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A B S T R A C T   

Optimization of ship energy efficiency is an efficient measure to decrease fuel usage and emissions in the 
shipping industry. The accurate prediction model of ship energy usage is the basis to achieve optimization of ship 
energy efficiency. This study investigates the sequential properties of the actual voyage data from a VLOC. On 
this basis, a model for predicting ship energy consumption is established by adopting a LSTM neural network that 
has better prediction performance for sequential datasets. To further enhance the performance of the established 
LSTM-based model, the network structures and hyperparameters are optimized by using Genetic Algorithm. 
Lastly, the application analysis is conducted to validate the established GA-LSTM-based model for ship fuel usage 
prediction. The established model for ship energy usage shows a significant improvement in prediction accuracy, 
compared to the original LSTM-based model. Meanwhile, the developed prediction model is more accurate than 
the existing BP, SVR, and ARIMA-based energy consumption models. The prediction errors for the ship’s oper-
ational energy efficiency adopting the established GA-LSTM-based model can reach as low as 0.29%. Therefore, 
the established model can effectively predict the ship fuel usage under different conditions, which is essential for 
the optimization and improvement of ship energy efficiency.   

1. Introduction 

Water transport plays a critical role in promoting economic pros-
perity, because around 90% of worldwide trade is carried out via 
maritime transportation [1]. However, as much as 1.4 billion tons of 
CO2 are released by the global shipping industry in 2020, making up 
nearly 6% of the total global CO2 emissions. By 2050, yearly CO2 
emissions from shipping would account for 18% of the total world 
emissions if no actions are taken [2–4]. The IMO has continuously 
proposed indexes for assessing energy efficiency levels of ships, 
including the EEOI, EEXI, and CII, and also proposed some measures for 
improving energy efficiency, aiming to cut down CO2 emissions [5–7]. 

The optimization of energy efficiency has been identified as a key 
measure to effectively mitigate carbon emissions from ships [47–49]. 
The improvement of ship energy efficiency is largely influenced by the 
forecast precision of the ship energy usage. Consequently, the accurate 

and well-performed model for ship fuel usage prediction is crucial to 
enhancing the ship’s operational energy efficiency. The models for 
estimating ship fuel usage are frequently divided into two categories: 
artificial intelligence-based black box models and mechanism-based 
white box models [8–10]. Due to the high uncertainty of the influ-
encing factors of ship energy consumption and the complexity of the 
navigational environments, the mechanism models based on the 
empirical formulae usually have low model accuracy and weak adapt-
ability to variable navigation environments. The artificial intelligence 
technology promotes the progress of black box models based on big data 
learning. With big data on ship fuel consumption and navigation envi-
ronment information, the prediction model of ship fuel usage adopting 
machine learning and intelligent algorithm based on the real ship 
operation data has shown certain advantages and has attracted exten-
sive research and attention [11–13]. Pagoropoulos et al. [14] investi-
gated ship performance evaluation by using a support vector machine 
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(SVM) and validated the proposed method through a study case analysis. 
Gkerekos et al. [15] employed the SVM, the random forest regressors 
(RFR), and the artificial neural network (ANN)-based models by using 
noon report data and the Automatic Data Logging & Monitoring system 
(ADLM), in order to achieve the prediction of ship main engine energy 
usage. Wang et al. [16] carried out feature screening and compression of 
ship energy consumption data by using Ridge Regression (RR) and the 
Least Absolute Shrinkage Selection Operator (LASSO), and then estab-
lished an energy consumption prediction model. In addition, Hu et al. 
[17] developed a forecast model for ship energy usage through the 
emerging algorithm XGBoost based on the energy usage data. On this 
basis, Bayesian optimization was adopted to optimize its 
hyper-parameter value and a better prediction performance is obtained. 
Yang et al. [18] presented a grey box model for estimating ship energy 
consumption through adopting GA, which can effectively achieve the 
forecast of ship energy usage. Jeon et al. [19] developed a multilayer 
ANN-based model for predicting the energy usage of marine engines, 
and investigated the impact of various hidden layers, and neuronal 
density levels on the performance of the established forecast model. In 

Fig. 1. The acquisition process of data related to ship fuel usage.  

Table 1 
The data acquisition methods.  

Parameters Sensor Location Diagram 

Sailing speed and 
position 

GPS Bridge 

Navigation mileage Ship log Bridge 

Shaft power Shaft power 
sensor 

Main shaft 

Fuel consumption Fuel-flowmeter Fuel 
pipeline 

Table 2 
The partly obtained data related to fuel usage of the ship.  

Trim 
/(◦) 

Heel 
/(◦) 

Wind speed 
/(m/s) 

Wind direction 
/(◦) 

Sailing speed 
/(kn) 

Sailing direction 
/(◦) 

Wave height 
/(m) 

Fuel consumption/(m3/10 min) 

− 0.2 − 0.1 1 58 11.9 38 0.820 0.39 
− 0.1 − 0.1 0.5 93 11.7 36 0.817 0.37 
− 0.2 0 3.3 57 11.8 37 0.816 0.39 
− 0.2 0 2.5 357 11.6 37 0.818 0.40 
− 0.2 0 1.8 348 11.7 38 0.822 0.44 
− 0.1 0 3.4 0 11.9 37 0.830 0.47 
0 0 3.5 277 11.9 38 0.839 0.51 
… … … … … … … … 
− 0.2 − 0.1 4.3 340 12.2 38 0.859 0.37 
− 0.4 0 1.8 357 12.3 38 0.877 0.39 
− 0.3 0 1.3 15 11.8 37 0.894 0.38  
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addition, the multilayer perceptron (MLP) was utilized to achieve the 
ship propulsion power prediction by integrating the AIS, ship perfor-
mance, and meteorological data [20]. 

The continuously collected large amount of ship energy consumption 
data gives a wealth of information for the development of the prediction 
model. In dealing with large samples and multi-dimensional data, the 
adoption of neural network technology has more advantages for the 

prediction models establishment. A well-performed prediction model of 
ship fuel usage was successfully created by using an ANN to learn noon 
report data, which confirmed the viability of developing the fuel usage 
model by learning the real operational data [21]. Hu et al. [22] estab-
lished the energy consumption model by using the ANN and Gaussian 
process regression, and compared the effectiveness of the prediction 
models. The findings of the experiment demonstrated that the fuel usage 
of ships is obviously affected by the maritime environment. To effec-
tively predict the ship energy consumption considering multiple influ-
encing factors, Yan et al. [23] investigated a BP-based ship energy 
efficiency model. Additionally, Shen et al. [24] proposed a Deep Belief 
Network (DBN)-based ship energy consumption prediction model by 
taking into account diverse marine meteorological circumstances, which 
can dynamically forecast ship fuel usage under time-varying sea envi-
ronments. The Convolutional Neural Networks (CNNs) were also used to 
assess ship performance based on the navigation data from a sizable 
shipping database [25]. Moreover, Wang et al. [26] proposed to forecast 
short-distance operational circumstances of cruise ships through the 
wavelet transform neural network, and established an optimization 
model of ship fuel usage to ensure the ship running at the optimal state 
when encountering various working conditions, thus to reduce the 
amount of fuel usage. Lee et al. [27] adopted a deep feed-forward neural 
network (DFN) to develop a model for ship power prediction by learning 
the navigational environment information and ship operation data. The 
established DFN-based model shows better prediction performance 
when compared to the MLR and SVR-based models. Alonso et al. [28] 
established a diesel engine emission prediction model by adopting ANN 
neural network. On this basis, the genetic algorithm (GA) is used to 
optimize the settings of diesel engine parameters according to the 

Fig. 2. The sequential distribution characteristics of ship fuel consumption.  

Fig. 3. The spatiotemporal distribution characteristics of wind speeds.  
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Fig. 4. The spatiotemporal distribution characteristics of wind directions.  
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prediction results of the ANN model to reduce the fuel consumption and 
emissions of the diesel engine. 

Despite extensive research on the prediction of fuel consumption, it 
is still a challenge to achieve accurate prediction of ship fuel con-
sumption due to the reasons: a) the ship is a complex big system and the 
energy consumption is influenced by multiple dynamic factors; b) those 

factors are usually complex and ever-changing, and has obvious 
sequential characteristics, making it hard to achieve accurate prediction 
of ship fuel consumption. To the best of our knowledge, there is still a 
lack of methods that has strong power for learning the complex ship 
energy consumption data with obvious sequential characteristics. The 
precision of the energy usage prediction model needs to be further 
enhanced. To close this research gap, we propose to the LSTM, which 
can solve the difficulty of predicting sequential data and can reflect 
influence of the previous input data on the latter input data, to achieve 
accurate prediction of ship energy consumption. LSTM is one particular 
kind of RNN, which is proposed to solve the difficulty of predicting 
sequential data and can reflect influence of the previous input data on 
the latter input data. LSTM has widespread applications in ship trajec-
tory, navigational environment, and energy consumption prediction 
[29–31]. Yuan et al. [32] proposed a method for dynamical forecast of 
fuel consumption rate of the ship by adopting the LSTM network, which 
considers effects of navigational state and environments including water 
depth, wind speed, and wind direction. The experimental results 
demonstrated that the established model performs better than the 
regression-based models and the RNNs-based models. Zhu et al. [33] 
also developed a forecast model of ship fuel usage by using the 
LSTM-based method. The study results demonstrated that the precision 
of the established prediction model can be increased by 11.8% when 
compared to the traditional ANNs-based model. However, the structures 
and parameter settings of the LSTM-based model have a certain influ-
ence on the prediction performance when establishing the LSTM-based 
energy consumption model [34–36]. Therefore, selecting the optimal 
parameters is of great significance to enhance the forecast performance 
and generalization ability of the LSTM-based prediction model. The 
hyperparameter settings and network structure selection in the previous 

Fig. 5. The spatiotemporal distribution characteristics of wave heights.  

Fig. 6. The correlation analysis of the parameters related to ship fuel 
consumption. 

K. Wang et al.                                                                                                                                                                                                                                   
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studies are mainly based on empirical trial-and-error, which would 
weaken the forecast performance of the LSTM-based model for ship fuel 
usage prediction. In recent years, some researchers have tried to adopt 
different optimization algorithms for hyperparameter selection, among 
which the genetic algorithm (GA) has the advantages of strong 
merit-seeking ability and easy implementation, and has been widely 
used in the optimization of neural networks and has achieved good 
optimization results [37, 38]. Therefore, a forecast method for the ship 

energy usage based on the LSTM neural network with hyperparameters 
(such as the number of neural network lays, the number of neurons per 
layers, and the number of samples passed to the program for training in a 
single pass Batch_size) and network structure optimized by GA is 
investigated, to further enhance the forecast performance and general-
ization ability of the ship energy consumption model. 

In summary, the main innovations and contributions of this research 
work mainly include: 1) A LSTM network, which is more suitable for 

Fig. 7. The framework of the GA-LSTM-based model for ship fuel usage forecast.  

Fig. 8. The cell logic structure of the LSTM network.  
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dealing with sequential datasets related to ship fuel usage, is utilized to 
develop the model for predicting ship fuel consumption; 2) The GA is 
proposed to tune the parameters and structures of the LSTM neural 
network in terms of the number of network layers and neurons, and 
finally a GA-LSTM-based energy consumption prediction model is 
developed according to the GA optimization results. The established GA- 
LSTM-based energy consumption model, which fully considers the in-
fluence of parameters including ship trim, heel, navigational environ-
ments, and sailing speed, shows a better performance than the BP, 

support vector regression, and ARIMA-based models that have been 
adopted for the fuel consumption prediction in the above-mentioned 
researches. The case study results show that the prediction error can 
be improved by up to 15.6% in terms of MSE for the GA-LSTM-based 
energy consumption model, when compared with the original LSTM 
neural network. The established GA-LSTM-based model can describe 
and predict the ship fuel usage under various conditions more accurately 
and rapidly than the existing methods, which is critical for fuel usage 
optimization and carbon emissions control, and thus contributing to the 
decarbonization of the shipping industry. 

This paper’s remaining parts are structured as follows: the data 
acquisition method and the voyage data characterization analysis are 
investigated in Section 2. Then, a GA-LSTM-based prediction model of 
ship energy consumption is built in Section 3. An application analysis of 
the established GA-LSTM-based fuel consumption prediction model, 
including the comparative analysis of different prediction algorithms 
and the prediction analysis of the ship’s operational energy efficiency, is 
investigated in Section 4. Lastly, Section 5 concludes the study and 
prospects future research work. 

Fig. 9. Working schematic of the Dropout layer.  

Fig. 10. The implementation processes of the GA algorithm.  

Table 3 
Comparison of LSTM neural networks trained with different optimizers.  

Items Adam SGD RMSprop Adagrad Adadelta Adamax Nadam 

MAE 0.0353 0.1075 0.0349 0.1051 0.0408 0.0384 0.0511 
RMSE 0.0512 0.1266 0.0536 0.1285 0.0590 0.0553 0.0679  

Fig. 11. Comparative analysis errors of different optimizers.  
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2. Acquisition and analysis of the data related to ship fuel usage 

2.1. Data acquisition and pre-processing 

The parameters influencing ship energy consumption include the 
ship’s operational information (including ship trim, heel, sailing speed, 
and sailing route), and the navigational environment factors. The data 
acquisition system receives the related data through corresponding 
sensors, and then sends and stores them to the onboard database and the 
shore-based database. On this basis, the obtained data can be displayed 
through the onboard and shore-based energy consumption management 
system, as given in Fig. 1. In addition, the acquisition methods of data 
related to ship fuel usage are given in Table 1. 

The data on the trim, heel, sailing speed, sailing route, and the ma-
rine main engine fuel consumption is obtained from the corresponding 
onboard sensors, while the navigational environment information is 
acquired from the European Centre for Medium-Range Weather Fore-
casts (ECMWF). The wind speed and wind direction is obtained though 
the vector operation based on the ECMWF environmental data. Based on 
the data analysis of trim, heel, navigational environments, sailing speed, 
sailing direction, wave height, as well as the marine engine fuel usage, 
the mapping relation between the amount of fuel usage and the multiple 
influencing factors can be analyzed. On this basis, the model for ship 
energy usage forecast can be established and the effective prediction and 
evaluation of ship fuel usage can be achieved. 

Due to the different time scales for the collected fuel consumption 
data and the navigation environment data acquired from the meteoro-
logical center. It is necessary to conduct the data pre-processing. Firstly, 
daily 0:00 is taken as the data recording point, and every 10 min of main 

engine fuel consumption data was transformed into hourly ship fuel 
consumption data. Meanwhile, according to GPS data and the ECMWF 
environmental data, the cubic B-spline interpolation, which has good 
numerical computational performance and controllability [39], is uti-
lized to make the frequency of meteorological and sea state data 
consistent with the frequency of data collected by the real ship. In 
addition, due to the abnormal values and noise in the collected data, the 
cleaning of the obtained data, including the processing of missing and 
abnormal navigation environment and ship energy consumption data 
caused by weather and equipment problems are conducted, to guarantee 
the precision of the established prediction model and the effectiveness of 
the fuel usage prediction analysis. After those data processes, the ob-
tained data related to ship fuel usage is partly given in Table 2. 

2.2. The characteristics analysis of the data related to ship fuel usage 

To know well the distribution characteristics of ship energy con-
sumption and then develop a more effective model for predicting ship 
fuel usage, the characteristics analysis of ship energy efficiency data is 
carried out. The obtained distribution characteristics of ship fuel usage 
are shown in Fig. 2, and the distribution characteristics of the naviga-
tional environments, including wind speeds, wind directions, and wave 
heights, are shown in Figs. 3–5, respectively. As shown from the analysis 
results, both meteorological data and ship energy efficiency data have 
certain sequential characteristics, namely the value of the previous 
moment’s data has an impact on the value of the subsequent moment’s 
data. In addition, those parameters have obvious differences at different 
times and locations. 

To further understand the association between the ship’s fuel usage 

Fig. 12. The network training and optimization processes of the prediction model.  

K. Wang et al.                                                                                                                                                                                                                                   
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and the multiple influencing parameters, a statistic analysis is conducted 
[40]. The association relationships are illustrated in Fig. 6, in which the 
values mean the association degree between the corresponding two 
parameters. 

As it can be seen from the correlation analysis results, the naviga-
tional environment factors have a certain effect on the navigation speed, 
which in turn affects fuel usage of the ship. Hence, the complex navi-
gational environment has a strong correlation with the ship’s fuel usage. 
The statistical analysis of the ship’s fuel usage and its multiple influ-
encing parameters is significant for developing the model for ship fuel 
usage forecast. 

3. The GA-LSTM-based model for ship fuel usage forecast 

According to the characteristics analysis of the data related fuel 
usage of the ship, a GA-LSTM-based model for ship fuel usage forecast 
could be established. The framework of the established GA-LSTM-based 
model for ship fuel usage forecast is given in Fig. 7, which mainly consist 
of navigation data acquisition, data processing, model training, and 
energy consumption prediction. Among others, the model training part 
based on the GA-LSTM is the key to developing the model for ship fuel 
usage forecast. 

Fig. 13. The diagram of the research objective and the sailing routes.  

Table 4 
The parameter setting for the GA algorithm [34].  

Parameters Population 
size 

Iteration 
number 

Crossover 
rate 

Mutation 
rate 

Values 10 5 0.5 0.5  

Table 5 
The parameter setting for the GA-LSTM neural network.  

Parameters Values 

Epoch 300 
Optimizer Adma 
Loss function mean_squared_error 
Layers [1,3] 
Number of neurons [32, 256] 
Batch_size [50, 100] 
Drop_out rate 0.2  

Table 6 
Fundamental details of the target ship.  

Items Parameter Items Parameter 

Length 327 m Design speed 14.5 kn 
Depth 29 m Number of blades 5 
Width 55 m Diameter of propeller 9.7 m 
Deadweight 297,959 t Engine rated power 19,000 kW 
Draft 21.4 m Engine rated speed 73 rpm  

Table 7 
Detailed information of different voyages.  

Date of the voyage Departure Destination Cargo 
(t) 

Distance (n 
mile) 

2016/07/22–2016/ 
09/09 

Tubarao Zhoushan 292,898 10,988 

2016/01/30–2016/ 
03/04 

Singapore SaoLuis, Ma 113,174 9,709 

2016/03/04–2016/ 
04/28 

Sao Luis, 
Ma 

Caofeidian 288,527 12,570  

K. Wang et al.                                                                                                                                                                                                                                   
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3.1. The construction of LSTM neural network 

The LSTM was developed primarily to address gradient disappear-
ance and gradient explosion issues for the training of long data se-
quences [41]. The inputs of the model include ship’s operational 
information and navigational environment factors (such as wave height, 
wind speed and direction). Compared to other neural networks, the 
LSTM is more suitable to deal with problems that have sophisticated 
multi-input variables [42, 43]. The logic structure of the LSTM cell in 
Fig. 7 is illustrated in Fig. 8 in detail. A single LSTM cell consists of two 
memory state quantities namely Ct and ht, three state control gates 
(namely, the input, forget, and output gate), and the input xt at moment 
t, which can make RNN have the ability of long-term memory by adding 
state control gates. 

The forget gate determines how much information of the previous 
moment memory cell state Ct-1 is kept in the current moment memory 
cell state Ct. The input gate determines how much information of the 
current moment network input xt is imported to Ct, and the output gate 
determines the amount of information from Ct that is given to the next 
moment hidden layer ht. 

The mathematical expression of the forget gate is shown in Eq. (1). 

ft = sigmoid
(
Wf ⋅ [ht− 1, xt] + bf

)
(1)  

where, Wf and bf represent the forget gate cycle weight and bias, 
respectively; xt denotes the input at moment t; ht-1 denotes the memory 
state quantity at the previous moment t-1. 

In addition, the mathematical expression of the input gate is given in 
Eq. (2). 

it = sigmoid(Wi⋅[ht− 1, xt] + bi)

C̃t=tanh(Wc⋅[ht− 1, xt] + bc)
(2)  

where, Wi, Wc, bi, and bc represent the input gate cycle weights and 
biases, respectively. 

Moreover, the mathematical expression of the output gate is shown 
in Eq. (3). 

Ot = sigmoid(Wo⋅[ht− 1, xt] + bo)

ht = Ot⋅tanh(Ct)
(3)  

where, Wo and bo represent the output gate cycle weight and bias, 
respectively; Ct denotes the memory state quantity. 

The final outputs of the LSTM cell are shown in Eq. (4). 

Ct = ft⋅Ct− 1 + it⋅C̃t (4) 

The LSTM neural network corrects the weight values within the 
network by forward-passing and back-propagation mechanisms until the 
network converges. 

The established LSTM network consists of the input layer, LSTM 
layer, Dropout layer, and the fully connected layer. In addition, to avoid 
the overfitting phenomenon that would weaken the forecast perfor-
mance and accuracy of the established model, a Dropout layer is im-
ported to the LSTM layer and the fully connected layer. Its working 
principle of the Dropout layer is illustrated in Fig. 9. The core idea is to 
make part of the neurons stop working during training and save different 
neurons in each learning process, so that the model can be less depen-
dent on certain local features and avoid the overfitting phenomenon. 

According to the principles of the LSTM neural network, the struc-
tures and parameter settings would have a certain influence on the 
prediction performance of the established energy consumption model. 
Therefore, it is necessary to optimize the structure and parameters, 
including the number of neural network lays, the number of neurons per 
layers, and the number of samples passed to the program for training in a 
single pass Batch_size, in order to improve the prediction performance of 
the network. 

3.2. The implementation processes of the genetic algorithm 

GA is a stochastic algorithm that replicates natural selection and the 
genetic mechanism of biological evolution [44]. The GA represents the 
solution of the problem as the survival process of chromosomes, and 
ultimately acquires the optimal solutions of the problem through 
continuous evolutions of chromosome populations. At the same time, 
the GA has the advantages of strong merit-seeking ability and easy 
implementation [18]. Based on those advantages, the GA is adopted to 
optimize the hyperparameters of the LSTM neural network, which 
include the number of network layers, the number of network neurons 
per layer, and Batch_size. The main implementation processes of the GA 
include encoding, generating the initial population, fitness evaluation, 
selection, crossover, and mutation, as illustrated in Fig. 10. 

3.3. GA-LSTM-based model establishment for ship fuel usage prediction 

The hyperparameters would influence the fitting accuracy of the 
LSTM network to some extent, and thus it is essential to achieve the best 
hyperparameters’ values, which are suitable for data with different 
characteristics. However, there is currently no mature theory to obtain 
suitable values of hyperparameters. Therefore, a comparative analysis 
method and the GA optimization method are adopted to get the best 
network hyperparameter values of the LSTM in this paper. The optimizer 
of the LSTM is chosen by using a comparative analysis method, and the 
GA is used to tune the parameters in terms of the amount of network 
layers, neurons, and the Batch_size of the LSTM network. 

The optimizer is mainly used to adjust the weights and biases in the 
neural network, thus obtaining the minimal loss function value and 
improving the model accuracy. In the Tensorflow framework of the 
Python Environment, the neural network optimizers mainly include 
Adam, SGD, RMSprop, and Adagrad. However, there are currently no 

Table 8 
The optimized parameters of the GA-LSTM neural network.  

Study case Parameters Values 

Case 1: Tubarao to 
Zhoushan 

Epoch 300 
Optimizer Adma 
Loss function mean_squared_error 
Layers 3 
Number of neurons in the first 
layer network 

199 

Number of neurons in the second 
layer network 

44 

Number of neurons in the third 
layer network 

186 

Batch_size 60 
Drop_out rate 0.2 

Case 2: Singapore to Sao 
Luis, Ma 

Epoch 300 
Optimizer Adma 
Loss function mean_squared_error 
Layers 3 
Number of neurons in the first 
layer network 

115 

Number of neurons in the second 
layer network 

169 

Number of neurons in the third 
layer network 

262 

Batch_size 60 
Drop_out rate 0.2 

Case 3: Sao Luis, Ma to 
Caofeidian 

Epoch 300 
Optimizer Adma 
Loss function mean_squared_error 
Layers 3 
Number of neurons in the first 
layer network 

197 

Number of neurons in the second 
layer network 

128 

Number of neurons in the third 
layer network 

166 

Batch_size 50 
Drop_out rate 0.2  

K. Wang et al.                                                                                                                                                                                                                                   
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Fig. 14. The obtained prediction results of ship fuel usage.  
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specific methods to select the appropriate optimizer, which is generally 
made through experimental comparison or experience. For the selection 
of the best optimizer for training LSTM neural networks, the mean ab-
solute error (MAE), and root mean square error (RMSE) are taken as the 
selection indexes, which can be calculated by Eq. (5) and Eq. (6), 
respectively. 

MAE =
1
m

∑m

i=1
|̃yi − yi| (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑n

i=1
(yi − ỹi)

2

√

(6)  

where, ỹi and yi denotes the predicted and real value, respectively. 
The forecast results by using different optimization functions to train 

the established LSTM network are given in Table 3. The comparison of 
the errors of different optimization functions is illustrated in Fig. 11. 
From the comparative analysis results, the Adam algorithm has better 
prediction accuracy, and thus it is chosen as the optimizer of the 
established GA-LSTM network. 

In addition, the learning and optimization processes of the LSTM 
network improved through the GA are illustrated in Fig. 12, which 
specifically include the following steps: 

Step 1. Preprocess the data used for training the GA-LSTM network, 
including the abnormal data cleaning, and data standardization. 

Step 2. Initialize the genetic algorithm parameters by setting the size 
of populations, number of iterations, crossover rate, and variation rate, 
as shown in Table 4. 

Step 3. Iteratively optimize the Batch_size, the amount of layers in the 
hidden layer, and neural units in the hidden layer by adopting the GA, as 
shown in Table 5. 

Step 4. Determine the network structure and hyperparameter settings 
of the LSTM according to the GA optimization results. The forecast error 
in terms of MAE of the GA-LSTM network is taken as the fitness function. 
Finally, an optimal network is developed by referring to the individual 
fitness value. 

In addition, five error evaluation indexes, including the coefficient of 
determination (R2), RMSE, mean relative error (MRE), mean square 
error (MSE), and MAE, are adopted to evaluate the forecast accuracy of 
the established GA-LSTM-based model. The R2, MRE, and MSE are 

Table 9 
Accuracy analysis of the GA-LSTM-based prediction model.  

Study cases Items MSE RMSE MRE MAE R2 

Case 1: Tubarao 
to Zhoushan 

Train 
dataset 

0.0009 0.0296 0.0076 0.0190 0.9860 

Test 
dataset 

0.0012 0.0346 0.0081 0.0201 0.9798 

Case 2: 
Singapore to 
Sao Luis, Ma 

Train 
dataset 

0.0005 0.0214 0.1132 0.0123 0.9576 

Test 
dataset 

0.0007 0.0265 0.0171 0.0126 0.9472 

Case 3: Sao Luis, 
Ma to 
Caofeidian 

Train 
dataset 

0.0007 0.0276 0.1132 0.0192 0.9781 

Test 
dataset 

0.0012 0.0346 0.0096 0.0244 0.9642 

The values with 4 decimals after rounding. 

Fig. 15. Case 1: The prediction scatters diagram of the GA-LSTM-based fuel usage prediction model.  

Fig. 16. Case 2: The prediction scatters diagram of the GA-LSTM-based fuel usage prediction model.  
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shown in Eqs. (7)-(9). 

R2 = 1 −

∑

i
(ỹi − yi)

2

∑

i
(yi − yi)

2 (7)  

MSE =
1
m

∑m

i=1
(ỹi − yi)

2 (8)  

MRE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
ỹi − yi

yi

⃒
⃒
⃒
⃒ (9)  

where, ̃yi, yi and, yi denotes the predicted, real value and average value, 
respectively. 

4. Application analysis of the GA-LSTM-based fuel usage 
prediction model 

4.1. Study case introduction 

A Very Large Oil Carrier (VLOC) transporting iron ore between China 
and Brazil is taken as the research objective. The ship’s primary tra-
jectory traverses the South China Sea, the Indian Ocean, and the Atlantic 
Ocean. The research objectives in terms of the ship and the sailing routes 
are shown in Fig. 13. 

A total of three voyages were taken as the study cases to validate the 
effectiveness of the established prediction model. Case 1 is the voyage 
from Tubarao to Zhoushan with a cargo capacity of 292,898 tons and 
with the sailing distance of 10,988 n miles. Case 2 is the voyage from 
Singapore to Sao Luis, Ma, with a cargo capacity of 113,174 tons and a 
voyage distance of 9709 n miles. Case 3 is the voyage from Sao Luis, Ma 
to Caofeidian with a cargo of 288,527 tons and a voyage distance of 
12,570 n miles. In addition, the detailed information of the target ship 
and the different voyages are given in Table 6 and Table 7, respectively. 

4.2. Analysis of prediction results on the ship fuel usage 

Case studies are conducted to demonstrate the established GA-LSTM- 
based ship energy consumption model. The types of data used to train 
the model include: trim, heel, wind speed, wind direction, sailing speed, 
sailing direction, wave height and hourly fuel consumption. Where 
hourly fuel consumption is used as the model output and other data are 
used as the inputs of the established model. To eliminate the effect of 
data dimension and enhance computational performance, the data is 
normalized to enable the model to obtain valid prediction results. In 
addition, the data set is split in an interleaved manner when splitting the 
data set. After data preprocessing, the Case 1 has a total of 1,048 pieces 
of navigation data, Case 2 has a total of 863 pieces of navigation data, 

and Case 3 has a total of 1,450 pieces of navigation data. Based on the 
information of the research objectives, the prediction analysis of ship 
fuel usage is carried out by using the established GA-LSTM-based pre-
diction model. The obtained parameters of the LSTM model optimized 
by the GA algorithm are shown in Table 8. The obtained prediction re-
sults of ship fuel usage based on the GA-LSTM are given in Fig. 14, and 
the forecast errors of the established GA-LSTM-based model are shown 
in Table 9. Additionally, the prediction scatters diagrams of the GA- 
LSTM-based fuel usage prediction model for different cases are given 
in Figs. 15-17. 

4.3. Comparison of different energy consumption prediction methods 

To further demonstrate the forecast performance of the GA-LSTM- 
based energy consumption model, a comparison analysis of the predic-
tion models adopting various algorithms including the LSTM, BP, SVR, 
ARIMA, which have been widely adopted for the fuel consumption 
prediction and time-series parameters forecasting [21, 23, 45], and the 
established GA-LSTM network based on the same energy consumption 
data set are carried out (see Fig. 17). The evaluation index value of each 
model prediction result is used to compare the accuracy of those models. 
The prediction results of various fuel usage prediction models are given 
in Fig. 18, and the scatterplots of the prediction results of each algorithm 
are shown in Figs. 19–21, respectively. 

In addition, the comparative analysis of the prediction results of 
various energy consumption models and the time required to predict the 
entire test dataset are shown in Table 10, and the prediction errors are 
shown in Fig. 22. In Case 1, the GA-LSTM-based ship energy consump-
tion prediction model has the highest R2 value and the lowest MSE, 
RMSE, MRE, and MAE values. In Case 2, the prediction effect of each 
prediction model is similar, but the GA-LSTM has smaller prediction 
error and more accurate prediction compared to other models. The same 
to Case 1, the prediction accuracy of the GA-LSTM-based ship energy 
consumption prediction model is higher than that of the traditional 
LSTM-based model. In Case 3, the prediction accuracy of the GA-LSTM 
energy consumption prediction model and LSTM energy consumption 
prediction model is significantly higher than the other comparative 
models, and the GA-LSTM energy consumption prediction model has a 
higher prediction accuracy compared to the LSTM energy consumption 
prediction model. In the three cases, the prediction accuracy of the GA- 
LSTM energy consumption prediction model is 15.6%, 12.5%, and 
14.3% higher than that of the LSTM energy consumption model in terms 
of MSE, respectively. Therefore, it is not difficult to conclude that the GA 
optimization can effectively improve the prediction performance of the 
LSTM-based model. In addition, compared with those prediction models 
based on ARIMA, BP and SVR, the constructed GA-LSTM-based ship 
energy consumption model performs better in terms of prediction ac-
curacy. Furthermore, the time consumed for the fuel consumption 

Fig. 17. Case 3: The prediction scatters diagram of the GA-LSTM-based fuel usage prediction model.  
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Fig. 18. The prediction results of various fuel usage prediction algorithms.  
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prediction of all the different models is within 5 s. That is to say, the 
established model can achieve rapid prediction of fuel consumption 
during operation, which can lay a solid foundation for the optimization 
of ship energy efficiency and thus to reduce fuel consumption and CO2 
emissions. 

4.4. The prediction analysis of ship energy efficiency based on the GA- 
LSTM model 

To further validate the practical application effect of the established 
GA-LSTM-based model for ship fuel usage prediction, the prediction 
analysis of the ship’s operational energy efficiency is conducted. The 
ship’s operational energy efficiency level for a whole voyage can be 
evaluated through the EEOI, which can be obtained by Eq. (10). 

EEOI =

∑

j
FCj × CFj

mcargo × D
(10)  

where, j denotes the fuel type, FCj is the amount of fuel consumption, CFj 
denotes the conversion factor of CO2 emissions for the consumed fuel, 
mcargo denotes the amount of cargo carried by the ship, and D denotes 
the distance of the cargo transported. 

The fuel used by the target ship is heavy fuel oil (HFO), and the 
carbon emission information of the fuel is shown in Table 11 [46]. On 
this basis, the ship’s EEOI for the whole voyage can be calculated. The 
trained GA-LSTM fuel consumption prediction model was also used to 

validate the prediction of EEOI for the three voyages. The obtained 
predicted values and measured values are both shown in Table 12. 

Through the above case study, it can be seen that the EEOI of the ship 
derived from the established GA-LSTM-based ship fuel usage model is 
about 3.42 g/(t n mile) in Case 1, while the EEOI of the ship derived from 
the actual operation data is 3.43 g/(t n mile), with a prediction error of 
about 0.29%. In Case 2, the EEOI of the ship using the established GA- 
LSTM-based fuel usage model is 3.71 g/(t n mile), while the EEOI of 
the ship based on the actual operational data is 3.74 g/(t n mile), with a 
prediction error of about 0.81%. In Case 3, the EEOI of the ship using the 
established GA-LSTM-based ship fuel usage model is 3.17 g/(t n mile), 
while the EEOI of the ship based on the actual operational data is 3.15 g/ 
(t n mile), with a prediction error of about 0.63%. Therefore, the con-
structed GA-LSTM-based ship energy consumption model can also 
realize the prediction of ship operational energy efficiency effectively. 
The prediction of ship energy efficiency based on the GA-LSTM model 
can achieve the evaluation of the ship energy efficiency. On this basis, 
one could know whether the ship could meet the requirement of carbon 
intensity proposed by the IMO or not, which can contribute to the 
optimization management of the ship energy efficiency. 

5. Conclusions and future research work 

The LSTM network, which is more suitable to analyze the data with 
time-series characteristics, is adopted to establish the prediction model 
for ship fuel usage. With that, the GA is proposed to tune the network 

Fig. 19. Case 1: The scatterplots of the prediction results of various algorithms.  

K. Wang et al.                                                                                                                                                                                                                                   



Energy 282 (2023) 128910

16

Fig. 20. Case 2: The scatterplots of the prediction results of various algorithms.  
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structures and hyperparameters of the LSTM-based prediction model, 
thus enhancing the forecast performance of the established energy 
consumption model. Finally, a GA-LSTM-based model for ship fuel usage 
forecast is developed, followed by a validation analysis based on the 
actual operational data. The analysis results show that the forecast ac-
curacy of the established GA-LSTM-based ship energy consumption 
model is higher than those models adopting BP neural network, support 
vector machine (SVR), and ARIMA algorithms. Compared with the 
LSTM network, the forecast accuracy of the established GA-LSTM-based 

model of ship fuel usage can be effectively improved by adopting the GA 
optimization, with 15.6%, 12.5% and 14.3% reduction in terms of MSE, 
respectively. Additionally, the constructed GA-LSTM-based ship energy 
consumption model can also realize the prediction of ship operational 
energy efficiency with an error of 0.29%, 0.81% and 0.63%, 
respectively. 

In summary, the LSTM neural network with the structure and 
hyperparameters optimized by GA can effectively enhance its prediction 
ability, and thus can achieve more accurate prediction results of ship 

Fig. 21. Case 3: The scatterplots of the prediction results of various algorithms.  

Table 10 
Comparative analysis of the forecast results of various approaches.  

Study cases Approaches MSE RMSE MRE MAE R2 Consumed time (s) 

Case 1: Tubarao to Zhoushan ARIMA 0.0021 0.0455 0.0418 0.0391 0.8723 2.2559 
BP 0.0020 0.0443 0.0147 0.0356 0.9596 2.6216 
SVR 0.0045 0.0668 0.0234 0.0569 0.9301 2.6639 
LSTM 0.0014 0.0374 0.0091 0.0233 0.9629 1.7608 
GA-LSTM 0.0012 0.0346 0.0081 0.0201 0.9798 3.4346 

Case 2: Singapore to Sao Luis, Ma ARIMA 0.0012 0.0346 0.0244 0.0201 0.9094 2.4777 
BP 0.0010 0.0316 0.0236 0.0204 0.9396 2.7623 
SVR 0.0014 0.0376 0.0234 0.0304 0.8931 2.6625 
LSTM 0.0008 0.0283 0.0186 0.0176 0.9281 1.9691 
GA-LSTM 0.0007 0.0265 0.0171 0.0126 0.9472 3.1500 

Case 3: 
Sao Luis, Ma to Caofeidian 

ARIMA 0.0053 0.0733 0.0233 0.0578 0.8479 2.7070 
BP 0.0032 0.0569 0.0173 0.0427 0.9083 3.8021 
SVR 0.0042 0.0649 0.0205 0.0513 0.8807 2.9070 
LSTM 0.0014 0.0379 0.0125 0.0253 0.9499 3.3662 
GA-LSTM 0.0012 0.0346 0.0096 0.0244 0.9642 4.1408 

The values with 4 decimals after rounding. 
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fuel usage and ship’s operational energy efficiency level. It is worth 
mentioning that, the established model could still achieve the effective 
prediction of the ship energy consumption after training and learning if 
the obtained data could reflect the conditions of the hull and propeller as 
the internal part of the overall ship. It is important to promote the 
progress of ship energy efficiency optimization technology. In the 
future, more intelligent technologies would be studied to continuously 
improve the forecast performance in terms of accuracy and applicability 
of the ship energy consumption model in different operational scenarios. 
Moreover, with the prediction model, an optimization method and 
system for the management of ship fuel usage would be developed, 
which will be of great significance for reducing the fuel usage and car-
bon emissions, and thus contributing to the decarbonization of the 
shipping industry. 
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