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A B S T R A C T

Model Predictive Control (MPC) has recently gained increasing interest in the adaptive management of water
resources systems due to its capability of incorporating disturbance forecasts into real-time optimal control
problems. Yet, related literature is scattered with heterogeneous applications, case-specific problem settings,
and results that are hardly generalized and transferable across systems. Here, we systematically review
149 peer-reviewed journal articles published over the last 25 years on MPC applied to water reservoirs,
open channels, and urban water networks to identify common trends and open challenges in research and
practice. The three water systems we consider are inter-connected, multi-purpose and multi-scale dynamical
systems affected by multiple hydro-climatic uncertainties and evolving socioeconomic factors. Our review first
identifies four main challenges currently limiting most MPC applications in the water domain: (i) lack of
systematic benchmarking of MPC with respect to other control methods; (ii) lack of assessment of the impact
of uncertainties on the model-based control; (iii) limited analysis of the impact of diverse forecast types,
resolutions, and prediction horizons; (iv) under-consideration of the multi-objective nature of most water
resources systems. We then argue that future MPC applications in water resources systems should focus on
addressing these four challenges as key priorities for future developments.
. Introduction

Adaptive water resources management is a priority for resilient de-
elopment and adaptation to increasing hydro-climatic variability and
ocio-economic transformations (Brears, 2018; Şen, 2021; Stevenson
t al., 2022; Zhao & Boll, 2022). Global physical and socio-economic
hanges add pressure on governments and policy-makers to urgently
ddress water-related multi-sector challenges including energy and
ood security, human and environmental health, economic develop-
ent, and climate change mitigation and adaptation (e.g., Global Water
artnership - GWP, 2021; Miralles-Wilhelm, 2022; Srivastava, Mehta,
Naess, 2022). To address these challenges, improve the sustainability

nd efficiency of water resources management, and adapt to transfor-
ative changes, new opportunities may come from adaptive control

∗ Corresponding author.
E-mail address: andrea.castelletti@polimi.it (A. Castelletti).

techniques and hydro-meteorological forecasts (Abioye et al., 2020;
Bwambale, Abagale, & Anornu, 2022; Coelho & Andrade-Campos,
2014; Şen, 2021; Ding, Wang, Li, & Li, 2018; Dobson, Wagener, &
Pianosi, 2019; Giuliani, Lamontagne, Reed, & Castelletti, 2021; Wu,
Maier, Dandy, Arora, & Castelletti, 2020; Yuan et al., 2019).

Control methods and tools have been used in the water management
community to design optimal water resources operations for several
decades already, since the 1955 Harvard Water Program (see Reuss
(2003) for a historical perspective, the pioneering work by Maass
et al. (1962) and the reviews in Castelletti, Pianosi, & Soncini-Sessa,
2008b; Coelho & Andrade-Campos, 2014; Creaco et al., 2019; García
et al., 2015; Labadie, 2004; Macian-Sorribes & Pulido-Velazquez, 2020;
Malaterre, 1995; Malaterre, Rogers, & Schuurmans, 1998; Mareels
vailable online 11 April 2023
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ADP Approximate Dynamic Programming
ANN Artificial Neural Network
CSO Combined Sewer Overflow
DDP Deterministic Dynamic Programming
DSS Decision Support System
EPANET Environmental Protection Agency Network Eval-

uation Tool
ESP Ensemble Streamflow Prediction
FQI Fitted Q-Iteration
IPCC Intergovernmental Panel on Climate Change
I Integrator
ID Integrator Delay
IDZ Integrator Delay Zero
IR Integrator Resonance
ISO Implicit Stochastic Optimization
ML Machine Learning
MO Multi-Objective
MPC Model Predictive Control
OC Open Channel
OLFC Open-Loop Feedback Control
PID Proportional–Integral–Derivative
POLFC Partial Open-Loop Feedback Control
PRISMA Preferred Reporting Items for Systematic Reviews

and Meta-Analyses
SDP Stochastic Dynamic Programming
SWMM Storm Water Management Model
SICˆ2 Simulation and Integration of Control for Canals
SOP Standard Operating Procedure
SSDP Sampling Stochastic Dynamic Programming
TB-MPC Tree-Based Model Predictive Control
UWN Urban Water Networks
WR Water Reservoirs

et al., 2005; Van Der Werf, Kapelan, & Langeveld, 2022; Yeh, 1985).
Yet, this is still a very active research field, as water systems are
uncertain dynamic systems with challenging features that make the
use of optimal control tools particularly complex. First, water systems’
disturbances and related risks are ever-changing, as the variability
induced by changing hydro-climatic conditions has been expanding
in recent decades (e.g., Hall et al., 2014; Sreeparvathy & Srinivas,
2022), alongside the frequency and intensity of extreme events that are
being exacerbated with climate change (Gründemann, van de Giesen,
Brunner, & van der Ent, 2022; IPCC, 2021; Stevenson et al., 2022;
Trenberth et al., 2014). Second, human pressure on water resources has
been augmenting with population and socio-economic growth, leading
to increased water and energy demands at the global scale (e.g., Boretti
& Rosa, 2019; van Ruijven, De Cian, & Sue Wing, 2019; Wu, Maier,
Dandy, Arora, & Castelletti, 2020). This, in turn, has shifted decision
makers’ preferences and risk perception (e.g., Giuliani et al., 2021; Poff
et al., 2016). Third, water systems usually serve multiple stakehold-
ers with often conflicting and time-evolving objectives (Soncini-Sessa,
Castelletti, & Weber, 2007), which makes the exploration of trade-offs
essential (e.g., Reed, Hadka, Herman, Kasprzyk, & Kollat, 2013).

The advantages of using real-time adaptive model-based control
techniques are evident in the context of hydro-climatic and socio-
economic changes, as the use of forecasts unlocks the control potential
to anticipate and, therefore, adapt to changes in the system’s char-
acteristics and disturbances. These approaches can be grouped under
443

the umbrella of Model Predictive Control (MPC) (Bertsekas, 2005;
Scattolini, 2009), which is a popular approach, mostly well-established
for industrial applications (e.g., Forbes, Patwardhan, Hamadah, &
Gopaluni, 2015; Qin & Badgwell, 2000; Schwenzer, Ay, Bergs, &
Abel, 2021) yet attracting increasing attention from the water sys-
tems community (e.g., Giuliani et al., 2021) due to recent advances
in monitoring and forecasting systems and increasing computational
capabilities (e.g., Wu, Emerton et al., 2020). Hydro-meteorological
forecasts have constantly been improving in quality and accessibility
over the last few decades (e.g., Buizza, 2019; Wu, Emerton et al.,
2020). Similarly, hydrological and water systems’ models have been
substantially refined in recent years, allowing both the representation
of physical processes at the highest resolution (e.g., Bierkens et al.,
2015; Nair, McManamay, Derolph, & Allen-Dumas, 2020) and the
efficient emulation of high-fidelity models via surrogate models based
on machine learning techniques (e.g., Huang, Ma, Ma, Huangfu, &
He, 2021; Miro et al., 2021; Wu, Dandy, & Maier, 2014). Today, it
is possible to assimilate earth observations and operational forecasts
in real-time and run optimization and simulation models within a
reasonable time thanks to recent technological advances (Baardman
et al., 2022; Blair et al., 2019; Camporese & Girotto, 2022; Creaco et al.,
2019).

In this context, we believe that a review of MPC applications to
water management problems is timely and important to stimulate
reflections on MPC benefits and challenges in the water sector and set
the path for further research and practice developments. While previous
reviews focused on discussing the use of different optimal control meth-
ods in specific water systems (e.g., water reservoirs), here we contribute
a comprehensive analysis of the most recent advancements in MPC for
different types of water systems. The heterogeneous features of these
systems introduce distinct challenges to optimal control techniques and
often require diverse MPC approaches. In this review, we focus on three
key types of interconnected water systems designed and operated to
store, convey, and distribute water for human and environmental needs
as well as to manage sewer and drainage flow at the basin to urban
scales: water reservoirs, open channels, and urban water networks. To
build our comprehensive review of 149 peer-reviewed journal articles,
we follow an automatic search procedure and then refine the paper
selection using a set of eligibility criteria, as detailed in the Methods.

The Methods section first recalls the MPC methods used for water
systems’ operations. Then, the three types of water systems within
the scope of this review are introduced, explaining why these systems
are relevant and detailing the models used in the MPC applications.
The Results Section then provides a detailed summary of the reviewed
papers across the three types of water systems. Finally, the Discussion
and Conclusions Sections summarize the limitations and merits of the
applications reviewed and highlight the most urgent needs for future
developments.

2. Methods

2.1. Model predictive control

Model Predictive Control is a control strategy based on the sequen-
tial, online resolution of multiple open-loop control problems defined
over a finite, receding time horizon (Bertsekas, 2005). At each time
step, the resolution of an MPC problem yields a sequence of optimal
control actions (i.e., the releases for reservoirs, gate openings for chan-
nels, etc.) over the future horizon [𝑡, 𝑡+ℎ], given a predicted trajectory of
the disturbances over the same horizon. The optimization is generally
formulated considering a single objective; when the problem involves
multiple objectives (e.g., water supply, hydropower production, flood
control, environmental protection, irrigation, transport, etc.), these are
generally aggregated using a scalarization function (e.g., weighted com-
bination) or via the lexicographic goal programming technique in cases
where there is a clear hierarchy of priorities across the objectives (e.g.,
Horvath et al., 2022). The online optimization scheme is reiterated
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forward in time over a receding horizon during the operational life
of the system. After each optimization, only the first control action
of the optimized control sequence is actuated, before reiterating the
optimization at the next time step. Through this reiteration of the
model-based optimization, MPC determines the control law implicitly
in a closed-loop form, as it computes the optimal control action at each
time step 𝑡 based on the observed state of the system (x𝑡). The current
tate of the system can be directly observed in most of the cases for the
ater systems considered in this review. A state estimator is needed
therwise.

MPC requires a model of the system (see Section 2.2), also known
s internal or prediction model, to predict the effect of control actions on
he controlled system’s dynamics, and to determine the set of actions
hat yield the optimal performance with respect to the considered
bjectives subject to physical and operational constraints. The choice
f the model plays a major role in the performance yielded by the MPC.
he flexibility of the direct use of any models available for the systems
o be controlled is one of the main advantages of this approach, particu-
arly in terms of controlling highly non-linear systems. The requirement
or computational efficiency is the main factor that can limit the use
f fully physically-based models of large-scale complex water systems
ike urban water networks, for which reduced-order data-driven models
an be developed to be used in MPC (see Section 3.3). The flexibility
n working with (nonlinear) constraints is another advantage of MPC
ompared to other control methods. And this advantage is particularly
elevant for water systems, as explicit physical constraints (with non-
inearities), like limits of actuators, or legal constraints, like a minimum
elease from reservoirs, are often required.

Another advantage of MPC with respect to other control approaches
s the mitigation of the curse of ‘dimensionality’ (Bellman, 1957) that
imits the applicability of Dynamic Programming family methods to
arge water systems because of the challenges associated with the
omputation of the value functions for increasing dimensions of state
nd control vectors. Moreover, the use of real-time information and
robabilistic/ensemble forecasts in the optimization process allows
PC to adapt to evolving external conditions and mitigate the impacts

f uncertain extreme events.
Different configurations of MPC exist depending on how they handle

he control of multiple actuators in large-scale systems (centralized,
ecentralized, or distributed MPC), the parameter estimation problem
adaptive or non-adaptive MPC), and the uncertainty in disturbance
orecasts (deterministic or robust and stochastic MPC; see Sections 2.1.1
nd 2.1.2).

A centralized MPC configuration assumes that a single controller
rocesses measurements from all sensors/gauges and determines op-
imal actions to be applied by all actuators. However, water systems
re usually spread over large, often transboundary regions, and several
ater boards can be involved in their management. In such large

ystems, centralized management may become unfeasible or compu-
ationally cumbersome, and may also be undesirable with regard to
ystem reliability, scalability, and responsiveness. Thus, multi-agent
ontrol, whereby the control effort is divided among local agents (also
eferred to as controllers), each in charge of part of the overall system,
merges as a possible way to circumvent the drawbacks arising from
entralized implementations. Two main criteria by which to classify
ulti-agent control approaches are the existence of communication

inks and hierarchy among local controllers. On the one hand, an ap-
roach is said to be decentralized if interactions among local controllers
re neglected, and distributed if communication links among local
ontrollers are enabled for the sake of improved overall performance,
lthough at the expense of increased computation times. On the other
and, an approach is said to be single-level if all local controllers
re at the same hierarchical level, and multi-level if a subset of local
ontrollers has ascendancy over the rest.

Regarding the problem of reducing model uncertainties, in standard
444

non-adaptive) MPC, the model used for prediction is often assumed p
to be accurate and fixed in time, while only its state is updated.
However, by using a fixed model parameterization the changing un-
certainties within the system are not taken into account, which can
reduce the MPC performance. In contrast, in adaptive MPC, the model
parameters can be updated online by using available measurements,
and the estimation problem is addressed by including a parameter
estimation procedure as part of the control strategy. The control action
is then calculated not only based on the estimated current state but
also on the updated model, which can help reduce the dynamic model
uncertainties affecting MPC (Lemos, Machado, Nogueira, Rato, & Rijo,
2009).

2.1.1. Deterministic MPC
In cases where a single deterministic prediction of the systems’

disturbances is available, the formulation of the (single-objective) MPC
problem over the prediction horizon (ℎ), to be solved at each control
time step, is as follows:

min
𝑢𝑡 ,…,𝑢𝑡+ℎ

𝑡+ℎ−1
∑

𝜏=𝑡
𝑔𝜏 (𝒙𝝉 , 𝒖𝝉 , �̂�𝜏+1) + 𝑔𝑡+ℎ(𝒙𝒕+𝒉) (1)

subject to:

𝝉+𝟏 = 𝑓𝜏
(

𝒙𝝉 , 𝒖𝝉 , �̂�𝜏+1
)

(2)

(

𝒙𝝉 , 𝒖𝝉 , �̂�𝜏+1
)

≤ 0 (3)

̂𝜏+1 given for 𝜏 = 𝑡,… , 𝑡 + ℎ − 1 (4)

𝒕 given (5)

here: 𝒙𝜏 is the state of the system at time step 𝜏 (e.g., the reservoir
torage, the water level in channels, and the state of other dynamical
omponents); 𝒖𝜏 is the control vector including all control actions for
he actuators (e.g., gates or pumps); �̂�𝜏+1 is the deterministic forecast of
he system’s disturbances provided by a prediction model for each time
tep 𝜏 over the prediction horizon [𝑡+1, 𝑡+ℎ]; 𝑔𝜏 (⋅) is a time-separable
ost function associated with the transition from time step 𝜏 to 𝜏 + 1;
𝑡+ℎ (⋅) is a penalty function associated with the final state (𝒙𝑡+ℎ ) that
epresents the future costs beyond the prediction horizon. It should be
oted that the control horizon, i.e. the time span for which the control
nputs are allowed to vary, can be shorter than the prediction horizon,
hough often they are assumed to be equal as in Eq. (1).

The optimal control problem (1) is subject to the dynamic con-
traints provided by the state transition function (Eq. (2)) along with
ifferent types of physical constraints (e.g., limits of actuators) and
perational/legal ones (e.g., minimum environmental flows) that can
e expressed as (non linear) inequality constraints (Eq. (3)).

.1.2. Robust and stochastic MPC
One of the limitations of Problem (1) is that it requires the avail-

bility of the sequence of future system disturbances {�̂�}𝑡+ℎ𝑡+1 , which
s unrealistic to expect to be perfect in many practical situations.
o deal with this issue, the MPC framework includes strategies that
andle uncertainties in a robust manner via worst-case formulations,
.g., min–max and robust MPC. While these methods guarantee the
atisfaction of the problem constraints as long as some assumptions are
atisfied (mainly, that disturbances are bounded), they also generally
ead to very conservative control policies because a worst-case scenario
pproach is followed. To remedy this situation, stochastic MPC ap-
roaches exploit the characterization of the forecasted uncertainties, to
btain a trade-off between closed-loop constraint satisfaction and per-
ormance. Stochastic MPC approaches typically employ so-called chance
onstraints, i.e., constraints that should be satisfied with a predefined

robability level (Mesbah, 2016). Thus, occasional violations of the
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constraints might occur, but system performance will be increased dur-
ing normal system operation because the controller will be allowed to
work closer to the constraints in comparison to worst-case approaches.

Here, we propose a classification of existing robust and stochastic
MPC approaches used in the water systems literature so far into two cat-
egories, based on the way the knowledge of the probability distribution
function (pdf) of the disturbances is implemented into the optimization
problem: (i) explicit robust and stochastic approaches, that use the
explicit information on the pdf, and (ii) implicit approaches, that rely
on a set of scenarios (or ensemble forecasts) which encode information
bout the disturbance evolution and its uncertainty in an implicit
anner.

(i) Explicit approaches, require an explicit (probabilistic) charac-
terization of the disturbance behaviour. A classical strategy to
deal with uncertainty explicitly is the use of Open-loop feedback
control (OLFC), as introduced by Bertsekas (1976). This approach
presents the future disturbances according to their probability
distribution and computes the objectives through a function to
filter the disturbances (e.g., expected value). The OLFC per-
formance can be improved by adopting a partial open-loop
feedback control (POLFC) formulation (e.g., Castelletti, Pianosi,
& Soncini-Sessa, 2008a; Pianosi & Soncini-Sessa, 2009), which
explicitly assumes that in the future the state of the system
will be measured and a new problem will be reformulated.
The POLFC problem, therefore, computes at each time step the
optimal release decision for the first time step reflecting first-step
uncertainty and the optimal operating policy for the following
time steps.

(ii) Implicit approaches rely on the use of a set of scenarios of
the disturbances. The set of scenarios can be either built using
data from previous realizations or using real-time probabilistic
forecasts. A classical implicit approach that uses scenarios in
MPC is the Scenario-based MPC which allows optimizing the
system behaviour for several disturbance realizations. This ap-
proach has been generalized in Calafiore and Campi (2006),
Calafiore and Fagiano (2013a, 2013b), and has been applied
to water systems in Tian et al. (2019), Tian, Negenborn et al.
(2017b), van Overloop, Weijs, and Dijkstra (2008), Velarde,
Tian, Sadowska, and Maestre (2019). An interesting feature of
this approach is that multiple models can be considered, thus al-
lowing to consider model uncertainty in addition to disturbance
uncertainty. The scenario-based MPC approach can be extended
via the Tree-based MPC (TB-MPC) formulation to provide the
controller with enhanced closed-loop control capabilities so that
it can adapt to future events, as uncertainty is resolved via
bifurcation points along the prediction horizon, as first applied
to water systems in Raso, Schwanenberg, van de Giesen, and van
Overloop (2014). Implicit approaches are particularly relevant
for water systems as the forecasts are often provided in the
form of an ensemble of multiple time series, usually generated
by running the forecast model multiple times with perturbed
initial conditions or using multiple models. Given their capac-
ity to account for the inherent forecast uncertainty, ensemble
forecasts have become a standard in hydro-meteorological fore-
casting (Buizza, 2019; Gneiting & Raftery, 2005; Zhao, Wang,
Wu, & Yang, 2021). This ensemble is then transformed into a
tree where similar ensemble members are bundled together into
one trajectory (branch) up to the point when some of them start
to significantly diverge from the others. The tree structure is
then used to optimize a control tree defining a distinct control
sequence for each branch. Control sequences are constrained to
be the same up to the time when two ensemble members diverge.
Examples of applications of TB-MPC can be found in Ficchi et al.
(2016), Maestre, Raso, van Overloop, and De Schutter (2013),
Raso et al. (2014), Uysal, Alvarado-Montero, Schwanenberg and
445

Sensoy (2018a). t
Explicit knowledge about the disturbance (pdf) might be available
nd can used to build a set of scenarios for implicit approaches, such
s multi-scenario MPC or TB-MPC, so as to achieve approximate robust
PC strategies (Lucia, Finkler, & Engell, 2013). Alternatively, one may

roceed the other way around, by using historical data (e.g., pre-
ious realizations of the disturbances or reforecasts) to generate an
xplicit model (possibly with some limitations) and use that in explicit
tochastic approaches.

Finally, stochastic approaches can be considered robust as well
f very strict requirements are imposed regarding the probability of
losed-loop constraint violation. As the imposed probability of con-
traint violation tends to zero, the controller becomes more and more
obust as it needs to increase the safety margin with respect to the prob-
em constraints. For this reason, there are some articles in the literature
hat present stochastic approaches from a robustness viewpoint (Chen
t al., 2021; Chen & You, 2021; Shang, Chen, Stroock, & You, 2020).

.2. Models for water systems applications

This section provides an overview of the models used for represent-
ng the different water systems considered in this review, namely water
eservoirs, open channels, and urban water networks. It is worth men-
ioning that despite we illustrate and discuss these systems separately,
hey are often interconnected with water reservoirs feeding either open
hannels and/or urban water networks.

.2.1. Water reservoirs
A water reservoir is a regulated storage or lake, controlled by a

am that either blocks the flow of a watercourse that is drained from
pstream catchments (in-stream reservoir) or creates a retention basin
ollecting water supplied by an adjoining stream, a canal, pipeline or
queduct (off-stream). Reservoirs can be part of networks of different
evels of complexity, with two or more reservoirs in parallel or in series
see Fig. 1 for a schematic representation), connected with water users
ia natural or artificial canals.

Reservoirs are usually multi-purpose systems, serving power plants,
rrigation districts, urban and industrial water users, as well as con-
ributing to other targets like flood control, environmental manage-
ent, navigation, water quality, etc. Traditionally, reservoir control is

mplemented by a human operator that can act based on static rule
urves or control actions suggested by a Decision Support System (DSS)
n real-time. Since the control time step is discrete, the model for a
eservoir is typically written in time-discrete form too, even though
he physical processes involved in the system are time-continuous. The
ontrol time step varies based on the type of systems and objectives,
ith control frequencies typically ranging from hourly or daily for

maller systems and for flood control or hydropower generation, to
onthly for large systems and for water supply objectives. The generic
odel for a system of 𝑁 reservoirs is based on the mass-balance

quation describing the dynamics of the water storage at each reservoir
as:
𝑗
𝑡+1 = 𝑥𝑗𝑡 + 𝑞𝑗𝑡+1 − 𝑟𝑗𝑡+1 (6)

where: 𝑥𝑗𝑡 is the state of reservoir 𝑗 at time step 𝑡, i.e., the reservoir
storage; 𝑞𝑗𝑡+1 is the net inflow volume (i.e., inflow and direct precipi-
tation minus evaporation and seepage losses) from time step 𝑡 to 𝑡 + 1;
𝑟𝑗𝑡+1 is the actual release from the reservoir in the same time interval. In
the notation in Eq. (6), the time subscript of each variable indicates the
time instant when the value is deterministically known. The reservoir
storage is measured at time step 𝑡 and thus is denoted as 𝑥𝑗𝑡 , while
the net inflow and the actual release are denoted as 𝑞𝑗𝑡+1 and 𝑟𝑗𝑡+1,
espectively because they can be known only at the end of the time
nterval. For multi-reservoir systems, the global model is obtained by
ggregating the models of the 𝑁 reservoirs that compose it, i.e., all

he variables in Eq. (6) become vectors (e.g., x𝑡, q𝑡+1) and the network
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Fig. 1. Schematic representation of a multi-reservoir network.
Source: Adapted from the Zambezi river system’s scheme
reported in Giuliani and Castelletti (2013).
topology can be represented by an incidence matrix (Giuliani et al.,
2021).

The actual release 𝑟𝑗𝑡+1 is a function of the control variable 𝑢𝑗𝑡
(i.e., the release decision at time step 𝑡), of the storage 𝑥𝑗𝑡 and of the
net inflow 𝑞𝑗𝑡+1:

𝑟𝑗𝑡+1 = 𝑅𝑗
𝑡

(

𝑥𝑗𝑡 , 𝑢
𝑗
𝑡 , 𝑞

𝑗
𝑡+1

)

(7)

where the function 𝑅𝑗
𝑡 (⋅) is called the release function and it is a nonlin-

ear function, which binds the actual release within a range of physical
acceptability. The range is defined by the minimum and maximum
releases that would occur from time step 𝑡 to 𝑡 + 1 by keeping all the
sluice gates completely closed and open, respectively (Castelletti et al.,
2008b). Thus, the release function allows for the inclusion of physical
constraints on reservoir storage and release into the model. The actual
release may differ from the control decision when the available water
is not sufficient to realize the decision or when a spill takes place. The
release function is inherently stochastic because between the time step
𝑡 at which the release decision is taken and the time step 𝑡+1 at which
the control action is completed, the uncertain net inflow 𝑞𝑗𝑡+1 affects the
reservoir storage.

The net inflow 𝑞𝑗𝑡+1 is an aggregation of several hydro-meteorological
contributions including upstream and lateral flows from tributaries and
runoff, direct precipitation over the reservoir minus evaporation and
infiltration losses. The net inflow is often modelled as a system distur-
bance (i.e., 𝑞𝑗𝑡+1 = 𝜀𝑗𝑡+1), aggregating multiple sources of uncertainty,
though its contributions can also be separately modelled as distinct
disturbances. On the other hand, the hydrologic processes contributing
to the net inflow can be represented using dynamic hydrological models
of different types, from conceptual to physically-based, lumped or
spatially distributed, deterministic or stochastic models. Data-driven
alternatives or simple statistical models are often preferred because of
their computational efficiency (e.g., Wang, Chau, Cheng, & Qiu, 2009)
and, recently, efforts are being made to move towards hybrid models (a
combination of pure data-driven and process-based models) that can be
more interpretable by users (e.g., Chakraborty, Başağaoğlu, & Winterle,
2021). These models can be used to provide a set of deterministic or
stochastic forecasts of the disturbance, that can be issued before every
control time step and used in an optimal control problem.

2.2.2. Open channels
Open-channel systems are large-scale networked systems that con-

sist of natural rivers and artificial canals and serve multiple purposes.
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As part of the integrated urban water management cycle, open-channel
systems can be used to convey treated water to consumer areas, which
may then be supplied to consumers (using pressurized pipeline net-
works) or used for irrigation purposes. Open-channel systems can also
be employed for freight and passenger transportation, provided that
water depth and width are sufficient. Moreover, the watercourse should
not be interrupted too frequently by elements that must be avoided,
e.g., reefs, rocks and sandbanks, and bridges should have sufficient
clearance. Although not strictly in the scope of this paper, it is interest-
ing to note that research on inland waterborne transport is attracting
increasing attention, as it is one of the most environmentally friendly
and cost-effective transport modes. A schematic representation of an
open-channel system is given in Fig. 2, which shows its main constitu-
tive elements. On the one hand, canals are stretches of the watercourse
bounded between two control structures. On the other hand, actuators
are hydraulic infrastructure, e.g., gates, weirs and dams, available for
water control purposes (see examples above). Finally, nodes represent
canal junctions, i.e., locations wherein a stream flows into or branches
off from the main stream (these are known as tributary and distributary,
respectively).

Open-channel dynamics are most accurately described by the Saint-
Venant equations, a set of coupled nonlinear partial differential equa-
tions that can be formulated as follows (Litrico & Fromion, 2009):

𝜕𝐴(𝑙, 𝑡)
𝜕𝑡

+
𝜕𝑄(𝑙, 𝑡)

𝜕𝑙
= 0, (8a)

𝜕𝑄(𝑙, 𝑡)
𝜕𝑡

+ 𝜕
𝜕𝑙

(

𝑄2(𝑙, 𝑡)
𝐴(𝑙, 𝑡)

)

+ 𝑔𝐴(𝑙, 𝑡)
(

𝜕𝑌 (𝑙, 𝑡)
𝜕𝑙

+ 𝑆𝑓 (𝑙, 𝑡) − 𝑆𝑏(𝑙)
)

= 0. (8b)

Eqs. (8a) and (8b) represent the mass and momentum conservation
equations, respectively, the latter comprising inertia, advection, gravi-
tational force and friction force terms. Moreover, 𝑙 is the longitudinal
abscissa (continuous independent variable), 𝑡 is the time (continuous
variable), 𝐴(𝑙, 𝑡) is the wetted area [m2], 𝑄(𝑙, 𝑡) is the discharge [m3/s]
across section 𝐴, 𝑉 (𝑙, 𝑡) = 𝑄(𝑙, 𝑡)∕𝐴(𝑙, 𝑡) is the average velocity [m/s]
in section 𝐴, 𝑌 (𝑙, 𝑡) is the water depth [m], 𝑆𝑓 (𝑙, 𝑡) is the friction
slope [m/m], 𝑆𝑏(𝑙) is the bed slope [m/m] and 𝑔 is the gravitational
acceleration [m/s2].

Eq. (8) must be completed with initial and boundary conditions. On
the one hand, the initial condition is given in terms of (𝑄(𝑥, 0), 𝑌 (𝑥, 0)),
for all 𝑥 ∈ [0, 𝐿], where 𝐿 is the length of the canal. On the other
hand, boundary conditions must be chosen depending on flow char-
acteristics: subcritical flow requires an upstream and a downstream
condition; supercritical flow requires two upstream conditions; and
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Fig. 2. Schematic representation of an open-channel system.
intermediate situations require to specify one, two, or three conditions,
depending on the situation (Litrico & Fromion, 2009). Furthermore,
available measurements and controls must be specified. It is typically
the case in practical situations that available measurements and con-
trols are boundary water levels and gate openings, respectively (Litrico
& Fromion, 2009).

Because of their accuracy, the Saint-Venant equations constitute the
basis of state-of-the-art simulation software, e.g., SOBEK1 and SICˆ2.2
However, they are demanding in terms of computational resources and
provide too much information for applications such as controlling av-
erage water levels, two facts that render their direct use impractical for
control purposes (hence the variables in (8) are not directly connected
with the notation introduced in Fig. 2). For this reason, the use of
alternative and simpler models as prediction models (i.e., internal MPC
models) is commonly encountered in the literature. These simplified
models generally compensate the loss of precision with a significant re-
duction of the computational burden, which in turn allows to use more
elaborated formulations within the MPC framework. Several classes of
simplified models have been developed:

• Some models are obtained directly from the Saint-Venant equa-
tions, discretizing the system in space (e.g., using a staggered
grid) and linearizing. The kind of discretization method employed
plays a crucial role in the stability of the obtained model. On
the one hand, certain time-implicit methods yield stable models
regardless of the step size chosen, even for nonlinear hyperbolic
systems (Hirsch, 2007). On the other hand, the stability of ex-
plicit discretization methods depends on the discretization step
size (Conde, Quijano, & Ocampo-Martinez, 2021).

1 https://www.deltares.nl/en/software/sobek/
2 http://sic.g-eau.net
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• Other models are based on strong mechanistic simplifications of
the behaviour of the canal dynamics:

– One of the first proposals was the Integrator Delay (ID)
model (Schuurmans, Bosgra, & Brouwer, 1995; Schuurmans,
Clemmens, Dijkstra, Hof, & Brouwer, 1999), an approxima-
tion model for flow in an open channel with a backwater ef-
fect. The integrator term captures the canal volume change
according to the water level variation, and the time delay
indicates the required time for a disturbance generated at
one end of the canal to have an effect at the other end.
It is worth noting that some authors simplify the ID model
even further, considering only the integrator term (I), thus
assuming that the canal behaves like a reservoir.

– A modification to the ID model was proposed by Litrico and
Fromion (2004) to represent the high-frequency phenomena
and thus describe a canal in any flow condition. This new
model, which features a zero in the transfer function to
represent the direct influence of the discharge on the water
level in high frequencies, is known as the Integrator Delay
Zero (IDZ) model.

– The Integrator Resonance (IR) model was proposed by van
Overloop, Miltenburg et al. (2010), to characterize the effect
of reflecting waves on the water levels, which dominate the
behaviour of the short and deep open-channel flow.

• System identification techniques have also been employed for
the purpose of open-channel modelling. In particular, black-box
models, which do not make use of any physical insight, have
proven to perform well (Rivas-Pérez, Feliu-Batlle, Castillo-García,
& Linares-Sáez, 2014; Weyer, 2001).

The common feature shared by the different simplified models is
the connection between discharges and water levels. However, some

https://www.deltares.nl/en/software/sobek/
http://sic.g-eau.net
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Fig. 3. Schematic representation of a water distribution network.
Source: Adapted from the Epanet 2: user manual (Rossman et al.,
2000).
of these models are formulated using continuous time input–output
representations (e.g., ID, IDZ and IR), and must be discretized for
implementation purposes. On the other hand, models with full space–
time discretization are directly described in discrete-time state–space
form.

With some minor adjustments, all these models can be framed
within the more general control-oriented model given below:

𝒙𝑡+1 = 𝐹 (𝒙𝑡, 𝒖𝑡,𝒘𝑡,𝒅𝑡), (9a)

0 = 𝐺(𝒙𝑡, 𝒖𝑡,𝒘𝑡,𝒅𝑡). (9b)

The variables used in Eq. (9) follow the notation introduced in
Fig. 2, and their meaning is as follows: the vector of states 𝒙𝑡 con-
tains the water levels (and possibly other terms, depending on the
simplified model that is employed), 𝒖𝑡 denotes the vector of control
inputs (e.g., actuator flow or position setpoints; for an exhaustive list of
control variables see Section 3.2), 𝒘𝑡 represents the vector of uncontrol-
lable flows due to environmental phenomena (e.g., rainfall, infiltration
and percolation), and 𝒅𝑡 is the vector of water demands (e.g., off-takes
by farmers) that act as system disturbances 𝜺𝑡+1. Note that (9) includes
differential and algebraic equations: the former represent the system
dynamics, and the latter account for the mass balances that must hold
at the nodes.

2.2.3. Urban water networks
The integrated urban water cycle is composed of several infrastruc-

tural and operational components, including water sources manage-
ment, water treatment, water transport and distribution,
sewer/wastewater collection, and rainwater/stormwater drainage sys-
tems (Loucks & Van Beek, 2017), which have the main goal of pro-
viding water for human needs reliably, efficiently, and safely, and then
returning it to the environment with the lowest possible impact (Walski
et al., 2003). The problem of optimal operation of large-scale urban
water networks has been extensively investigated in the literature in
the last 50 years (Mala-Jetmarova, Sultanova, & Savic, 2017), with the
main focus on water transport and distribution networks and optimal
management of sewer and drainage infrastructure, beside smaller-
scale applications that focus on solving local optimization problems
of individual network components, such as individual pumps/pumping
stations and water treatment processes in water/wastewater treatment
plants.

Taking water transport and distribution networks for instance (see
Fig. 3 for a schematic representation), an optimal control problem is
typically formulated as an optimal pump operation and valve setting
control problem targeting resources and economic savings in energy use
and related cost, while ensuring that water is conveyed to final users
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to satisfy their water demands. Modelling a water distribution network
requires modelling its main components, which can be classified into
nodes – which include demand junctions (where water leaves or enters
the network), reservoirs (water sources), and tanks (where water is
stored) – and links — which include pipes connecting different nodes
and valves and pumps. Valves and pumps are the actuators in the
system to be controlled. Accounting for all aforementioned system
components, a control-oriented model of a water distribution network
can be formulated as in Wang, Puig, and Cembrano (2017):

𝒙𝑡+1 = 𝐹 (𝒙𝑡, 𝒛𝑡, 𝒖𝑡,𝒘𝑡,𝒅𝑡), (10a)

0 = 𝐺(𝒙𝑡, 𝒛𝑡, 𝒖𝑡,𝒘𝑡,𝒅𝑡), (10b)

where the dynamic states in vector 𝐱𝑡 are the water storage levels
(heads) of the network tanks at time step 𝑡, the algebraic states in vector
𝐳𝑡 are the hydraulic heads in all other nodes of the network, resulting
from flow balance, 𝐮𝑡 is the vector of control inputs (pump operations
and valve status), and 𝐰𝑡 is the vector of non-controllable flows through
pipes. 𝐝𝑡 is the vector of water demand intended as system disturbances
𝜺𝑡+1. Pump and valves might vary in type and size. For instance, pumps
might be with fixed-speed or variable-speed drives, valves might be
pressure modulating or pressure reducing valves, non-return valves,
head control, etc., which should be accounted for in modelling such
components, as their characteristics also constrain the type and range
of available controls.

The above discrete-time model includes difference and algebraic
equations, based on mass and energy conservation. The mass balance
should be guaranteed at the network nodes, implying that the flow rate
of water 𝑞 in node 𝑛 from all its connected pipes 𝑝 is balanced by the
actual demand in that node 𝑑𝑎𝑐𝑡,𝑛𝑡 in each time step 𝑡 (Rossman et al.,
2000):
∑

𝑝∈𝑃𝑛

𝑞𝑝,𝑛𝑡 − 𝑑𝑎𝑐𝑡,𝑛𝑡 = 0. (11)

Energy conservation is formulated to satisfy the Bernoulli’s principle,
while head losses in pipes are accounted for via the Hazen–Williams
equation. Once the above model is formulated for a given water dis-
tribution network, the system can be simulated either in demand-driven
mode, which, under normal conditions, assumes that the pressure in
the system depends on node demands and, thus, the mass balance
and head loss equations are solved assuming that node demands are
known and satisfied, or in pressure-driven mode, which assumes that
the delivered demand depends on the available pressure in the system
and accounts for possible demand shortages. In emergency/anomaly
situations (e.g., firefighting, power outages, pipe leaks), consumers
do not always receive their requested demand in a pressure-driven
scenario.
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Several state-of-the-art software tools are available to model water
distribution networks of various scales. Arguably, the most widely
used among them is EPANET, developed as open-source software by
the United States Environmental Protection Agency (Rossman et al.,
2000). EPANET can perform also water quality simulation beside hy-
draulic simulations, thus allowing for coupled hydraulic and water
quality simulation, which increases the size of the problem formulated
in Eqs. (10) by adding states related to water quality parameters,
along with the possibility of controlling their concentrations (e.g., via
chlorine dosage). Yet, EPANET model implementations are not straight-
forward as control-oriented models, since they often include several
switches and discrete operation conditions that make them not suitable
for the direct application of gradient-based optimization approaches.

Alternative software tools exist to model other networks of the
urban water cycle such as combined and sanitary sewers and other
drainage systems, e.g., the US-EPA Storm Water Management Model
(SWMM) (Rossman et al., 2010). A broad formulation of the system
model as indicated in Eq. (10) and overall modelling strategy still
stands, with water flows being ruled by mass and energy conserva-
tion laws. However, individual system components to be modelled
change, with disturbances to be forecasted being most typically rainfall
and inflow to the system, and controls being basin outflows, gate
settings, and, more on an infrastructure planning perspective, Low-
Impact Development (LID) controls. Complementary tools such as the
one reported in Riaño-Briceño, Barreiro-Gomez, Ramirez-Jaime, Qui-
jano, and Ocampo-Martinez (2016) allow the use of SWMM to design
control strategies, in particular, applied to drainage systems, with some
flexibility and considering dynamical models and a more realistic setup
including disturbances and their forecast models.

In some cases, e.g., for large-scale urban water networks, it is
useful to replace the full model of the system with a reduced model
of the network that can offer higher computational efficiency (Shamir
& Salomons, 2008). This is usually done via skeletonization by reducing
the number of components of the system (e.g., by removing irrelevant
pipes and nodes) while retaining a high level of similarity between
the reduced and full model outputs and performance. Alternative ap-
proaches instead rely on the development of data-driven surrogate
models.

2.3. Literature search and classification methods

This section describes the search methods, keywords and criteria
followed for the bibliographic search highlighting common points and
workflows across water systems, as well as differences (e.g., keywords,
etc.). Real-time control techniques applied to water systems take some-
times different names but can be reduced to an MPC-like approach as
long as they embed the three main blocks of MPC (see Introduction):
(i) the internal model of the system, used to simulate the effects of
the control actions on the system, (ii) the use of forecasts available
in real-time, either real, synthetic or ‘perfect’ forecasts and (iii) an
online optimization that is reiterated over a receding horizon. In the
water systems’ literature, several studies have adopted an MPC-like
technique either referring to it with different wordings, like ‘rolling
horizon control’, ‘receding horizon control’, ‘real-time optimization’, or
proposing some theoretical modifications to the MPC approach and pro-
viding an alternative name (e.g., Partial Open-loop Feedback Control).
To account for such alternative wordings for ‘‘Model Predictive Control"
and domain-specific differences, we formulated customized versions of
the literature search string for each of the three water system types
considered and used them to identify relevant papers in the Web of
Science platform.3 The resulting search strings are the following:

3 https://www.webofscience.com/
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• For water reservoirs: (optimal AND water AND reservoir* AND
(operation OR control OR management) AND (predictive control
OR forecast-based OR receding horizon OR rolling horizon OR
receding-horizon OR rolling-horizon))

• For water channels: (Model predictive control OR MPC OR re-
ceding horizon OR rolling horizon) AND (water canal* OR water
channel* OR irrigation OR inland OR inland waterway*)

• For urban water networks: (optimal AND water AND (drinking
OR distribution OR transport OR wastewater OR drainage OR
grey water OR sewer OR sewage) AND (networks OR systems)
AND (operation OR control OR management) AND (model pre-
dictive control OR predict* control OR naive feedback control
OR receding horizon OR rolling horizon OR receding-horizon OR
rolling-horizon))

The search queries are not restricted to the word ‘Model Predictive
Control’, so the records found include some irrelevant studies. Exclu-
sion criteria only regarded (i) article language (only papers written in
English were considered) and (ii) and article type (only peer-reviewed
publications in scientific journals were considered). Conference papers
were excluded to avoid redundancies since some conference publica-
tions often present preliminary versions of studies subsequently pub-
lished in full journal papers. We acknowledge that some of the most
recent advanced developments, that might be present in a few recent
peer-reviewed conference publications, may not have been covered in
this review, but overall we do not expect that it would have a significant
impact on the identified trends and challenges, given the large sample
of journal articles included.

Manual filtering on the resulting records was performed based on
paper title and abstract, to discard items that were out of scope for this
review (i.e., not focusing on MPC or not applying it to the water systems
of interest), before evaluating the eligibility of a restricted set of papers
based on their full-text assessment. A smaller set of additional relevant
papers not retrieved with the search query (7 items) was added to the
final database from other sources, namely from references in previous
review papers resulting from the search (see Fig. 4 for details on the
sample selection).

3. Review results

3.1. MPC for water reservoirs

In the last 15 years, several studies analysed the potential of
forecast-based real-time control techniques for water reservoir systems
across different real-world problems by leveraging the increasing avail-
ability and improved quality of hydro-meteorological forecasts. The
query formulated to retrieve peer-reviewed journal articles on MPC for
water reservoir systems (see Section 2.3) returned an initial set of 105
papers. After screening these manuscripts, we retained 33 publications
and added 7 more documents (from references in previous reviews on
optimal control of reservoirs that were found by the query), yielding
a total of 40 articles that have been analysed in detail (see PRISMA
diagram in Fig. 4). As recently highlighted in Giuliani et al. (2021),
our review confirms that MPC approaches (and analogous approaches
that could be reduced to MPC) have been applied more commonly
only in recent years, with the 40 studies reviewed here that have been
published from 2008 to 2022 (see the temporal distribution in Fig. 5).

Almost all reviewed papers implement a centralized control archi-
tecture to determine the optimal releases from one or more reser-
voirs, with only a few applications also dealing with the control of
pumps (e.g., Galelli, Goedbloed, Schwanenberg, & van Overloop, 2014;
Javan Salehi & Shourian, 2021). Most studies implement a daily con-
troller (e.g., Anghileri et al., 2016; Fan, Schwanenberg, Alvarado, dos
Reis, Collischonn, & Naumman, 2016; Wan et al., 2016), but we found
applications working at either sub-hourly (e.g., Breckpot, Agudelo, &
De Moor, 2013; Lin et al., 2020) or hourly (e.g., Delgoda, Saleem, Hal-
gamuge, & Malano, 2013; Karimanzira, Schwanenberg, Allen, & Barton,

https://www.webofscience.com/
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Fig. 4. Flow diagram with paper exclusion/inclusion criteria. The flow diagram reports the exclusion/inclusion criteria applied to the dataset of papers retrieved for review,
represented according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA; Moher, Liberati, Tetzlaff, Altman, & PRISMA Group*, 2009).
𝑛𝑟 indicates the number of papers on MPC for water reservoirs (40), 𝑛𝑢𝑤𝑛 those on MPC for urban water networks (48), and 𝑛𝑜𝑐 those on MPC for open channels (61, i.e. 58
research papers + 3 reviews). 𝑛 is the number of total papers (equal to the sum of the above, i.e., 𝑛 = 𝑛𝑟 + 𝑛𝑢𝑤𝑛 + 𝑛𝑜𝑐 ). Detailed information about the reviewed papers and assigned
tags are reported in Supplementary Tables 1-3.
2016; Lin, Rutten, & Tian, 2018; Romanowicz, Kiczko, & Napiorkowski,
2010; Xu et al., 2020; Zmijewski, Bottacin-Busolin, & Worman, 2016) or
up to monthly (e.g., Cuvelier, Archambeau, Dewals, & Louveaux, 2018;
Kistenmacher & Georgakakos, 2015; Zambelli, Soares Filho, Toscano,
Santos, & Silva Filho, 2011) frequencies. Suppose the forecast frequency
is not sufficient to timely inform the control action. In that case,
the MPC results should be seen as a recommendation provided by a
decision support system that the operator can adjust, potentially taking
into account local expert knowledge and any operating factors that the
MPC optimization could not cover (e.g., Roetz & Theobald, 2019).

In almost all the reviewed studies (see Table 1), the forecast rep-
resents the inflow to the reservoir, which is usually generated using
a hydrological model fed by meteorological forecasts and any other
significant information available at each control time step (e.g., snow-
pack and hydrological conditions, including the streamflow upstream,
being routed using the model). Only two studies (Galelli, Castelletti, &
Goedbloed, 2015; Galelli et al., 2014) complement the inflow with tide
forecasts. Moreover, many studies (more than half) use a deterministic
forecast and MPC formulation (e.g., Anand, Galelli, Samavedham, &
Sundaramoorthy, 2013; Galelli et al., 2015; Giuliani & Castelletti,
2013), although the adoption of stochastic formulations is increasing
in the last few years (e.g., Ahmad & Hussain, 2019; Sahu & McLaugh-
lin, 2018; Uysal, Schwanenberg, Alvarado-Montero & Sensoy, 2018b).
These stochastic approaches (see Section 2.1.2 and Table 2) allow
the explicit probabilistic characterization of the forecast uncertainty
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by relying on ensemble forecasts and, therefore, better hedge against
risk (Breckpot et al., 2013).

The reviewed papers used a wide range of control time steps (see
Table 3) and of forecast horizons (also called lead times in the forecast-
ing literature) ranging from a few hours for responding to rapid events
such as floods (e.g., Blanco et al., 2010; Galelli et al., 2015, 2014; Xu
et al., 2020) to seasonal or longer scales (e.g., Anghileri et al., 2016;
Gavahi, Mousavi, & Ponnambalam, 2019; Raso & Malaterre, 2017; Xu,
Zhao, Zhao, & Wang, 2015). However, multiple timescales have never
been incorporated into a seamless multi-timescale system in any case
study.

Despite changes in societal perceptions of water resources generally
enlarge the number of objectives considered (e.g., Giuliani, Galelli
& Soncini-Sessa, 2014; Giuliani, Herman, Castelletti & Reed, 2014;
Wild, Reed, Loucks, Mallen-Cooper, & Jensen, 2019), a large major-
ity of the studies we considered formulate a single-objective control
problem (e.g., Arsenault & Cote, 2019; Breckpot et al., 2013; Sahu
& McLaughlin, 2018; Wang, 2010; Xu et al., 2015) or an a-priori
aggregation of multiple objectives (e.g., Castelletti et al., 2008a; Kisten-
macher & Georgakakos, 2015; Uysal, Alvarado-Montero et al., 2018a),
with very few exceptions that consider either 2 or 3 competing objec-
tives (e.g., Giuliani & Castelletti, 2013; Lin et al., 2020; Mohanavelu,
Soundharajan, & Kisi, 2022; Xu et al., 2020) (see Table 4). The scala-
bility of MPC to multi- and many-objective control problems is indeed
an important limitation for the application of this control strategy to
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Fig. 5. Annual counts of the 149 publications reviewed in this study by type of water system (WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks).
Table 1
Summary of the disturbances and forecast features of the studies reviewed applying MPC to water systems, grouped by type of system (WR: Water Reservoirs; OC: Open Channels;
UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations for rare features in the literature (up to 3 articles) to highlight the studies with
peculiar or unique features (note that the sum of entries for each row can be larger than the total number of papers per type of system, as each paper can present more than one
feature for each class).

Disturbance and forecast features

Forecasted
Variable

Rain-
fall/inflow

Tide Water
demand

Electricity
demand

Lock
operations

Concentrations
of chemical
species

Wind Head/water
levels

Unclear

WR 40 2 (Galelli
et al.
(2014,2015))

0 0 0 0 0 0 0

OC 22 3 (van
Ekeren et al.
(2013), Tian
et al. (2015),
Pour et al.
(2022))

33 1 (van der
Heijden et al.
(2022))

2
(Wagenpfeil
et al. (2012),
Segovia et al.
(2019))

3 (Xu et al.
(2013), Aydin
et al. (2019),
Aydin et al.
(2022))

1
(Wagenpfeil
et al. (2012))

0 0

UWN 9 0 31 0 0 1 (Dong and
Yang (2019))

0 2 (Dong and
Yang (2019),
Kändler et al.
(2022))

6

Forecast type
(Perfect/Real)

Perfect Statistical or
ML-based
(including
synthetic)

Process-based Hybrid (process-based
+ statistical/ML))

Complete
lack of
knowledge

Unclear

WR 15 21 16 2 (Ahmad and Hussain
(2019), Wei and Xun
(2019))

0 4

OC 35 6 5 1 (van Overloop et al. (2008)) 13 9

UWN 7 22 1 (Shishegar
et al. (2021))

0 0 22

Prediction
Horizon

≤1hour ≤1day ≤1week ≤1month ≤1year >1 year Unclear

WR 0 5 12 9 7 4 3

OC 10 34 5 1 (Tian et al.
(2015))

0 0 9

UWN 6 30 3 (Salomons and Housh
(2020a), Salomons and
Housh (2020b),
Shishegar et al. (2021))

0 0 0 11
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Table 2
Summary of the disturbances representation (deterministic and stochastic approaches, uncertainty model) of the studies reviewed applying MPC
to water systems, grouped by type of system (WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks). Numbers indicate the
frequency for each class, with citations for rare features in the literature (up to 3 articles) to highlight the studies with peculiar or unique
features.

Disturbance and uncertainty representation

Deterministic/
Stochastic

Deterministic Stochastic Both (Stochastic/Deterministic) Unclear

WR 23 13 4 0

OC 52 4 2 (Maestre et al. (2013), Tian et al.
(2017b))

0

UWN 32 7 1 (Pedrosa et al. (2022)) 8

Type of
stochastic
approach and
ensemble size

Ensemble PDF

≤10 ≤30 >30

WR 3 (Delgoda et al.
(2013), Ficchí et al.
(2016), Payet-Burin
et al. (2021))

8 2 (Anghileri et al.
(2016), Uysal et al.
(2018b))

4

OC 2 (van Overloop
et al. (2008),
Maestre et al.
(2013))

3 (Tian et al.
(2017b), Tian et al.
(2019), Velarde
et al. (2019))

1 (Nasir et al.
(2019))

0

UWN 0 0 1 (Grosso et al.
(2017))

7

Operator over
ensemble
(implicit) or pdf
(explicit)

Implicit Explicit

Expected value Tree Min–max or
quartiles

Expected value
(PDF)

WR 8 4 3 (Cuvelier et al.
(2018), Ahmad and
Hussain (2019),
Arsenault and Cote
(2019))

4

OC 3 (van Overloop
et al. (2008), Tian
et al. (2019), Nasir
et al. (2021))

3 (Maestre et al.
(2013), Tian et al.
(2017b), Velarde
et al. (2019))

0 0

UWN 0 1 (Grosso et al.
(2017))

0 7

Note: if the ensemble is reduced, the reduced ensemble size is reported, as the one used in the optimization problem.
water reservoir systems (Giuliani et al., 2021), which often has limited
ability in exploring multi-dimensional trade-offs (e.g., Giuliani et al.,
2016).

About half of the reviewed articles (see Table 4) provide a compari-
son between MPC against an alternative, off-line control strategy often
designed via Stochastic Dynamic Programming (SDP) or against the
current operational schemes of real-world reservoirs (e.g., Castelletti
et al., 2008a; Sahu & McLaughlin, 2018; Xu et al., 2015). All these
studies found that MPC outperforms other strategies. This is often
attributed to the fact that MPC ensures that the control is adapting to
extreme events that can be forecasted in the short- to long-term based
on current observations and other forecast data (e.g., Ahmad & Hussain,
2019; Ficchi et al., 2016; Galelli et al., 2014). However, the choice of a
reservoir control method is expected to depend upon multiple factors,
including the system’s characteristics, the objectives of the control, the
specified constraints, data and forecast availability (Macian-Sorribes
& Pulido-Velazquez, 2020). So large comparison studies are needed
to investigate MPC’s applicability, effectiveness, and value in different
contexts.

Only a few studies benchmark MPC against multiple state-of-the-art
control methods, such as different Approximate Dynamic Program-
ming (ADP) methods (see Table 4). Notably, Mohanavelu et al. (2022)
compare six state-of-the-art control methods for the operation of a
real-world reservoir system in India (i.e., the Pong reservoir). They
found that MPC outperforms all the other methods, yielding the closest
solution to the ideal one designed via Deterministic Dynamic Program-
ming (DDP). A limitation of their study is that MPC was driven by a
single forecast close to perfect forecasts, so further studies are needed
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to extend such comparisons for different case studies and use real
forecasts with different levels of skill and timescales within the MPC.
Similarly, Kergus, Formentin, Giuliani, and Castelletti (2022) bench-
mark an MPC-based approach against SDP and the ideal DDP solution
with perfect foresight for the operation of a reservoir in Vietnam (Hoa
Binh). Their MPC-like approach (combining hierarchically MPC with
an inner parametric data-driven feedback controller) uses statistical
forecasts with a random noise added on the disturbances. Despite the
error in the disturbance predictions, the MPC-based approach outper-
forms SDP by obtaining better trade-offs between the two objectives
(hydropower and flood control) and approaches the ideal solution by
DDP. However, as pointed out by Kergus et al. (2022), while these
results are encouraging for MPC, the robustness to prediction errors
requires further investigation. Likewise, other six studies (Ahmad &
Hussain, 2019; Castelletti et al., 2008a; Galelli et al., 2014; Payet-
Burin, Kromman, Pereira-Cardenal, Strzepek, & Bauer-Gottwein, 2021;
Sahu & McLaughlin, 2018; Wang, 2010) benchmark MPC with SDP
reaching similar conclusions. MPC approaches outperform the offline
benchmark by better anticipating the inflow events, especially those
out of their typical season, even if a simple inflow forecasting model is
used (e.g., Castelletti et al., 2008a; Wang, 2010). MPC generally leads
to better trade-offs between objectives, with the performance increasing
with increased prediction horizon (e.g., Castelletti et al., 2008a; Galelli
et al., 2014). MPC can also deal with problems that are computa-
tionally intractable by SDP due to the number of reservoirs in the
system (e.g., Wang, 2010), as it overcomes the curses of dimensionality
and modelling of SDP.

A limitation of the current body of literature on MPC for reservoir

operation is that most studies do not assess the impact of the MPC
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Table 3
Summary of the control variable characteristics of the studies reviewed applying MPC to water systems, grouped by type of system (WR: Water Reservoirs; OC: Open Channels;
UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations for rare features in the literature (up to 3 articles) to highlight the studies with
peculiar or unique features.

Control-related information

Frequency of
control actions

≤1 hour ≤1 day ≤1 month ≤1 year >1 year Unclear

WR 11 18 9 1 (Xu et al.
(2015))

0 1

OC 51 3 (Foo et al.
(2014), Tian
et al.
(2015,2017b))

0 0 0 4

UWN 36 1 (Dong and
Yang (2019))

0 0 0 11

Number of
control actions

1 ≤5 ≤10 ≤50 >50 Unclear

WR 20 11 3 (Wang (2010),
Kistenmacher
and Georgakakos
(2015),
Karimanzira
et al. (2016))

4 1 (Zmijewski
et al. (2016))

1

OC 8 21 10 16 0 3

UWN 2 (Housh and
Salomons
(2019),
Kändler et al.
(2022))

14 10 7 11 4

Type of control
action

Reservoir
release

Pump/valve
operations

Gate operations Chemical
dosage

Other Unclear

WR 39 4 4 0 3 (Galelli et al.
(2014,2015),
Gavahi et al.
(2019))

0

OC 1 (Foo et al.
(2014))

14 38 0 6 13

UWN 1 (Marinaki
et al. (1999))

35 5 1 (Muslim
et al. (2008))

5 2

Control
architecture
(Centralized/
Decentralized/
Distributed,
Single-level/
Multi-level)

Centralized,
single-level

Centralized,
multi-level

Decentralized,
single-level

Decentralized,
multi-level

Distributed,
single-level

Distributed,
multi-level

Unclear

WR 40 0 2 (Giuliani and
Castelletti
(2013), Anand
et al. (2013))

2 (Giuliani and
Castelletti
(2013), Anand
et al. (2013))

0 0 0

OC 46 1 (Pour et al.
(2022))

0 3 (Sadowska
et al.
(2014,2015),
Nasir et al.
(2021))

4 4 0

UWN 40 1 (Wang et al.
(2017))

3 (Tedesco et al.
(2016),
Salomons and
Housh (2020b),
Martin et al.
(2022))

0 0 0 5
internal model uncertainty, as usually the same models have been used
for both the open-loop optimization and closed-loop simulation (with
the associated update of model states) in almost all studies reviewed.
A few exceptions exist (Lin et al., 2020; Munier, Polebistki, Brown,
Belaud, & Lettenmaier, 2015). For example, Lin et al. (2020) used two
different models: a simplified internal model was used in the open-
loop optimization, as is usually done in MPC, and a more refined and
computationally-intensive model was employed to represent the real
water system in closed-loop, to update water levels and flows.

3.2. MPC for open channels

An initial set of 193 research journal papers was obtained using the
query formulated in Section 2.3, of which only 58 were retained after
453

the manual screening of titles and abstracts (see PRISMA diagram in
Fig. 4). Inspection of the time distribution of the final set of papers
(depicted in Fig. 5) reveals that all papers were published less than
twenty years ago (and twenty-six of them less than five years ago),
which allows identifying a growing interest in the topic (see Fig. 5).
It is also worth noting that three other review papers were returned by
the query: although not strictly research papers, they are surveyed for
completeness. An exhaustive review of modelling and control of open-
channel irrigation systems is carried out in Conde et al. (2021), and an
entire section (Section 4.5.3) is devoted to MPC. Different applications
of smart agriculture are presented in Ding et al. (2018), including the
use of MPC for irrigation systems (Section 3.1). The developments of
an industrial-scale project that culminated in the complete automation
of a large irrigation system in Australia are discussed in Mareels et al.
(2005). Although MPC approaches are not explicitly developed therein,

the same research group has recently employed MPC to control a
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Table 4
Summary of the problem size (state variables), objectives (number and type), and benchmarking of the studies reviewed applying MPC to water systems, grouped by type of system
(WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations for rare features in the literature (up to
3 articles) to highlight the studies with peculiar or unique features.

System size, objectives and benchmarking

Number of
state
variables

≤5 ≤10 ≤50 >50 Unclear

WR 30 3 (Wang (2010), Kistenmacher
and Georgakakos (2015),
Karimanzira et al. (2016))

3 (Lin et al. (2018,2020),
Salehi and Shourian (2021))

1 (Blanco et al.
(2010))

3

OC 18 9 18 9 4

UWN 11 7 8 6 16

Number of
objectives

1 (including
weighted/aggregated)

≤4 >4 Unclear

WR 35 5 0 0

OC 57 1 (Tian et al. (2019)) 0 0

UWN 42 3 (Housh and Salomons
(2019), Liu et al. (2020),
Trapiello et al. (2021))

0 3 (Muslim
et al. (2008),
Bakker et al.
(2013),
Kändler et al.
(2022))

Objective
type

Economic (cost
minimization)

Flood/
overflow
minimization/
water level
control

Water supply/
demand
satisfaction

Active actuator
minimization/
smooth
operations

Contaminant/
salinity
concentration
minimization

Environmental
protection
(environmental
flow)

Hydropower

WR 8 25 18 2 (Karimanzira
et al. (2016),
Uysal et al.
(2018a))

1 (Galelli et al.
(2015))

4 17

OC 8 55 2 (Foo et al.
(2014),
Horvath et al.
(2022))

47 2 (Aydin et al.
(2019,2022))

2 (Foo et al.
(2014),
Horvath et al.
(2022))

1 (Doan
et al. (2013))

UWN 29 14 13 24 4 0 0

Benchmark

DDP
(Deterministic
Dynamic
Programming)

SDP (Stochastic
Dynamic
Programming)

Historical
operation or
current curves

PI control LQR No
benchmark/
unclear

WR 4 8 11 0 0 19

OC 0 0 2 (Foo et al.
(2014), Askari
Fard et al.
(2022))

6 5 46

UWN 0 0 14 2 (Muslim et al. (2008),
Fiorelli et al. (2013))

1 (Marinaki et
al. (1999))

25
river (Foo, Ooi, & Weyer, 2014) and an irrigation canal (Nasir, Cantoni,
Li, & Weyer, 2021).

Control of water canals and rivers aims to satisfy human needs,
which are expressed in the form of a cost function. Most of the reviewed
papers are characterized by cost functions built as the weighted sum of
individual terms (i.e., the relative importance of each term is adjusted
using weights), with the minimization of water level setpoint tracking
errors and operational costs being the most common objectives (see
Table 4). Additional goals, e.g., simultaneous control of water quantity
and quality (Aydin, Essink, Delsman, van de Giesen, & Abraham, 2022;
Aydin et al., 2019; Xu, van Overloop, & van de Giesen, 2013), preserva-
tion of water levels within safe navigation bounds (Horvath et al., 2022;
Pour, Segovia, Duviella, & Puig, 2022; Segovia, Rajaoarisoa, Nejjari,
Duviella, & Puig, 2019; Tian et al., 2019; Wagenpfeil, Arnold, Linke,
& Sawodny, 2012) and pressure reduction for the pressurized part of
the network (Zhu et al., 2020), are also considered in the literature.
Moreover, Foo et al. (2014) tailor a cost function to the needs of their
case study, e.g., maintain off-stream storage volume above a threshold,
release as little water from a lake as possible and keep flows for early
spring to mid-summer under a threshold to create slack-water pockets.
454

On a wider note, joint water and energy management in water canals
appears to be a topic of increasing interest in the water-energy nexus
context (Doan, Giselsson, Keviczky, De Schutter, & Rantzer, 2013;
Horvath et al., 2022; Pour et al., 2022; van der Heijden, Lugt, van
Nooijen, Palensky, & Abraham, 2022).

Operational management of water canals is carried out by manipu-
lating the available actuators. Inspection of the surveyed papers reveals
the use of a wide variety of actuators, i.e., gates, weirs, sluices, pump-
ing stations, dams, turbines and electro-valves (see Table 3). Control
decisions are either actuator flow or position setpoints; an assessment
of the optimal choice of the input variable is carried out in Horvath,
Galvis, Gomez Valentin, and Rodellar Benede (2015b). These decisions
are computed over prediction horizons (the reviewed papers report
values ranging from one minute to ten days), and are applied with fixed
frequencies (ranging from once every five seconds to once every six
hours) for the whole duration of the experiment (ranging from thirty
minutes to one year). The effect of these decisions on the system is
measured using available sensors that capture relevant information,
e.g., water levels, salinity and concentration of chemical species. This
information, together with estimates of unmeasurable states (obtained
using observers), allows adjusting the decisions at the next time step.

It is interesting to highlight the large variability in terms of time scales
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across reviewed papers (see Tables 1 and 3). These differences can
be explained by the different nature of the experiments: real case
studies, either on a real system (Foo et al., 2014; Nasir et al., 2021)
or in silico (Kong,Quan, Yang, Song & Zhu, 2019; Romera, Ocampo-
Martinez, Puig, & Quevedo, 2013; Tian, Aydin, Negenborn, van de
Giesen & Maestre, 2017a), laboratory canals (Aydin, van Overloop,
Rutten, & Tian, 2017; Figueiredo, Botto, & Rijo, 2013; Horvath, Galvis,
Gomez Valentin, & Rodellar, 2015a; Horvath et al., 2015b; Lemos et al.,
2009; van Overloop, Horvath, & Aydin, 2014), canal benchmarks (Ro-
driguez, Maestre, Camacho, & Sanchez, 2020; Wahlin, 2004; Wahlin &
Clemmens, 2006b) and academic examples (Breckpot et al., 2013; Xu,
Negenborn, van Overloop, & van de Giesen, 2012; Xu, van Overloop,
& van de Giesen, 2011; Xu et al., 2013; Xu & Schwanenberg, 2017) are
reported . In particular, laboratory canals are characterized by reduced
dimensions in comparison to the rest of the case studies, which explains
the use of smaller time scales.

It was discussed in Section 2.1 that MPC is a model-based approach
and that, as such, an internal model is required to predict the effect of
control actions on the system. Existing open-channel internal models
have been presented in Section 2.2.2. On the one hand, some of the
employed models are directly derived from the Saint-Venant equations,
e.g., discretizing the system in space and linearizing (Aydin et al., 2022,
2019; Tian, van Overloop, Negenborn, & van de Giesen, 2015; Wa-
genpfeil et al., 2012; Xu et al., 2012). On the other hand, other papers
resort to the integrator delay (Askari Fard, Hashemy Shahdany, Javadi,
& Maestre, 2022; Avargani et al., 2022; Hashemy Shahdany, Hasani,
Majidi, & Maestre, 2017; Kong, Quan et al., 2019; Liu, Wang, Yang,
& Zhang, 2023; Rodriguez et al., 2020; Zheng, Wang, Zhao, & Zheng,
2019), the integrator delay zero (Pour et al., 2022; Romera et al., 2013;
Segovia et al., 2019) and the integrator resonance (Horvath et al.,
2015a, 2015b; van Overloop et al., 2014) models. While a large variety
of models is employed in the reviewed papers, it can be concluded that
the use of the ID model is prevalent (in its equivalent state–space form).
Finally, a model-free strategy is proposed by Ren et al. (2021), whereby
control policies are obtained via deep reinforcement learning.

The performance of MPC is also affected by disturbances. Wa-
ter canals are operated under time-varying environmental conditions,
which are exogenous inputs that attenuate the effect of control ac-
tions and thus complicate the attainment of the operational objectives.
Therefore, the occurrence of these events may have a severe effect
on water levels unless properly accounted for in the MPC design.
Although the type of disturbance considered depends on the case study,
uncontrolled in- and/or outflow forecasts, e.g., rainfall (Maestre et al.,
2013; Negenborn, van Overloop, Keviczky, & De Schutter, 2009; van
Overloop et al., 2008; Velarde et al., 2019; Xu et al., 2011), surface-
groundwater interaction (Aydin et al., 2019; Foo et al., 2014) and sea
discharges (Tian et al., 2015; van der Heijden et al., 2022; van Ekeren,
Negenborn, van Overloop, & De Schutter, 2013), are typically used
(see Table 1). In addition to these, operational disturbances, e.g., off-
take flows for irrigation purposes (Breckpot et al., 2013; Hashemy,
Monem, Maestre, & Van Overloop, 2013; Kong, Lei et al., 2019; Kong,
Song, Ji, Zhu, & Li, 2021; Shahdany, Maestre, & van Overloop, 2015;
Shahdany, Majd, Firoozfar, & Maestre, 2016; Shahdany, Taghvaeian,
Maestre, & Firoozfar, 2019; van Overloop, Clemmens, Strand, Wage-
maker & Bautista, 2010; van Overloop, Maestre, Sadowska, Camacho, &
De Schutter, 2015; Wahlin, 2004; Wahlin & Clemmens, 2006a, 2006b;
Xu, 2017; Zheng et al., 2019), wind effect (Wagenpfeil et al., 2012)
and lock operations for navigation purposes (Pour et al., 2022; Segovia
et al., 2019), are also considered. While either perfect or no knowl-
edge about operational demands is usually considered (scheduled and
unscheduled operations, respectively), uncertain meteorological condi-
tions have motivated the development of stochastic MPC approaches
for water canals (Maestre et al., 2013; Nasir et al., 2021; Tian et al.,
2019; Tian, Negenborn et al., 2017b; van Overloop et al., 2008; Velarde
et al., 2019), whereby different disturbance realizations with individual
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occurrence probabilities are considered (see Table 2).
In terms of the architecture of controllers for water canals, given
the characteristics of centralized/distributed controllers (as introduced
in Section 2.1), distributed control architectures appear to be prefer-
able to overcome the computational and scalability drawbacks arising
from centralized implementations. However, only eight papers consider
distributed architectures (see Table 3), of which four are characterized
by a two-layer structure in which the top layer takes care of the high-
level problem setup: uncertainty realization (Velarde et al., 2019),
reduction of communication overhead among local controllers (Farhadi
& Khodabandehlou, 2016), selection of optimal network topology (Fele,
Maestre, Hashemy, Munoz de la Pena, & Camacho, 2014) and execution
of risk mitigation actions (Zafra-Cabeza, Maestre, Ridao, Camacho, &
Sanchez, 2011). The remaining four papers consider distributed single-
level architectures (Alvarez, Ridao, Ramirez, & Sanchez, 2013; Doan
et al., 2013; Maestre et al., 2013; Negenborn et al., 2009). The reduced
number of papers that employ distributed multi-level architectures
may be explained by the fact that the choice of control architecture
depends mostly on the extent to which systems are coupled, communi-
cation reliability and computational resource availability. Canals have
been traditionally regulated either manually or using decentralized
proportional–integral (PI) controllers that adjust the setpoints dictated
by a centralized coordinator (Nasir et al., 2021; Sadowska, De Schutter,
& van Overloop, 2015; Sadowska, van Overloop, Burt, & De Schutter,
2014), which means that coupling effects might not be too relevant for
their usual operation.

The benchmarking of MPC performance against other approaches
is rarely included in the literature on open-channel control, as shown
in Table 4. MPC is only compared to other two control approaches,
namely LQR (Kong, Lei et al., 2019; Liu et al., 2023; van Overloop,
Clemmens et al., 2010; Wahlin & Clemmens, 2006a; Zheng et al.,
2019) and PI(D) (Figueiredo et al., 2013; Foo et al., 2014; Kong, Lei
et al., 2019; Lemos et al., 2009; Liu et al., 2023; van Overloop et al.,
2015, 2008; Wahlin, 2004; Wahlin & Clemmens, 2006b), whereby the
superior performance of MPC is demonstrated. Furthermore, although
not explicitly reported in Table 4, benchmarking MPC against manual
control demonstrates that MPC leads to better performance and thus
improved system operation (Askari Fard et al., 2022; Foo et al., 2014).

As a final remark, not all papers report information regarding,
e.g., nature of the forecast, system size (number of states), prediction
horizon, frequency of decisions and optimization method, in an explicit
manner. This fact complicates the analysis of the reviewed references.

3.3. MPC for urban water networks

The query to retrieve peer-reviewed journal articles on MPC de-
velopments and applications to control urban water networks (see
Section 2.3) returned an initial set of 521 papers. From this set of pa-
pers, 453 were excluded from further analysis after manually screening
each paper’s title and abstract, 1 was not accessible to the authors, and
19 more were excluded based on relevance and fit within the scope
of this review (see PRISMA diagram in Fig. 4). As a result, a subset
of 48 articles was retained for detailed tagging and classification. This
group of 48 papers corresponds to 9.2% of the initial dataset of papers
retrieved with the formulated query. Many of the excluded papers were
initially obtained as a result of the search query because they include
the keywords listed in the search query in their main text or other
parts. However, they were then deemed not relevant in relation to
the scope of this review primarily either because of their actual MPC
implementation (they only mentioned MPC or other control schemes
but eventually only focused on model development), or because of their
spatial scale of interest. Many studies indeed mentioned urban water
systems and networks but eventually focused only on optimal control
of processes occurring in individual network components (e.g., water
treatment plants). For the above reasons, many papers initially iden-
tified in the search were assessed as not eligible for consideration

in this review. The time distribution of these 48 articles shows that
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the last 25 years have witnessed an increasing interest towards the
implementation of MPC schemes to control urban water networks.
Likely motivated by the increasing amount of (quasi) real-time sensor
data from distributed infrastructure networks, which act as enablers of
real-time control schemes (Creaco et al., 2019), more than 45% of the
reviewed studies (𝑛 = 22) were published in the last 5 years only (see
Fig. 5).

Integrated urban water management requires optimal planning and
operations of different network systems which make up the urban water
cycle, including drinking water networks, stormwater, greywater, and
wastewater networks. Accordingly, examples of MPC developments and
applications emerge from the literature on supply-side management of
drinking water networks and stormwater and wastewater management.
In addition, other recent publications reviewed the existing literature
on control schemes for urban water networks. Yet, their scope is rather
constrained to only one type of network infrastructure, i.e., sewer
and drainage systems (Lund, Falk, Borup, Madsen, & Steen Mikkelsen,
2018; Van Der Werf et al., 2022) or water supply and distribution net-
works (Coelho & Andrade-Campos, 2014), and various control schemes
are considered. Conversely, the scope of this review is only spatially
constrained by the boundaries of the integrated urban water system and
thematically by the focus on MPC-like control. Still, it is inclusive of all
its sub-components. This review thus compares MPC studies focused on
drinking water networks, as well as wastewater and sewage networks,
to identify the type of disturbances, objectives, actuators, and type of
MPC in each case, ultimately evaluating the benefits brought by MPC
and its related challenges.

Most of the reviewed papers address the problem of optimal control
of water distribution and transport networks (𝑛 = 34). The typi-
cal research goal in these works is to identify optimal operations of
pumps and valves, i.e., the actuators distributed in a water distribu-
tion/transport network. The number of actuators in network infras-
tructure systems depends on the considered network’s topological and
structural characteristics and size. Their number affects the number of
control variables in the optimal control problem. In our compilation
of reviewed papers (see Table 3), control variables vary from less
than 10 in simplified or small systems (e.g., Housh & Salomons, 2019;
Rao & Salomons, 2007; Salomons & Housh, 2020a, 2020b; Sankar,
Kumar, Narasimhan, Narasimhan, & Bhallamudi, 2015) to more than
120 in larger, real-world systems (Cembrano, Quevedo, Puig, Pérez,
Figueras, Verdejo, Escaler, Ramón, Barnet, Rodríguez, et al., 2011;
Ocampo-Martinez, Bovo, & Puig, 2011). Water distribution systems
are operated under varying water demand conditions. Forecasts of
water demand are thus needed as input to the underlying hydraulic
or data-driven models used in MPC. Water demand forecasts usually
span over a period of 24 h, relying on the day/night periodicity of
water demand patterns, whereas the frequency of decisions is in the
range of a few minutes (e.g., 5 min as in Liu, Zheng, Wu, and Li
(2020)) and 1 h (Limon, Pereira, De La Peña, Alamo, & Grosso, 2014;
Pascual, Romera, Puig, Cembrano, Creus, & Minoves, 2013; Pereira,
de la Peña, Limon, Alvarado, & Alamo, 2016; Wang, Ocampo-Martinez,
& Puig, 2016; Wang, Taha, Gatsis, & Giacomoni, 2020). Controls in
water transport and distribution networks are computed in such a
way that an economic objective accounting for the cost of running
the system (mainly due to electricity consumption for water pumping
and pump start-up costs) is minimized, while water demands in the
system are satisfied (e.g., Shamir & Salomons, 2008). Additional ob-
jectives such as guaranteeing safety storage in water tanks, pressure
control, or smoothness of the controls are also often weighted in the
complete objective function (e.g., Grosso, Ocampo-Martínez, Puig, &
Joseph, 2014; Grosso, Ocampo-Martinez, & Puig Cayuela, 2016; Martin,
Delgado-Aguiñaga, & Puig, 2022; Ocampo-Martinez, Barcelli, Puig, &
Bemporad, 2012; Pour, Puig, & Cembrano, 2019, 2020; Wang et al.,
2017; Wang, Salvador, de la Pena, Puig, & Cembrano, 2018). Only
three recent papers explicitly consider multiple objectives, including
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one on optimal reconfigurations of large-scale systems via backup
actuator activation formulated as a multi-objective mixed-integer pro-
gramming (MIP) problem with two separate objectives (see Table 3),
which was then solved with a lexicographic approach (Trapiello, Puig,
& Cembrano, 2021). A minority of works also considers water qual-
ity objectives, typically quantified via chlorine concentration in the
supplied water (Biscos, Mulholland, Le Lann, Brouckaert, Bailey, &
Roustan, 2002; Biscos, Mulholland, Le Lann, Buckley, & Brouckaert,
2003; Muslim, Li, & Tade, 2008).

The remaining 14 papers deal with optimal management of sewer
and drainage infrastructure, where pumps and gates should be con-
trolled to guarantee cost-effective and smooth operations, reduced
peak flow to wastewater treatment plants, flood control, and avoid
overflow in combined systems (CSOs; Darsono & Labadie, 2007; Dong
& Yang, 2019; El Ghazouli, El Khatabi, Soulhi, & Shahrour, 2022;
Joseph-Duran, Jung, Ocampo-Martinez, Sager, & Cembrano, 2014a;
Joseph-Duran, Ocampo-Martinez, & Cembrano, 2014b, 2015; Kändler,
Annus, & Vassiljev, 2022; Marinaki, Papageorgiou, & Messmer, 1999;
Puig et al., 2009; Shishegar, Duchesne, Pelletier, & Ghorbani, 2021;
Sun et al., 2020; Svensen, Sun, Cembrano, & Puig, 2021; Wang, Tian,
& Liao, 2021a; van der Werf, Kapelan, & Langeveld, 2021). Rainfall is
usually the uncertain variable to be forecasted (see Table 1), typically
with a sub-hourly prediction horizon (e.g., 30 mins in Joseph-Duran
et al., 2014b; Sun et al., 2020), which provides information on the
expected inflow to the system to design optimal decisions of gates to be
applied with an operational frequency of 1–5 min (Joseph-Duran et al.,
2014b, 2015; Marinaki et al., 1999; Sun et al., 2020) to a few hours or
a day (Dong & Yang, 2019).

Further, a limited yet recently growing number of articles (not
included in this review) develops control schemes based on MPC to
operate pumps as turbines and harness the excess energy that would
be otherwise dissipated for electricity production (Levieux, Ocampo-
Martinez, Inthamoussou, & De Battista, 2021; Pirard et al., 2022;
Stefanizzi et al., 2020; Venturini, Alvisi, Simani, & Manservigi, 2017).
While they are not included in this review because they are not directly
concerned with the optimal management of water resources, it is
worth mentioning them as recent literature is shaping around joint
opportunities for water and energy management within the broader
context of the water-energy nexus.

The reviewed papers present a variety of applications and case
studies, with different formulations of the objective function, con-
trols, disturbances and forecasting horizon, system characteristics, and
overall goals. Hence, results are also often case-specific and hard
to generalize. However, in most reviewed works, MPC schemes –
primarily implemented with a centralized architecture – are bench-
marked against other control strategies and comparatively attain a
better performance (i.e., reduced operational costs and violation of
physical and operational constraints). Historical/current rule-based
controls are usually taken as baseline reference (e.g., in Bakker,
Vreeburg, Palmen, Sperber, Bakker, & Rietveld, 2013; Balla, Bendtsen,
Kallesøe, & Ocampo-Martinez, 2022; Guo, Wang, Taha, & Summers,
2022; Salomons, Goryashko, Shamir, Rao, & Alvisi, 2007; Wang et al.,
2020), along with local controllers (Puig et al., 2009) and PI con-
trollers (Fiorelli, Schutz, Metla, & Meyers, 2013; Muslim et al., 2008)
in a limited number of cases. A solid alternative for either imple-
menting non-centralized control approaches or complementing control
strategies for the management of UWNs is based on evolutionary game
theory (Quijano et al., 2017). For the former case, several proposals
have been reported towards not only designing predictive controllers
accounting for the suitable partitioning of a large-scale drinking wa-
ter network (Barreiro-Gomez, Ocampo-Martinez, & Quijano, 2019;
Muros, Maestre, Ocampo-Martinez, Algaba, & Camacho, 2018) but
also the synthesis of control strategies entirely based on such game
theory (Barreiro-Gomez, Ocampo-Martinez, Quijano, & Maestre, 2017;
Barreiro-Gomez, Quijano, & Ocampo-Martinez, 2016; Obando, Quijano,

& Ocampo-Martinez, 2022). Regarding game-theory-based approaches
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that assist a predictive controller, tuning methodologies for multi-
objective predictive controllers are also reported (Barreiro-Gomez,
Ocampo-Martinez & Quijano, 2017).

Overall, MPC has proven to be effective in attaining substantial cost
savings in comparison to existing rule-based or set-point controllers in
water distribution networks, which usually operate based on storage
level thresholds. For instance, energy cost savings between 8% and
10% were calculated with simulations for a summer and winter month
in Shamir and Salomons (2008). Other studies considering MPC con-
trollers in urban drainage networks found that MPC can reduce the
number of flooded nodes during an extreme weather event and lower
peak flow by more than 50% in drainage systems subject to heavy
rainfall events (Kändler et al., 2022; Shishegar et al., 2021). Case-
specific results and cost/energy savings referred to different baseline
values, implementations of the objective functions, and MPC parame-
ters, though, do not allow for a direct quantitative comparison of MPC
performance across studies. Further, several limitations and existing
research gaps emerge from the analysis of the 48 reviewed papers. Most
of the considered studies adopt, at least to some extent, a series of
simplifications to address the challenges related to (i) accounting for
uncertainties in disturbance prediction and (ii) dealing with the com-
putational burden of simulating potentially large real-world networks
in model-based approaches.

Concerning the first group of challenges, only eight studies out
of 48 consider the uncertainty in disturbance forecasts by imple-
menting a stochastic or combined deterministic and stochastic MPC
approach (e.g., Grosso, Velarde, Ocampo-Martinez, Maestre, & Puig,
2017; Pedrosa, Puig, & Nejjari, 2022). The majority instead focuses on
demonstrating the superiority of MPC in comparison to other control
strategies under a deterministic scenario. This scenario is sometimes
built assuming perfect disturbance prediction (Marinaki et al., 1999;
Tedesco, Ocampo-Martinez, Casavola, & Puig, 2016) or simple statistics
on water demands from past data, while the type of forecast remains
unclear in many other cases.

Concerning the second group of challenges, reducing the computa-
tional effort required to simulate large real-world networks is addressed
in the literature with three different types of simplification approaches.
First, some studies only consider very small networks, usually built ad
hoc as artificial systems for research purposes, composed of a handful
of nodes and just a few actuators (e.g., Sankar et al., 2015; Sun, Puig,
& Cembrano, 2016). This approach also makes up for the lack of data
that often limits the possibility of developing studies based on real-
world urban water networks. Other studies instead simplify the size of
existing real-world systems by removing irrelevant nodes and links and
obtaining a skeletonized system (as, for instance, in Shamir & Salomons,
2008). Beside the physical properties of the considered system, its op-
erational properties and the physical characteristics of its actuators are
often simplified, too. For example, some work only consider fixed-speed
pumps, simple valve models characterized only by upper and lower
bounds on the flow, and none consider dynamic/time-varying energy
prices, but a few exceptions. Our review found that approximately 32
studies are based on simplified or synthetic case studies, while only 16
rely on full-scale real-world systems or systems not explicitly simplified.
A third strategy to deal with the computational effort required by
the simulation of large-scale hydraulic networks is the implementa-
tion of data-driven surrogate (or meta-) models that substitute the
high-fidelity hydraulic model with more computationally efficient yet
still accurate models that can be coupled with optimization. Dong
and Yang (2019), for instance, implement a long-short-term memory
(LSTM) neural network for operation scheduling of water diversion and
drainage pumping stations in the presence of complex hydrometeoro-
logical constraints. Many research efforts have been recently developed
revolving around surrogate models, also pushed by recent development
in artificial neural networks and deep learning (e.g., Fiedler, Cominola,
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& Lucia, 2020). As many are pretty recent and only appear so far in
conference proceedings, they might not have been captured by our
review.

Finally, it must be noted that, while it was possible to identify
the above trends and challenges, one non-negligible finding is that
many works do not report sufficient details on the type of forecasts,
system size (state variables), implemented optimization method, bench-
mark, and in some cases even the actual formulation of the objective
function. This limits our capabilities to carry out a complete analysis
of the attributes of such studies and, in general, hampers their full
reproducibility.

4. Discussion

While the three types of water systems considered (water reservoirs,
open channels and urban water networks) feature domain-specific
physical characteristics and different types of actuators, objectives,
and disturbances that should be accounted for in a control problem,
common advantages/drawbacks of MPC, trends and challenges emerge
from this review.

MPC offers three primary advantages over more conventional SDP
and ADP methods: (A1) MPC overcomes the so-called ‘curse of dimen-
sionality’ of Dynamic Programming, as it avoids the computation of
the value function, by iterating the optimal control problem over a
finite receding horizon; as a result, the computation costs of MPC do
not increase exponentially with problem size (i.e., state and control
dimension), which makes MPC a more viable approach for large-scale
multi-reservoir systems with more than three reservoirs (e.g., Ficchi
et al., 2016; Kistenmacher & Georgakakos, 2015; Wang, 2010), as
well as for large OC (e.g., Kong et al., 2021; Rodriguez et al., 2020;
Shahdany et al., 2019) and UWN (e.g., Martínez, Hernández, Alonso,
Rao, & Alvisi, 2007; Tedesco et al., 2016; Wang et al., 2021b). (A2)
MPC overcomes the ‘curse of modeling’ of DP by allowing the opti-
mization model to take updated decisions at each time step with a
real-time receding horizon strategy, making use of existing models and
optimization frameworks (e.g., Mohanavelu et al., 2022; Nasir et al.,
2021; Segovia et al., 2019). (A3) MPC can deal with hydro-climatic
variability, nonstationarities and uncertainty (e.g., Castelletti et al.,
2008a; Maestre et al., 2013; Payet-Burin et al., 2021; Velarde et al.,
2019). By using real-time information and probabilistic forecasts in the
optimization process, MPC allows water systems operation to adapt
to changes in the climate or catchment and to mitigate the impacts
of extreme hydrological events anticipating them, particularly those
occurring in unusual periods of the year (e.g., Castelletti et al., 2008a).
These advantages make MPC a more effective control technique and
more feasible than DP for large water systems (especially large channel
and urban water networks), as shown in a few studies benchmarking
MPC against DP/ADP methods.

Although MPC has these advantages over more conventional DP
and off-line methods, it also has a few drawbacks: (D1) The iterative
optimization involved in MPC can also lead to intensive computations,
especially for large-scale water systems with many actuators and a
centralized controller. For example, for open channels, Ren et al. (2021)
discuss how the computation burden associated with MPC can be a
significant obstacle in large-scale systems with high-dimensional state
and control spaces, making it impractical to perform online calcula-
tions at each time step; they call this a ’curse of dimensionality’ for
MPC too, though this is less prohibitive than for DP. Other authors
have also paid attention to the trade-off between solution optimality
and computation time, and have tested different MPC formulations to
verify conditions under which optimal control actions may be deter-
mined within a prescribed real-time control period. For instance, Xu
et al. (2012) test quadratic-programming-based (QP) and sequential-
quadratic-programming-based (SQP) MPC, and find out that SQP-MPC
achieves better control performance than QP-MPC at the expense of
highly increased computation times (execution is 30 times slower).

Alternative approaches to overcome the costs related to centralized
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MPC controllers applied to large-scale systems and to foster scalability
have been explored also in urban water networks. Tedesco et al. (2016),
for instance, test the use of distributed approaches (command governor
strategies), in which the global control system is decomposed and local
controllers are used, each responsible for the supervision of each sub-
system. (D2) The performance of MPC is highly dependent on reliable
prediction models, which may not be available for large-scale systems
over long prediction horizons, making MPC-based control approaches
ineffective in some cases (e.g., Ren et al., 2021).

Two main common trends can be identified: (T1) an increasing num-
ber of studies adopting ML-based models to predict the disturbances
(e.g., inflows, tides); (T2) an expanding proportion of stochastic MPC
applications over the last decade (since 2013), though still a minority
to deterministic MPC.

The main challenges currently limiting the scope of MPC studies
can be grouped into the following four categories, which should serve
as main goals to formulate a research agenda for the next few years:
(C1) lack of benchmarking studies that comprehensively compare MPC
against other control schemes and assess its performance in relation to
the characteristics of the physical system; (C2) lack of assessment of the
uncertainty embedded in the model-based control and simplifications
adopted in the model structure; (C3) incomplete analysis on the impact
of the type of forecast, forecast resolution, and length of the prediction
horizon; and (C4) limited exploration of tradeoffs and truly multi-
objective MPC problems, to go beyond the single-objective nature of the
problem formulation (that is often achieved via aggregation of multiple
objectives functions appearing in multi-objective problems).

Related to the first challenge (C1) of evaluating the performance of
MPC comprehensively and objectively, in most of the reviewed studies,
there is a lack of consistent benchmarking of MPC with respect to
other control methods and across systems with different character-
istics. Only a few studies compare MPC against multiple alternative
techniques, and none compare MPC with off-line alternatives using
available forecasts in real-world settings. Most past studies across all
types of considered water systems either used only perfect forecasts to
set the upper-bound performance used as ‘‘ideal" Ref. (e.g., Marinaki
et al., 1999; Uysal, Alvarado-Montero et al., 2018a), or focused on an
off-line benchmark control scheme without actual forecasts, but rather
with historical operations, typically based on rule curves or other set-
point approaches (e.g., Delgoda et al., 2013; Wang et al., 2020; Xu
et al., 2015) and Stochastic Dynamic Programming (e.g., Galelli et al.,
2014; Kergus et al., 2022; Wang, 2010). A comparative analysis of the
MPC performance in different contexts and in relation to case-specific
characteristics (e.g., physical features of the system, constraints, objec-
tives, etc.) would be important to assess the dependence between such
characteristics and expected MPC results. However, many different
factors are varying across the reviewed studies and for different types
of systems, both in terms of system characteristics and optimization
problem parameters. Thus, a direct comparison of existing quanti-
tative results would not be meaningful. A fair comparative analysis
would instead require consistent benchmarking studies comparing the
relative performance of MPC with respect to the same benchmark
control method across studies. We acknowledge that the performance
of MPC can be affected by the characteristics of the basin, hydrology
of the open channels, and other factors, which can vary significantly
between different geographic regions. Therefore, further studies car-
rying out comparative analyses of MPC with consistent settings and
with real-world data (beside synthetic cases, which are frequent in
the reviewed papers) should be considered for water reservoirs, urban
water networks, and open channels.

As for C2, the key element of MPC is the use of a model of
the system to be controlled, yet models are always subject to errors,
inaccuracies, and uncertainties. MPC leverages the accuracy of the
models of the systems to ensure the robustness of the controller with
respect to uncertainties (e.g., Schwenzer et al., 2021). Many studies
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reviewed recognize this aspect and provide at least some insights into
the accuracy of the chosen internal models, supporting their choice
(e.g., Ficchi et al., 2016; Galelli et al., 2014; Giuliani & Castelletti,
2013; Munier et al., 2015). However, some studies do not analyse
the model’s accuracy in sufficient detail, and few do not provide any
information on this. Moreover, most of the studies reviewed (more
than 100 out of 149) do not assess the impact of the MPC internal
model uncertainty as usually the same models for both the open-loop
optimization and closed-loop simulation (with an associated update of
model states) have been used. This is especially the case for water
reservoirs and urban water networks. Only for open channels, most of
the studies (>30 out of 58, with few studies with unclear information)
test MPC with a different internal prediction model than the model used
for the closed-loop simulation. Simplified versions of the Saint-Venant
equations are usually used as an internal model in the MPC, while the
full Saint-Venant equations, implemented in software solutions such
as SOBEK (e.g., Fele et al., 2014; Hashemy Shahdany et al., 2017;
Liu et al., 2023; Tian et al., 2019; van Overloop, Clemmens et al.,
2010; Wahlin & Clemmens, 2006b) and SIC2 (e.g., Alvarez et al.,
2013; Horvath et al., 2015a, 2015b; Pour et al., 2022; Segovia et al.,
2019; van Overloop et al., 2014), are used as closed-loop simulation
models. Using the same internal model for the closed-loop simulation
is likely to lead to an overestimation of the MPC performance, but this
is the solution adopted by many authors for two obvious reasons: (i)
computation time reduction, and (ii) lack of more (refined) models
readily available. For water reservoirs, only a few studies (e.g., Lin
et al., 2020; Munier et al., 2015) have adopted a more refined and
computationally-intensive model for the closed-loop simulation, which
is essential to assess the robustness of the controller. Moreover, many
studies, primarily on MPC applications in urban water networks, rely
on simplified or synthetic systems (e.g., Sankar et al., 2015) due to the
limited availability of calibrated high-fidelity models and the computa-
tional requirements of coupled hydraulic and water quality simulations
of large-scale network systems models. While more computationally-
efficient alternatives exist, including data-driven surrogate models (see
Section 3.3), they often come with a tradeoff between computational
savings and model accuracy. This should also be better quantified,
possibly in relation to system size and characteristics.

Regarding the type of forecasts used in MPC (C3), various forecast
variables, types and models emerge from the current literature, with
differences depending on the type of water systems considered. In
terms of forecasted variables, for water reservoirs, all the studies used
either rainfall, inflow or tide forecasts. For urban water networks,
water demand forecasts are mostly used, with a minority of studies
also using rainfall/inflow or water levels. On the other hand, a more
diverse set of forecasts are used for open channels, with more than
half using water demand forecasts, less than half rainfall/inflow and
a few other variables (see Table 1). In terms of the type of forecasts,
for urban water networks, almost all the few studies relying on real
(non-perfect) forecasts used statistical or ML-based models (e.g., Dong
& Yang, 2019; Salvador, Munoz de la Pena, Ramirez, & Alamo, 2020).
For open channels, six studies used statistical or ML-based models (e.g.,
Maestre et al., 2013; Tian, Negenborn et al., 2017b), five used process-
based models (e.g., Aydin et al., 2019; Xu et al., 2013), and a single
study used a hybrid approach (van Overloop et al., 2008). The picture
is more complex for water reservoirs, for which the studies adopting
real forecasts used more sources and forecasting techniques: less than
half of them used well-established process-based hydrological models
fed by operational meteorological forecasts (e.g., Ficchi et al., 2016;
Raso et al., 2014; Wang et al., 2014) to produce the forecasts used in
MPC, while slightly more than half used statistical or machine learning-
based models that are calibrated on past observed data (e.g., Galelli
et al., 2015; Gavahi et al., 2019; Giuliani & Castelletti, 2013; Pianosi
& Soncini-Sessa, 2009). Only a few studies compared or integrated
these two different techniques (Ahmad & Hussain, 2019; Wei & Xun,
2019). Given the recent increase in the availability of both real hydro-

meteorological forecasts and efficient machine learning models, it is
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logical to expect benefits from more testing of hybrid forecast products
in MPC and further applications are needed. Along the same lines,
also the availability of forecasts at multiple timescales has been in-
creasing, from short-range (few days) to seasonal- or long-range (up
to 6–7 months or a year), and there is growing interest in seamless
forecasts (e.g., Wetterhall & Di Giuseppe, 2018). However, there is
a lack of research integrating multiple forecast products across time
scales in MPC. Moreover, there is a lack of research investigating
the dependence of the optimal prediction horizon and relative MPC
performance on the accuracy of forecasts. The optimal horizon and the
MPC performance are expected to be intensely dependent on the quality
of the forecasts (e.g., Payet-Burin et al., 2021; Wei & Xun, 2019), and
this dependence is not trivial due to the receding horizon and on-line
update of the control strategy.

Finally, a key point for multipurpose water systems is that only a
limited number of studies explored possible Multi-Objective (MO) MPC
frameworks (e.g., Lin et al., 2020) typically required to address the
tradeoffs across sectors by providing a set of Pareto-optimal solutions
(C4). The majority of the reviewed papers rather compute a weighted
sum of the objectives (e.g., Dong & Yang, 2019; Tedesco et al., 2016),
which aggregates multiple objectives in an individual objective func-
tion, and some authors reduce the number of objectives by enforcing
more constraints in the control problem. Further work is needed to
explore Pareto-optimal solutions from MPC both at each control time
step and over a long simulation horizon rolled by multiple receding
horizons to account for the multi-objective nature of water systems’
operation problems and enable tradeoff analysis.

Lastly, we noticed that the level of detail in reporting model de-
scription, optimal control problem formulation and explanation of the
proposed control/management methodology is heterogeneous across
the collection of reviewed papers. In many cases, there is no sufficient
level of detail in the reviewed journal articles to allow for a full and fair
comparison. A final recommendation is thus to develop a standardized
framework to report key information on the essential components
of future MPC studies (e.g., type of forecasts, system size and state
variables, implemented optimization method, benchmark methods, ob-
jective function, control variables, their number and their frequency) to
facilitate comparison across studies, ultimately supporting knowledge
transfer and reproducibility.

5. Conclusions

In recent years, Model Predictive Control has gained interest in
the adaptive management of interconnected water resources systems,
motivated by its capability of incorporating forecasts of evolving dis-
turbances into a real-time optimal control scheme. Our comprehensive
review of 149 peer-reviewed journal articles published in the last
25 years, selected after screening an originally more extensive set
of 826 papers and checking them for eligibility, confirms an overall
increasing adoption of MPC in all considered inter-connected sub-
domains at the basin to urban scale, i.e., water reservoirs, open chan-
nels, and urban water networks. Despite the differences across these
three types of systems, some common advantages, drawbacks, trends
and challenges were identified in relation to MPC applications. In
particular, our review identifies four main categories of challenges cur-
rently limiting most MPC applications in the water domain: (i) lack of
systematic benchmarking of MPC with respect to other control methods
and lack of assessment of the MPC performance in relation to the char-
acteristics of the physical system; (ii) lack of assessment of the impact
of uncertainties on the model-based control; (iii) limited analysis of the
impact of diverse forecast types, resolutions, and prediction horizons;
(iv) under-consideration of the multi-objective nature of most water
resources systems. We argue that future MPC applications in water
resources systems should focus on addressing these four challenges, as
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key priorities for future developments.
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