:

​​P  ​=  ​∑ 
i
​ ​​ ​d​ i​​� ​ (7.8) ​​​

Based on this quantity P, which is referred to as the performance, Edie defined the generalized 
flow as follows:

​​q  ​=  ​ P _ XT ​ � ​ (7.9) ​​​

Source: Knoop (2020). 

Figure 7.4	 Differences between time–mean speed and space–mean speed for the A9 
motorway
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Note that we can rewrite this equation as follows:

​​q  ​=  ​ 
​∑ i​​  ​d​ i​​ / X​

 ___ T ​  � ​ (7.10) ​​​

Let us now define the total travel time R as follows:

​​R  ​=  ​∑ 
i
​ ​​ ​r​ i​​� ​ (7.11) ​​​

Edie (1965) defines the generalized density by:

​​k  ​=  ​ R _ XT ​  ​=  ​ 
​∑ i​​  ​r​ i​​ /T​

 ___ X ​  � ​ (7.12) ​​​

For the generalized speed, the following intuitive definition is used:

​​u  ​=  ​ q _ k ​  ​=  ​ P _ R ​  ​=  ​ total distance travelled  ________________  total time spent  ​ � ​ (7.13) ​​​

These definitions can be used for any region in space–time, even non-rectangular ones. These 
definitions apply to regions in time and space, and will turn out to be increasingly important 
with the advent of new measurement techniques. This is because traditionally traffic was 

Figure 7.5	 Generalization of concepts of flow and density to a generic area in 
space-time
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measured at one location (for instance, by loop detectors). New techniques (apps, connected 
vehicles) will measure at various locations and times, hence a measurement in space and time 
is necessary.

Moreover, new techniques (apps on phones) allow tracking for some individual vehicles, 
but do not show all vehicles. This gives completely different challenges to estimating traffic. 
Estimations of total number of vehicles that pass by still remains useful, as do derivative meas-
ures like flow, density, or speed. Van Erp et al. (2019) shows how these data, including findings 
on overtaking, can be used to get an overall view of the total traffic flow even though not all 
vehicles are being measured.

7.4	 MICROSCOPIC AND MACROSCOPIC FLOW 
CHARACTERISTICS

The preceding sections introduced the different microscopic and macroscopic variables. This 
section shows the most common flow characteristics, entailing both relations between the flow 
variables, typical distribution, etc. These flow characteristics in a sense drive the traffic flow 
dynamics that will be discussed in this section. Next to providing a short description of the 
characteristics and their definition, the section will discuss empirical examples as well as key 
issues in identifying these parameters.

7.4.1	 Headway Distributions

If we would collect headways at a specific location x, then we would observe that these head-
ways are not constant but rather follow some probability distribution function. This is also the 
case when the flow is stationary during the data collection period. The causes are manifold: 
there are large differences in driving behaviour between different drivers, and differences in 
the vehicle characteristics, but there is also variation in the behaviour of one driver. A direct 
and important consequence of this is that the capacity of the road, which is largely determined 
by the driving behaviour, is not constant either, but a stochastic variable.

The headway distribution can be described by a probability density function (p.d.f.) f(h). In 
the literature, many different kinds of distribution functions have been proposed, with varying 
success. It can be shown that if the flows are small – there are few vehicle interactions – the 
exponential distribution will be an adequate model. When the flows become larger, there are 
more interactions amongst the vehicles, and other distributions are more suitable. A good 
candidate in many situations is the log-normal distribution; we refer to Cowan (1975) for 
more details. In Hoogendoorn (2005), an overview is given of estimation techniques for the 
log-normal distributions in specific situations.

The main problem with these relatively simple models is that they are only able to represent 
available measurements but cannot be extrapolated to other situations. If, for instance, we are 
interested in a headway distribution for another flow level than the one observed, we need to 
collect new data and re-estimate the model.
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To overcome this, so-called composite headway models have been proposed. The main char-
acteristic of these models is that they distinguish between vehicles that are flowing freely and 
those that are constrained by the vehicle in front. Buckley (1968) was one of the first to propose 
these models, assuming that the headways of the free driving vehicles are exponentially distrib-
uted. He showed that the probability density function f(h) of the observed headways h can be 
described by the following function:

​​f​ (h) ​  ​=  ϕg​ (h) ​ + ​ (1 − ϕ) ​w​ (h) ​� ​ (7.14) ​​​

In this equation, g describes the probability density function of the headways of vehicles, which 
are following (also referred to as the distribution of the empty zones), while w denotes the prob-
ability density function of those vehicles that are driving freely. For the latter, an exponential 
distribution is assumed. ​ϕ​ denotes the fraction of vehicles that are following.

There are different ways to estimate these probability density functions from available 
headway observations. Wasielewski (1974), later improved by Hoogendoorn (2005), proposed 
an approach in which one does not need to choose a prior form of the constrained headway 
distribution. In illustration, Figure 7.6 shows an example of the application of this estima-
tion method on a two-lane motorway in the Netherlands in the morning (the location is the 
so-called ‘Doenkade’).

This example nicely illustrates how the approach can be applied for estimating capacities, 
even if no capacity observations are available. We find the maximum flow (or capacity flow, 
C) when all drivers are following. We directly observe from the Buckley model (Buckley, 1968, 
see above) that the observed headways in that case follow g. The number of vehicles per unit 
of time is the inverse of time per vehicle. So the maximum flow equals 1 divided by the mean 
(minimum) headway value, under the condition that all vehicles are following. Accounting 
for the fact that we measure flows in vehicles per hour, and headways in seconds, we need 
to include a unit conversion. We then have that the capacity equals 3600 seconds per hour 
divided by the average headway (H, following distribution g) in seconds (or the expectation 
value thereof, indicated by E). We therefore get:

​​C  ​=  3600/E​ (H) ​ where H~g� ​ (7.15) ​​​

Using this approach, we can find estimates for the capacity even if there are no direct capacity 
observations available. For the example above, we can compute the mean empty zone value 
by looking at the p.d.f. g(h), which turns out to be equal to 1.69. Based on this value, we find 
a capacity estimate of 3600/1.69 = 2134 vehicles per hour.



129TRAFFIC FLOW THEORY AND MODELLING

Source: Knoop (2020).
Note: In the figure, W denotes the gross headway, which is composed of the empty zone X 
and the free headway W-X

Figure 7.6	 Composite headway probability density function (p.d.f.) fitted on data of 
the Doenkade site.
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7.4.2	 Desired Speed Distributions

Generally, the free speed or desired speed of a driver–vehicle combination (simply called vehicle 
or driver in the ensuing) is defined by the speed driven when other road users do not influence 
the driver. Knowledge of free speeds on a road under given conditions is relevant for a number 
of reasons. For instance, the concept of free speed is an important element in many traffic flow 
models. In illustration, the free speed distribution is an important input for many microscopic 
simulation models. Insights into free speeds and their distributions are also important from 
the viewpoint of road design, and for determining suitable traffic rules for a certain facility. 
For instance, elements of the network should be designed such that drivers using the facility 
can traverse the road safely and comfortably. It is also of interest to see how desired speed 
distributions change under varying road, weather and ambient conditions, and how these 
distributions vary for different types of travellers. That is, speed distribution is an important 
characteristic of the driver population for design issues.

The free speed will be influenced by the characteristics of the vehicle, the driver, the road, 
and (road) conditions such as weather and traffic rules (speed limits). Botma (1999) describes 
how individual drivers choose their free speed, discussing a behavioural model relating the free 
speed of a driver to a number of counteracting mental stresses a driver is subjected to. A similar 
model can be found in Jepsen (1998). However, these models have not been successful in their 
practical application. The problem of determining free speed distributions from available data 
is not trivial. In Botma (1999), an overview of alternative free speed estimation approaches is 
presented. Botma (1999) concluded that all methods he reviewed have severe disadvantages, 
which is the reason why another estimation approach is proposed. This approach is based on 
the concept of censored observations (Nelson, 1982) using a parametric estimation approach 
to estimate the parameters of the free speed distribution. Speed observations are marked as 
either censored (constrained) or uncensored (free flowing) using subjective criteria (headway 
and relative speed). Hoogendoorn (2005) presents a new approach to estimating the distribu-
tion of free speeds based on the method of censored observations.

7.4.3	 Gap Acceptance and Critical Gaps

Gap acceptance is a process that occurs in different traffic situations, such as crossing a road, 
entering a roundabout, or performing an overtaking manoeuvre on a bi-directional road. 
The minimum gap that a driver will accept is generally called the critical gap. Mathematical 
representations of the gap acceptance process are an important part of, for instance, traffic 
simulation models.

In general terms the gap acceptance process can be described as follows: traffic participants 
that want to make a manoeuvre estimate the space they need and estimate the available space. 
Based on the comparison between required and available space, they decide to start the 
manoeuvre or postpone it. The term space is deliberately somewhat vague; it can be expressed 
either in time or in distance. The required space is dependent on characteristics of the traffic 
participant, the vehicle, and the road. The available space is dependent on the characteristics 
of, for instance, the on-coming vehicles and the vehicle to be overtaken (the passive vehicle). 
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Traffic participants have to perceive all these characteristics, process them, and come to a deci-
sion. Humans highly differ in perception capabilities, e.g., the ability to estimate distances can 
vary substantially between persons, and they differ in the acceptance of risk. The total accept-
ance process is dependent on many factors of which only a subset is observable. This has led to 
the introduction of stochastic models.

Many different methods to estimate the distribution of critical gaps, from observations of 
the gap acceptance process in reality, can be found in the literature (Brilon et al., 1999). Let 
us consider the problem of estimating the critical gap distribution. Suppose, as an example, 
a driver successively rejects gaps of 3, 9, 12 and 7 s and accepts a gap of 19 s. The only thing 
one can conclude from these observations is that this driver has a critical gap between 12 and 
19 s. Stated in other words: the critical gap cannot be observed directly. The observations are, 
thus, censored. Note that it can also be concluded that only the maximum of the rejected gaps 
is informative for the critical gap (assuming that driver behaviour is consistent); the smaller 
gaps are rejected by definition.

7.4.4	 Capacity and Capacity Estimation

Capacity is usually defined as follows: “The maximum hourly rate at which persons or vehicles 
can reasonably be expected to traverse a point or uniform section of a lane or roadway during 
a given time period (usually 15 minutes) under prevailing roadway, traffic, and control condi-
tions” (National Academies of Sciences, Engineering, and Medicine, 2022). 

Maximum flows (maximum free flows of queue discharge rates) are not constant values 
and vary under the influence of several factors. Factors influencing the capacity are, among 
other things, the composition of the vehicle fleet, the composition of traffic with respect to 
trip purpose, weather-, road-, and ambient conditions, etc. These factors affect the behaviour 
of driver vehicle combinations and thus the maximum number of vehicles that can pass 
a cross-section during a given time period. Some of these factors can be observed and their 
effect can be quantified. Some factors can, however, not be observed directly. Furthermore, 
differences exist between drivers implying that some drivers will need a larger minimum time 
headway than other drivers, even if drivers belong to the same class of users. As a result, the 
minimum headways will not be constant values but follow a distribution function (see dis-
cussion on headway distribution modelling). Observed maximum flows thus appear to follow 
a distribution. The shape of this distribution depends on, among other things, the capacity 
definition and measurement method or period. In most cases, a normal distribution can be 
used to describe the capacity.

Several researchers have pointed out the existence of two different maximum flow rates, 
namely pre-queue and queue discharge respectively (e.g., Cassidy and Bertini, 1999). Each of 
these has its own maximum flow distribution. We define the pre-queue maximum flow as the 
maximum flow rate observed at the downstream location just before the on-set of congestion 
(a queue) upstream. These maximum flows are characterized by the absence of queues or con-
gestion upstream of the bottleneck, high speeds, instability leading to congestion on-set within 
a short period, maximum flows showing a large variance. The queue discharge flow is the 
maximum flow rate observed at the downstream location as long as congestion exists. These 
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maximum flow rates are characterized by the presence of a queue upstream of the bottleneck, 
lower speeds and densities, a constant outflow with a small variance which can sustain for 
a long period, however with lower flow rates than in the pre-queue flow state. Both capacities 
can only be measured downstream of the bottleneck location. The size of the drop depends 
on the bottleneck type, and particularly on the speed in the queue (Yuan et al., 2015). Average 
capacity drop changes are in the range of -1% to -15%.

There are many approaches that can be applied to compute the capacity of a specific piece of 
infrastructure. The suitability of the approach depends on a number of factors, such as:

1.	 the type of infrastructure (e.g., motorway without off- or on-ramps, on-ramp, roundabout, 
unsignalized intersection, etc.);

2.	 type of data (individual vehicle data, aggregate data) and time aggregation;
3.	 location of data collection (upstream of, in or downstream of the bottleneck);
4.	 traffic conditions for which data are available (congestion, no congestion).

We refer to Minderhoud et al. (1996) for a critical review of approaches that are available to 
estimate road capacity.

7.4.5	 Fundamental Diagrams

The fundamental diagram describes a statistical relation between the macroscopic traffic flow 
variables: flow, density and speed. There are different ways to represent this relation, but the 
most often used is the relation q = Q(k) between the flow and the density. Using the continuity 
equation, the other relations u = U(k) and u = U(q) can be easily derived.

To understand the origin of the fundamental diagram, we can interpret the relation from 
a driving behaviour perspective. To this end, recall that the flow and the density relate to the 
(average) time headway and distance headway according to Equations 7.4 and 7.5 respectively. 
Based on this, we can clearly see which premise underlies the existence of the fundamental 
diagram: under similar traffic conditions, drivers will behave in a similar way. That is, when 
traffic operates at a certain speed u, then it is plausible that (on average) drivers will maintain 
(on average) the same distance headway s = 1/k. This behaviour – and therewith the relation 
between speed and density – is obviously dependent on factors like weather, road characteris-
tics, the composition of traffic, traffic regulations, and so forth.

Figure 7.7 shows typical examples of the relation between flow, density, and speed. The 
figure shows the most important points in the fundamental diagram, which are the roadway 
capacity C, the critical density kc and the critical speed uc (the density and speed occurring at 
capacity operations), the jam density kjam (density occurring at zero speed), and the free speed 
u0. In the figure, we clearly see the difference between the free conditions (k < kc) and the 
congested conditions (k > kc).

It is tempting to infer causality from the fundamental diagram. It is often stated that the 
relation u = U(k) describes the fact that with increasing density (e.g., reduced spacing between 
vehicles), the speed is reducing. It is, however, more the other way around. If we take a driving 
behaviour perspective, then it seems more reasonable to assume that with reduced speed of the 
leader, drivers need smaller distance headways to drive safely and comfortably.



133TRAFFIC FLOW THEORY AND MODELLING

Fundamental diagrams are often determined from real-life traffic data. This is usually done 
by assuming that stationary periods can be identified during data measurements. To obtain 
meaningful fundamental diagrams, the data collection must be performed at the correct loca-
tion during a selected time period.

7.5	 DEVELOPMENTS FOR THE FUTURE: CONNECTED 
AND AUTOMATED VEHICLES

In the past decade, much effort has been put into the automation of vehicles. The driving tasks 
of drivers can be handed over to the vehicle. In this section, we will describe the levels of auto-
mation, how this will interfere with the traffic operations, and the potential effects.

For traffic automation, various levels of autonomy have been defined. The most commonly 
used reference is the SAE levels of automation (SAE, 2021). Here, we report their defined levels 
in a simplified way. For the full description, we refer to (SAE, 2021). There are six levels of 
autonomy defined, i.e., level 0 to 5.

Level 0 is the automation level where the driver is performing the driving tasks. He is 
(almost) continuously giving input to the vehicle in terms of steering (lateral driving task) and 
determining the vehicle’s speed (longitudinal driving task).

In level 1, the driver is supported in one driving task, lateral or longitudinal. He either needs 
to continuously steer or determine the speed. The other dimension is taken over by the system, 
by means of a system that keeps the vehicle in its lane or determines the acceleration automat-
ically by means of adaptive cruise control (ACC).

In level 2 the car can accelerate and decelerate by means of an ACC and keep itself in 
lanes. The driver can drive “hand and feet off”. Yet, the driver needs to constantly monitor 
the environment and the system, and the driver should be able to take over control instanta-
neously without any warning. As of 2022, there are vehicles available that can achieve level 2 
automation.

In level 3, the vehicle also monitors the system and warns the driver if he needs to take over 
(“fallback”). The driver should be able to take over when the system demands so. As of April 
2022, no vehicles are on the market that have this level of automation. Some manufacturers 
claim their vehicles can reach level 3, but at present it has not been legally approved.

Figure 7.7	 Example of fundamental diagram



134 THE TRANSPORT SYSTEM AND TRANSPORT POLICY

From level 4 onwards, this fallback is taken over by the system and the car will – within its 
predefined bounds, or “operational design domain” – not need driver input. The system is 
designed to work within a certain operational design domain. What this operational design 
domain is can be fully determined by the car manufacturer. Examples could be a speed range 
(e.g., between 20 and 60 km/h), a specific road (e.g., the M1 motorway, between kilometre 
12 and 15 in the left lane), or weather conditions (daylight, no precipitation, good sight), or 
combinations of these. As long as the vehicle remains within this operational domain, in level 
4 automation, the driver has no need to interfere with the vehicle and does not need to be the 
fallback option. This changes if the vehicle comes out of the operational design domain.

For level 5, these operational design domains are removed. Level 5 automated vehicles can 
drive themselves without human supervision anywhere and anytime.

Note here that the step from level 2 to level 3 implies a different driving experience where 
a driver (within the operational design domain) does not need to pay constant attention to the 
road.

An interesting point is that from level 2 onwards, for vehicles that are on the market now, 
the “operational” driving is done by the vehicle itself. Indeed, the driver needs to constantly 
monitor and intervene directly and whenever necessary. However, with good systems, this will 
be rare, and the vehicle decides on its speed and lane itself. The analyses of driving behaviour 
and how this influences the traffic stream should from this level onwards, therefore, (also) be 
performed for the vehicle.

In early studies of automated vehicles, it was expected that vehicle automation would 
strongly increase road capacity. Namely, automated systems have no reaction time, and vehi-
cles can travel closely together at high speed. This will lead to short time headways and hence 
a high capacity. Rao et al. (1993) predicted flows of up to 6900 veh/h/lane. On a vehicle level, 
that would mean a time headway of approximately 0.5 seconds. Once the (level 1 and level 
2 automation) ACC systems became more commonly available, real-world tests have been 
performed with vehicles that are on the market. Early ACC systems were studied by Milanés 
and Shladover (2014). They concluded that the capacity actually decreased because the systems 
keep a longer time headway than human drivers. This could be in line with reports on lower 
roadway capacities, which is a change compared to a trend of decades of increasing road capac-
ity for the same road layout (Shiomi et al., 2019; Knoop and Hoogendoorn, 2022).

The large headways found for one brand in the early days have been confirmed for more 
recent vehicles and a variety of brands (Knoop et al., 2019). The main conclusion of this 
study is that ACC systems make the traffic stream unstable. That is, if the first vehicle brakes, 
the (ACC equipped) follower brakes stronger, and the next (ACC equipped) follower even 
stronger, etc. In such a way, small perturbations will grow to traffic jams and potentially 
dangerous situations. The market is currently (2022) being flooded with more vehicles with 
ACC systems, and potentially with updates of current systems. The response of ACC systems 
to a disturbance is empirically studied, and a database is built where these data are stored and 
made accessible for researchers; see Ciuffo et al. (2020).

Note that the previous section discussed autonomous vehicles, i.e., vehicles that drive 
autonomously (i.e., by themselves, without influence from others). This is different from 
vehicles that exchange messages with each other or a control centre; the latter are called 
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connected vehicles. A common combination for studies of the impact of new technologies is 
autonomous connected vehicles, which some researchers refer to as automated vehicles. Some 
of the drawbacks of autonomous vehicles, like the instabilities, can be overcome by sending 
messages. In the future, communication on anticipated braking manoeuvres between vehicles 
can potentially solve this stability issue. If a vehicle is certain that it will get a timely message 
before it needs to brake, it can drive closer to its predecessor and still there would be no need 
to over-react, or it can form platoons with other vehicles to cross traffic lights.

7.6	 TRAFFIC FLOW DYNAMICS AND 
SELF-ORGANIZATION

So far, we have discussed the main microscopic and macroscopic characteristics of traffic flow. 
In doing so, we have focused on the static characteristics of traffic flow. However, there are 
different characteristics, which are dynamic in nature, or rather, have to do with the dynamic 
properties of traffic flow.

7.6.1	 Capacity Drop

The first phenomenon that we discuss is the so-called capacity drop. The capacity drop 
describes the fact that once congestion has formed, drivers are not maintaining a headway as 
close as before the speed breakdown. Therefore, the road capacity is lower. This effect is con-
siderable, and values of a reduction up to 30% are quoted (Hall and Agyemang-Duah, 1991; 
Cassidy and Bertini, 1999; Chung et al., 2007; Yuan et al., 2015). The effect of the capacity drop 
is illustrated in Figure 7.8. Causes of the capacity drop lie in the individual driving behaviour. 
The exact cause is unknown and might lie in lane changing (Laval and Daganzo, 2006) or 
car-following/acceleration behaviour (Yuan et al., 2017).

7.6.2	 Traffic Hysteresis

The different microscopic processes that constitute the characteristics of a traffic flow take 
time: a driver needs time to accelerate when the vehicle in front drives away when the traffic 
signal turns green. When traffic conditions on a certain location change, for instance when 
the head of a queue moves upstream, it will generally take time for the flow to adapt to these 
changing conditions.

Generally, however, we may assume that given that the conditions remain unchanged for 
a sufficient period of time – say, five minutes – traffic conditions will converge to an average 
state. This state is often referred to as the equilibrium traffic state. When considering a traffic 
flow, this equilibrium state is generally expressed in terms of the fundamental diagram. That 
is, when considering traffic flow under stationary conditions, the flow operations can – on 
average – be described by some relation between speed, density, and flow. This is why the 
speed–density relation is often referred to as the equilibrium speed.

From real-life observations of traffic flow, it can be observed that many of the data points 
collected are not on the fundamental diagram. While some of these points can be explained by 
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stochastic fluctuations (e.g., vehicles have different sizes, drivers have different desired speeds 
and following distances), a part of it can be structural, and stem from the dynamic properties 
of traffic flow. That is, they reflect so-called transient states (i.e., changes from congestion to 
free flow (acceleration phase) or from free flow to congestion (deceleration phase) of traffic 
flow. It turns out that generally, these changes in the traffic state are not on the fundamental 
diagram. In other words: if we consider the average behaviour of drivers (assuming stationary 
traffic conditions), observed mean speeds will generally not equal the “equilibrium” speed. 
The term “equilibrium” reflects the fact that the observed speeds in time will converge to the 
equilibrium speed, assuming that the average conditions remain the same. That is, the average 
speed does not adapt instantaneously to the average or equilibrium speed.

This introduces traffic hysteresis, i.e., at the same time, drivers keep a different headway 
speed during acceleration then during deceleration. Figure 7.9 shows the first empirical obser-
vation thereof by Treiterer and Myers (1974). The figure shows the time it takes for a platoon 
to pass a point along the roadway. The longer the arrow is, the longer that time is, and hence 
the lower the flow (vehicles/hour). The arrow is long at the beginning since some drivers are 
not car-following yet. At the second arrow, all vehicles are car-following and the flow is high 
(short arrow). In the disturbance, the flow is very low, and we find a long arrow. After the dis-
turbance, the flow increases, but the headways are longer than before the vehicles entered the 
disturbance. Note that also in exiting the traffic jam, all vehicles will be in car-following mode.

Figure 7.8	 The capacity drop in the flow density diagram
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Decades later, it has been realized that the hysteresis is perhaps not best measured at one time 
instance. Whereas hysteresis still occurs, effects might change or have a different magnitude 
as shown by Laval (2011).

7.6.3	 Three Phase Traffic Flows, Phase Transitions, and 
Self-Organization

Traffic can have different states or phases. In the early 2000s there was a strong debate on 
the number of phases and phase transitions. Kerner (2004) commented that there are three 
phases (free flow, synchronized flows, and jams), whereas many others (e.g., Treiber et al., 
2000) argued there are two (free flow and congestion). In traffic patterns, we can identify 
congestion with different speeds and different causes. There can be freely flowing traffic at 
high speed, a traffic moving at lower speed caused by a restriction of capacity, or completely 
stopped traffic. These are identifiable in traffic and are consistent with the states Kerner has 
distinguished.

If the vehicles indeed come to a complete stop, arriving vehicles will need to stop upstream. 
It will hence grow at the upstream end. At the same time, at the downstream end, vehicles 
might start moving again, causing a backward moving front of the queue. As a pattern, this 
queue therefore travels in time over space, as is visible in Figure 7.9. This pattern is called 
a stop-and-go wave, or (by Kerner) a wide moving jam. The wave speed is approximately 18 
km/h opposite the driving direction.

Source: Treiterer and Myers (1974).

Figure 7.9	 Vehicle trajectories collected from airborne platform clearly showing 
differences in average platoon length before and after disturbance
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The causes of these jams differ. An example is a jam caused by a bottleneck, such as an 
on-ramp. In this situation, the simple fact that traffic demand is at some point in time larger 
than the rest capacity (being the motorway capacity minus the inflow from the on-ramp) 
causes a jam. Note that these kinds of phase transitions can be described by basic flow theories 
and models (shockwave theory, kinematic wave models) adequately. As an additional remark, 
note that these transitions are, although induced, still random events since both the free flow 
capacity and the supply are random variables.

However, not all phase transitions are induced (directly); some are caused by intrinsic 
(“spontaneous”) properties of traffic flow. An example is the transition from a jam with 
moving traffic to a stop-and-go wave. (referred to by Kerner as wide moving jams). Due to the 
unstable nature of specific denser traffic (in the congested state of the fundamental diagram), 
small disturbances in the congested flow will grow from one vehicle to its leader, and hence 
also over time. If the gaps between platoons of vehicles are not large enough to absorb a distur-
bance, it can cause traffic to come to a complete stop (traffic instability; Pueboobpaphan and 
Van Arem, 2010).

This phenomenon is quite common in day-to-day motorway traffic operations. Figure 7.10 
shows an example of the A4 motorway in the Netherlands. Figure 7.10 shows an example of 
the A4 motorway in the Netherlands. A bottleneck can be identified around km 55. One can 
find stop-and-go waves propagating backwards at approximately 18 km/h. Note that as wide 

Figure 7.10	 Typical traffic patterns on the A4 motorway in the Netherlands
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moving jams. Note that as wide moving jams have an outflow rate which is about 30% lower 
than the free flow capacity, these jams are actually quite undesirable from a traffic efficiency 
perspective. Furthermore, they imply additional braking and acceleration, yielding increased 
fuel consumption and emission levels.

7.7	 MULTI-LANE TRAFFIC FLOW FACILITIES

Up to now, the chapter has considered each lane of the freeway to be equal. However, there 
are considerable differences between them. This section only introduces a basic concept. For 
more insight we refer to the literature mentioned in this paragraph. For the sake of simplicity, 
we assume here right-hand driving. For countries where a left-hand driving rule applies, like 
Japan, the United Kingdom, or Australia, the lanes are exactly opposite. Daganzo (2002a, 
2002b) poses a theory classifying the drivers as slugs, defined by their low desired speed, and 
rabbits, defined by their higher desired flow speed. He states that as soon as the speed in the 
right lane will go under a threshold, rabbits will move to faster lanes at the left. The theory 
further states that even if the density in the right lane is lower than in the left lane, the rabbits 
will not change towards the right lane as long as the speeds in the left lane are higher. This 
traffic state, with two different speeds, is called a two pipe regime, since traffic is flowing as it 
were in two different, unrelated pipes. In this state, there is no equal density in both lanes. Only 
once the density in the left lane increases that much that the speed decreases to a value lower 
than the speed in the right lane, will rabbits move towards the right lane. Then, the rabbits will 
redistribute themselves in such a way that the traffic in both lanes flows at the same speed. This 
is called a one pipe regime.

Note that the speeds in different lanes at the same densities can be different, due to these 
effects or basically due to the driver population on that lane. This leads to different fundamen-
tal diagrams in the left and right lanes. Usually, the free flow speed in the left lane is higher 
than in the right lane, due to the higher fraction of rabbits in that lane (see Knoop et al., 2010). 
Kerner (2004) poses a similar theory on multi-lane traffic flow facilities. This unbalanced lane 
flows cause inefficiencies in road traffic. By actively influencing lane choice or lane changes, 
one can try to increase road capacity and hence reduce delays. This has been an active field of 
research in the past decade (e.g., Roncoli et al., 2017, and Nagalur Subraveti et al., 2020).

7.8	 MICROSCOPIC FLOW MODELS

Traffic flow models can be used to simulate the traffic, for instance, to evaluate ex-ante the 
use of a new part of the infrastructure. Traffic flow models may be categorized using various 
dimensions (deterministic or stochastic, continuous or discrete, analytical or simulation, and 
so forth). The most common classification is the distinction between microscopic and mac-
roscopic traffic flow modelling approaches. However, this distinction is not unambiguous, 
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due to the existence of hybrid models. This is why here models are categorized based on the 
following aspects:

1.	 Representation of the traffic flow in terms of flows (macroscopic), groups of drivers (mac-
roscopic), or individual drivers (microscopic).

2.	 Underlying behavioural theory, which can be based on characteristics of the flow (macro-
scopic), or individual drivers (microscopic behaviour).

The remainder of this section uses this classification to discuss some important flow models. 
Table 7.1 depicts an overview of these models.

Table 7.1	  Overview of traffic flow model classification
Representation Behavioural rules

Microscopic Macroscopic

Vehicle based Microscopic flow models Particle models 

Flow based Gas-kinetic models Macroscopic models 

The observed behaviour of drivers, i.e., headways, driving speeds, driving lane, is influenced by 
different factors, which can be related to the driver–vehicle combination (vehicle characteris-
tics, driver experience, age, gender, and so forth), the traffic conditions (average speeds, densi-
ties), infrastructure conditions (road conditions), and external situational influences (weather, 
driving regulations). Over the years, different theories have been proposed to (dynamically) 
relate the observed driving behaviour to the parameters describing these conditions.

In doing so, different driver subtasks are often distinguished. In general, two types of driver 
tasks are distinguished: longitudinal tasks (acceleration, maintaining speed, distance keeping 
relative to leading vehicle) and lateral tasks (lane changing, overtaking). In particular the 
longitudinal and (to a lesser extent) the lateral interaction subtasks have received quite some 
attention in traffic flow theory research.

A microscopic model provides a description of the movements of individual vehicles that 
are considered to be a result of the characteristics of drivers and vehicles, the interactions 
between driver–vehicle elements, the interactions between driver–vehicle elements and the 
road characteristics, external conditions and the traffic regulations and control. Most micro-
scopic simulation models assume that a driver will only respond to the one vehicle that is 
driving in the same lane, directly in front of him (the leader).

When the number of driver–vehicle units on the road is very small, the driver can freely 
choose his speed given his preferences and abilities, the roadway conditions, curvature, pre-
vailing speed limits, and so forth. In any case, there will be little reason for the driver to adapt 
his speed to the other road users. The target speed of the driver is the so-called free speed. In 
real life, the free speed will vary from one driver to another, but also the free speed of a single 
driver will change over time. Most microscopic models assume however that the free speeds 
have a constant value that is driver-specific. When traffic conditions deteriorate, the driver will 
no longer be able to choose the speed freely, since he will not always be able to overtake or pass 
a slower vehicle. The driver will need to adapt his speed to the prevailing traffic conditions, 
i.e., the driver is following. In the remainder of this section, we will discuss some of these 
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car-following models. Models for the lateral tasks, such as deciding to perform a lane change 
and gap acceptance, will not be discussed in this section in detail. The Minimizing Overall 
Braking Induced by Lane Changes (MOBIL) model (Kesting et al., 2007) or Lane Change 
Model with Relaxation and Synchronization (LMRS) (Schakel et al., 2012) models provide 
a good basis for realistic lane changing.

7.8.1	 Safe-Distance Models

The first car-following models were developed by Pipes (1953) and were based on the assump-
tion that drivers maintain a safe distance. A good rule for following vehicle i-1 at a safe distance 
si is to allow at least the length S0 of a car between vehicle I and a part which is linear with the 
speed vi at which i is travelling:

​​​s​ i​​  ​=  S​ (​v​ i​​) ​  ​=  ​S​ 0​​ + ​T​ r​​ ​v​ i​​ � ​ (7.16) ​​​

Here, S0 is the effective length of a stopped vehicle (including additional distance in front), and 
Tr denotes a parameter (comparable to the reaction time). A similar approach was proposed 
by Forbes et al. (1958). Both Pipes’ and Forbes’ theory were compared to field measurements. 
It was concluded that according to Pipes’ theory, the minimum headways are slightly less at 
low and high velocities than observed in empirical data. However, considering the models’ 
simplicity, agreement with real-life observations was amazing (Pignataro, 1973).

7.8.2	 Stimulus-Response Models

However, safe-distance models do not seem to capture many phenomena observed in real-life 
traffic flows, such as hysteresis, traffic instabilities, etc. Stimulus response models are dynamic 
models that describe the reaction of drivers as a function of changes in distance, speeds, etc., 
relative to the vehicle in front, more realistically, e.g. by considering a finite reaction time. 
These models are applicable to relatively busy traffic flows, where the overtaking possibilities 
are small, and drivers are obliged to follow the vehicle in front of them. Drivers do not want the 
gap in front of them to become too large, so that other drivers can enter it. At the same time, 
the drivers will generally be inclined to keep a safe distance.

Stimulus response models assume that drivers control their acceleration (a). The well-known 
model of Chandler et al. (1958) is based on the intuitive hypothesis that a driver’s acceleration 
is proportional to the relative speed vi–1 – vi:

​​​a​ i​​​ (t) ​  ​=  ​ d _ dt ​ ​v​ i​​​ (t) ​  ​=  α​ (​v​ i−1​​​ (t − ​T​ r​​) ​ − ​v​ i​​​ (​t − T​ r​​) ​) ​� ​ (7.17) ​​​

where Tr again denotes the overall reaction time, and α denotes the sensitivity. Based on field 
experiments, conducted to quantify the parameter values for the reaction time Tr and the 
sensitivity α, it was concluded that α depended on the distance between the vehicles: when the 
vehicles were close together, the sensitivity was high, and vice versa.

Stimulus-response models have been mainly applied to single lane traffic (e.g., tunnels, cf. 
Newell, 1961) and traffic stability analysis (Herman, 1959; May, 1990). It should be noted that 
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no generally applicable set of parameter estimates has been found so far, i.e., estimates are 
site-specific. An overview of parameter estimates can be found in Brackstone and McDonald 
(1999).

7.8.3	 Psycho-Spacing Models

The two car-following models discussed so far have a mechanistic character. The only human 
element is the presence of a finite reaction time Tr. However, in reality a driver is not able to:

1.	 observe a stimulus lower than a given value (perception threshold);
2.	 evaluate a situation and determine the required response precisely, for instance due to 

observation errors resulting from radial motion observation;
3.	 manipulate the gas and brake pedal precisely.

Furthermore, due to the need to distribute his attention to different tasks, a driver will gener-
ally not be permanently occupied with the car-following task. This type of consideration has 
inspired a different class of car-following models, namely the psycho-spacing models. Michaels 
(1963) provided the bases for the first psycho-spacing based on theories borrowed from per-
ceptual psychology; cf. Leutzbach and Wiedemann (1986).

The so-called action point models (an important psycho-spacing model) form the basis 
for a large number of contemporary microscopic traffic flow models. An attempt to put these 
effects into models has been made by Hoogendoorn et al. (2010).

7.9	 MACROSCOPIC TRAFFIC FLOW MODELS

In the previous section we have discussed different microscopic traffic flow modelling 
approaches. In this section, we will discuss the main approaches that have been proposed in 
literature taking a macroscopic perspective.

7.9.1	 Deterministic and Stochastic Queuing Theory

The most straightforward approach to model traffic dynamics is probably the use of queuing 
theory. In queuing theory, we keep track of the number of vehicles in a queue (n). A queue 
starts whenever the flow to a bottleneck is larger than the bottleneck capacity, where the cars 
form a virtual queue. The outflow of the queue is given by the infrastructure (it is the outflow 
capacity of the bottleneck, given by C), whereas the inflow is the flow towards the bottleneck 
(q) as given by the traffic model. In an equation, this is written as:

​​dn  ​=  q​ (t) ​dt − C​ (t) ​dt� ​ (7.18) ​​​

The number of vehicles in the queue (n; dn stands for the change in number of vehicles in the 
queue) will evolve in this way until the queue is completely disappeared. Note that both the 
inflow and the capacity are time dependent in the description. For the inflow, this is due to 
the random distribution pattern of the arrivals of the vehicles. Vehicles can arrive in platoons 
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or there can be large gaps in between two vehicles. Also, the capacity is fluctuating. On the 
one hand, there are vehicle-to-vehicle fluctuations. For instance, some drivers have a shorter 
reaction time, hence a shorter headway leading to a higher capacity. On the other hand, the 
capacities will also on a larger scale depend on road or weather conditions (e.g., wet roads, 
night-time).

Figure 7.11 shows how the number of vehicles in the queue, n, fluctuates with time for 
a given inflow and outflow curve.

The disadvantage of the queuing theory is that the queues have no spatial dimension, and they 
do not have a proper length either (they do not occupy space). Other models, which overcome 
these problems, are discussed below.

7.9.2	 Shockwave Theory

Queuing theory provides some of the simplest models that can be used to model traffic flow 
conditions. However, in particular the spatial dimension of traffic congestion is not well 
described, or – in case of vertical queuing models – not described at all. Shockwave theory is 
able to describe the spatio-temporal properties of queues more accurately. This section briefly 
introduces shockwave theory.

A shockwave describes the boundary between two traffic states that are characterized by 
different densities, speeds, and /or flow rates. Shockwave theory describes the dynamics of 

Figure 7.11	 Functioning of queuing theory
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shockwaves, in other words: how does the boundary between two traffic states move in time 
and space.

Suppose that we have two traffic states: state 1 and 2. Let S denote the wave that separates 
these states. The speed of this shockwave S can be computed by:

​​​w​ 12​​  ​=  ​ 
​q​ 2​​ − ​q​ 1​​ _ ​k​ 2​​ − ​k​ 1​​

 ​ � ​ (7.19) ​​​

In other words, the speed of the shockwave equals the jump in the flow over the wave divided 
by the jump in the density. This yields a nice graphical interpretation (Figure 7.12): if we con-
sider the line that connects the two traffic states 1 and 2 in the fundamental diagram, then the 
slope of this line is exactly the same as the speed of the shock in the time–space plane.

Shockwave theory provides simple means to predict traffic conditions in time and space. These 
predictions are largely in line with what can be observed in practice, but it has its limitations:

1.	 Traffic driving away from congestion does not smoothly accelerate towards the free speed 
but keeps driving at the critical speed.

2.	 Transition from the one state to the other always occurs jump-wise, not taking into 
account the bounded acceleration characteristics of real traffic.

3.	 No consideration of hysteresis.
4.	 No spontaneous transitions from the one state to the other.
5.	 Location of congestion occurrence is not in line with reality.

As a result, more advanced approaches have been proposed. To deal with this, continuum 
traffic models have been developed.

Figure 7.12	 Graphical interpretation of shockwave speed
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7.9.3	 Continuum Traffic Flow Models

Continuum traffic flow deal with traffic flow in terms of aggregate variables, such as flow, den-
sities, and mean speeds. Usually, the models are derived from the analogy between vehicular 
flow and flow of continuous media (e.g., fluids or gases), complemented by specific relations 
describing the average macroscopic properties of traffic flow (e.g., the relation between density 
and speed). Continuum flow models generally have a limited number of equations that are 
relatively easy to handle.

Most continuum models describe the dynamics of density k = k(x,t), mean instantaneous 
speed u  =  u(x,t), and the flow q  =  q(x,t). The density k(x,t) describes the expected number 
of vehicles per unit length at instant t. The flow q(x,t) equals the expected number of vehicles 
flowing past cross-section x during per time unit. The speed u(x,t) equals the mean speed of 
vehicle defined according to q=ku. For an overview of continuum flow models, we refer to Van 
Wageningen-Kessels et al. (2015).

7.10	 NETWORK DYNAMICS

In the preceding sections, we have presented some of the main traffic flow characteristics. 
Using the microscopic and macroscopic models discussed, flow operations on simple infra-
structure elements can be explained and predicted. To predict flow operations in a network 
is obviously more involved since it requires also predicting the route traffic demand profiles, 
which in turn means modelling route choice, departure time choice, mode choice, etc.

Interestingly, it turns out the overall dynamics of a traffic network can be described using 
a remarkably simple relation, referred to as the macroscopic or network fundamental diagram 
(NFD). This diagram relates the vehicle accumulation – or average vehicle density – to the 
network performance. The network performance is defined by the flow, weighted by the 
number of lanes, and the length of the roadway segment for which the measured flow is 
representative.

This relation, which will be discussed in the following sections, shows one of the most 
important properties of network traffic operations, namely that its performance decreases 
when the number of vehicles becomes larger. In other words, when it is very busy in the 
network, performance goes down and less vehicles are able to complete their trip per unit of 
time. As a consequence, problems become even bigger.

7.10.1	 Macroscopic Fundamental Diagram

Vehicular traffic network dynamics are atypical. Contrary to many other networks, network 
production (average rate at which travellers complete their trip) deteriorates once the number 
of vehicles in the network has surpassed the critical accumulation. Pioneering work of Daganzo 
and Geroliminis (2008) shows the existence of the NFD, clearly revealing this fundamental 
property. Figure 7.13 shows an example of the NFD. Knowledge of this fundamental property 
and its underlying mechanisms is pivotal in the design of effective traffic management.
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Developing a macroscopic description of traffic flow is not a new idea. Thomson (1967) found 
the relationship between average speed and flow using data collected streets in central London. 
Wardrop (1968) stated that this relation between average speed and flow decreased monotoni-
cally and Zahavi (1972) enriched Wardrop’s theory by analysing real traffic data collected from 
various cities in the United Kingdom and the United States. Geroliminis and Daganzo (2008) 
have proven that NFDs exist in small networks, revealing the relationship between the outflow 
and accumulation in the network. This has later been confirmed for many other cities (Loder 
et al., 2019). The accumulation is the number of vehicles in the network. The outflow is also 
called trip completion rate, reflecting the rate at which trips reach their destinations. Similar 
to a conventional link fundamental diagram relating the local flow and density, three states 
are demonstrated on a NFD. When only a few vehicles use the network, the network is in the 
free flow condition and the outflow is low. With the increase of the number of vehicles, the 
outflow rises up to the maximum. Like the critical density in a link fundamental diagram, the 
value of corresponding accumulation when maximum outflow is reached is also an important 
parameter, called “sweet spot”.

As the number of vehicles further increases, travellers will experience delay. If vehicles 
continue to enter the network, it will result in a congested state where vehicles block each 
other and the outflow declines (congested conditions). Daganzo et al. (2011) illustrated that 
once a zone becomes only slightly too full, its performance can quickly deteriorate. In terms 
of control concepts, Keyvan-Ekbatani et al. (2012) developed rules for limiting the number of 
vehicles inside a zone in order not to exceed a critical number.

7.10.2	 Causes for Network Degeneration

The two main causes for the production deterioration of overloaded networks are spill-back of 
queues possibly resulting in gridlock effects, and the capacity drop. Spill-back occurs due to the 

Figure 7.13	 Example Network Fundamental Diagram
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simple fact that queues occupy space: a queue occurring at a bottleneck may propagate so far 
upstream that it will affect traffic flows that do not have to pass the bottleneck, e.g., when the 
queue passes a fork or an intersection upstream of the active bottleneck. As a result, congestion 
will propagate over other links of the network, potentially causing gridlock phenomena. The 
capacity drop describes the fact that the free flow freeway capacity is considerably larger than 
the queue discharge rate.

Vehicle automation can partially reduce the effects of network degradation. Traffic light set-
tings can be further optimized to further stretch the network capacity (e.g., Keyvan-Ekbatani 
et al., 2019). Road capacity can be influenced by the vehicle type, and so can the capacity drop, 
for instance by pre-notifications (see Section 7.5). Routing might be another way to reduce the 
network degradation due to spill-back. Once, or even before, queues start to form, vehicles can 
be rerouted in order to avoid the growth of traffic jams. This means traffic that does not need 
to pass the bottleneck is not delayed by spill-back queues and can continue. This does come at 
a cost of inefficiency due to detours. In a fully connected system, these costs can be balanced.

7.11	 BICYCLE TRAFFIC

Research into bicycle traffic has increased in the past decade. Whereas there are many studies 
on the choice of mode, the actual description of the way people cycle operationally has not 
taken off until recently.

For as long as the modelling assumptions hold, all tools and analyses as described above for 
vehicles can be used also for cycling. A main difference compared to vehicular traffic is the fact 
that cyclist traffic is not lane bound, and hence cyclists have freedom to choose a lateral posi-
tion. Let us in brief revisit the elements in this chapter and indicate how these elements change 
in cycling traffic. If cyclists move along streams, all tools can be the same as for car traffic. 
Sometimes, no lanes are indicated, and they mix completely with other traffic, for instance in 
so-called shared space.

Variables can be defined in the same way for cyclists. Microscopically, one has only head-
ways if one can define a leader. Edie’s (1965) definitions (equations 7.10, 7.12, and 7.13) can 
be applied to cyclist traffic, even if it is not lane bound. Note that the distance travelled will 
be length, and the space–time area can be either a road length times a time, or the road area 
times a time. Depending on that choice, density is expressed as cyclist per metre, or cyclists per 
square metre. For pedestrian traffic, a density expression per square metre is most common; 
for cyclist traffic, both expressions are used depending on whether cyclists can move freely in 
the lateral direction (i.e., what type of infrastructure is considered: a narrow pathway or a large 
square).

On the macroscopic level, parts of the properties of bicycle flows along a road have been 
analysed by Botma and Papendrecht (1991) and Navin (1994). It can be assumed that bicycle 
traffic should obey some sort of fundamental diagram, but this has not been fully confirmed 
with empirical (or experimental) data. In fact, congested part of the fundamental diagram is 
not thoroughly established yet. Zhang et al. (2013) have made a very interesting comparison 
of fundamental diagrams for cars, cyclists, and pedestrians. They found the fundamental 
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diagrams scale by the size of the traffic participant and the speed; surprisingly and interest-
ingly, also the states in between (combinations of density and speed) scaled similarly. Very 
recent research (Hogetoorn, 2022) has experimentally established the processes going on for 
low average speeds: in that case, the speeds do not gradually decrease to zero (cyclists cannot 
cycle very slowly). What happens is that a higher density leads to a higher fraction of stopped 
cyclists, but not necessarily a lower speed of the riding cyclists.

Queuing theory and shockwave theory would be applicable. Queuing at intersections is 
a more studied area of cyclist traffic. Wierbos et al. (2019) studied the capacity of cyclist traffic 
and how this depends on the width of the road. In short, the capacity increased more or less 
linearly with the road width. An interesting observation is that the capacity of the traffic 
leaving a queue at a traffic light is influenced by the density of the queue: the closer the people 
are together, the higher the flow of traffic once the traffic light turns green. This can also be 
used in control: if cyclists are put closer together on purpose, the outflow will increase beyond 
the capacity values obtained in regular traffic (Wierbos et al., 2021).

Modelling of cyclist traffic is done, often by means of the social force model (Helbing 
and Molnar, 1995), which is adapted for cyclist traffic (e.g., Anvari et al., 2015 for shared 
space). How cyclists come to a stop when approaching a traffic light is separately modelled 
(Gavriilidou et al., 2019). Macroscopic models for cyclist traffic are rare. These models can use 
a form of a fundamental diagram, which is – as mentioned – not universally accepted. A more 
elaborate framework, including interactions with other modes, is available (e.g., Wierbos et al., 
2020), yet requires more experimental validation.

With regard to the operations on the network scale (macroscopic fundamental diagram), 
cyclists are smaller than cars and can cross intersections next to each other. Hence, a higher 
fraction of cyclists would increase the maximum flow for a network. Loder et al. (2021) use this 
and try to model a multi-modal macroscopic fundamental diagram.

7.12	 CONCLUSIONS

Traffic flow theory entails the knowledge of the fundamental characteristics of traffic flows. 
Traffic flow theory and modelling is important, among others, in order to design comfortable 
and safe roads, to solve road congestion problems and to design adequate traffic management 
measures.

In traffic flow theory a basic distinction is made between microscopic and macro-
scopic traffic flow variables. Microscopic traffic flow variables focus on individual drivers. 
Macroscopic traffic flow variables reflect the average state of the traffic flow.

The fundamental diagram describes a statistical relation between the macroscopic flow 
variables: flow, density, and speed. The basic premise underlying the fundamental diagram is 
that under similar traffic conditions drivers will behave in a similar way.

Vehicle automation in its current state, without communication, does not improve road 
capacity. Future developments with vehicle-to-vehicle communication can do so.

Traffic flow models can be used to simulate the traffic, for instance, to evaluate ex-ante the 
use of a new part of the infrastructure. Models can be categorized based on, firstly, representa-
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tion of the traffic flow in terms of flows (macroscopic), groups of drivers (macroscopic), or 
individual drivers (microscopic). Secondly, on underlying behavioural theory which can 
be based on characteristics of the flow (macroscopic) or individual drivers (microscopic 
behaviour).

The overall dynamics of a traffic network can be described using a remarkably simple rela-
tion, referred to as the macroscopic or network fundamental diagram (NFD). This relation 
shows one of the most important properties of network traffic operations, namely that its 
performance decreases when the number of vehicles becomes larger.

Theories and modelling tools (on a microscopic level, on a macroscopic level, and on 
a network level) developed for car traffic are – to a certain extent – also applicable for other 
modes.

REFERENCES

Anvari, B., M.G. Bell, A. Sivakumar and W.Y. Ochieng (2015), ‘Modelling shared space users via 
rule-based social force model’, Transportation Research Part C: Emerging Technologies, 51, 83–103.

Botma, H. (1999), ‘The free speed distribution of drivers: Estimation approaches’, in P. Bovy (ed.), Five 
Years Crossroads of Theory and Practice, Delft: Delft University Press, 1–22.

Botma, H. and H. Papendrecht (1991), ‘Traffic Operation of Bicycle Traffic’, Transportation Research 
Record: Journal of the Transportation Research Board, 1320 (1), 65–72.

Brackstone, M. and M. McDonald (1999), ‘Car-Following: A Historical Review’, Transportation Research 
F, 2, 181–86.

Brilon, W., R. Koenig and R.J. Troutbeck (1999), ‘Useful estimation procedures for critical gaps’, 
Transportation Research Part A: Policy and Practice, 33 (3–4), 161–86.

Buckley, D. (1968), ‘A semi-Poisson model for traffic flow’, Transportation Science, 2, 107–33.
Cassidy, M.J. and R.L. Bertini (1999), ‘Some traffic features at freeway bottlenecks’, Transportation 

Research Part B: Methodological, 33 (1), 25–42.
Chandler, R.E., R. Herman and E.W. Montroll (1958), ‘Traffic dynamics: studies in car following’, 

Operations Research, 6 (2), 165–84.
Chung, K., J. Rudjanakanoknada and M.J. Cassidy (2007), ‘Relation between traffic density and capacity 

drop at three freeway bottlenecks’, Transportation Research Part B: Methodological, 41 (1), 82–95.
Ciuffo, B., K. Mattas, A. Anesiadou and M. Makridis (2020), ‘Open ACC database’, accessed 23 May 

2023 at http://​data​.europa​.eu/​89h/​9702c950​-c80f​-4d2f​-982f​-44d06ea0009f, technical report. Brussels: 
European Commission, Joint Research Centre (JRC).

Chung, K., J. Rudjanakanoknada and M.J. Cassidy (2007), ‘Relation between traffic density and capacity 
drop at three freeway bottlenecks’, Transportation Research Part B: Methodological, 41 (1), 82–95.

Cowan, R. J. (1975), ‘Useful headway models’, Transportation Research, 9 (6), 371–75.
Daganzo, C.F. (2002a), ‘A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway 

sections’, Transportation Research Part B: Methodological, 36 (2), 131–58.
Daganzo, C.F. (2002b), ‘A behavioral theory of multi-lane traffic flow. Part II: Merges and the onset of 

congestion’, Transportation Research Part B: Methodological, 36 (2), 159–69.
Daganzo, C.F., V.V. Gayah and E.J. Gonzales (2011), ‘Macroscopic relations of urban traffic variables: 

Bifurcations, multivaluedness and instability’, Transportation Research Part B: Methodological, 45 (1), 
278–88.

Daganzo, C.F. and N. Geroliminis (2008), ‘An analytical approximation for the macroscopic fundamen-
tal diagram of urban traffic’, Transportation Research Part B: Methodological, 42 (9), 771–81.

Edie, L. (1965), ‘Discussion of traffic stream measurements and definitions’, in J. Almond (ed.), 
Proceedings of the Second International Symposium on the Theory of Road Traffic Flow, Paris: OECD, 
139–54.

Forbes, T., H. Zagorski, E. Holshouser and W. Deterline (1958), ‘Measurement of driver reactions to 
tunnel conditions’, Highway Research Board Proceedings, 37, 60–66.



150 THE TRANSPORT SYSTEM AND TRANSPORT POLICY

Gavriilidou, A., W. Daamen, Y. Yuan and S.P. Hoogendoorn (2019), ‘Modelling cyclist queue formation 
using a two-layer framework for operational cycling behaviour’, Transportation Research Part C: 
Emerging Technologies, 105, 468–84.

Geroliminis, N. and C.F. Daganzo (2008), ‘Existence of urban-scale macroscopic fundamental diagrams: 
Some experimental findings’, Transportation Research Part B: Methodological, 42 (9), 759–70.

Hall, F.L. and K. Agyemang-Duah (1991), ‘Freeway Capacity Drop and the Definition of Capacity’, 
Transportation Research Record: Journal of the Transportation Research Board, 1320, 91–98.

Helbing, D. and P. Molnar (1995), ‘Social force model for pedestrian dynamics’, Physical review E, 51 
(5), 4282.

Herman, R. (1959), ‘Traffic dynamics: Analysis of stability in car-following’, Operation Research, 7 (1), 
86–106.

Hogetoorn, M. (2022), ‘Dense cycling conditions: The influence of stopped cyclists on the flow of bicycle 
traffic’. MSc thesis, Delft University of Technology.

Hoogendoorn, S.P. (2005), ‘Unified approach to estimating free speed distributions’, Transportation 
Research Part B: Methodological, 39 (8), 709–27.

Hoogendoorn, R., S.P. Hoogendoorn, K. Brookhuis and W. Daamen (2010), ‘Mental workload, longi-
tudinal driving behavior, and adequacy of car-following models for incidents in other driving lane’, 
Transportation Research Record, 2188 (1), 64–73.

Jepsen, M. (1998), ‘On the speed-flow relationships in road traffic: A model of driver behaviour’, 
Proceedings of the Third International Symposium on Highway Capacity, Copenhagen, 297–319.

Kerner, B.S. (2004), The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, 
and Theory. Berlin: Springer.

Kesting, A., M. Treiber and D. Helbing (2007), ‘General lane-changing model MOBIL for car-following 
models’, Transportation Research Record, 1999 (1), 86–94.

Keyvan-Ekbatani, M., X.(S.) Gao, V.V. Gayah and V.L. Knoop (2019), ‘Traffic-responsive signals com-
bined with perimeter control: investigating the benefits’, Transportmetrica B: Transport Dynamics, 7 
(1), 1402–25.

Keyvan-Ekbatani, M., A. Kouvelas, I. Papamichail and M. Papageorgiou (2012), ‘Exploiting the fun-
damental diagram of urban networks for feedback-based gating’, Transportation Research Part B: 
Methodological, 46 (10), 1393–403.

Knoop, V.L. (2020), Traffic Flow Theory: An Introduction with Exercises. Third edition, Delft: TU Delft 
Open Textbook. DOI: 10.5074/t.2021.002.

Knoop, V.L., A. Duret, C. Buisson and B. Van Arem (2010, September), ‘Lane distribution of traffic near 
merging zones influence of variable speed limits’, in 13th International IEEE Conference on Intelligent 
Transportation Systems, Madeira: IEEE, 485–90.

Knoop, V.L. and S.P. Hoogendoorn (2022), ‘Free Flow Capacity and Queue Discharge Rate: Long Term 
Changes’, Transportation Research Records. DOI: 10.1177/03611981221078845.

Knoop, V.L., S.P. Hoogendoorn and H.J. Van Zuylen (2009), ‘Empirical Differences between Time 
Mean Speed and Space Mean Speed’, in C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre, 
J.-P. Lebacque and M. Schreckenberg (ed.), Proceedings of Traffic and Granular Flow 07, New York: 
Springer, 351–56.

Knoop, V.L., M. Wang, I.M. Wilmink, M. Hoedemaeker, M. Maaskant and E.-J. Van der Meer (2019), 
‘Platoon of SAE level-2 automated vehicles on public roads: setup, traffic interactions, and stability’, 
Transportation Research Records, 2673 (9), 311–22.

Laval, J.A. (2011), ‘Hysteresis in traffic flow revisited: An improved measurement method’, Transportation 
Research Part B: Methodological, 45 (2), 385–91.

Laval, J.A. and C.F. Daganzo (2006), ‘Lane-changing in traffic streams’, Transportation Research Part B: 
Methodological, 40 (3), 251–64.

Leutzbach, W. and R. Wiedemann (1986), ‘Development and applications of traffic simulation models at 
the Karlsruhe Institut für Verkehrswesen’, Traffic Engineering and Control, 27, 270–78.

Loder, A., L. Ambühl, M. Menendez and K.W. Axhausen (2019), ‘Understanding traffic capacity of 
urban networks’, Scientific reports, 9 (1), 1–10.

Loder, A., L. Bressan, M.J. Wierbos, H. Becker, H. Emmonds, M. Obee, V.L. Knoop, M. Menendez and 
K.W. Axhausen (2021), ‘How many cars in the city are too many? Towards finding the optimal modal 
split for a multi-modal urban road network’, Frontiers in Future Transportation, 2, 665006.

May, A.D. (1990), Traffic Flow Fundamentals, Englewood Cliffs, NJ: Prentice Hall.



151TRAFFIC FLOW THEORY AND MODELLING

Michaels, R. (1963), ‘Perceptual factors in car following’, , in J. Almond (ed.), Proceedings of the Second 
International Symposium on the Theory of Road Traffic Flow, Paris: OECD, 44–59.

Milanés, V. and S.E. Shladover (2014), ‘Modeling cooperative and autonomous adaptive cruise control 
dynamic responses using experimental data’, Transportation Research Part C: Emerging Technologies, 
48, 285–300.

Minderhoud, M.M., H. Botma and P.H.L. Bovy (1996), ‘An Assessment of Roadway Capacity Estimation 
Methods’, Technical Report vk2201.302, Delft University of Technology.

Nagalur Subraveti, H.H.S., V.L. Knoop and B. Van Arem (2020), ‘Improving Traffic Flow Efficiency 
at Motorway Lane Drops by Influencing Lateral Flows’, Transportation Research Records, 2674 (11) 
367–78.

National Academies of Sciences, Engineering, and Medicine (2022), Highway Capacity Manual 7th 
Edition: A Guide for Multimodal Mobility Analysis. Washington, DC: The National Academies Press. 
https://​doi​.org/​10​.17226/​26432.

Navin, F.P.D. (1994), ‘Bicycle Traffic Flow Characteristics: Experimental Results and Comparisons’, ITE 
Journal, 64 (3), 31–37.

Nelson, W. (1982), Applied Life Time Analysis, New York: Wiley.
Newell, G.F. (1961), ‘A theory of traffic flow in tunnels’, in R. Herman (ed.), Theory of Traffic Flow, 

Proceedings of the Symposium on the Theory of Traffic flow, Amsterdam: Elsevier, 193–206.
Pignataro, L. (1973), Traffic Engineering: Theory and Practice, Englewood Cliffs, NJ: Prentice Hall.
Pipes, L. (1953), ‘Car following models and the fundamental diagram of road traffic’, Transportation 

Research, 1, 21–29.
Pueboobpaphan, R. and B. van Arem (2010, January). ‘Understanding the relation between driver/

vehicle characteristics and platoon/traffic flow stability for the design and assessment of cooperative 
adaptive cruise control’, [paper 10–0994 on DVD], in 89th Transportation Research Board (TRB) 
Annual Meeting 2010, Washington, DC: Mira Digital Publishing.

Rao, B., P. Varaiya and F. Eskafi (1993), ‘Investigations into achievable capacities and stream stability 
with coordinated intelligent vehicles’, Transportation Research Record: Journal of the Transportation 
Research Board, 1408, 27–35.

Roncoli, C., N. Bekiaris-Liberis and M. Papageorgiou (2017), ‘Lane-changing feedback control for 
efficient lane assignment at motorway bottlenecks’, Transportation Research Record, 2625 (1), 20–31.

SAE, J3016 (2021), ‘Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated 
Driving Systems’.

Schakel, W.J., V.L. Knoop and B. Van Arem (2012), ‘LMRS: Integrated Lane Change Model with 
Relaxation and Synchronization’, Transportation Research Records: Journal of the Transportation 
Research Board, 2316, 47–57.

Shiomi, Y., J. Xing, H. Kai, and T. Katayama (2019), ‘Analysis of the Long-Term Variations in Traffic 
Capacity at Freeway Transportation Research Record Bottleneck’, Transportation Research Record: 
Journal of the Transportation Research Board, 2673, 390–401.

Thomson, J.M. (1967), ‘Speeds and flows of traffic in Central London: Speed-flow relations’, Traffic 
Engineering and Control, 8 (12), 721–25.

Treiber, M., A. Hennecke and D. Helbing (2000), ‘Congested traffic states in empirical observations and 
microscopic simulations’, Physical review E, 62 (2), 1805.

Treiterer, J. and J.A. Myers (1974), ‘The hysteresis phenomenon in traffic flow’, in D.J. Buckley (ed.), 
Proceedings of the 6th International Symposium on Transportation and Traffic Theory, New York: 
Elsevier, 13–38.

Van Erp, P.B., V.L. Knoop and S.P. Hoogendoorn (2019), ‘On the value of relative flow data’, 
Transportation Research Part C: Emerging Technologies, 113, 74–90.

Van Wageningen-Kessels, F., H. Van Lint, K. Vuik and S. Hoogendoorn (2015), ‘Genealogy of traffic 
flow models’, EURO Journal on Transportation and Logistics, 4 (4), 445–73.

Wardrop, J.G. (1968), ‘Journey speed and flow in central urban areas’, Traffic Engineering and Control, 
9 (11), 528–32.

Wasielewski, P. (1974), ‘An integral equation for the semi-Poisson headway distribution’, Transportation 
Science, 8, 237–47.

Wierbos, M.J., V.L. Knoop, R.L. Bertini and S.P. Hoogendoorn (2021), ‘Influencing the queue config-
uration to increase bicycle jam density and discharge rate: An experimental study on a single path’, 
Transportation Research Part C: Emerging Technologies, 122, 102884.



152 THE TRANSPORT SYSTEM AND TRANSPORT POLICY

Wierbos, M.J., V.L. Knoop, F.S. Hänseler and S.P. Hoogendoorn (2019), ‘Capacity, capacity drop, and 
relation of capacity to the path width in bicycle traffic’, Transportation research record, 2673 (5), 
693–702.

Wierbos M.J., V.L. Knoop, F.S. Hänseler and S.P. Hoogendoorn (2020), ‘A Macroscopic Flow Model for 
Mixed Bicycle–Car Traffic’, Transportmetrica A: Transport Science, 17(3), 9935.

Yuan, K., V.L. Knoop and S.P. Hoogendoorn (2015), ‘Capacity drop: a relation between the speed in 
congestion and the queue discharge rate’, in Transportation Research Record, 2491, 72–80.

Yuan, K., V.L. Knoop and S.P. Hoogendoorn (2017), ‘A microscopic investigation into the capacity drop: 
impacts of longitudinal behavior on the queue discharge rate’, Transportation Science, 51 (3), 852–62.

Zahavi, Y. (1972), ‘Traffic performance evaluation of road networks by the α-relationship’, Parts I and II, 
Traffic Engineering and Control, 14 (5 and 6), 228–31 and 292–93.

Zhang, J., W. Mehner, E. Andresen, S. Holl, M. Boltes, A. Schadschneider and A. Seyfried (2013), 
‘Comparative Analysis of Pedestrian, Bicycle and Car Traffic Moving in Circuits’, Procedia–Social and 
Behavioral Sciences, 104, 1130–38.


