
 
 

Delft University of Technology

Benchmarking surrogate-based optimisation algorithms on expensive black-box functions

Bliek, Laurens; Guijt, Arthur; Karlsson, Rickard; Verwer, Sicco; de Weerdt, Mathijs

DOI
10.1016/j.asoc.2023.110744
Publication date
2023
Document Version
Final published version
Published in
Applied Soft Computing

Citation (APA)
Bliek, L., Guijt, A., Karlsson, R., Verwer, S., & de Weerdt, M. (2023). Benchmarking surrogate-based
optimisation algorithms on expensive black-box functions. Applied Soft Computing, 147, Article 110744.
https://doi.org/10.1016/j.asoc.2023.110744

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.asoc.2023.110744
https://doi.org/10.1016/j.asoc.2023.110744


Applied Soft Computing 147 (2023) 110744

a

b

b
a
t
c
c
p
o
e
q
i
i
c
n

t
p

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Benchmarking surrogate-based optimisation algorithms on expensive
black-box functions
Laurens Bliek a,∗, Arthur Guijt b, Rickard Karlsson b, Sicco Verwer b, Mathijs de Weerdt b

School of Industrial Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, PO Box 5, 2600 AA, Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 5 December 2022
Received in revised form 15 June 2023
Accepted 3 August 2023
Available online 15 August 2023

Dataset link: https://doi.org/10.4121/14247
179.v2

Keywords:
Expensive optimisation
Surrogate-based optimisation
Bayesian optimisation
Benchmarking

a b s t r a c t

Surrogate algorithms such as Bayesian optimisation are especially designed for black-box optimisation
problems with expensive objectives, such as hyperparameter tuning or simulation-based optimisation.
In the literature, these algorithms are usually evaluated with synthetic benchmarks which are well
established but have no expensive objective, and only on one or two real-life applications which
vary wildly between papers. There is a clear lack of standardisation when it comes to benchmarking
surrogate algorithms on real-life, expensive, black-box objective functions. This makes it very difficult
to draw conclusions on the effect of algorithmic contributions and to give substantial advice on
which method to use when. A new benchmark library, EXPObench, provides first steps towards such
a standardisation. The library is used to provide an extensive comparison of six different surrogate
algorithms on four expensive optimisation problems from different real-life applications. This has led
to new insights regarding the relative importance of exploration, the evaluation time of the objective,
and the used model. We also provide rules of thumb for which surrogate algorithm to use in which
situation. A further contribution is that we make the algorithms and benchmark problem instances
publicly available, contributing to more uniform analysis of surrogate algorithms. Most importantly,
we include the results of the six algorithms on all evaluated problem instances. This unique new
dataset lowers the bar for researching new methods as the number of expensive evaluations required
for comparison and for the creation of new surrogate models is significantly reduced.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Unlike other black-box optimisation algorithms, surrogate-
ased optimisation algorithms such as Bayesian optimisation [1]
re designed specifically to solve problems with expensive objec-
ive functions. Examples are materials science [2], temperature
ontrol [3], building design [4], aerodynamics [5], optics [6], and
omputer vision [7], as well as many sustainability-related ap-
lications [8,9]. Many of these problems contain a large number
f non-linear complex dependencies or constraints. Furthermore,
stablishing the correctness and quality of candidate solutions re-
uires computationally expensive simulators or algorithms. Max-
mising the power output of a solar panel or wind turbine, for
nstance, requires running a physics simulator every time a new
onfiguration is tried. Surrogate models can help to reduce the
umber of runs for these expensive simulators or algorithms.
On the one hand, the training and usage of a surrogate model

hat approximates the objective function is typically more com-
utationally intensive than the use of black-box optimisation

∗ Corresponding author.
E-mail address: l.bliek@tue.nl (L. Bliek).
https://doi.org/10.1016/j.asoc.2023.110744
1568-4946/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
heuristics such as local search or population-based methods. On
the other hand, by making use of a surrogate model, surrogate-
based algorithms achieve good results even with a low number of
function evaluations, which is crucial when dealing with expen-
sive objective functions. What is missing is a good understanding
of when to use surrogate-based optimisation, and which model
and algorithm to use then. Ultimately, this should come in the
form of guidelines that, given the properties of an expensive
optimisation problem, tell which type of algorithm would be the
most suitable.

The current way of benchmarking surrogate algorithms does
not give complete insight into the strengths and weaknesses of
the different algorithms, such as their computational efficiency
or accuracy for different types of problems. The most important
reason for this is the lack of a standard benchmark set of prob-
lems that come from real-life applications and that also have
expensive objective functions. As identified by Palar et al. [10]:
‘‘Unfortunately, despite its importance, studies to compare various
optimisation algorithms on real-world problems are still limited,
mainly because such problems are typically not publicly available.
It is therefore imperative to establish a library of benchmarking
problems based on real-world problems that are accessible to re-

searchers.’’ This lack of a real-world benchmarking library also

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2023.110744
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110744&domain=pdf
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
https://doi.org/10.4121/14247179.v2
http://creativecommons.org/licenses/by/4.0/
mailto:l.bliek@tue.nl
https://doi.org/10.1016/j.asoc.2023.110744
http://creativecommons.org/licenses/by/4.0/


L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

m
s

s
t
b
s
c

W
d
p
g
m
a
u
t
a

2

b
W
a
b
F
s

2

i

m

akes it difficult to further develop our understanding of which
urrogate algorithm to use on what kind of real-life applications.
In this work, we aim to tackle this gap by comparing several

urrogate algorithms on the same set of expensive optimisa-
ion problems from real-life applications, resulting in a public
enchmark library that can be easily extended both with new
urrogate algorithms, as well as with new problems. Our other
ontributions are:

• the creation of a meta-algorithmic dataset which includes
for several real-life applications the candidate solutions cho-
sen by each algorithm, the resulting objective value, and
the computation time used to find and to evaluate this
candidate.

• insight into the strengths and weaknesses of existing sur-
rogate algorithms depending on problem properties, and
verifying existing knowledge from literature,

• investigating how algorithm performance depends on the
available computational resources and the cost of the ex-
pensive objective,

• separating the effects of the choice of surrogate model and
the acquisition step of the different algorithms,

• easy to interpret rules of thumb for when to use which
surrogate algorithm.

e furthermore show that continuous models can be used on
iscrete problems and vice versa. This is an important result as in
ractice, the types of variables in a problem (e.g. continuous, inte-
er, categorical, etc.) are often used to determine which surrogate
odel to choose or discard. The main insights that we obtained
re that the accuracy of a surrogate model and the choice of
sing a continuous or discrete model, are less important than
he evaluation time of the objective and the way the surrogate
lgorithm explores the search space.

. Background and related work

This section starts by giving a short explanation of surrogate-
ased optimisation algorithms, or surrogate algorithms for short.
e then describe some of the shortcomings in the way surrogate

lgorithms are currently benchmarked: the lack of standardised
enchmarks and the lack of insight in computational efficiency.
inally, we give an overview of related benchmark libraries and
how how our library fills an important gap.

.1. Surrogate-based optimisation algorithms

The goal of surrogate-based optimisation [11–13] is to min-
mise an expensive black-box objective function

in
x∈X

f (x), (1)

where X ⊆ Rd is the d-dimensional search space with d the
number of decision variables. The objective can be expensive
for various reasons, but in this work we assume f is expen-
sive in terms of computational resources, as it involves running
a simulator or algorithm. Optimising f using standard black-
box optimisation algorithms such as local search methods or
population-based techniques may require too many evaluations
of the expensive objective. We also consider that the problem is
stochastic, meaning we only have access to noisy measurements
yi = f (xi)+ ϵi, where the random noise variable ϵi is the result of
randomness in the underlying simulator or algorithm.

Surrogate algorithms reduce the number of required objective
evaluations by iterating over three steps at every iteration i:

1. (Evaluation) Evaluate yi = f (xi)+ϵi for a candidate solution
x .
i

2

2. (Training) Update the surrogate model g : X → R by fitting
the new data point (xi, yi).

3. (Acquisition) Use g to determine a new candidate solution
xi+1.

Usually, in the first R iterations, xi is chosen randomly and
therefore the acquisition step is skipped for these iterations.
The training step consists of machine learning techniques such
as Gaussian processes or random forests, where the goal is to
approximate the objective f with a surrogate model g . For the
acquisition step, an acquisition function α is used that indicates
which region of the search space is the most promising by trading
off exploration and exploitation:

xi+1 = argmax
x∈X

α(g(x)). (2)

Example acquisition functions are Expected Improvement, Upper
Confidence Bound, or Thompson sampling [1].

By far the most common surrogate algorithm is Bayesian opti-
misation [1,14], which typically uses a Gaussian process surrogate
model. Other common surrogate models are random forests, as
used in the SMAC algorithm [12], and Parzen estimators, as used
in HyperOpt [7]. Our own earlier work contains random Fourier
features as surrogate models in the DONE algorithm [6] and
piece-wise linear surrogate models in the IDONE and MVRSM
algorithms [15,16]. An overview of different methods and their
surrogate models is given in Table 1. Details about which methods
are included in the comparison are given in Section 3.2.

2.2. Shortcoming 1: lack of standardised real-life benchmarks

Surrogate models appear to be useful to solve problems with
expensive objective functions, and a questionnaire on real-life op-
timisation problems confirms that this type of objective function
often appears in practice [20]. Since most surrogate algorithms
are developed with the goal of being applicable to many dif-
ferent problems, these algorithms should be tested on multiple
benchmark functions. Preferably, these benchmarks are standard-
ised, meaning that they are publicly available, easy to test on,
and used by a variety of researchers. For synthetic benchmarks,
standardised benchmark libraries such as COCO [21] have been
around for several years now, and these types of benchmark
functions are often used for the testing of surrogate algorithms as
well. However, benchmarks from real-life applications are much
harder to find [10].

Simply taking the benchmarking results on synthetic functions
and applying them to expensive real-life applications, or adding
a delay to the synthetic function, is not enough [10,22–25]. An
example is the ESP benchmark discussed later in this paper. For
this benchmark we have noticed that changing only one of the
variables at a time leads to no change in the objective value at all,
meaning that there are more ‘plateaus’ than in typical synthetic
functions used in black-box optimisation. In general, expensive
objectives are often expensive because they are the result of some
kind of complex simulation or algorithm, and the resulting fitness
landscape is therefore much harder to analyse/model than that
of a synthetic function which can simply be described with a
mathematical function.

2.3. Shortcoming 2: lack of insight in computational efficiency

In many works on surrogate algorithms, computation times of
the algorithms are not taken into consideration, and are often
not even reported. This is because of the underlying assump-
tion that the expensive objective is the bottleneck. However,
completely disregarding the computation time of the surrogate
algorithm leads to the development of algorithms that are too



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

h
f
c
a
a

f
p
p
a
m
t

2

b
c
r
b
i
t
l
(
a
a
l
S
n
b

a
l
l
l
p
s
c
c
o
i

Table 1
Surrogate-based approaches in this benchmark environment, and whether they natively support continuous (cont.), integer (int.),
categorical (cat.) and conditional (cond.) variables.
Name Surrogate model Cont. Int. Cat. Cond.

SMAC [12,17] Random forest ✓ ✓ ✓ ✓
HyperOpt [7] Parzen estimator ✓ ✓ ✓ ✓
Bayesian Opt. [1,18] Gaussian process (GP) ✓
CoCaBO [19] GP+multi-armed bandit ✓ ✓
DONE [6] Random Fourier ✓
IDONE [15] Piece-wise linear ✓
MVRSM [16] Piece-wise linear ✓ ✓
w
s
a
e
g
s
t
l

n
g
s
a
v
U
s
f
p
i

t
f
c
t
o

3

m
c
s
m
a
s
E

p
a
r
a
w
o

s
p
l
a
w
t
t
t

time-consuming to be used in practice. In some cases, the algo-
rithms are even slower than the objective function of the real-life
application, shifting the bottleneck from the expensive objective
to the algorithm. This can be seen for example in the hyperpa-
rameter tuning problem in this work, where the hyperparameters
can be evaluated faster than the slowest surrogate algorithm
can suggest new values for the hyperparameters. Computation
times should be reported, preferably for problems of different
dimensions so that the scalability of the algorithms can be in-
vestigated . This also helps answering the open question posed
in [23]: ‘‘One central question to answer is at what point an opti-
misation problem is expensive ‘‘enough’’ to warrant the application
of surrogate-assisted methods.’’ Since many surrogate algorithms
ave a computational complexity that increases with every new
unction evaluation [16], even more preferable is to report the
omputation time used by the surrogate algorithm at every iter-
tion to gain more insight into the time it takes to run surrogate
lgorithms for different numbers of iterations.
Besides the computation time used by the algorithms, dif-

erent real-life applications have different budgets available that
ut a limit on the number of function evaluations or total com-
utation time. Taking this computational budget into account is
key issue when tackling real-world problems using surrogate
odels [10]. Yet for most surrogate algorithms, it is not clear how

hey would perform for different computational budgets.

.4. Related benchmark environments

From the way surrogate algorithms are currently
enchmarked and the shortcomings that come with it, we con-
lude that we do not sufficiently understand the performance
egarding both quality and run-time on realistic expensive black-
ox optimisation problems. A benchmark library can help in gain-
ng more insight as algorithms are compared on the same set of
est functions. In the context of black-box optimisation, such a
ibrary consists of multiple objective functions and their details
such as the number of continuous or integer variables, evalu-
tion time, etc.) and possibly of baseline algorithms that can be
pplied to the problems. For non-expensive problems, many such
ibraries exist [21,26,27], particularly with synthetic functions.
ome of these libraries also contain real-life functions that are
ot expensive [28–30]. See Table 2 for an overview of related
enchmark environments.
The real-life problems to which surrogate algorithms are usu-

lly applied can roughly be divided into computer science prob-
ems and engineering problems, or digital and physical prob-
ems. Examples of the former are algorithm configuration prob-
ems [12], while the latter deal with (simulators of) a physical
roblem such as aerodynamic optimisation [31]. Even though
urrogate models are used in both problem domains, these two
ommunities often stay separate: most benchmark libraries that
ontain expensive real-life optimisation problems only deal with
ne of the two types, for example in automated machine learn-
ng [32–35] or computational fluid dynamics [22]. The problem
 E

3

ith focusing on only one of the two domains is that domain-
pecific techniques such as early stopping of machine learning
lgorithms [36] or adding gradient information from differential
quations [37,38] are exploited when designing new surrogate al-
orithms, making it difficult to transfer the domain-independent
cientific progress in surrogate algorithms from one domain to
he other. Benchmarking surrogate algorithms in multiple prob-
em domains would be beneficial for all these domains.

Though all benchmark libraries contain benchmark problems,
ot all of them contain solutions in the form of surrogate al-
orithms, and some of them do not even contain any type of
olution at all. One library that does contain many surrogate
lgorithms is SUMO [39], a commercial toolbox with a wide
ariety of applications both in computer science and engineering.
nfortunately, this Matlab tool is over 10 years old, and only a re-
tricted version is available for researchers, making it less suitable
or benchmarking. It only supports low-dimensional continuous
roblems, and newer surrogate algorithms that were developed
n the last decade are not implemented.

What is currently missing is a modern benchmark library
hat is aimed at real-life expensive benchmark functions not just
rom computer science but also from engineering, and that also
ontains baseline surrogate algorithms that can easily be applied
o these benchmarks such as SMAC, HyperOpt, and Bayesian
ptimisation with Gaussian processes.

. Proposed benchmark library: EXPObench

In this section we introduce EXPObench: an EXPensive Opti-
isation benchmark library.1 We propose a benchmark suite fo-
using on single-objective, expensive, real-world problems, con-
isting of many integer, categorical, and continuous variables or
ixtures thereof. The problems come from different engineering
nd computer science applications, and we include seven baseline
urrogate algorithms to solve them. See Table 2 for details on how
XPObench compares to related benchmark environments.
The simple framework of this benchmark library makes it

ossible for researchers in surrogate models to compare their
lgorithms on a standardised set of real-life problems, while
esearchers with expensive optimisation problems can easily try
standard set of surrogate algorithms on their problems. This
ay, our benchmark library advances the field of surrogate-based
ptimisation.
It should be noted that synthetic benchmark functions are

till useful, as they are less time-consuming and have known
roperties. We therefore still include synthetic benchmarks in our
ibrary, though we do not discuss them in this work. We encour-
ge researchers in surrogate models to use synthetic benchmarks
hen designing and investigating their algorithm, and then use
he real-life benchmarks presented in this work as a stress test
o see how their algorithms hold up against more complex and
ime-consuming problems.

1 Our code is available publicly at https://github.com/AlgTUDelft/
xpensiveOptimBenchmark.

https://github.com/AlgTUDelft/ExpensiveOptimBenchmark
https://github.com/AlgTUDelft/ExpensiveOptimBenchmark


L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

t
E

3

i
m
s
e
w
s
o
t
c
u
p

d
w
t
i
t
d
a
S
w
o

t
s
(
f
H
m
c
p
o

c
t
m
a
l

Table 2
Related benchmark environments.
Name Contains expensive

problems
Contains engineering
problems

Contains computer
science problems

Implemented surrogate
algorithms

HyFlex [28] ✓ 0
SOS [29] ✓ 0
IOHprofiler [30] ✓ ✓ 0
GBEA [40] ✓ ✓ 0
CFD [22] ✓ ✓ 0
NAS-Bench [33–35] ✓ ✓ 0
DAC-Bench [41] ✓ ✓ 0
RBFopt [42] ✓ 1
CompModels [43] ✓ ✓ 1
HPObench [44] ✓ ✓ 2
AClib2 [45] ✓ ✓ 2
Nevergrad [46] ✓ ✓ ✓ 2
BayesMark [47] ✓ ✓ 3
MATSuMoTo [48] 4
AMLB [32] ✓ ✓ 4
PySOT [49] 5
EXPObench ✓ ✓ ✓ 7
SUMO [39] ✓ ✓ ✓ 9
SMT [38] ✓ 14
In the remainder of this section, we describe the problems and
he approaches to solve these problems that we have added to
XPObench.

.1. Included expensive benchmark problems

The problems that were included in EXPObench were selected
n such a way that they contain a variety of applications, di-
ensions, and search spaces. To encourage the development of
urrogate algorithms for applications other than computer sci-
nce, we included several engineering problems, one of which
as first introduced in the CFD benchmark library [22]. Many
urrogate algorithms claim to work on a wide variety of expensive
ptimisation problems. However, benchmarking is often limited
o synthetic problems, or real-life problems from one domain,
asting doubt on the validity of these claims. To verify the general
sefulness of surrogate algorithms, it is important to test them on
roblems from different domains.
The problem dimensions in this work were chosen to be

ifficult for standard surrogate algorithms: Bayesian optimisation
ith Gaussian processes is typically applied to problems with less
han 10 variables. Two of our problems have 10 variables, though
t is possible to scale them up, while the other problems contain
ens or even over 100 variables. This is in line with our view of
esigning surrogate algorithms using easy, synthetic functions,
nd then testing them on more complicated real-life applications.
ince discrete expensive problems are also an active research area,
e included one discrete problem and even a problem with a mix
f discrete and continuous variables.
The problems were carefully selected to have expensive objec-

ives that take longer to evaluate than synthetic functions, but not
o long that benchmarking becomes impossible. On our hardware
see Section 5.1), the time it takes to evaluate the objective
unction varies between 2 and 60 s depending on the problem.
owever, all included benchmarks capture the properties of even
ore expensive problems, or can be made more expensive by
hanging the corresponding data or problem parameters. We also
rovide a method to simulate situations where evaluating the
bjective requires significantly more time.
By the nature of the chosen problems, there are no pre-

onstructed and unrealistic relations between variables. Hence,
he additional complexity stemming from real-world objectives
akes the benchmarking more interesting as well, such as the
forementioned greater magnitude of ‘plateaus’ in the ESP prob-
em compared to typical synthetic functions. Additionally, since
4

Table 3
Included expensive optimisation problems, and the approximate evaluation
time of the objective (eval.), dimension or total number of variables (dim.),
corresponding number of continuous (cont.), integer (int.), and categorical (cat.)
variables, and whether some variables are conditional (cond.) variables.
Problem Eval. Dim. Cont. Int. Cat. Cond.

Windwake 15 s 10 10 – – –
Pitzdaily 2–60 s 10 10 – – –
ESP 28 s 49 – – 49 –
HPO 1–8 s 135 11 7 117 Yes

these objectives are more difficult to analyse, it is harder to come
up with a solver that exploits any knowledge of the problem.

We now give a short description of the four real-life expen-
sive optimisation problems that are present in EXPObench. This
information is summarised in Table 3.

3.1.1. Wind farm layout optimisation (Windwake)
This benchmark utilises a wake simulator called FLORIS [50]

to determine the amount of power a given wind farm layout
produces. To make the layout more robust to different wind
conditions, we decided to use as output the power averaged over
multiple scenarios, where each scenario uses randomly generated
wind rose data, generated with the same distribution. A solution
is represented by a sequence of pairs of coordinates for each wind
turbine, which can take on continuous values. The output is −1
times the power averaged over multiple scenarios, which takes
about 15 s to compute on our hardware for 5 scenarios and 5
wind turbines. It should be noted that this particular problem
has constraints besides upper and lower bounds for the position
of each wind turbine: turbines are not allowed to be located
within a factor of two of each others’ radius. This is not just
for modelling a realistic situation: the simulator fails to provide
accurate results if this overlap is present. With the relatively low
packing density present in this problem, this gives a realistic
and interesting fitness landscape. As the goal of this work is
not to compare different ways to handle constraints, we use the
naive approach of incorporating the constraint in the objective.
The objective simply returns 0 when constraints are violated.
While more complex wake simulators exist, the problem also
becomes more expensive when the number of wind turbines and
the number of scenarios are increased.

3.1.2. Pipe shape optimisation (Pitzdaily)
One of the engineering benchmark problems proposed in the

CFD library [22], called PitzDaily, is pipe shape optimisation. This



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

b
c
c
v
f
c
c
t
m

3

T
s
b
e
e
a
T
s
v
e

3
(

r
B
m
m
o
V
c
o
a
v
o
c
d
r
r
i
m
t

3

i
o
g
F
s
s
o
a
p
a
W
I
t
m
c
c

enchmark uses a computational fluid dynamics simulator to
alculate the pressure loss for a given pipe shape. The pipe shape
an be specified using 5 control points, giving 10 continuous
ariables in total. The time to compute the pressure loss varies
rom 2 to 60 s on our hardware. Although the search space is
ontinuous, there are constraints to this problem: violating these
onstraints returns an objective value of 2, which is higher than
he objective value of feasible solutions. This problem becomes
ore expensive with an increase in the number of control points.

.1.3. Electrostatic Precipitator (ESP)
This engineering benchmark contains only discrete variables.

he ESP is used in industrial gas filters to filter pollution. The
pread of the gas is controlled by metal plates referred to as
affles. Each of these baffles can be solid, porous, angled, or
ven missing entirely. This categorical choice of configuration for
ach baffle constitutes the search space for this problem. There
re 49 baffle slots in total, that each have 8 categorical options.
he output is calculated using a computational fluid dynamics
imulator [51], which takes about 28 s to return the output
alue on our hardware. The underlying simulator becomes more
xpensive when using a more fine-grained simulation mesh [51].

.1.4. Hyperparameter optimisation and preprocessing for XGBoost
HPO)

This automated machine learning benchmark is a hyperpa-
ameter optimisation problem. The approach, namely an XG-
oost [52] classifier, has already been selected. It is one of the
ost common machine learning models for tabular data. The
odel contains a significant number of configuration parameters
f various types, including parameters on the pre-processing step.
ariables are not only continuous, integer or categorical, but also
onditional: some of them remain unused depending on the value
f other variables. In total, there are 135 variables, most of which
re categorical. The configuration is evaluated by 5-fold cross-
alidation on the Steel Plates Faults dataset,2 and the output
f the objective uses this value multiplied with −1. Since there
an be a trade-off between accuracy and computation time for
ifferent configurations, we set a time limit of 8 s, as this was
oughly equal to twice the time it takes to use a default configu-
ation on our hardware. Configurations for which the time limit
s violated, return an objective value of 0. This problem becomes
ore expensive when using a larger dataset that requires a longer

raining time.

.2. Approaches

In this section we show the approaches that are considered
n the benchmark library. We limit ourselves to popular single-
bjective surrogate algorithms due to the limited evaluation bud-
et that usually accompanies an expensive objective function.
urthermore, the approaches are easily implemented and open-
ource, and do not focus on extensions of the expensive optimi-
ation problem such as a batch setting, multi-fidelity or multi-
bjective setting, highly constrained problems, etc. These include
Bayesian optimisation algorithm [1,18], which uses Gaussian
rocesses with a Matérn 5/2 kernel and upper confidence bound
cquisition function (β = 2.576), SMAC [12], and HyperOpt [7].
e also include our own earlier work [6,15,16], with the DONE,

DONE and MVRSM algorithms. A recent variant of Bayesian op-
imisation, namely CoCaBO [19], is also included in the bench-
ark library, but not presented in this work due to the required
omputation time. The baseline with which all algorithms are
ompared is random search [53], for which we use HyperOpt’s

2 http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
 a

5

implementation. We also include several local and global search
algorithms in our library (Nelder–Mead, Powell’s method and
basin-hopping among others), but these failed to outperform ran-
dom search on all of our benchmark problems, and are therefore
not presented in this work.

Not all of these algorithms can deal with all types of variables,
although often naive implementations are possible: discretisa-
tion to let discrete surrogates deal with continuous variables,
rounding to let continuous surrogates deal with discrete vari-
ables, and/or ignoring the conditional aspect of a variable entirely.
Table 1 shows the types of variables that are directly supported
by the surrogate models used in each algorithm.

4. Methodology

One of the goals of this study is to obtain insight into the
strengths and weaknesses of existing surrogate algorithms. In
order to do this, we run the six selected approaches and random
search on the four real-life optimisation problems discussed in
the previous section. Due to the nature of the expensive prob-
lems, we only run every approach for 1000 iterations, and repeat
the runs for 5 to 10 times depending on the expensiveness of
the problem. Due to the low number of repetitions, it will be
difficult to provide clear conclusions, but nevertheless we will
take a hypothesis testing approach to support our claims.

The null hypothesis H0 is that, after 1000 iterations, there is no
statistical difference between the approaches (using a significance
level of 95%), no matter the optimisation problem. To investi-
gate statistical significance of the results, we report p-values of
pair-wise Student’s T-tests for the best objective value found at
iteration 1000. Other benchmarking techniques such as show-
ing empirical cumulative distribution functions or performance
profiles [54] are not possible due to the nature of the chosen
problems: there is only a limited number of problems, a limited
number of iterations and repetitions, and the optimal solution
and target objective are unknown.

Another goal of this study is to verify existing knowledge from
literature on surrogate algorithms, which we will define in the
form of alternative hypotheses H1 − H7:

• H1: all surrogate-based approaches outperform random
search on all problems.

• H2: surrogate-based approaches with discrete surrogates
outperform approaches with continuous surrogates on prob-
lems with discrete or mixed variables.

• H3: surrogate-based approaches with continuous surrogates
outperform approaches with discrete surrogates on prob-
lems with only continuous variables.

• H4: Bayesian optimisation with Gaussian processes (BO) out-
performs other approaches on continuous problems with at
most 20 variables in total.

• H5: BO is outperformed by all other approaches on discrete
or mixed-variable problems and on problems with more
than 20 variables in total.

• H6: SMAC and HyperOpt outperform the other approaches
on the hyperparameter optimisation problem.

• H7: there is no statistical difference between MVRSM and
IDONE for problems with only discrete variables.

Although theoretical guarantees are difficult to obtain, H1 is
often hypothesised in practice, which follows from BO often
being compared against a random search baseline, see e.g. [2]. H2
follows from the fact that using discrete surrogates is one of the
options to deal with discrete search spaces, see for example the
third strategy mentioned in [55], although it must be mentioned
that our own earlier work counters H2 [56]. The related H3,

lthough often not explicitly stated in literature, follows naturally

http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults


L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

f
H
t
p
t

,

a

m
T
w
f
c

5

i
f
l
p
f
i
r

p
-
r

o
i
r

5

P
r
c

g
d
a

rom H2. The properties of Gaussian processes lead to H4 and
5, as seen in e.g. [57–59]. SMAC and HyperOpt are designed for
uning the configuration of (machine learning) algorithm hyper-
arameters, and naturally deal with conditional variables due to
heir tree-structured surrogates, leading to H6. Finally, H7 follows
from our knowledge of the algorithms MVRSM and IDONE: they
use exactly the same surrogate for problems with only discrete
variables, and their only difference is in the way exploration is
performed.

Besides investigating these hypotheses at iteration 1000, we
are also interested in the performance of the different approaches
for other situations. Instead of only varying the number of itera-
tions, we choose to vary the available computation time for each
algorithm, while also artificially varying the computational cost of
evaluating the objective function. This way, we can extrapolate
our results to situations where the evaluation of the objective
function takes much shorter or longer, which is valuable for
practical applications with a limited computational budget. The
next section explains how this experiment is done exactly, and
also shows several rules of thumb that were obtained by making
use of a decision tree classifier. All of this is done based on the
data obtained during the hypothesis testing approach.

Finally, we conduct an offline supervised learning experiment
to more thoroughly investigate different surrogate models, as
explained in the next section. This way, we can separately inves-
tigate the accuracy of different surrogate models, as well as their
generalisation capabilities, for various problems.

5. Results

The different surrogate algorithms are objectively compared
on all four different real-life expensive benchmark problems of
EXPObench. The goals of the experiments are to (1) gain in-
sight into the strengths and weaknesses of existing surrogate
algorithms and verify existing knowledge from literature, (2)
investigate how algorithm performance depends on the available
computational resources and the cost of the expensive objective,
and (3) separate the effects of the choice of surrogate model and
the acquisition step of the different algorithms.

The results of comparing the different surrogate algorithms on
the problems of EXPObench provide a new dataset that we use for
these three goals, and that we make available publicly.3

This dataset includes the points in the search space chosen for
evaluation by each algorithm, the resulting value of the expensive
objective, the computation time used to evaluate the objective,
and the computation time used by the algorithm to suggest
the candidate point. The latter includes both the training and
acquisition steps of the algorithms, as it was not easy to separate
these two for all algorithms. Although we perform some initial
analysis on this meta-algorithmic dataset, it can also be used by
future researchers in, for example, instance space analysis [60] or
building new surrogate benchmarks from this tabular data [35].

We start this section by giving the experimental details, fol-
lowed by the results on the four benchmark problems. We then
investigate the influence of the computational budget and cost of
the expensive objective, followed by a separate investigation of
the choice of surrogate model. The section ends with a summary
of the obtained insights.

3 The dataset can be found online at https://doi.org/10.4121/14247179
6

5.1. Experiment details

5.1.1. Hardware
We use the same hardware when running the different surro-

gate algorithms on the different benchmark problems. All of these
experiments are performed in Python, on a Intel(R) Xeon(R) Gold
6148 CPU @ 2.40 GHz with 32 GB of RAM. Each approach and
evaluation was performed using only a single CPU core, and the
same set-up was used for all experiments.

5.1.2. Hyperparameter settings
All methods use their default hyperparameters with the ex-

ception of SMAC, which we set to deterministic mode to avoid
repeating the exact same function evaluations, which drastically
decreased performance in our experience. For the MVRSMmethod
we set the number of basis functions in purely continuous prob-
lems to 1000. We have not adapted IDONE for continuous or
mixed problems.

5.1.3. Normalisation
To make comparison between benchmarks easier, we nor-

malise the best objective value found by each algorithm at each
iteration in the figures shown in this section. This is done as
follows: using the best objective value found by random search as
a baseline, let r0 be the average of this baseline after 1 iteration,
nd let r1 be the average of this baseline after the number of

random initial guesses R that each algorithm used.4 Then all
objective values f are normalised as

fnorm = (f − r0)/(r1 − r0), (3)

meaning that r0 corresponds to a normalised objective of 0 and
r1 corresponds to a normalised objective of 1, and a higher nor-
alised objective is better. Note that this is only used in Fig. 1.
his normalisation is possible since all surrogate algorithms start
ith the same number of random evaluations R, which we omit

rom the figures. Another metric, namely the area under the
urve, is shown in Appendix A.

.1.4. Software environment
EXPObench is available as a public github repository5 and is

mplemented in the Python programming language. To stimulate
uture users to add their own problems and approaches to this
ibrary, we have taken care to make this as easy as possible and
rovide documentation to achieve this. We also provide an inter-
ace that can easily run one or multiple approaches on a problem
n the benchmark suite using the command line interface in
un_experiment.py. An example is the following code:

ython run_experiment.py --repetitions=7 --out-path=./results/esp
-max-eval=1000 --rand-evals-all=24 esp
andomsearch hyperopt bayesianoptimization

This runs random search, HyperOpt and Bayesian optimisation
n the ESP problem for 1000 iterations, of which the first 24
terations are random, repeated seven times, and outputs the
esults in a certain folder.

.2. Benchmark results

We now share the results of applying all algorithms in EX-
Obench to the different benchmark problems. The IDONE algo-
ithm is only applied to the ESP problem since it does not support
ontinuous variables.

4 Note: we used the same uniform distribution for the random initial
uesses of all methods, and new samples were drawn at every run to remove
ependence on the initialisation. The samples themselves are different across
lgorithms.
5 https://github.com/AlgTUDelft/ExpensiveOptimBenchmark.

https://doi.org/10.4121/14247179
https://github.com/AlgTUDelft/ExpensiveOptimBenchmark


L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

e
t
(

Fig. 1. Results on the different benchmark problems, averaged over T runs, after starting with R random samples. T is varied due to the different degrees of
xpensiveness of the problems. The shaded area indicates one standard deviation, the horizontal axis indicates the iteration of the algorithm, and all figures use
he legend shown in the middle. The computation time on the right does not contain the time it takes to evaluate the objective. The benchmark problems are:
a) wind farm layout optimisation, 10 continuous variables, T = 10, R = 20; (b) Pitzdaily, 10 continuous variables, T = 5, R = 20; (c) electrostatic precipitator, 49
discrete variables, T = 7, R = 24; (d) simultaneous hyperparameter tuning and preprocessing for XGBoost, 117 categorical, 7 integer, 11 continuous variables, T = 10,
R = 300.
5.2.1. Windwake
For the wind farm layout optimisation problem, Fig. 1(a)

shows the normalised best objective value found at each iteration
by the different algorithms, as well as the computation time
used by the algorithms at every iteration. All algorithms started
with R = 20 random samples not shown in the figure. None of
the algorithms use more computation time than the expensive
objective itself, which took about 15 s per function evaluation.
While random search is the fastest method, it fails to provide
good results, as is expected for a method that does not use any
model or heuristic to guide the search. Interestingly, Bayesian
optimisation (BO) does not outperform random search on this
problem (p > 0.6) and is outperformed by all other methods (p <
0.01), even though it is designed for problems with continuous
variables. In contrast, MVRSM and SMAC both have quite a good
performance on this problem while they are designed for prob-
lems with mixed variables, though they both do take up more
computational resources. DONE, another algorithm designed for
7

continuous problems, performs similar to MVRSM and SMAC (p >

0.1). These results lead us to reject the null hypothesis H0, and to
also reject H1 (as not all algorithms outperform random search),
as well as H3 and H4 (as BO did not outperform the algorithms
with discrete surrogate models).

5.2.2. Pitzdaily
Fig. 1(b) shows the results of the Pitzdaily pipe shape opti-

misation problem with R = 20. It can be seen that DONE fails
to provide meaningful results. Upon inspection of the proposed
candidate solutions, it turns out that the algorithm gets stuck
on parts of the search space that violate the constraints. This
happens even despite finding feasible solutions early on and
despite the penalty for violating the constraints. SMAC, HyperOpt
(HO) and MVRSM are the best performing methods on average,
outperforming the other three methods (p < 0.05) but not each
other (p > 0.6). Again, Bayesian optimisation (BO) does not



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

o

b
b
f
f
g
o
h

5

w
t
v
n
o
s
s
s
h
b
(
u
s
a
D
s
a
t
T

i
H
d
a
s
p

5

f
t
e
t
b
t
a
b
a
p
i
f

t
t
f
t
t
e
r
f
t
r
n
h
a

e
e
a
s
w
b
i
c

p
w
g
t
H
f
f
p
f
o
o
p
e
f

5

w
F
g
t
f
c
E
c
P
c
f
T
a
w
a
1
T
T
o
s

f

utperform random search on this problem (p > 0.6). This sup-
ports the rejection of the same hypotheses as for the windwake
problem (H0, H1, H3, H4).

5.2.3. ESP
In this discrete problem, algorithms that only deal with con-

tinuous variables resort to rounding when calling the expensive
objective. However, we see in Fig. 1(c) that Bayesian optimisation
is the best performing method on this problem, outperforming
all methods (p < 0.03) except MVRSM and SMAC (p > 0.2).
This counters the general belief that Bayesian optimisation with
Gaussian processes is only adequate on low-dimensional prob-
lems with only continuous variables, and causes H2 and H5 to
e rejected. Another observation is that MVRSM performs much
etter than IDONE (p < 0.01), which fails to significantly outper-
orm random search (p > 0.9) even though IDONE is designed
or discrete problems. This causes H7 to be rejected. The surro-
ate algorithms use less computation time than the expensive
bjective which took about 28 s per iteration to evaluate. The null
ypothesis H0 is again rejected.

.2.4. XGBoost hyperparameter optimisation
Like in the previous benchmark, the algorithms that only deal

ith continuous variables use rounding for the discrete part of
he search space in this problem. For dealing with conditional
ariables with algorithms that do not support them we use a
aive approach: changing such a variable simply has no effect
n the objective function when it disappears from the search
pace, resulting in a larger search space than necessary. Fig. 1(d)
hows the results for this benchmark. This time, results are less
urprising as SMAC and HyperOpt, two algorithms designed for
yperparameter optimisation with conditional variables, give the
est performance. Though they perform similar to each other
p > 0.1), they outperform all other methods (p < 0.03), leading
s to accept H6. MVRSM is designed for mixed-variable search
paces like in this problem, but not for conditional variables,
nd outperforms random search (p < 0.03) but not BO and
ONE (p > 0.05). BO and DONE both fail to outperform random
earch (p > 0.1). If we also consider computation time, HyperOpt
ppears to be a better choice than SMAC, being faster by more
han an order of magnitude, while BO is even slower than SMAC.
he null hypothesis H0 is again rejected.
Looking at the results of all four problems, only hypothesis H6

s accepted, while all the other hypotheses are rejected. Rejecting
1 does not mean that no surrogate algorithm outperforms ran-
om search, just that for all problems we can find a surrogate
lgorithm that does not outperform random search. The only
urrogate algorithms that outperform random search on all four
roblems are SMAC, HyperOpt, and MVRSM.

.3. Varying time budget and function evaluation time

In this experiment we investigate how the algorithms per-
orm with various time budgets and different objective evaluation
imes. More specifically, instead of restricting the number of
valuations as done up until now, the algorithms are stopped if
heir runtime exceeds a fixed time budget. This runtime includes
oth the total function evaluation time as well as the computa-
ion time required for the training and acquisition steps of the
lgorithm. This experiment extends the results of the benchmark
y putting emphasis on the computation time of the algorithm in
ddition to their respective sample efficiency. On top of that, it
rovides information that can be used to decide which algorithm
s suitable given a time budget and how expensive the objective
unction is.
8

To investigate this in practice, we use the data gathered in
he experiments shown in this section by artificially changing
he time budget and evaluation time of the expensive objective
unctions as in earlier work [56]. Because we know the compu-
ation times from each iteration in the experiments, it is possible
o simulate what the total runtime would be if the function
valuation time is adjusted. Then, we report which algorithm
eturns the best solution when the time budget has been reached
or various time budgets and evaluation times. The evaluation
ime ranges from 0.12 ms to 36 hours, while the time budget
anges from 0.49 ms to 36 hours. In case the time budget is
ot reached within the maximum number of iterations that we
ave observed from the other experiments, for at least one of the
lgorithms, no results are reported.
Fig. 2 displays which algorithm returns the best solution at

ach problem for a variety of time budgets (x-axis) and function
valuation times (y-axis). Each algorithm has a different marker,
nd the colour indicates the objective value of the best found
olution (without normalisation, so lower is better). As expected,
e observe that the objective value decreases when the time
udget increases and the evaluation time remains fixed. However,
t appears that different algorithms perform well in regions with
ertain time budgets and evaluation times.
For the Windwake problem we see that almost all algorithms

erform the best in different settings. BO seems to perform best
hen the number of iterations is low no matter the time bud-
et, SMAC performs best for larger time budgets and evaluation
imes, and random search performs best for low evaluation times.
yperOpt and DONE perform well on semi-expensive objective
unctions in the 10−1000 ms range. The observations are similar
or the PitzDaily and ESP problems, except that DONE had a poor
erformance on the PitzDaily problem and SMAC gets outper-
ormed by BO on the ESP problem. Lastly, for the hyperparameter
ptimisation problem, it can be seen that HyperOpt is favoured
ver SMAC due to its computational efficiency, though SMAC
erforms well with cheaper objective functions. Given a low
nough time budget, random search gives the best results, even
or expensive objective functions.

.3.1. Rules of thumb
To turn these insights into easily interpretable rules of thumb,

e have trained a decision tree classifier on the data points of
ig. 2, and the corresponding decision rules are indicated by re-
ions separated by black lines. The decision tree takes as input the
ime budget and evaluation time, and two problem features: one
eature that indicates whether the problem is a 10-dimensional
ontinuous problem (true for Windwake and PitzDaily, false for
SP and HPO), and a feature that indicates whether the problem
ontains a computational fluid dynamics (CFD) simulator (true for
itzDaily and ESP, false for ESP and HPO). These features were
hosen to prevent problem-specific features: now, at least two
eatures are needed to get a decision for one specific problem.
he class label output of the decision tree is the best surrogate
lgorithm according to the data, which it was able to predict
ith a training accuracy of 0.63 and a test accuracy of 0.71 after
80%−20% train-test split and repeating the training procedure
0 times and keeping the tree with the highest test accuracy.
his procedure took less than one second of computation time.
he decision tree had a maximum depth of 5 and a maximum
f 6 leaf nodes, while otherwise using default hyperparameter
ettings from Python’s scikit-learn package.
The resulting decision tree led to the following rules of thumb

or which surrogate algorithm to choose:

1. For cheap objective functions (at most tens of milliseconds
evaluation time) with a tight time budget (around 1 s or
less), BO is a good option, with random search as a close
second.



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

(
o
o
b

w
s
t
o
m
w
e
n
s
w
d
s
o

r
1
r
a
c
r
e
e

5

m

Fig. 2. The best surrogate algorithm for the case that the evaluation time of the objective is artificially changed (vertical axis), and for different time budgets
horizontal axis). The different marker shapes indicate which of the surrogate algorithms achieved the best objective value, while the colour shows the corresponding
bjective value (not normalised, lower is better). The regions divided by black lines show which algorithm would perform best according to a decision tree trained
n the data. Other black-box optimisation algorithms such as population-based methods are expected to dominate the empty bottom right region, where the time
udget is large but the function evaluation time is small.
2. For cheap objective functions with a high time budget (at
least seconds), random search is the best option, mean-
ing no surrogate algorithm is required. This is the typical
setting for black-box optimisation, so we expect many
algorithms to outperform surrogate algorithms in this case.

3. For expensive high-dimensional non-continuous problems
that do not make use of a CFD simulator (like hyperparam-
eter optimisation), random search is a good option, with
HyperOpt and MVRSM as close alternatives.

4. For expensive high-dimensional non-continuous problems
that make use of a CFD simulator (like ESP), BO is the best
option.

5. For semi-expensive (tens to hundreds of milliseconds) con-
tinuous 10-dimensional problems, BO is a good option,
with SMAC and HyperOpt as close alternatives.

6. For expensive continuous 10-dimensional problems, SMAC
is the best option.

Together, these rules of thumb can give practical insights
hich would otherwise require familiarity with the literature on
urrogate algorithms. Besides this, while most of these rules of
humb are in line with existing literature, rules 4 and 6 actually
ppose existing knowledge. This is because BO in this work
akes use of a Gaussian process, which is often claimed to work
ell only on continuous problems with 20 variables or less, see
.g. [58,59], while rule 4 shows it works well on high-dimensional
on-continuous problems such as ESP. On the other hand, rule 6
hows that SMAC, which uses a random forest surrogate, works
ell mostly for continuous 10-dimensional problems, while ran-
om forests are well-suited for high-dimensional non-continuous
earch spaces. This gives further experimental evidence against
ur hypotheses H4 and H5.
Finally, several problem settings have been identified where

andom search shows a strong performance, such as those in rules
, 2 and 3. It is likely that other black-box optimisation algo-
ithms that do not make use of a surrogate, such as evolutionary
lgorithms, would outperform surrogate-based methods in these
ases, though more research is necessary to verify this. Though
ules 1 and 2 deal with cheap objective functions, where our
arlier hypotheses do not apply, rule 3 gives further experimental
vidence against hypothesis H1.

.4. Offline learning of surrogates

As a final experiment we investigate the choice of surrogate
odel in the different surrogate algorithms. We show how the
9

dataset generated in this work can be used in a simple offline
supervised learning framework by training and testing different
models on the data and considering the resulting errors. We limit
the scope to the Pitzdaily and ESP problems here, and generate
different training sets for each (more data, as well as standard
deviations, can be found in Appendix B). Each training set consists
of the first 500 candidate solutions and objective function values
gathered by one run of a specific algorithm, including the first
random iterations. We then train a variety of machine learning
models on this dataset, with the goal of predicting the (unnor-
malised) objective function value corresponding to the candidate
solution. Using a quadratic loss function, this results in a number
of machine learning models equal to the number of algorithms
times the number of runs, for each type of machine learning
model. The models we used are taken from the Python scikit-
learn library [61], and we also add XGBoost and the piece-wise
linear model used by the IDONE and MVRSM algorithms, giving
the following models: linear regression model (Linear), piece-
wise linear model (PWL), random forest with default hyperpa-
rameters (RF), XGBoost with default hyperparameters (XGBoost),
and the Gaussian process used by Bayesian optimisation (GP).

As a test set we concatenate all the candidate points and func-
tion evaluations that were evaluated by each surrogate algorithm
for every run, and keep the 1000 points with the best objective
value for each problem. As the global optimum is unknown in
these problems, this shows how the different models would
perform in good regions of the search space.

Table 4 shows the results of training each model on data
gathered by random search, averaged over different runs. We can
immediately see that some models are prone to overfitting: the
models with the smallest training errors are not necessarily the
most accurate near the optimum, and may even be outperformed
by a simple linear regression model there. Furthermore, discrete
models such as random forest and XGBoost with default hyper-
parameters have a good generalisation performance, not just on
the discrete ESP problem but also on the continuous Pitzdaily
problem, even though their training error is a bit higher than that
of other models.

If we train models on data gathered by a surrogate algorithm
that uses that model or an approximation thereof, we get the
results shown in Table 5. The models PWL and GP are exactly
the same as the ones used in the corresponding surrogate algo-
rithms (IDONE/MVRSM and BO respectively), while SMAC uses a
random forest with different hyperparameters than the RF model



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

i

o
f
w
b
t
b
o
t
w
i
n

6

w
t
b
b
i
b
w
f
b
a
a
l
d
b
a
m
a
p
a
m
w
a
w
f
a
p

Table 4
Mean average error for models trained on data gathered by random search,
averaged over different random search runs.
Benchmark Pitzdaily ESP

Model Train Test Train Test

Linear 0.697 1.229 2.651 1.808
PWL 0.006 1.323 5 · 10−9 8.869
RF 0.151 0.758 0.574 0.972
XGBoost 0.279 0.849 0.153 0.711
GP 8 · 10−7 1.147 1 · 10−6 1.297

Table 5
Mean average error for models trained on data gathered by a surrogate algorithm
that uses that model, averaged over different runs.
Benchmark Pitzdaily ESP

Model Train Test Train Test

PWL on IDONE – – 2 · 10−4 11.16
PWL on MVRSM 0.047 4.092 0.002 11.58
RF on SMAC 0.101 1.151 0.148 0.855
GP on BO 9 · 10−7 0.915 5.5 · 10−7 0.835
GP on DONE 5 · 10−8 1.888 4.8 · 10−7 0.910

used here, and DONE only uses an approximation of a Gaussian
process. The training error on data gathered by DONE can get
very low, but this does not mean that DONE is a good surrogate
algorithm, as we saw it perform poorly on the Pitzdaily problem.
A likely explanation is that the acquisition is not leading to the
right data points. More interesting are the test errors: though
the GP trained on data gathered by a surrogate algorithm that
uses this model (BO) receives a low test error, an XGBoost model
trained on data gathered by random search can get an even lower
test error; see Table 4. The test error for XGBoost trained on
data gathered by BO, not shown in these tables, is 0.997 for the
Pitzdaily problem and 0.701 for the ESP problem.

5.5. Summary of obtained insights

Based on the experimental results, we highlight the most
mportant insights that were obtained. First of all, the type of
variable a surrogate model is designed for, is not necessarily a
good indicator of the performance of the surrogate algorithm in
case of a real-life problem: discrete surrogates can perform well
on continuous problems, and vice versa. We saw this on the wind
farm layout optimisation problem, a continuous problem where
a discrete surrogate model (SMAC’s random forest) had the best
performance, and on the ESP problem, a discrete problem where
the continuous Gaussian process surrogate model had the best
performance even though it was unable to outperform random
search on the wind farm layout optimisation problem. For the
latter problem, changing the kernel type or parameters of the
Gaussian process might improve results, however we expected
the chosen settings to work well for the problem. Part of these
insights were known from previous work [56], but we extended
these insights to continuous problems and to more benchmark
problems and surrogate algorithms. The claim is supported by
the rejection of H4 and H5 and by rules of thumb 4 and 6
of Section 5.3.1, while the other rules of thumb were more in
line with expectations. The experiments using offline learning
of machine learning models also showed that discrete models
such as random forests can have lower generalisation error than
continuous models, even on data coming from a continuous prob-
lem like Pitzdaily. This result is surprising, considering random
forests are known to have poor extrapolation capabilities. Our
way of benchmarking has shown that discrete models can be
an efficient and accurate choice for real-life expensive problems,
10
even continuous ones, while continuous models can be useful for
discrete problems in practice.

Second, our observations lead us to believe that exploration
is more important than model accuracy in surrogate algorithms.
The offline learning experiments, a unique addition to our way
of benchmarking, showed that surrogate models trained on data
gathered by an algorithm that uses that model are not nec-
essarily more accurate than surrogate models trained on data
gathered by random search, a high-exploration method. The use
of random search should also not be underestimated, as the
experiment where we artificially change the evaluation time of
the objective shows that for all considered benchmarks there
are situations where random search outperforms all surrogate
algorithms, mainly when the objective evaluation time is low.
This is supported by the first three rules of thumb in Section 5.3.1.
Furthermore, on the ESP problem, MVRSM had a much better
performance than IDONE, even though they use exactly the same
piece-wise linear surrogate model on that problem. For discrete
problems, the only difference between the two algorithms is that
MVRSM has a higher exploration rate. The low training error of
the piece-wise linear surrogate model shows that for the con-
sidered problems, a highly accurate model does not necessarily
lead to a better performance of the surrogate algorithm using that
model.

Finally, the available time budget and the evaluation time of the
bjective strongly influence which algorithm is the best choice
or a certain problem. This can be seen from the experiment
here we artificially change the function evaluation time: the
est performing algorithm then varies depending on the available
ime budget and function evaluation time. This claim is supported
y all rules of thumb in Section 5.3.1. In fact, the evaluation time
f the objective was the most important feature of the decision
ree classifier that we used to generate the rules of thumb. Our
ay of benchmarking has allowed us to obtain such valuable

nsights concerning time budget and evaluation time, which were
ot thoroughly investigated in this way before.

. Conclusion and future work

We proposed a public benchmark library called EXPObench,
hich fills an important gap in the current landscape of optimisa-
ion benchmark libraries that mostly consists of cheap to evaluate
enchmark functions or of expensive problems with no or limited
aseline solutions from surrogate model literature. This resulted
n a dataset containing the results of running multiple surrogate-
ased optimisation algorithms on several expensive problems,
hich can be used to create tabular or surrogate benchmarks or

or meta-learning. A first analysis of this dataset showed how the
est choice of algorithm for a certain problem depends on the
vailable time budget and the evaluation time of the objective,
nd we provided a method to extrapolate such results to real-
ife problems that contain expensive objective functions with
ifferent costs. We also provided easy to interpret rules of thumb
ased on our analysis, showing when to use which surrogate
lgorithm. Furthermore, the dataset allowed us to train surrogate
odels offline rather than online, giving insight into the gener-
lisation capabilities of the surrogate models and showing the
otential of models such as XGBoost to be used in new surrogate
lgorithms in the future. Finally, we showed how continuous
odels can work well for discrete problems and vice versa, and
e highlighted the important role of exploration in surrogate
lgorithms. In future work we will focus on methods that can deal
ith the constraints present in some of the benchmark problems

rom this work, as well as make a comparison with surrogate-
ssisted evolutionary methods , particularly for multi-objective
roblems.



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

F
m

Table A.6
Area under the curve metrics after 500 and 1000 iterations (higher is better), averaged over multiple runs.
Benchmark Windwake Pitzdaily ESP HPO

Algorithm at iteration 500 1000 500 1000 500 1000 500 1000

RS 0.963844 0.968033 0.976079 0.983226 0.773124 0.804465 0.930773 0.935801
BO 0.965312 0.969517 0.986475 0.989424 0.872638 0.909874 0.925708 0.936327
HO 0.970493 0.975888 0.986173 0.990593 0.810760 0.849704 0.937372 0.952699
SMAC 0.980197 0.984984 0.989619 0.993185 0.827741 0.870288 0.932997 0.951097
DONE 0.974548 0.979858 0.953432 0.955938 0.840280 0.869861 0.923643 0.935636
IDONE – – – – 0.787532 0.812625 – –
MVRSM 0.976244 0.980730 0.987027 0.991660 0.850981 0.887566 0.933505 0.945031
Table B.7
Mean average error for models trained on data gathered by one surrogate algorithm, averaged over different runs.
Benchmark Windwake Pitzdaily ESP

Model + method Train Test Train Test Train Test

Linear on RS 3.3 · 1010
± 3 · 108 3.7 · 1010

± 3 · 109 0.70 ± 0.03 1.23 ± 0.15 2.7 ± 6.0 1.8 ± 2.3
Quadratic on RS 2.8 · 1010

± 6 · 108 1.9 · 1010
± 5 · 109 0.50 ± 0.01 1.22 ± 0.13 3 · 10−14

± 8 · 10−14 4.4 ± 8.8
PWL on RS 3.1 · 1010

± 1 · 109 2.0 · 1010
± 4 · 109 6 · 10−3

± 6 · 10−4 1.32 ± 0.44 5 · 10−9
± 1 · 10−8 8.9 ± 16.9

RF on RS 1.2 · 1010
± 2 · 108 3.5 · 1010

± 2 · 109 0.15 ± 0.01 0.76 ± 0.17 0.6 ± 1.2 1.0 ± 0.4
XGBoost on RS 1.6 · 1010

± 1 · 109 3.7 · 1010
± 4 · 109 0.28 ± 0.01 0.85 ± 0.23 0.2 ± 0.2 0.7 ± 0.1

GP on RS 3 · 104
± 1 · 102 3.7 · 1010

± 2 · 109 8 · 10−7
± 3 · 10−8 1.15 ± 0.09 1 · 10−6

± 2 · 10−6 1.3 ± 1.0
MLP on RS 3.5 · 1010

± 2 · 109 7.3 · 1010
± 2 · 102 0.73 ± 0.03 1.36 ± 0.02 0.4 ± 0.9 0.9 ± 0.6

Linear on BO 3.2 · 1010
± 2 · 109 3.7 · 1010

± 5 · 109 0.77 ± 0.04 0.95 ± 0.35 0.2 ± 5 · 10−2 1.2 ± 0.2
Quadratic on BO 2.6 · 1010

± 2 · 109 2.4 · 1010
± 1.0 · 1010 0.53 ± 0.15 1.34 ± 0.21 5 · 10−15

± 3 · 10−15 2.0 ± 2.0
PWL on BO 2.9 · 1010

± 2 · 109 2.0 · 1010
± 3 · 109 0.01 ± 2 · 10−3 1.80 ± 0.93 1 · 10−9

± 7 · 10−10 4.0 ± 2.1
RF on BO 1.1 · 1010

± 1 · 109 3.7 · 1010
± 3 · 109 0.15 ± 0.01 1.05 ± 0.15 7 · 10−2

± 2 · 10−2 1.0 ± 0.3
XGBoost on BO 1.5 · 1010

± 2 · 109 4.1 · 1010
± 9 · 109 0.24 ± 0.02 1.00 ± 0.28 8 · 10−2

± 7 · 10−3 0.7 ± 9 · 10−2

GP on BO 3 · 104
± 1 · 103 3.4 · 1010

± 5 · 109 9 · 10−7
± 2 · 10−8 0.92 ± 0.05 5 · 10−7

± 3 · 10−7 0.8 ± 0.2
MLP on BO 3.9 · 1010

± 5 · 109 7.3 · 1010
± 1 · 102 0.68 ± 0.04 1.10 ± 0.28 0.1 ± 5 · 10−2 1.3 ± 0.5

Linear on HO 2.6 · 1010
± 2 · 109 4.6 · 1010

± 5 · 109 0.77 ± 0.04 0.95 ± 0.35 0.2 ± 0.1 0.8 ± 0.2
Quadratic on HO 2.2 · 1010

± 2 · 109 3.7 · 1010
± 9 · 109 0.53 ± 0.15 1.34 ± 0.21 2 · 10−3

± 2 · 10−3 3 · 109
± 6 · 109

PWL on HO 2.5 · 1010
± 2 · 109 2.9 · 1010

± 9 · 109 0.01 ± 2 · 10−3 1.80 ± 0.93 3 · 10−5
± 6 · 10−5 4.3 ± 3.4

RF on HO 1.0 · 1010
± 8 · 108 3.6 · 1010

± 2 · 109 0.15 ± 0.01 1.05 ± 0.15 6 · 10−2
± 3 · 10−2 0.7 ± 5 · 10−2

XGBoost on HO 1.1 · 1010
± 2 · 109 4.3 · 1010

± 5 · 109 0.24 ± 0.02 1.00 ± 0.28 7 · 10−2
± 10−2 0.6 ± 8 · 10−2

GP on HO 3 · 104
± 3 · 103 2.5 · 1010

± 2 · 109 9 · 10−7
± 2 · 10−8 0.92 ± 0.05 3 · 10−7

± 2 · 10−7 0.7 ± 0.1
MLP on HO 4.8 · 1010

± 3 · 109 7.3 · 1010
± 1 · 102 0.68 ± 0.04 1.10 ± 0.28 6 · 10−2

± 10−2 0.7 ± 0.1

Linear on SMAC 1.2 · 1010
± 1 · 109 3.0 · 1010

± 4 · 109 0.47 ± 0.10 0.83 ± 0.48 0.4 ± 0.3 1.0 ± 0.4
Quadratic on SMAC 9 · 109

± 1 · 109 5.0 · 1010
± 1.8 · 1010 0.39 ± 0.08 1.24 ± 0.82 6 · 10−15

± 5 · 10−15 0.9 ± 0.4
PWL on SMAC 1.2 · 1010

± 1 · 109 1.8 · 1010
± 4 · 109 0.09 ± 0.03 2.91 ± 0.91 1 · 10−9

± 5 · 10−10 2.5 ± 1.3
RF on SMAC 4 · 109

± 4 · 108 3.4 · 1010
± 3 · 109 0.10 ± 0.02 1.15 ± 0.27 0.1 ± 0.1 0.9 ± 0.1

XGBoost on SMAC 4 · 109
± 5 · 108 4.4 · 1010

± 8 · 109 0.11 ± 0.03 1.11 ± 0.31 0.1 ± 3 · 10−2 0.7 ± 6 · 10−2

GP on SMAC 8 · 104
± 5 · 104 1.3 · 1010

± 1 · 109 9 · 10−7
± 3 · 10−7 0.44 ± 0.09 3 · 10−7

± 2 · 10−7 0.8 ± 0.1
MLP on SMAC 6.0 · 1010

± 1 · 109 7.3 · 1010
± 2 · 102 0.46 ± 0.08 0.83 ± 0.45 6 · 10−2

± 3 · 10−2 0.9 ± 0.4

Linear on DONE 2.6 · 1010
± 109 5.5 · 1010

± 3 · 109 0.04 ± 0.01 1.90 ± 0.008 0.2 ± 2 · 10−2 0.9 ± 0.1
Quadratic on DONE 2.3 · 1010

± 109 5.8 · 1010
± 2 · 109 0.08 ± 0.02 1.55 ± 0.13 4 · 10−15

± 2 · 10−15 1.0 ± 0.2
PWL on DONE 2.5 · 1010

± 109 5.5 · 1010
± 2 · 109 6 · 10−4

± 10−4 1.78 ± 0.10 8 · 10−10
± 9 · 10−11 2.1 ± 1.0

RF on DONE 9 · 109
± 4 · 108 5.2 · 1010

± 3 · 109 0.01 ± 3 · 10−3 1.70 ± 0.09 5 · 10−2
± 9 · 10−3 0.8 ± 6 · 10−2

XGBoost on DONE 1.0 · 1010
± 8 · 108 5.4 · 1010

± 5 · 109 0.05 ± 2 · 10−3 1.60 ± 0.14 6 · 10−2
± 4 · 10−3 0.7 ± 6 · 10−2

GP on DONE 3 · 104
± 103 5.5 · 1010

± 2 · 109 5 · 10−8
± 2 · 10−8 1.89 ± 0.07 5 · 10−7

± 2 · 10−7 0.9 ± 4 · 10−2

MLP on DONE 1.8 · 1010
± 109 7.3 · 1010

± 2 · 102 0.08 ± 5 · 10−3 1.91 ± 0.009 0.1 ± 7 · 10−2 0.8 ± 0.2

Linear on IDONE – – – – 0.2 ± 3 · 10−2 1.0 ± 0.2
Quadratic on IDONE – – – – 4 · 10−15

± 3 · 10−15 1.6 ± 1.3
PWL on IDONE – – – – 2 · 10−4

± 3 · 10−4 11.2 ± 2.6
RF on IDONE – – – – 4 · 10−2

± 9 · 10−3 1.2 ± 0.5
XGBoost on IDONE – – – – 6 · 10−2

± 10−2 0.8 ± 0.1
GP on IDONE – – – – 6 · 10−7

± 4 · 10−7 0.9 ± 0.1
MLP on IDONE – – – – 8 · 10−2

± 4 · 10−2 1.0 ± 0.4

Linear on MVRSM 7 · 109
± 2 · 109 4.5 · 1010

± 1.1 · 1010 0.48 ± 0.07 1.16 ± 0.35 0.1 ± 3 · 10−2 0.8 ± 0.2
Quadratic on MVRSM 8 · 109

± 4 · 109 1.75 · 1011
± 6.1 · 1010 0.40 ± 0.15 0.96 ± 0.96 2 · 10−4

± 3 · 10−4 5 · 107
± 5 · 107

PWL on MVRSM 7 · 109
± 2 · 109 5.2 · 1010

± 1.3 · 1010 0.05 ± 0.02 4.09 ± 1.90 2 · 10−3
± 10−3 11.6 ± 2.8

RF on MVRSM 2 · 109
± 5 · 108 4.4 · 1010

± 6 · 109 0.06 ± 10−3 1.21 ± 0.29 3 · 10−2
± 7 · 10−3 0.8 ± 0.2

XGBoost on MVRSM 2 · 109
± 2 · 108 5.1 · 1010

± 1.0 · 1010 0.06 ± 7 · 10−3 1.16 ± 0.40 4 · 10−2
± 10−2 0.7 ± 0.3

GP on MVRSM 2 · 105
± 2 · 105 1.3 · 1010

± 6 · 109 8 · 10−7
± 2 · 10−7 0.53 ± 0.07 5 · 10−7

± 3 · 10−7 0.5 ± 0.2
MLP on MVRSM 6.4 · 1010

± 3 · 109 7.3 · 1010
± 1 · 102 0.37 ± 0.09 1.18 ± 0.34 9 · 10−2

± 3 · 10−2 0.7 ± 0.3
–

CRediT authorship contribution statement

Laurens Bliek: Conceptualization, Methodology, Validation,
ormal analysis, Data curation, Writing, Visualization, Project ad-
inistration. Arthur Guijt: Software, Investigation, Data curation,
 a

11
Writing. Rickard Karlsson: Investigation, Writing. Sicco Verwer:
Conceptualization, Writing – review & editing, Supervision, Fund-
ing acquisition. Mathijs de Weerdt: Conceptualization, Writing
review & editing, supervision, Project administration, Funding
cquisition.



L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744

D

c
t

D

A

d
w
N

A

b
t
a
t
p

f

w

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Link to dataset: https://doi.org/10.4121/14247179.v2.

cknowledgements

This work is part of the research programme Real-time data-
riven maintenance logistics with project number 628.009.012,
hich is financed by the Dutch Research Council (NWO, The
etherlands).

ppendix A. Area under curve metrics

This section shows the area under the curve (AUC) of the
est found objective value for each method on each problem in
he benchmark library. See Table A.6. Note that here we used
different normalisation procedure before calculating the AUC:

he random initial samples were included, and then for every
roblem, results were normalised as follows:

norm = (f − fmax)/(fmin − fmax), (A.1)

here fmax (fmin) is the best (worst) found objective function
across all methods and iterations for a particular problem.

Appendix B. Offline learning results

Here we show more data of the offline learning experiment
presented in Section 5.4, including the standard deviations. See
Table B.7. No results are given for the hyperparameter optimisa-
tion benchmark, as not all supervised learning models are able
to deal with the conditional variables present in this bench-
mark. New models that were not explained in the main text
are two models from scikit-learn: a polynomial model with de-
gree 2 (Quadratic), and a multi-layer perceptron with default
hyperparameters (MLP).

References

[1] B. Shahriari, K. Swersky, Z. Wang, R. Adams, N.D. Freitas, Taking the human
out of the loop: A review of Bayesian optimization, Proc. IEEE 104 (2016)
148–175.

[2] Q. Liang, A.E. Gongora, Z. Ren, A. Tiihonen, Z. Liu, S. Sun, J.R. Deneault,
D. Bash, F. Mekki-Berrada, S.A. Khan, K. Hippalgaonkar, B. Maruyama, K.A.
Brown, J.W.F. Iii, T. Buonassisi, Benchmarking the performance of Bayesian
optimization across multiple experimental materials science domains, npj
Comput. Mater. 7 (2021) 1–10.

[3] M. Fiducioso, S. Curi, B. Schumacher, M. Gwerder, A. Krause, Safe contex-
tual Bayesian optimization for sustainable room temperature PID control
tuning, in: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, 2019, pp. 5850–5856, http://dx.doi.org/
10.24963/ijcai.2019/811.

[4] F. Bre, N.D. Roman, V.D. Fachinotti, An efficient metamodel-based method
to carry out multi-objective building performance optimizations, Energy
Build. 206 (2020) 109576.

[5] A.J. Keane, I.I. Voutchkov, Surrogate approaches for aerodynamic section
performance modeling, AIAA J. 58 (2020) 16–24.

[6] L. Bliek, H.R.G.W. Verstraete, M. Verhaegen, S. Wahls, Online optimization
with costly and noisy measurements using random Fourier expansions,
IEEE Trans. Neural Netw. Learn. Syst. 29 (1) (2018) 167–182.

[7] J. Bergstra, D. Yamins, D. Cox, Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures,
in: International Conference on Machine Learning, 2013, pp. 115–123.

[8] L. Bliek, A survey on sustainable surrogate-based optimisation, Sustainabil-
ity 14 (7) (2022) http://dx.doi.org/10.3390/su14073867, URL https://www.
mdpi.com/2071-1050/14/7/3867.
12
[9] S.P. Hellan, C.G. Lucas, N.H. Goddard, Bayesian optimisation against climate
change: Applications and benchmarks, 2023, arXiv:2306.04343.

[10] P.S. Palar, R.P. Liem, L.R. Zuhal, K. Shimoyama, On the use of surrogate
models in engineering design optimization and exploration: The key issues,
in: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’19, Association for Computing Machinery, New
York, NY, USA, 2019, pp. 1592–1602, http://dx.doi.org/10.1145/3319619.
3326813.

[11] A. Bhosekar, M.G. Ierapetritou, Advances in surrogate based modeling,
feasibility analysis, and optimization: A review, Comput. Chem. Eng. 108
(2018) 250–267.

[12] F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimiza-
tion for general algorithm configuration, in: International Conference on
Learning and Intelligent Optimization, Springer, 2011, pp. 507–523.

[13] R. Alizadeh, J.K. Allen, F. Mistree, Managing computational complexity
using surrogate models: a critical review, Res. Eng. Des. 31 (2020) 275–298.

[14] J. Močkus, On Bayesian methods for seeking the extremum, in: Op-
timization Techniques IFIP Technical Conference, Springer, 1975, pp.
400–404.

[15] L. Bliek, S. Verwer, M. de Weerdt, Black-box combinatorial optimization
using models with integer-valued minima, Ann. Math. Artif. Intell. (2020)
1–15, http://dx.doi.org/10.1007/s10472-020-09712-4.

[16] L. Bliek, A. Guijt, S. Verwer, M. de Weerdt, Black-box mixed-variable
optimisation using a surrogate model that satisfies integer constraints,
in: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’21, Association for Computing Machinery, New
York, NY, USA, 2021, pp. 1851–1859, http://dx.doi.org/10.1145/3449726.
3463136.

[17] F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential Model-Based Optimiza-
tion for General Algorithm Configuration (Extended Version), Technical
Report TR-2010–10, Tech. Rep., University of British Columbia, Computer
Science, 2010.

[18] F. Nogueira, Bayesian Optimization: Open source constrained global
optimization tool for Python, 2014–, URL https://github.com/fmfn/
BayesianOptimization.

[19] B. Ru, A. Alvi, V. Nguyen, M.A. Osborne, S. Roberts, Bayesian optimisation
over multiple continuous and categorical inputs, in: H.D. III, A. Singh (Eds.),
Proceedings of the 37th International Conference on Machine Learning,
in: Proceedings of Machine Learning Research, vol. 119, PMLR, 2020, pp.
8276–8285.

[20] K. van der Blom, T.M. Deist, V. Volz, M. Marchi, Y. Nojima, B. Naujoks,
A. Oyama, T. Tušar, Identifying properties of real-world optimisation
problems through a questionnaire, 2020, arXiv preprint arXiv:2011.05547.
arXiv:2011.05547.

[21] N. Hansen, D. Brockhoff, O. Mersmann, T. Tusar, D. Tusar, O.A. ElHara,
P.R. Sampaio, A. Atamna, K. Varelas, U. Batu, D.M. Nguyen, F. Matzner, A.
Auger, COmparing Continuous Optimizers: numbbo/COCO on Github, 2019,
http://dx.doi.org/10.5281/zenodo.2594848.

[22] S.J. Daniels, A.A. Rahat, R.M. Everson, G.R. Tabor, J.E. Fieldsend, A suite
of computationally expensive shape optimisation problems using compu-
tational fluid dynamics, in: International Conference on Parallel Problem
Solving from Nature, Springer, 2018, pp. 296–307.

[23] V. Volz, B. Naujoks, On benchmarking surrogate-assisted evolutionary
algorithms, in: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2019.

[24] A. Tangherloni, S. Spolaor, P. Cazzaniga, D. Besozzi, L. Rundo, G. Mauri,
M.S. Nobile, Biochemical parameter estimation vs. benchmark functions: A
comparative study of optimization performance and representation design,
Appl. Soft Comput. 81 (2019).

[25] J.M. Dieterich, B. Hartke, Empirical review of standard benchmark functions
using evolutionary global optimization, 2012, arXiv preprint arXiv:1207.
4318. arXiv:1207.4318.

[26] S. Wagner, M. Affenzeller, HeuristicLab: A generic and extensible optimiza-
tion environment, in: B. Ribeiro, R.F. Albrecht, A. Dobnikar, D.W. Pearson,
N.C. Steele (Eds.), Adaptive and Natural Computing Algorithms, Springer
Vienna, Vienna, 2005, pp. 538–541.

[27] J. Humeau, A. Liefooghe, E. Talbi, S. Vérel, ParadisEO-MO: from fitness
landscape analysis to efficient local search algorithms, J. Heuristics 19
(2013) 881–915.

[28] G. Ochoa, M. Hyde, T. Curtois, J.A. Vazquez-Rodriguez, J. Walker, M.
Gendreau, G. Kendall, B. McCollum, A.J. Parkes, S. Petrovic, et al., HyFlex:
A benchmark framework for cross-domain heuristic search, in: European
Conference on Evolutionary Computation in Combinatorial Optimization,
Springer, 2012, pp. 136–147.

[29] F. Caraffini, G. Iacca, The SOS platform: Designing, tuning and statistically
benchmarking optimisation algorithms, Mathematics 8 (5) (2020) http://
dx.doi.org/10.3390/math8050785, URL https://www.mdpi.com/2227-7390/
8/5/785.

[30] C. Doerr, H. Wang, F. Ye, S. van Rijn, T. Bäck, IOHprofiler: A benchmarking
and profiling tool for iterative optimization heuristics, 2018, arXiv preprint
arXiv:1810.05281.

https://doi.org/10.4121/14247179.v2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb1
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb1
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb1
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb1
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb1
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb2
http://dx.doi.org/10.24963/ijcai.2019/811
http://dx.doi.org/10.24963/ijcai.2019/811
http://dx.doi.org/10.24963/ijcai.2019/811
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb4
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb4
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb4
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb4
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb4
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb5
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb5
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb5
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb6
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb6
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb6
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb6
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb6
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb7
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb7
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb7
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb7
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb7
http://dx.doi.org/10.3390/su14073867
https://www.mdpi.com/2071-1050/14/7/3867
https://www.mdpi.com/2071-1050/14/7/3867
https://www.mdpi.com/2071-1050/14/7/3867
http://arxiv.org/abs/2306.04343
http://dx.doi.org/10.1145/3319619.3326813
http://dx.doi.org/10.1145/3319619.3326813
http://dx.doi.org/10.1145/3319619.3326813
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb11
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb11
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb11
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb11
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb11
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb12
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb12
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb12
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb12
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb12
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb13
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb13
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb13
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb14
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb14
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb14
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb14
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb14
http://dx.doi.org/10.1007/s10472-020-09712-4
http://dx.doi.org/10.1145/3449726.3463136
http://dx.doi.org/10.1145/3449726.3463136
http://dx.doi.org/10.1145/3449726.3463136
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb17
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb19
http://arxiv.org/abs/2011.05547
http://arxiv.org/abs/2011.05547
http://dx.doi.org/10.5281/zenodo.2594848
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb22
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb23
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb23
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb23
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb23
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb23
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb24
http://arxiv.org/abs/1207.4318
http://arxiv.org/abs/1207.4318
http://arxiv.org/abs/1207.4318
http://arxiv.org/abs/1207.4318
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb26
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb27
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb27
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb27
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb27
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb27
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb28
http://dx.doi.org/10.3390/math8050785
http://dx.doi.org/10.3390/math8050785
http://dx.doi.org/10.3390/math8050785
https://www.mdpi.com/2227-7390/8/5/785
https://www.mdpi.com/2227-7390/8/5/785
https://www.mdpi.com/2227-7390/8/5/785
http://arxiv.org/abs/1810.05281


L. Bliek, A. Guijt, R. Karlsson et al. Applied Soft Computing 147 (2023) 110744
[31] J. Liu, Z.-H. Han, W. Song, Comparison of infill sampling criteria in Kriging-
based aerodynamic optimization, in: 28th Congress of the International
Council of the Aeronautical Sciences 2012, ICAS 2012, Vol. 2, 2012,
pp. 1625–1634.

[32] P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, J. Vanschoren, An open
source AutoML benchmark, 2019, arXiv preprint arXiv:1907.00909 [cs.LG].
Accepted at AutoML Workshop at ICML 2019. URL https://arxiv.org/abs/
1907.00909.

[33] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, F. Hutter, NAS-Bench-
101: Towards reproducible neural architecture search, in: ICML, 2019,
pp. 7105–7114.

[34] X. Dong, Y. Yang, NAS-Bench-201: Extending the scope of reproducible
neural architecture search, 2020, ArXiv abs/2001.00326.

[35] J.N. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, F. Hutter, NAS-Bench-
301 and the case for surrogate benchmarks for neural architecture search,
2020, ArXiv abs/2008.09777.

[36] S. Falkner, A. Klein, F. Hutter, BOHB: Robust and efficient hyperparameter
optimization at scale, in: Proceedings of the 35th International Conference
on Machine Learning, 2018, pp. 1436–1445.

[37] Z. hua Han, S. Görtz, R. Zimmermann, Improving variable-fidelity surrogate
modeling via gradient-enhanced kriging and a generalized hybrid bridge
function, Aerosp. Sci. Technol. 25 (2013) 177–189.

[38] M.A. Bouhlel, J.T. Hwang, N. Bartoli, R. Lafage, J. Morlier, J.R.R.A. Martins, A
Python surrogate modeling framework with derivatives, Adv. Eng. Softw.
(2019) 102662, http://dx.doi.org/10.1016/j.advengsoft.2019.03.005.

[39] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, K. Crombecq, A surrogate
modeling and adaptive sampling toolbox for computer based design, J.
Mach. Learn. Res. 11 (2010) 2051–2055.

[40] V. Volz, B. Naujoks, P. Kerschke, T. Tusar, Single- and multi-objective game-
benchmark for evolutionary algorithms, in: Proceedings of the Genetic and
Evolutionary Computation Conference, 2019.

[41] T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, M. Lindauer,
DACBench: A benchmark library for dynamic algorithm configuration, in:
Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI’21), ijcai.org, 2021, pp. 1668–1674.

[42] A. Costa, G. Nannicini, RBFOpt: an open-source library for black-box
optimization with costly function evaluations, Math. Program. Comput. 10
(2018) 597–629.

[43] T. Pourmohamad, CompModels: A suite of computer model test functions
for Bayesian optimization, 2020, arXiv: Computation.

[44] K. Eggensperger, M. Feurer, A. Klein, S. Falkner, HPObench, 2016, https:
//github.com/automl/HPOBench.

[45] M. Lindauer, AClib2, 2016, https://bitbucket.org/mlindauer/aclib2.
[46] J. Rapin, O. Teytaud, Nevergrad - A gradient-free optimization platform,

2018, https://GitHub.com/FacebookResearch/Nevergrad.
13
[47] R. Turner, D. Eriksson, BayesMark, 2018, https://github.com/uber/
bayesmark.

[48] J. Mueller, MATSuMoTo, 2014, https://github.com/Piiloblondie/
MATSuMoTo.

[49] D. Eriksson, D. Bindel, C.A. Shoemaker, pySOT and POAP: An event-driven
asynchronous framework for surrogate optimization, 2019, arXiv preprint
arXiv:1908.00420.

[50] NREL, FLORIS. Version 2.1.1, 2020, URL https://github.com/NREL/floris.
[51] F. Rehbach, M. Zaefferer, J. Stork, T. Bartz-Beielstein, Comparison of parallel

surrogate-assisted optimization approaches, in: Proceedings of the Genetic
and Evolutionary Computation Conference, 2018, pp. 1348–1355.

[52] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: ACM
SIGKDD, 2016, pp. 785–794.

[53] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J.
Mach. Learn. Res. 13 (2012) 281–305.

[54] T. Bartz-Beielstein, C. Doerr, J. Bossek, S. Chandrasekaran, T. Eftimov,
A. Fischbach, P. Kerschke, M. López-Ibáñez, K.M. Malan, J.H. Moore, B.
Naujoks, P. Orzechowski, V. Volz, M. Wagner, T. Weise, Benchmarking in
optimization: Best practice and open issues, 2020, ArXiv abs/2007.03488.

[55] T. Bartz-Beielstein, M. Zaefferer, Model-based methods for continuous and
discrete global optimization, Appl. Soft Comput. 55 (2017) 154–167, http://
dx.doi.org/10.1016/j.asoc.2017.01.039, URL https://www.sciencedirect.com/
science/article/pii/S1568494617300546.

[56] R. Karlsson, L. Bliek, S. Verwer, M. de Weerdt, Continuous surrogate-based
optimization algorithms are well-suited for expensive discrete problems,
in: Proceedings of the Benelux Conference on Artificial Intelligence, 2020,
pp. 88–102.

[57] B. Letham, R. Calandra, A. Rai, E. Bakshy, Re-examining linear embeddings
for high-dimensional Bayesian optimization, 2020, ArXiv abs/2001.11659.

[58] C. Oh, J. Tomczak, E. Gavves, M. Welling, Combinatorial
Bayesian optimization using the graph cartesian product, in:
Advances in Neural Information Processing Systems, Vol. 32,
2019, pp. 1–11, URL https://proceedings.neurips.cc/paper/2019/file/
2cb6b10338a7fc4117a80da24b582060-Paper.pdf.

[59] R. Moriconi, M.P. Deisenroth, K.S.S. Kumar, High-dimensional Bayesian
optimization using low-dimensional feature spaces, Mach. Learn. 109
(2020) 1925–1943.

[60] K. Smith-Miles, D. Baatar, B. Wreford, R. Lewis, Towards objective measures
of algorithm performance across instance space, Comput. Oper. Res. 45
(2014) 12–24, http://dx.doi.org/10.1016/j.cor.2013.11.015.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb31
http://arxiv.org/abs/1907.00909
https://arxiv.org/abs/1907.00909
https://arxiv.org/abs/1907.00909
https://arxiv.org/abs/1907.00909
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb33
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb33
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb33
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb33
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb33
http://arxiv.org/abs/2001.00326
http://arxiv.org/abs/2008.09777
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb36
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb36
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb36
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb36
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb36
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb37
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb37
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb37
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb37
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb37
http://dx.doi.org/10.1016/j.advengsoft.2019.03.005
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb39
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb39
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb39
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb39
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb39
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb40
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb40
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb40
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb40
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb40
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb41
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb42
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb42
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb42
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb42
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb42
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb43
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb43
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb43
https://github.com/automl/HPOBench
https://github.com/automl/HPOBench
https://github.com/automl/HPOBench
https://bitbucket.org/mlindauer/aclib2
https://GitHub.com/FacebookResearch/Nevergrad
https://github.com/uber/bayesmark
https://github.com/uber/bayesmark
https://github.com/uber/bayesmark
https://github.com/Piiloblondie/MATSuMoTo
https://github.com/Piiloblondie/MATSuMoTo
https://github.com/Piiloblondie/MATSuMoTo
http://arxiv.org/abs/1908.00420
https://github.com/NREL/floris
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb51
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb51
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb51
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb51
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb51
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb52
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb52
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb52
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb53
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb53
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb53
http://arxiv.org/abs/2007.03488
http://dx.doi.org/10.1016/j.asoc.2017.01.039
http://dx.doi.org/10.1016/j.asoc.2017.01.039
http://dx.doi.org/10.1016/j.asoc.2017.01.039
https://www.sciencedirect.com/science/article/pii/S1568494617300546
https://www.sciencedirect.com/science/article/pii/S1568494617300546
https://www.sciencedirect.com/science/article/pii/S1568494617300546
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb56
http://arxiv.org/abs/2001.11659
https://proceedings.neurips.cc/paper/2019/file/2cb6b10338a7fc4117a80da24b582060-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2cb6b10338a7fc4117a80da24b582060-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2cb6b10338a7fc4117a80da24b582060-Paper.pdf
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb59
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb59
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb59
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb59
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb59
http://dx.doi.org/10.1016/j.cor.2013.11.015
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61
http://refhub.elsevier.com/S1568-4946(23)00762-7/sb61

	Benchmarking surrogate-based optimisation algorithms on expensive black-box functions
	Introduction
	Background and related work
	Surrogate-based optimisation algorithms
	Shortcoming 1: lack of standardised real-life benchmarks
	Shortcoming 2: lack of insight in computational efficiency
	Related benchmark environments

	Proposed Benchmark Library: EXPObench
	Included Expensive Benchmark Problems
	Wind Farm Layout Optimisation (Windwake)
	Pipe Shape Optimisation (Pitzdaily)
	Electrostatic Precipitator (ESP)
	Hyperparameter Optimisation and Preprocessing for XGBoost (HPO)

	Approaches

	Methodology 
	Results
	Experiment details
	Hardware
	Hyperparameter settings
	Normalisation
	Software environment

	Benchmark results
	Windwake
	Pitzdaily
	ESP
	XGBoost Hyperparameter Optimisation

	Varying time budget and function evaluation time
	Rules of thumb 

	Offline learning of surrogates
	Summary of obtained insights 

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Area under curve metrics
	Appendix B. Offline learning results
	References


