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Using knowledge graphs and deep learning 
algorithms to enhance digital cultural heritage 
management
Y. Yuexin Huang1,2, S. Suihuai Yu1, J. Jianjie Chu1*, H. Hao Fan3 and B. Bin Du4,5 

Abstract 

Cultural heritage management poses significant challenges for museums due to fragmented data, limited intel-
ligent frameworks, and insufficient applications. In response, a digital cultural heritage management approach 
based on knowledge graphs and deep learning algorithms is proposed to address the above challenges. A joint 
entity-relation triple extraction model is proposed to automatically identify entities and relations from fragmented 
data for knowledge graph construction. Additionally, a knowledge completion model is presented to predict miss-
ing information and improve knowledge graph completeness. Comparative simulations have been conducted 
to demonstrate the effectiveness and accuracy of the proposed approach for both the knowledge extraction 
model and the knowledge completion model. The efficacy of the knowledge graph application is corroborated 
through a case study utilizing ceramic data from the Palace Museum in China. This method may benefit users since it 
provides automated, interconnected, visually appealing, and easily accessible information about cultural heritage.

Keywords  Cultural heritage, Chinese ceramics, Knowledge graph, Deep learning, Knowledge extraction, Knowledge 
completion

Introduction
Cultural heritage management, which involves docu-
mentation, conservation, restoration, interpretation, and 
education, plays a critical role in preservation and com-
munication of its significance to a broad range of audi-
ences [1, 2]. Global initiatives like the Charter on the 

Preservation of Digital Heritage by UNESCO [3] and 
the Ten Perspectives on the Future of Digital Culture 
presented by Europeana [4] have encouraged a shift to 
digital methods, a transition that has been significantly 
accelerated by innovations in artificial intelligence, block-
chain [5], ontology [6], and virtual reality [7]. This move 
towards digitization, seen in the digital transformation 
of collections by institutions like the Hamburg Museum 
of Art [8] and the Metropolitan Museum of Art [9], 
fosters increased accessibility and enhanced conserva-
tion. Concurrently, the development of databases like 
the Global Fashion Style Cultural Database in Japan [10] 
and the Intangible Cultural Heritage Database in China 
[11] reflects optimization efforts in digital heritage man-
agement. Standardized data models and representation 
languages like Extensible Markup Language (XML) [12], 
Web Ontology Language (OWL) [13], and Resource 
Description Framework (RDF) [14] further facilitate data 
management and sharing, promoting interoperability and 
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meaningful information exchange. Given the significance 
of cultural heritage, digital technologies can potentially 
improve access, preservation, and interpretation.

However, digital cultural heritage management 
encounters numerous challenges that should be 
addressed. Despite the existence of diverse methods 
proposed by researchers for cultural heritage manage-
ment [14], many of them still necessitate manual efforts 
in the collection and processing of massive cultural her-
itage data [12, 13], consequently leading to high labor 
costs and the absence of automatic updates. To enhance 
the scalability and efficiency of digital cultural heritage 
management, it is crucial to develop intelligent frame-
works that leverage advanced technologies. Secondly, 
traditional approaches still need to address the lack of 
visualisation, fragmentation, and limited data reason-
ing. Cultural heritage databases and platforms [10] often 
suffer from fragmentation, where information is stored 
in silos, leading to poor correlation between data. As a 
result, it becomes challenging to identify relationships 
between cultural heritage objects, limiting analysis and 
interpretation. Overcoming fragmentation is vital to 
improving data reasoning and analysing cultural heritage 
data effectively. Thirdly, digital cultural heritage manage-
ment has predominantly focused on preservation and 
management rather than providing adequate support for 
using scenarios. For example, when museums may store 
and manage artefacts digitally, it often lacks effective 
search, interpretation, storytelling, collaboration, acces-
sibility, and inclusivity, making it difficult to derive the 
required information from cultural heritage resources. 
Consequently, addressing intelligent frameworks, frag-
mentary data, and insufficient application are critical to 
promoting the effective utilisation and accessibility of 
cultural heritage. In response, introducing new technolo-
gies to improve automation, increase data visualisation 
capabilities, and improve data application capabilities can 
solve the above challenges.

Regarding the application of digital technologies in 
the management of cultural heritage, knowledge graphs 
shows promise by integrating disparate data sources, 
bridging structured and unstructured data, and pro-
viding a visual representation of information [15, 16]. 
The knowledge graph applications span search engines, 
e-commerce [17], intelligent manufacturing [18], and 
electronic healthcare due to their superior interconnec-
tion, visualization, and data integration abilities. Knowl-
edge graphs show significant advantages over traditional 
methods [12–14] in terms of visualization [19] and rea-
soning [20]. Furthermore, knowledge graphs can be 
effectively employed as input and output in various deep 
learning models. Therefore, using knowledge graphs and 

deep learning algorithms can make cultural heritage 
management more intelligent, address fragmentary cul-
tural data, and enhance visualization capabilities.

The knowledge graph applied to digital cultural herit-
age management is shown in Fig. 1. The existing Palace 
Museum website presents ceramic information in list 
format. This approach limits visual engagement during 
browsing and provides limited insights into the similari-
ties and differences among ceramic pieces. On the right 
of Fig. 1, the knowledge graph is utilized to enhance digi-
tal ceramic management to address this limitation. The 
knowledge graph create a highly automated, intercon-
nected, visually appealing, and readily accessible infor-
mational structure for ceramics. In the historical research 
about knowledge graphs applied to digital cultural herit-
age management, Charles et  al. [21] designed a cultural 
heritage knowledge network that incorporates informa-
tion about places, people, and concepts. Given the meta-
data format of the network, identifying matching cultural 
heritage datasets poses a challenge. Hyvonen et  al. [22] 
proposed an approach integrating a knowledge graph 
for identifying semantic relationships between different 
cultural heritage data. However, due to the limitations of 
transformation rules and missing relations between enti-
ties, locating the required cultural heritage knowledge 
resources can be challenging and inefficient. Debruyne 
et  al. [23] created a knowledge graph for Ireland’s his-
tory, and further research will focus on determining the 
relationship between different attributes and the evolu-
tion of names for places. Meanwhile, deep learning algo-
rithms have been used in conjunction with knowledge 
graphs to refine digital cultural heritage management 
further. Dou et al. [24] proposed the Chinese intangible 
cultural knowledge graph, where the Att-BiLSTM and Bi-
GRU machine learning models are employed as the entity 
extraction and relation extraction models, respectively. 
Nevertheless, these models are not pipelines, leading to 
an accumulation of errors. Additionally, Bobasheva et al. 
[25] used machine learning to enhance cultural metadata 
and information retrieval, but the model struggles with 
overlapping entities and relations, which diminishes the 
extraction effect. In summary, the research presented 
above may need to be improved due to missing links, an 
appropriate metadata format, the relevance of datasets 
to cultural heritage, the availability of training sets, and 
the complexity of scenes. Furthermore, the pipeline of 
extraction tasks and overlapping triples may reduce the 
effectiveness of machine learning models.

Knowledge graph construction involves domain 
ontology construction, knowledge extraction (has 
two steps of entity extraction and relation extraction), 
knowledge completion, knowledge fusion, knowledge 



Page 3 of 26Huang et al. Heritage Science          (2023) 11:204 	

recommendation, and the knowledge graph application, 
of which knowledge extraction and knowledge comple-
tion are key steps [26]. Specifically, entity extraction has 
been developed for a long time, which involves statisti-
cal algorithms and machine learning algorithms, such as 
support vector machines [27, 28], Conditional Random 
Fields [29, 30], BiLSTM-CRF [31], large-scale pre-train-
ing models BERT [32]. Relation extraction is the next 
step after entity extraction and can be challenging when 
there are overlapping entities and relations [33]. Relation 
extraction initially utilises semantic rules and templates 
before machine learning algorithms such as BiLSTM [34] 
and Lattice LSTM [35]. To address the problem of over-
lapping entity-relation triples, joint entity-relation triple 
extraction methods, such as the Seq2Seq model with a 
copy mechanism [36], reinforcement learning [37], Graph 
Convolutional Networks [38], Multi-Turn QA models 

[39], and the CASREL model [40], have been proposed. 
To solve the problem of overlapping entity-relation triples 
in knowledge extraction, this study proposes a cascade 
binary tagging framework inspired by a novel cascade 
framework from CASREL [40], which shows promising 
results in addressing overlapping triples. The second core 
step of knowledge graph construction involves knowl-
edge completion, which can be divided into rule-based, 
description logic-based, and case-based methods [41]. 
Afterwards, knowledge embedding is introduced in the 
knowledge completion task, which can be classified into 
four categories: combination models (e.g., RESCAL [42], 
NTN [43], HOLE [44]), translation models (e.g., TransE 
[45], DISTMULT [46]), convolutional neural network-
based models (e.g., ConvE [47], ConvKB [48]), and graph-
based models (e.g., R-GCN [49]). While the first three 
types process each triple independently, the graph-based 

Fig. 1  The illustration of digital cultural heritage management that uses knowledge graphs and deep learning algorithms for the Chinese Palace 
Museum https://​digic​ol.​dpm.​org.​cn/?​categ​ory=6

https://digicol.dpm.org.cn/?category=6
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models perform convolution operations on neighbour 
nodes, considering the knowledge graph as a whole and 
utilising the implicit information in the relationship path 
and neighbour nodes to analyse the semantic relation-
ship between entities. The proposed model in this study 
enhances the GATs by incorporating multi-order rela-
tions and adjacent node features for knowledge comple-
tion. The proposed model employs an improved graph 
attention layer and ConvKB [48].

Throughout the literature review of knowledge graphs 
applied to cultural heritage, knowledge extraction mod-
els, and knowledge completion models, four challenges 
are identified as follows: 

(1)	 A knowledge graph framework specific to digital 
cultural heritage management should be estab-
lished, as generic frameworks from other areas may 
not capture the unique features of the local herit-
age. This issue could potentially be resolved through 
interdisciplinary research that combines expertise 
in cultural heritage management with knowledge 
graphs to co-develop a tailored framework.

(2)	 It is challenging to develop a knowledge extraction 
model compatible with cultural heritage data due 
to overlapping triples. One potential approach to 
this could involve the joint entity-relation extrac-
tion model to identify and resolve these overlapping 
triples, thereby enhancing the compatibility of the 
model.

(3)	 A knowledge graph completion model appropriate 
for cultural heritage data is required. The knowl-
edge completion model should consider the specific 
nuances of local cultural heritage data. The devel-
opment of the model might necessitate the integra-
tion of machine learning methods with the detailed 
study of cultural heritage data properties.

(4)	 There is an evident necessity for research to pivot 
towards the knowledge graph application, which is 
intuitively responsive to a variety of using scenarios 
in digital cultural heritage management tasks. These 
scenarios encompass a diverse range from search-
ing and interpretation to storytelling and collabora-
tion, as well as ensuring accessibility and inclusiv-
ity. Enhanced interactivity and user-friendly design 
in the knowledge graph visualization can lead to 
increased user support and engagement.

Therefore, this study introduces a cultural heritage man-
agement method that utilises knowledge graphs and deep 
learning algorithms to overcome the abovementioned 
obstacles. Specifically, a generic knowledge graph-driven 
cultural heritage management framework is proposed 
to facilitate digital cultural heritage management. In 

addition, a knowledge extraction model is developed to 
extract entities and relations jointly from massive frag-
mentary cultural text automatically. Moreover, a knowl-
edge completion model is introduced to predict missing 
knowledge and complete the knowledge graph. The effec-
tiveness of the proposed approach is demonstrated in a 
case study using ceramic data from the Palace Museum 
in China. The proposed knowledge graph-driven cul-
tural heritage management framework allows for acquir-
ing interconnected and visualised cultural heritage 
information.

Accordingly, the study is structured as follows: "Meth-
odology" Section describes a knowledge graph frame-
work for digital cultural heritage management. The 
knowledge extraction model and knowledge comple-
tion model are also proposed in  "Methodology" Section. 
"Case study: The ceramic knowledge graph for the Palace 
Museum in China" "Discussion" Section illustrates the 
case study using ceramic data from the Palace Museum 
in China. Section  4 discusses the application value and 
limitations. Finally, "Conclusion" Section 5 is the conclu-
sion and future works.

Methodology
The framework of digital cultural heritage management 
using knowledge graphs and deep learning algorithms
This study proposes a framework which uses knowledge 
graphs and deep learning algorithms to support digital 
cultural heritage management to address the above chal-
lenges, as depicted in Fig. 2. Furthermore, a joint entity-
relation triple extraction model is developed to extract 
entities and relations from fragmented cultural heritage 
data. This model automatically identifies entities and 
relations defined by experts, enabling efficient data inte-
gration. Additionally, a knowledge completion model is 
presented to deal with the issue of missing information in 
cultural heritage data. The knowledge completion model 
enables the completion of missing information, further 
enhancing the quality of the knowledge graph. Finally, a 
cultural heritage knowledge graph is constructed to sat-
isfy cultural heritage management requirements.

Knowledge extraction model
Task description
Knowledge extraction is the process of identifying sub-
jects, relations, and objects represented as (subject, 
relation, object). For instance, the sentence Pastel nine 
peach vase, its whole body painted peach tree and flat 
peach contains the entity-relation triples (Pastel nine 
peach vase, has pattern of, peach tree) and (Pastel nine 
peach vase, has pattern of, flat peach). Knowledge extrac-
tion becomes a fixed extraction task when working with 
a pre-defined set of entity-relation triples. However, 
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conventional knowledge extraction models have chal-
lenges in overlapping circumstances, as shown in Fig. 3. 
Previous research has treated relations as discrete labels 
attached to entity pairs [50, 51], an approach that exhibits 
constrained efficacy in the context of multiple overlap-
ping entity-relation triples.

The framework of knowledge extraction model
To solve the problem of overlapping entity-relation triples 
in knowledge extraction, this study proposes a cascade 
binary tagging framework inspired by a novel cascade 
framework from CASREL [40]. Unlike the approach of 
assigning discrete labels to entity pairs [50], triples are 
modelled directly and define training objectives at the tri-
ple level. The proposed method shows promising results 
in addressing overlapping triples.

The objective of the joint entity-relation triple extrac-
tion model is to maximize the data likelihood for the 
training set D, given an annotated sentence xj from D and 
overlapping triples Tj = {(s, r, o)} in xj:

where the notation Tj represents a set of triples, where 
each subject s ∈ Tj appears in at least one triple. To be 
precise, Tj | s represents the triples led by s in Tj , and 
(r, o) ∈ Tj | s represents a (r,  o) pair led by the subject 
s in Tj . R represents all possible relationships. R\Tj | s 
denotes all relations except those led by s in Tj . o∅ denote 
a ‘null’ object.

The chain rule of probability is applied in this formu-
lation, as shown in Eq.  1. The structure is designed to 
deal with the problem of overlapping triples without 
making assumptions regarding how multiple triples 

(1)

|D|
�

j=1





�

(s,r,o)∈Tj

p
�

(s, r, o) | xj
�





=

|D|
�

j=1





�

s∈Tj

p
�

s | xj
�

�

(r,o)∈Tj |s

p
�

(r, o) | s, xj
�





=

|D|
�

j=1





�

s∈Tj

p
�

s|xj
�

�

r∈Tj |s

pr
�

o| s,xj
�

�
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�

o∅|s,xj
�



.

Fig. 2  The framework of digital cultural heritage management using knowledge graphs and deep learning algorithms
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Fig. 3  Knowledge extraction model. The text in orange is the subject, and the text in blue represents an object. The lines with arrows are 
relationships between subjects and objects
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may share entities within a sentence. Moreover, this 
formulation inspires a novel tagging scheme for triple 
extraction. A subject tagger is learned p

(

s | xj
)

 that 
recognizes subject entities. For relation r, an object 
tagger is learned pr

(

o | s, xj
)

 to recognize relation-
specific objects for a given subject. In contrast to clas-
sifying relations for pairs of subjects and objects, this 
approach treats each relation as a function mapping a 
subject to an object. The tagger allows multiple triples 
to be extracted simultaneously, as depicted in Fig.  3. 
A subject tagger is applied to identify all subjects. The 
relation-specific object taggers for each subject are 
used to identify all relevant relations and their corre-
sponding objects. This study uses binary taggers over 
a deep bidirectional transform, namely the BERT [32], 
to instantiate the subject tagger and relation-specific 
object taggers.

The contribution of the proposed formulation has 
several advantages. Firstly, the final evaluation criteria 
are directly optimized at the triple level of the data like-
lihood by starting from the triple level. Secondly, it han-
dles overlapping triples without making assumptions 
about how they share entities in a sentence. Finally, the 
proposed novel tagging scheme enables multiple triple 
extraction simultaneously.

BERT encoder
The encoder module extracts feature information xj 
from xj , and feature information is fed into the fol-
lowing tagging modules. BERT is a multi-layer bidi-
rectional Transformer-based language representation 
model that learns deep representations based on each 
word’s left and right contexts, as depicted in Fig.  4. It 
comprises a stack of N Transformer blocks of the same 
type. Each Transformer block performs multi-head 
self-attention, layer normalization, and feedforward 
neural network operations as follows:

In this equation, S is a matrix of one-hot vectors of sub-
word indices, Ws represents the sub-word embedding 
matrix, Wp is the positional embedding matrix, and p is 
the position index. hα denotes the hidden state vector, 
which is the context representation of the input sentence 
at the α − th layer. N is the total Transformer blocks’ 
number. Since a sentence is considered as input rather 
than a pair of sentences, segmentation embedding is not 
considered in Eq.  3. For a more detailed explanation of 
the Transformer structure, refer to [52].

(2)h0 = SWs +Wp.

(3)hα = Trans(hα−1),α ∈ [1,N ].

Cascade decoder
Based on the previous formulation, the cascade binary 
tagging scheme is instantiated through a two-step cas-
cade process: a subject tagger followed by a set of rela-
tions-specific object taggers, as illustrated in Fig. 3. First, 
subjects are detected in the input sentence. Afterwards, 
all possible relations related to each candidate subject 
are examined to determine whether they can associate 
objects in the sentence with that subject.

To recognise potential subjects, the subject tagger 
module decodes the encoded vector hN obtained from 
BERT. The module utilises two identical binary classifi-
ers to detect subjects’ starting and ending positions. For 
this purpose, each token is assigned a binary tag (0/1) 
that signifies whether it represents a subject’s start or end 
position as follows:

(4)p
start_s
i = σ(Wstartxi + bstart).

Fig. 4  The transformer framework in BERT pre-training model
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where pstart_si  and pend_si  represent the probability of the 
i-th token identification in the input sequence based on 
the start and end positions of the subject. The corre-
sponding token is assigned ‘1’ if the probability reaches 
a certain threshold, it is assigned ‘0’ otherwise. xi is the 
encoded representation of token i in the input sequence. 
W(·) is the trainable weight, b(·) is the bias, and σ is the 
sigmoid activation function.

The subject tagger optimises the following likeli-
hood function as Eq. 6 to identify the span of a subject 
s given representation x . Using the results of the start-
end position taggers, a subject’s span is determined 
using the nearest start-end pair match principle.

where L is the sentence length. I{z} = 1 when z is true, and 
I{z} = 0 when it is false. ystart_si  represents the start posi-
tion for the i-th token in x , and yend_si  represents the end 
position. The parameters θ = {Wstart ,bstart ,Wend ,bend}.

Objects and their relationships with subjects are 
simultaneously identified in relation-specific object 
taggers, as shown in Fig. 3. Each object tagger identifies 
the corresponding object(s) for every detected subject. 
Contrary to the subject tagger, the relation-specific 
object tagger considers the subject’s characteristics. On 
each token, the relation-specific object tagger performs 
the following operations:

where pstart_oi  and pend_oi  are the probabilities of identify-
ing an object’s start and end positions. vksub is the encoded 
representation vector of the k-th subject.

Each subject is decoded iteratively using the same 
process. To make the additions of xi and vksub in Eq.  7 
and Eq.  8, the dimensions of the two vectors should 
remain consistent. Therefore, the averaged vector rep-
resentation is calculated between the start and end 
tokens of the k-th subject as vksub.

For relation r, the object tagger optimises the fol-
lowing likelihood function to find out the scope of the 
object o in a sentence x and a subject s:

(5)p
end_s
i = σ(Wendxi + bend).

(6)

pθ (s | x) =
∏

t∈{start_s,end_s}

L
∏

i=1

(

pti
)I{yti=1}(

1− pti
)I{yti=0}

(7)p
start_o
i = σ

(

Wr
start

(

xi + vksub

)

+ brstart

)

.

(8)p
end_o
i = σ

(

Wr
end

(

xi + vksub

)

+ brend

)

.

where ystart_oi  represents the binary tag of the object’s 
start position for the i-th token in x , and yend_oi  repre-
sents the tag of the object’s end position. In the case of 
a ‘null’ o∅ , the tags ystart_oi = y

end_o
i = 0 . The parameters 

φr =
{

Wr
start ,b

r
start ,W

r
end ,b

r
end

}

.

Training objective
Taking log of Eq. 1, the training objective J (�) is:

where pθ (s | x) is defined in Eq.  6 and pφr (o | s, x) is 
defined in Eq. 9. The parameters � =

{

θ , {φr}r∈R
}

 . A sto-
chastic gradient descent algorithm trains the model by 
maximizing J (�) over shuffled mini-batches.

Knowledge completion model
Task description
The task of knowledge completion is to predict the miss-
ing relationships between entities within a knowledge 
graph. Conventional methodologies like Graph Attention 
Networks (GATs) [53] have exhibited impressive per-
formance in knowledge completion tasks, primarily due 
to their capacity to capture first-order neighbour node 
information. Nevertheless, given their disregard for rela-
tional characteristics, these methodologies may not be 
directly transferable to knowledge graphs.

The framework of knowledge completion model
The proposed model in this study enhances the GATs by 
incorporating multi-order relations and adjacent node 
features for knowledge completion. The proposed model 
employs an improved graph attention layer and ConvKB 
[48]. By leveraging the enhanced graph attention mecha-
nism with multi-order relations and adjacent node fea-
tures, the model captures the complex relations between 
entities and generates predictions for missing relations in 
the knowledge graph. As a result, the model can generate 
accurate predictions for missing relations in the knowl-
edge graph. The knowledge completion model is shown 
in Fig. 6.

The novelty of this work lies in the enhancement of GATs 
by incorporating multi-order relations and adjacent node 

(9)

pφr (o | s, x) =
∏

t∈{start_o,end_o}
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features. Furthermore, this model employs an improved 
graph attention layer with a ConvKB decoder. These 
enhancements enable the model to capture complex rela-
tions between entities, significantly contributing to knowl-
edge graph completion.

Graph attention encoder
To obtain the embedding of an entity ei , it is necessary to 
learn the embeddings of triples which have relationships 
with ei . The operation is illustrated in Fig.  5. The linear 
transformation used here is performed by concatenating 
entity and relation feature vectors associated with a specific 
triple tkij = (ei, rk , ej):

where cijk is the vector representation of the triple tkij . 
−→
hi  , 

−→
hj  and −→gk  are the embeddings of ei, ej and rk . Additionally, 

W1 represents the linear transformation matrix. Each 
triple is assigned an importance score bijk . The attention 
value of the triple is obtained by applying a linear trans-
formation parameterized by a weight matrix W2 , fol-
lowed by the LeakyReLU non-linearity:

Accordingly, the softmax function is applied to bijk to 
obtain relative attention values. Figure  5 illustrates the 
calculation of the relative attention value αijk:

(11)cijk = W1

[−→
hi

∥

∥

∥

−→
hj

∥

∥

∥

−→
gk

]

.

(12)bijk = LeakyReLU
(

W2cijk
)

.

where Ni represents the neighborhood of entity ei and Rij 
represents relationship between entities ei and ej . Based 
on attention values for each triple representation, the 
updated embedding of entity ei is as follows:

To stabilize the learning process and capture features 
about the neighbourhood, multi-head attention [52] is 
used, and representation of embeddings is obtained by 
concatenating M attention mechanisms:

As shown in Fig. 5, this transformation is performed on 
the input relation embedding matrix G which is param-
eterized by a weight matrix WR ∈ R

T×T ′ , where T ′ rep-
resents the dimension of the output relation embedding. 
The linear function can be calculated as follows:

Average embedding is used to obtain the final embedding 
vectors for entities rather than concatenating embedding 
from multiple heads. While learning an entity’s embed-
ding, it loses the information associated with its initial 
embedding. To overcome this issue, Hi is linearly trans-
formed to obtain Ht using a weight matrix WE ∈ R

Ti×Tf  , 
and embedding generated from the final attention layer:

The proposed model introduces an auxiliary relation for 
n-hop neighbours between two entities, extending the 
concept of an edge to a directed path. In this case, the 
embedding of the auxiliary relation consists of all other 
embeddings along the path. Iteratively, the model gath-
ers information from distant neighbours of an entity. 
Figure  6 illustrates the aggregation process for learn-
ing entity embeddings and introduces an auxiliary edge 
between n-hop neighbours. Entity embeddings are nor-
malized after each generalized GAT layer and before 
every main iteration.

(13)

αijk = softmaxjk
(

bijk
)

=
exp

(

bijk
)

∑

n∈Ni

∑

r∈Rin
exp (binr)

.

(14)h′i = σ





�

j∈Ni

�

k∈Rij

αijkcijk



.

(15)h′i = �Mm=1σ





�

j∈Ni

αm
ijkc

m
ijk



.

(16)G′ = G ·WR.

(17)h′i = σ





1

M

M
�

m=1

�

j∈Ni

�

k∈Rij

αm
ijkc

m
ijk



.

(18)H′′ = WEHt +Hf .

Fig. 5  Graph attention



Page 10 of 26Huang et al. Heritage Science          (2023) 11:204 

Training objective
This model uses a translational scoring function from [45], 
which learns embeddings such that the condition 
hi + gk ≈ hj holds for a given valid triple tkij = (ei, rk , ej) . 
To minimize the L1-norm dissimilarity measure, 
dtij =

∥

∥

∥

−→
hi +

−→
gk −

−→
hj

∥

∥

∥

1
 is used to learn entity and relation 

embeddings. The model is trained using the hinge loss 
given by Eq. 19. The latter set consists of triples obtained by 
replacing valid triples’ head or tail entity with entities unre-
lated to the relation. The calculation is shown in Eq. 20.

(19)L(�) =
∑

tij∈S

∑

t′ij∈S′

max
{

dt ′ij
− dtij + γ , 0

}

.

where γ > 0 is a margin hyperparameter, S is a set of 
valid triples, and S′ represents a set of invalid triples.

ConvKG decoder
ConvKB [48] is used as a decoder in the model. The con-
volutional layer analyzes tkij ’s global embedding properties 
on each dimension and generalizes transitional proper-
ties in the knowledge prediction model. Score functions 
with multiple feature maps can be expressed as follows:

(20)
S′ =

{

tki′j | e
′
i ∈ ε\ei

}

︸ ︷︷ ︸

replace head entity

∪

{

tkij′ | e
′
j ∈ ε\ej

}

︸ ︷︷ ︸

replace tail entity

.

(21)f
(

tkij

)

=
(

��m=1ReLU
([

hi, gk ,hj
]

∗ ωm
))

·W.

Fig. 6  Knowledge completion model
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where ωm is the mth convolutional filter, � is a hyperpa-
rameter indicating the number of filters to be used, ∗ is a 
convolution operator, and W ∈ R

�k×1 represents the lin-
ear transformation matrix.

The model is trained using soft-margin loss defined:

where ltkij =

{

1 for tkij ∈ S

−1 for tkij ∈ S′
.

Case study: The ceramic knowledge graph 
for the Palace Museum in China
The Palace Museum, located in the heart of Beijing in 
China, is one of the most prominent museums in China. 
The museum’s extensive collection of ancient Chi-
nese art objects, including ceramics, reflects the coun-
try’s rich cultural heritage and long history. To increase 
accessibility to the collection, the museum has devel-
oped a digital heritage database that currently contains 
digital records of 10,624 ceramics. Given the consider-
able quantity of artefacts and the restricted visualisa-
tion capabilities of the database, it necessitates a novel 

(22)

L =
∑

tkij∈{S∪S
′}

log

(

1+ exp

(

l
tkij
· f
(

tkij

)

))

+
�

2
�W�22.

knowledge management approach to enhance informa-
tion acquisition.

This case study aims to address these issues by using 
real ceramics from the Palace Museum in China to assist 
cultural heritage professionals and enthusiasts in retriev-
ing ceramic data more efficiently. This study comprises 
five critical steps: ceramic ontology definition, ceramic 
dataset construction, knowledge graph extraction, 
knowledge graph completion, and the knowledge graph 
application. Figure 7 depicts the case study process. The 
study employed Python 3.6, PyTorch 2.7, CUDA 10.1, 
Neo4j Graph database, and SQL Server. The study was 
conducted using Ubuntu 16.04 and Windows 10 oper-
ating systems using a CPU I7 7700K CPU and a GPU 
1080Ti 11 G.

Ceramic ontology definition
A ceramic ontology is a structure of information that 
helps form a structured knowledge graph. A ceramic 
cultural heritage ontology was designed in this study. To 
ensure the systematic development of this ceramic ontol-
ogy, we adhered to well-established ontology engineer-
ing principles [54]. Ceramic ontology definition involves 
the definition of domain and scope, the reuse of exist-
ing ontologies, the enumeration of critical terms, the 

Fig. 7  The process of the case study



Page 12 of 26Huang et al. Heritage Science          (2023) 11:204 

definition of concepts and properties, and the instantia-
tion of these definitions.

Specifically, the study defines the ontology domain and 
scope of ceramic cultural heritage and refers to relevant 
historical ontologies for reference. The ceramic ontol-
ogy was developed using the CIDOC Conceptual Refer-
ence Model (CIDOC CRM) [55], widely accepted and 
established as the ontology model in the cultural herit-
age domain. It is worth noting that the CIDOC CRM, 
consisting of 99 classes and 188 properties. In light of the 
specific scope of this study, we included a portion of the 
CIDOC CRM to form the foundation of the ontology.

Then, the core classes of the ontology were determined 
through extensive consultations with a multidiscipli-
nary team. Essential terms were enumerated based on 
CIDOC CRM and the Palace Museum digital platform. 
The multidisciplinary team for this study comprises cul-
tural heritage researchers and computer programmers. 
Multidisciplinary teams are selected because they should 
have worked for at least five years to ensure this study’s 
validation. Cultural heritage researchers classify crea-
tive culture design, such as chronology, processing tech-
niques, shape, function and excavation sites. Computer 
programmers are responsible for computer technology 
for the ceramic knowledge graph. This study analysed 
the domain ontology with five cultural heritage research-
ers and two programmers. These researchers worked 
together to develop the domain ontology. The process of 
domain ontology construction was as follows: (1) Opin-
ions on the ontology classification were collected from 
a multidisciplinary team, and the following topics were 
discussed: What are the components of knowledge of a 
ceramic object? What framework can be developed? (2) 
Implementing focus groups. The multidisciplinary team 
discussed the topics, and the researcher recorded the ver-
bal and non-verbal information of the participants using 
video. (3) The concept classification is derived by ana-
lysing and organising information using content analy-
sis and framework structure methods. Finally, domain 
ontology concepts include name, dynasty, pattern, shape, 
colour, glaze, and function. Name refers to the names of 
objects, people, and organisations. For example, ‘Blue 
and white bowl with pine, bamboo and plum pattern’ 
is the name of porcelain. Dynasty, pattern, shape, and 
colour include ‘Qing dynasty’, ‘Bamboo pattern’, ‘round 
shape’, and ‘blue and white’. The glaze is an impervious 
layer of a vitreous substance, which can serve to colour, 
decorate, underlying design or texture.

Additionally, the properties of the concepts were 
defined by incorporating the inverse property feature 
and the object-centric nature of CIDOC CRM ontology, 
which provided flexibility in the ontology construction. 
The relations between the concepts were established 

using a top-down approach, and 32 relations were 
defined. After the ontological model was constructed, 
it was filled with data obtained from the website of the 
Palace Museum in China. The ceramic ontology can pro-
vide a unified and structured framework for the ceramic 
knowledge graph, as shown in Fig. 8. We used the stand-
ard Web Ontology Language (OWL) for formalisation 
language, ensuring our ontology’s compatibility and 
interoperability with various digital platforms. With a 
balance between knowledge graphs and deep learning 
algorithms, we aim to offer a robust methodology for 
capturing, representing, and exploring complex ceramic 
data.

Ceramic dataset construction
After defining the ceramic ontology, the ceramic data-
set was constructed. The procedure of ceramic dataset 
construction is illustrated in Fig. 9. Firstly, ceramic data 
was scraped from the website of the Palace Museum [56] 
using Beautiful Soup. The scraping process entailed iden-
tifying tag names and classes, extracting full text, and 
locating hrefs. The statistical overview of the ceramic 
corpus is shown in Table 1. The ceramic corpus includes 
1151 porcelain pieces, 4658 images, 639,676 words and 
3674 sentences. The ceramic corpus was then annotated 
using BRAT software [57]. Finally, the corpus was trans-
formed into a dataset for knowledge graph extraction 
and a dataset for knowledge graph complementation, as 
shown in Fig. 9(d). The statistical overview of the dataset 
for knowledge graph extraction is shown in Table 3. Each 
row of the dataset used for knowledge graph extraction 
includes sentences and entity-relation triples contained 
in the sentences, with a total of 3,674 sentences and 8,689 
triples. The dataset was partitioned into training, vali-
dation, and test sets in a ratio of 8:1:1, respectively. The 
statistical overview of the dataset for knowledge graph 
completion is shown in Table 2. Each row of the dataset 
used for knowledge graph complementation is an entity-
relation triple and contains entity ID, relation ID, entity 
embedding, and relation embedding. In the early experi-
ments, we tried out several methods of dividing the data-
set. The knowledge extraction model showed improved 
stability and generalisation when we used an 8:1:1 par-
titioning. The knowledge complementation model per-
formed better with a 7:2:1 split. With a larger validation 
set, we could more robustly fine-tune models’ hyperpa-
rameters and reduce overfitting.

For knowledge graph extraction task, the dataset com-
prises sentences and entity-relation triples. Each sen-
tence contains some entity-relation triples, each head 
entity and tail entity labelled with ‘name’, ‘type’, etc., and 
each relation labelled with ‘have name of’, ‘have pattern 
of ’, etc. These labels are the ground truth, annotated by a 
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multidisciplinary team manually. The knowledge extrac-
tion model is trained to predict these labels based on the 
sentences and triples, and their performance is evaluated 
based on how well they match these ground truth labels. 
For knowledge graph completion task, the dataset com-
prises entity-relation triples, and each is labelled with entity 
ID, relation ID, entity embedding and relation embedding. 
These labels are the ground truth, annotated by a multidis-
ciplinary team manually. The knowledge graph completion 
model is trained to predict these labels, and their perfor-
mance is evaluated based on how well they match these 
ground truth labels. In order to evaluate the consistency 
of the annotation, we selected 100 sentences randomly 
and calculated the F-value. The results were calculated to 
be 96.2% for entity consistency and 93.5% for relationship 
consistency, demonstrating the reliability of the annotation 
results.

Knowledge graph extraction
This section discusses the automated extraction of 
ceramic knowledge and the evaluation of the knowledge 
extraction model proposed in Section  3.2, which was 
trained through a ten-fold cross-validation method on 
the dataset (Table 2). The experiment of knowledge graph 
extraction employed Python 3.6, PyTorch 2.7, CUDA 
10.1, and Ubuntu 16.04 using CPU I7 7700K and GPU 
1080Ti. The validation set was utilized to determine the 

(23)

P =
Consistent annotations: A1 and A2

Number of annotations from A2
,

R =
Consistent annotations: A1 and A2

Number of annotations from A1
,

F =
2× P × R

P+R
.

Fig. 8  Example of instance
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Fig. 9  The process of dataset construction

Table 1  Statistical overview of the crawled ceramic corpus

Category Count

The number of ceramics 1151

Total pictures 4658

Total words 639676

Total sentences 3674

Table 2  Statistical overview of the ceramic dataset for 
knowledge graph extraction

Category Sentence Entity-
relation 
triple

Training 2940 7017

Validation 367 838

Testing 367 834

Total 3674 8689
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thresholds for the two layers and the parameters, detailed 
in Table  4. A stochastic gradient descent algorithm was 
used to train the model using the Adam optimizer, and 
early stopping was implemented to prevent overfitting. 
The pre-training model contained 12 million param-
eters and 12 bidirectional Transformer blocks with 256 
hidden states and four attention heads. To ensure a fair 
comparison, input sentences were limited to 100 words 
[50, 58]. The training process stopped after 13 epochs 
without improvement, the total training time of about 
40 h for 13 epochs. Results show that the model achieved 
an F1-score of 86.7%, a precision of 86.4%, and a recall 
of 87.1%. Although the loss value was high at the start, 
it reduced rapidly and approached zero after six epochs, 
with precision results stabilizing as the number of epochs 
increased.

A comparison was made between the proposed 
model and state-of-the-art knowledge extraction mod-
els, which we detail as follows: (a) NovelTagging [50]: 
A sequence tagging joint learning model. Its architec-
ture comprises a bidirectional Long Short-Term Mem-
ory (BiLSTM) encoding layer and an LSTM decoding 
layer. (b) GraphRel [58]: A graph neural joint learning 
model. Its structure includes a BiLSTM encoding layer 
and a bidirectional Graph Convolutional Network (Bi-
GCN) layer for decoding dependency trees. (c) Our 
Proposed Model (BiLSTM): Noting that the encoding 
layers of the above models use BiLSTM, the encoding 
layer of our model was adjusted to BiLSTM for ablation 
experiments.

We evaluated all models on the constructed ceramic 
dataset for the knowledge extraction task. For (a)-(c) 
models, we used 300-dimensional word vectors created 
using the skip-gram variant of the word2vec algorithm 
[59], trained on the Chinese Wikipedia corpus for abla-
tion experiments. Word2Vec is an algorithm designed to 
transform words into numerical word vectors. It rede-
fines high-dimensional word features into a low-dimen-
sional space, which allows machines to better understand 
words and their semantic relationships. Normally, a 
300-dimensional word vector balances computational 
efficiency and word information. By representing words 
as vectors, we can feed them into neural network models 
(such as BiLSTM or Bi-GCN) and train these models to 
recognize patterns across the 300-dimensional space.

Figure  10 shows that the proposed model outper-
formed the other comparative models. NovelTagging 
employs sequence labelling, which is unable to eliminate 
overlapping triples. As a result, it achieves the lowest F1 
scores compared to the other three models. The decod-
ing layer of GraphRel introduces the graph and enhances 
the knowledge extraction process. Thus, the F1-scores 
(55.2%) are slightly higher than NovelTagging (40.3%). 
The proposed model achieves F1-scores of 86.7% on 
the ceramic dataset, an improvement of 57.1% over the 

Table 3  Statistical overview of the ceramic dataset for 
knowledge graph completion

Category Entity-
relation 
triple

Training 6082

Validation 1738

Testing 869

Total 8689

Table 4  The parameters of knowledge extraction model

Parameters Rate

Learning rate 1e−5

Batch size 32

Epoch 18

Early stopping 5

Threshold of the subject tagger 0.5

Threshold of the relation-specific object tagger 0.4

Fig. 10  The comparative results of knowledge extraction
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GraphRel. Despite not having pre-training, the proposed 
model (Our Model BiLSTM) achieves an F1-score of 
82.2%, which improved by approximately 48.9% com-
pared to Multi-Head. The proposed model, which uses 
BERT pre-training, performed approximately 5.5% better 
than the proposed model with a BiLSTM encoder. As a 
result, the comparison demonstrates the proposed mod-
el’s superiority compared to NovelTagging and GraphRel.

Knowledge graph completion
This subsection evaluates the knowledge completion 
model proposed in Section  3.3 on the ceramic data-
set (Table  3). The performance assessment for knowl-
edge graph completion task was conducted utilizing the 
identical hardware and software configurations as those 
detailed in Section  3.3 for the knowledge graph extrac-
tion process (Fig. 11). The embeddings of entity and rela-
tion were generated using 100-dimensional word vectors 
generated by skip-gram of word2vec. In Fig. 12, words of 

greater relevance or the same type are close, which illus-
trates the effective capturing of semantic information of 
the words.

The knowledge completion model was trained using 
a ten-fold cross-validation method by first training the 
graph attention layer for encoding and then the Con-
vKB decoder for relation prediction. The parameters 
were determined using the validation set, as presented 
in Table 5. In order to prevent overfitting, the stochastic 
gradient descent algorithm with Adam as the optimizer 
was used for training. The proposed model was evaluated 
using commonly-used knowledge completion evaluation 
methods, including the average rank (MR) of 139, the 
average reciprocal rank (MRR) of 47.7%, and the Hits@1, 
Hits@3, and Hits@10 values of 41.7%, 49.9%, and 59.0%, 
respectively. The total training time is approximately 3 h. 
The training process is illustrated in Fig. 13, which shows 
that the loss value decreases as the training progresses 

Fig. 11  Test results of knowledge extraction
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and eventually stabilizes, indicating the robustness of the 
model.

A comparison was made with other outstanding 
models to evaluate the proposed knowledge comple-
tion model. The comparative models are as follows: 
TransE [45], ConvKB [48], and R-GCN [49]. As shown 

in Table  6, the proposed model outperforms TransE, 
ConvKB, and R-GCN. Specifically, R-GCN based on the 
graph convolutional neural network demonstrates poor 
knowledge completion performance, reflected in its low 
values across all five items. Although ConvKB based 
on the convolutional neural network shows the highest 
MR value, other results perform worse than the pro-
posed model. In contrast, the method presented in this 
study demonstrates relatively stable and robust results, 
with four items achieving the highest scores.

The knowledge graph application
The proposed framework and deep learning models were 
used in the case study to construct the ceramic knowl-
edge graph. This study employed Python 3.6, PyTorch 2.7, 
CUDA 10.1, Neo4j Graph database, and SQL Server. The 
study was conducted using Ubuntu 16.04 and Windows 
10 operating systems using a CPU I7 7700K and a GPU 
1080Ti 11 G. The Flask web framework was employed to 
facilitate the automatic implementation of the knowledge 
extraction function, knowledge completion function, 
and the development of the cultural heritage knowledge 
graph. Initially, the relevant Flask classes were imported, 
and instances of these classes were created to serve as the 
foundation for the WSIG (Web Server Gateway Inter-
face) application. In addition, the instantiated object was 
utilised as a decorator. This allowed it to wrap another 
function and ultimately return a different function to 
the browser. In order to deploy the model, the configu-
ration of Gunicorn and Nginx was necessary. Following 

Table 5  The parameters of knowledge completion model

Category Parameters Rate

Attention layer Learning rate 1e−3

Weight decay 5e−6

Epoch 3600

Negative ratio 2

Dropout 0.3

Leaky ReLU 0.2

Filters None

ConvKB layer Learning rate 1e−5

Weight decay 1e−5

Epoch 200

Negative ratio 40

Dropout 0.0

Leaky ReLU None

Filters 500

Table 6  The comparative results of knowledge completion

Model MR MRR Hits@1 Hits@3 Hits@10

TansE 166 0.213 0.043 0.440 0.539

ConvKB 94 0.275 0.062 0.445 0.562

R-GCN 477 0.138 0.083 0.133 0.209

Our model 139 0.477 0.417 0.499 0.590

Fig. 12  Entity embedding visualization

Fig. 13  Training process of knowledge completion model
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the successful deployment of the knowledge extraction 
model and knowledge completion model, the function-
alities pertaining to knowledge extraction and knowledge 
completion within the cultural heritage domain were 
effectively realised. The ceramic knowledge graph was 
constructed with a technical architecture consisting of 
four layers: data infrastructure storage, knowledge graph 
architecture, knowledge graph service, and the knowl-
edge graph application (Fig. 14). The data infrastructure 
layer provides a relational database, knowledge-search-
ing functions, graph data, and a big data platform. The 
knowledge graph architecture layer produces and man-
ages the knowledge graph. The knowledge graph service 
layer supports semantic query and retrieval services, 
reasoning services, and knowledge production services. 
Finally, the knowledge graph application layer offers a 
platform for users to search, collect, compare, manage 
knowledge, etc. It is noticed that the process model train-
ing did not require a significant amount of computational 
resources.

The users of the ceramic knowledge graph applica-
tion can be diverse, ranging from academic research-
ers and students to cultural heritage professionals, 

policymakers, and the general public. Each group has 
unique needs and requirements. Academic researchers 
and students might utilise the ceramic knowledge graph 
as a tool for deepening their understanding of histori-
cal artefacts. Therefore, the primary need is a conveni-
ent and accurate representation of artefacts, contexts, 
and relationships. Cultural heritage professionals, such 
as museum curators and heritage site managers, might 
benefit from using the ceramic knowledge graph to cat-
alogue, organise, and manage collections. In addition, 
it would be beneficial to have features such as easy data 
editing, and robust searching. It is possible for policy-
makers to use the ceramic knowledge graph to inform 
their decision-making processes. It would be beneficial 
to them if the data could be visualised and interpreted 
easily. Public members may be interested in exploring 
the ceramic knowledge graph out of personal inter-
est or for informal learning purposes. Improving the 
user-friendliness and interactivity of the knowledge 
graph visualizations could facilitate more effective user 
engagement. Considering the diversity of user types, 
including cultural and museum researchers, students, 
and the general public, we have conducted a summary 

Fig. 14  The knowledge graph construction and application
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Fig. 15  The home pages of the ceramic knowledge graph
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of user scenarios for the main needs with expert advice, 
including searching, collection, comparison, manage-
ment, and detailed information.

In the knowledge graph application section, the inter-
face of the home page is discussed (Fig.  15). The home 
page provides a convenient and intuitive method for 
users to navigate through interconnected ceramics infor-
mation and images simply by left-clicking and dragging 
to alter the viewing scope. The knowledge graph appli-
cation represents ceramic information in a highly con-
nected and visually compelling format.

The search page allows users to search for specific 
terms such as ‘underglaze colour’ and ‘twig pattern’ 
(Fig.  16). Using a combination of entity-relation triple 
extraction and text-matching, this model identifies enti-
ties and relations from the input sentences and matches 
related knowledge with those entities and relations. For 
instance, if a user queries ‘bottles with short neck and 
plump shoulder’, the knowledge graph application plat-
form will identify the entities ‘short neck’ and ‘plump 
shoulder’. It will match them with related bottles, such 
as ‘Yongzheng style bucket colour wrapped branch pat-
tern plum bottle’ and ‘Blue and white wrapped branches 
flower plum bottle’. The result is a visual representation of 
associated cases, enabling users to acquire information in 
a relational, visual, and intuitive way.

The collection, comparison, and management page 
helps users to obtain detailed ceramic information 
(Fig.  17). The knowledge graph visualisation indicates 
related entities and relationships by clicking on a text or 
picture. The collection, comparison, and management 
page allows users to learn more through the ceramic 
knowledge graph visualisation, such as ‘round belly’, 
‘enamel’, ‘bottle’, and ‘flower’. Compared with other cul-
tural heritage knowledge acquisition and management 
methods, the knowledge graph visualisation presents 
information in an interconnected, visual, and intuitive 
way.

The detailed analysis page allows users to obtain fur-
ther decomposed information (Fig.  18). It is possible to 
extract information about patterns, functional types, 
colours, glaze classifications, and shapes using the joint 
entity-relation triple extraction model of the knowledge 
graph.

This case study illustrates the effectiveness of the 
knowledge graph application in acquiring ceramic 
knowledge for researchers focused on intangible cul-
tural heritage. The knowledge graph application pro-
vides a visual representation of interconnected ceramic 
knowledge. It allows automatic entity and relation extrac-
tion, knowledge graph completion, relevant knowledge 
matching, and visualised case correlations. The ceramic 
knowledge graph application streamlines the process of 

acquiring ceramic knowledge, making it a valuable tool 
for researchers in digital cultural heritage management.

Discussion
The knowledge graph application for digital cultural 
heritage management
The application of knowledge graph has many benefits, 
including enhanced search and discovery, improved 
interpretation and storytelling, facilitated collabora-
tion and data integration, increased accessibility and 
inclusivity, and better preservation and conservation as 
follows (Table 7). 

(1)	 Enhanced search and discovery: The knowledge 
graph application enables museums to provide 
more accurate and personalised search results, 
improving the overall user experience. For example, 
museums have implemented a knowledge graph-
based search engine that allows users to search for 
artefacts by different criteria, such as materials, 
periods, and regions, and obtain a visual represen-
tation of the search results. Additionally, the knowl-
edge graph application play a significant role in 
managing cultural heritage data by organising and 
categorising vast amounts of information, aiding in 
efficient data retrieval and exploration.

(2)	 Improved interpretation and storytelling: The 
knowledge graph application helps museums pre-
sent their collections more engagingly by con-
necting different artefacts and their contexts. For 
example, museums use a knowledge graph to cre-
ate digital stories that illustrate the life and work of 
Vincent van Gogh. By incorporating cultural her-
itage data into knowledge graphs, museums can 
effectively showcase the historical significance and 
narratives associated with each artefact, enhancing 
the interpretive experience for visitors.

(3)	 Facilitated collaboration and data integration: The 
knowledge graph application enables museums to 
share and integrate their data more efficiently inter-
nally and with external partners. This capability is 
particularly beneficial in managing cultural herit-
age data, as it allows for the seamless integration of 
diverse information sources related to art history, 
including archives, catalogues, and bibliographies.

(4)	 Increase accessibility and inclusivity: The knowl-
edge graph application can help museums to pro-
vide more inclusive and accessible experiences 
for visitors with different backgrounds and inter-
ests. For example, museums create a knowledge 
graph that allows users to explore their collections 
through different keywords, such as colour, glaze, 
and shape. By incorporating knowledge graphs in 
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Fig. 16  The searching pages of the ceramic knowledge graph
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the management of cultural heritage data, museums 
can foster collaboration between different stake-
holders and ensure comprehensive access to valu-
able information.

(5)	 Better preservation and conservation: The knowl-
edge graph application can help museums manage 
their collections more efficiently and effectively by 
providing a more comprehensive and intercon-
nected view of the objects and their metadata. For 
example, museums develop a knowledge graph that 
incorporates information about the physical and 
chemical properties of their artworks and their his-
torical and cultural contexts to support preserva-
tion and conservation efforts.

The knowledge graph application assists in the organisa-
tion and management of cultural heritage data, enabling 
museums to better understand the relationships between 
artefacts, make informed decisions regarding conservation 
methods, and ensure the long-term preservation of cultural 
heritage for future generations.

Fig. 17  The pages of collection, comparison, and management for ceramic treasures
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Limitations of knowledge graphs for digital cultural 
heritage management
Although the knowledge graphs significantly improves 
digital cultural heritage management, there are some lim-
itations could be addressed.

The first limitation is the ceramic knowledge graph 
platform requires a lot of labelled data. As with any 
machine learning model, the quality of the results 
depends on the quantity and quality of the data used to 
train the model. A substantial amount of labelled data is 
required to be processed into the knowledge extraction 
model and the knowledge completion model so that they 
can recognise and predict entities and relations within 
the ceramic domain.

The second limitation is the incompleteness of the 
existing ontology framework compared with CIDOC 

CRM. The ontology framework used in the knowledge 
graph platform may only partially capture some of the 
nuances and complexities of the ceramic domain. This 
could limit the accuracy and completeness of knowl-
edge representation. Because of this limitation, it may 
be necessary to modify the ontology framework to make 
it more aligned with the ceramic domain and provide a 
more comprehensive representation of knowledge in the 
ceramic domain.

The third limitation is the requirement for more data 
verification and testing in ceramics or other tangible and 
intangible cultural heritage. While the ceramic knowl-
edge graph application has shown promise in providing 
visualised and interconnected ceramic knowledge, its 
effectiveness and accuracy in different cultural heritage 

Fig. 18  The detailed pages of ceramic treasures
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domains may require further testing and verification. 
More research should be explored to show the feasibility 
of applying knowledge graphs and proposed deep learn-
ing models to other heritage resources, such as textiles, 
paintings, and sculptures.

Despite the benefits of the knowledge graph application 
in managing digital cultural heritage, there is a clear defi-
ciency in robust user testing or evaluation in this study. 
However, user testing often falls short in practice due to 
constraints like time, cost, or availability of representative 
user groups. To address this, a comprehensive framework 
for user testing that can accommodate the diversity of the 
user population, along with regular user feedback cycles, 
should be adopted to continually refine and improve the 
system.

The final limitation is the dependence of the model 
on textual data. Though integrating machine learning 
techniques for multimedia data analysis can enhance 
knowledge graphs, it adds complexity to the process. It 
necessitates significant alterations to the current data 
pipeline, from multimedia data ingestion to feature 
extraction and potential schema restructuring. Despite 
these difficulties, further research into multimodal data 
integration and machine learning in knowledge graphs is 
critical.

Conclusion
Effective digital cultural heritage management is often 
hampered by fragmented data, intelligent framework and 
insufficient application, which poses challenges to access-
ing and utilising valuable cultural heritage information. 
This study proposes a digital cultural heritage manage-
ment approach that combines knowledge graphs and deep 
learning algorithms to address these issues. Specifically, a 
knowledge graph-driven framework is proposed to auto-
matically manage cultural heritage data, along with a joint 
entity-relation triple extraction model that extracts entities 
and relations for knowledge graph construction. The joint 
entity-relation triple extraction model uses an encoder 

based on the BERT to contextualise input sentences and 
extract entities and relations simultaneously through a 
cascade decoder, overcoming the challenge of overlapping 
triples in the knowledge extraction of cultural heritage. 
Additionally, a knowledge completion model with graph 
attention is proposed to complete missing knowledge. The 
results demonstrate that the proposed joint entity-relation 
extraction model and knowledge completion model out-
perform well-known models. The proposed approach 
was validated by a case study of ceramic data at the Palace 
Museum in China, which significantly enhances search 
and discovery, improves interpretation and storytelling, 
facilitates collaboration and data integration, and increases 
accessibility, inclusivity, and preservation.

Future work will address the completeness of the ontol-
ogy framework in the cultural heritage domain. The pro-
posed approach will involve further validation using a wide 
range of cultural artefacts. Future implementations should 
also include user evaluation. Additionally, it will be crucial 
to incorporate multi-modal data, such as audio, video, and 
image files, so as to capture a more complete representa-
tion of cultural heritage.
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