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On the use of different data assimilation schemes in a fully coupled
hydro-mechanical slope stability analysis
Muhammad Mohsan , Femke C. Vossepoel and Philip J. Vardon

Department of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands

ABSTRACT
Different data assimilation schemes such as the ensemble Kalman filter (EnKF), ensemble smoother
(ES) and ensemble smoother with multiple data assimilation (ESMDA) are implemented in a hydro-
mechanical slope stability analysis. For a synthetic case, these schemes assimilate displacements at
the crest and the slope to estimate strength and stiffness parameters. These estimated parameters
are then used to estimate the system’s state and factor of safety (FoS). The results show that EnKF
provides an FoS estimation with a mean close to the truth and with the smallest standard
deviation, with ESMDA using the largest amount of assimilation steps also providing a mean
close to the truth but with less confidence. The ES and ESMDA with fewer assimilation steps
underestimate the FoS approximation and have low confidence. Assimilating measurements
over a longer period provides a more accurate parameter, state and FoS estimation. ES has the
best computational performance, with ESMDA performing worse, with its performance
dependent on the number of assimilation steps. The computational performance of the EnKF is
better than ESMDA but around 50% worse than the ES. Non-linearity of the underlying problem
is a key cause of the multi-step assimilation processes having a better performance.
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1. Introduction

Slope stability assessment is important in many geotech-
nical applications. These applications include, amongst
others, flood defence systems (i.e. dykes, embank-
ments), transport infrastructures (i.e. embankments)
and open-pit mining. The slope failure in these appli-
cations can cause significant damage. Assessing slope
stability as accurately as possible can ensure safety
while maximising it in the most efficient way.

There are various slope stability assessment methods,
e.g. empirical methods, limit equilibrium methods,
numerical methods, and probabilistic methods.
Numerical methods such as finite element methods
(FEM) are very popular as they make no prior assump-
tion on the failure process and can simulate the com-
plexities of geomaterial behaviour under various
conditions. For example, FEM can model coupled phys-
ical processes (e.g. hydro-mechanical behaviour), can
use advanced constitutive models to represent complex
material behaviour, and can take into account uncer-
tainties in geometry and material properties. Despite
these characteristics of FEM, modelled results tend to
differ from what is observed in reality. This difference

in modelling and measurements can be due to a poor
representation of the physical processes in the govern-
ing equations, poorly known model parameters, inac-
curate representation of complex geometries, limited
resolution, inaccurate representation of complex initial
and boundary conditions, or a combination of these.
A possible way to mitigate this limitation is by using
observed data to constrain the models, i.e. assimilate
the data.

Data assimilation provides an estimate of the state
and parameters based on numerical models and
measurements, considering uncertainties in both (Even-
sen, Vossepoel, and van Leeuwen 2022). In general,
these methods calculate multiple (statistically equival-
ent) models (so-called realisations) to calculate an
initially estimated (prior) distribution of a given vari-
able. This distribution can be combined with measure-
ments to update model outputs (i.e. model states) or
model inputs (i.e. parameters) and as such calculate
an improved (posterior) distribution. Such a process
can be computationally expensive, as it involves running
multiple model realisations, and therefore compu-
tational performance is important.
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Geotechnical structures (such as slope structures) are
now increasingly equipped with measurement devices
to monitor their response to external changes. These
measurements can be surface displacements, porewater
pressures, strains, etc. These measurements can be
obtained from in-situ devices (such as inclinometers,
strain gauges, and so on) or can be measured remotely
(with Light Detection and Ranging (LIDAR), Interfero-
metric Synthetic Aperture Radar (InSAR), etc.). In an
earlier publication, Mohsan, Vardon, and Vossepoel
(2021) showed that such measurements can be used in
one specific data assimilation scheme to estimate uncer-
tain material model parameters in an FEM model of
slope stability. An uncertainty in model parameters
exists because of many reasons, such as errors caused
by the equipment or procedure, transformation errors
(Ching and Phoon 2015; Van der Krogt, Schwecken-
diek, and Kok 2019; Wang et al. 2017), the inherent
spatial variability (Phoon and Kulhawy 1999a, 1999b)
or a combination of these. To ensure safety of the sys-
tem, the proximity to failure (e.g. FoS) is important to
know, however, it cannot be directly measured. There-
fore, related measurements must be used in a system
to predict or evaluate the FoS.

Several researchers (e.g. Contreras and Brown 2019;
Grönlund and Stille 2009; Huang et al. 2014; Jiang
et al. 2022; Juang and Zhang 2017; Kelly and Huang
2015; Wang et al. 2021; Yang et al. 2021; Zhang et al.
2013) have used Bayesian methods to estimate uncertain
parameters from observations in slope stability pro-
blems. These include Juang and Zhang (2017) and Con-
treras and Brown (2019) who use past observations of
slope failures to improve shear strength parameter esti-
mation. Zhang et al. (2013) and Yang et al. (2021) both
use pore pressure observations to update estimates of
(uncertain) hydraulic parameters in a slope stability sys-
tem. Zhang et al. (2013) update unsaturated parameters
within a slope and Yang et al. (2021) update saturated
parameters within a spatially variable slope. Huang
et al. (2014) use a Bayesian method for predicting the
performance of an embankment and Kelly and Huang
(2015) use a Bayesian updating approach in combi-
nation with observations for a settlement estimation
during the construction phase of an embankment.
Grönlund and Stille (2009) use a Bayesian technique
for estimating a tunnel-induced settlement. A key fea-
ture of all Bayesian methods is the need to calculate
the posterior distribution via the evaluation of the per-
formance, which outside of fairly simple situations,
requires numerical integration. The most common
method to do so is the Markov Chain Monte Carlo
method where a significant amount of analyses must
be evaluated, e.g. 200,000 model evaluations in Yang

et al. (2021) and 12,000 model evaluations in Wang
et al. (2021). This typically means that detailed numeri-
cal models cannot be used, and either analytical or sur-
rogate models must be used.

Another method of calculating the posterior distri-
bution is utilising a set of methods using an ensemble,
i.e. a set of parallel simulations, to estimate the model
error covariance. Ensemble-based methods for data
assimilation are well established, e.g. the ensemble Kal-
man filter (EnKF), the ensemble smoother (ES) and the
ensemble smoother with multiple data assimilation
(ESMDA). However, these have had only limited use
in slope stability. The EnKF (Evensen 1994) is an
ensemble-based method based on the Kalman filter
(Kalman 1960), which assimilates measurements
sequentially in time. The EnKF has been widely
implemented in different fields and is currently one of
the most popular data assimilation methods. This
method has been used in numerical weather prediction
(e.g. Houtekamer and Mitchell 2005; Szunyogh et al.
2005), oceanography (e.g. Bertino, Evensen, and Wack-
ernagel 2003; Keppenne and Rienecker 2003), hydrol-
ogy (e.g. Chen and Zhang 2006; Reichle, McLaughlin,
and Entekhabi 2002), geotechnical engineering (e.g.
Liu, Vardon, and Hicks 2018; Mavritsakis 2017; Moh-
san, Vardon, and Vossepoel 2021, 2023; Vardon, Liu,
and Hicks 2016) and petroleum reservoir history match-
ing (e.g. Aanonsen, Reynolds, and Vall‘es 2009; Evensen
2009; Glegola et al. 2012; Nævdal, Mannseth, and Vefr-
ing 2002; Oliver and Chen 2011). The EnKF has a
sequential scheme, where states or parameters are
updated every time measurements are available, which
has the disadvantage of potentially leading to inconsis-
tencies in previous steps. Another possible disadvantage
of the EnKF is the Gaussian approximation of error
covariances in the update scheme. Because of this, the
EnKF may not give optimal results for problems with
non-Gaussian parameter distributions. Furthermore,
when applying EnKF for parameter estimation, repeated
restarting after each update step can lead to significant
use of computation time. Vardon, Liu, and Hicks
(2016) and Liu, Vardon, and Hicks (2018) implemented
an ensemble Kalman filter (EnKF) in a slope stability
problem. They integrated the EnKF with the random
finite element method (RFEM) for the estimation of
hydraulic conductivity based on measurements of pore
water pressure. They implemented data assimilation
for slopes in steady state and transient conditions. The
authors concluded that the improved estimation of
hydraulic conductivity led to improved pore water
pressure estimation, and ultimately provided an
improved factor of safety estimation. Mohsan, Vardon,
and Vossepoel (2021) implemented the EnKF on a fully
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coupled hydro-mechanical slope stability system to
study the performance of two constitutive models: the
Mohr–Coulomb (MC) model and the hardening soil
(HS) model. It was concluded that the HS model can
more generally be used to get reliable results (FoS esti-
mation) while assimilating the horizontal slope defor-
mations into the model. In contrast to above Bayesian
methods in geotechnical engineering, a relatively small
ensemble size can be used in data assimilation to esti-
mate the model parameters e.g. 500 model evaluations
in Vardon, Liu, and Hicks (2016) and 50 model evalu-
ations in Mohsan, Vardon, and Vossepoel (2021).
Additionally, Bayesian methods/inverse analysis are
typically used for quasi static geomechanical appli-
cations while data assimilation is for transient geome-
chanical applications.

The ES (Van Leeuwen and Evensen 1996) is an
alternative ensemble-based formulation, which assimi-
lates all measurements simultaneously and outputs a
global update. The ES has been implemented in the
fields of petroleum reservoir engineering (e.g. Skjerv-
heim and Evensen 2011) and oceanography (e.g. Van
Leeuwen 1999; Van Leeuwen and Evensen 1996). In
the ES, the recursion in time is not needed, making
this scheme generally computationally more efficient
in comparison with the EnKF (Skjervheim and Evensen
2011). However, for non-linear dynamic models, par-
ticularly models with strongly nonlinear dynamics, the
EnKF has shown better results than ES, because the
recursive nature of EnKF steers the ensemble such
that the resulting estimate gets closer to the true sol-
ution. In addition to that, the EnKF deals the weakly
non-linear model better than the ES. With the ES, on
the other hand, a single global correction is made by
assimilating all data to update all ensemble members.
Given that a limited number of ensemble members
are used and hence only a limited part of the solution
space is sampled, the ES may not be able to find a
reasonable data match.

ESMDA (Emerick and Reynolds 2013) is an
improved form of ensemble methods such as the ES,
which assimilates measurements in an iterative pro-
cedure and has been implemented in the field of pet-
roleum engineering (e.g. Emerick 2016; Emerick and
Reynolds 2013; Maucec et al. 2016) but has also been
applied in other fields (e.g. Evensen 2018; Evensen
et al. 2021; Evensen and Eikrem 2018).

Several publications have compared the performance
of these ensemble-based methods in different fields (e.g.
Emerick 2016; Evensen, Vossepoel, and van Leeuwen
2022; Skjervheim and Evensen 2011; Van Leeuwen
and Evensen 1996). The performance has been evalu-
ated based on both computational effort and the ability

to steer the analyses towards the measured (or syntheti-
cally generated) data. Van Leeuwen and Evensen (1996)
tested both the EnKF and the ES on ocean circulation
models. They concluded that the EnKF gives better
results than the ES in an ocean circular model. The bet-
ter accuracy of the EnKF can be explained by the man-
ner in which it deals with nonlinear behaviour of the
system. The sequential nature of this scheme as
implemented here brings the numerical model state clo-
ser to the data at each assimilation point. In contrast, the
ES takes all measurements over a time period into con-
sideration at once, which makes it more difficult to find
a close match of the model state and the data over the
entire time period.

Skjervheim and Evensen (2011) implemented the
sequential EnKF and the ES for the reservoir models.
They concluded that these two methodologies output
similar results, but the ES took approximately 10% of
the computational time of that of the EnKF. Emerick
(2016) implemented the EnKF, the ES and ESMDA in
a reservoir engineering problem. It was concluded that
the ES did not provide a reasonable data match and
that ESMDA provided a better data match than EnKF
with a comparable computational cost. It seems, there-
fore, that the performance of the schemes depends on
the problem at hand.

In the present study, three different data assimilation
methodologies have been implemented in a fully
coupled hydro-mechanical slope stability model to
study the performance of these schemes, i.e. the EnKF,
ES and ESMDA. The slope stability model uses the HS
model to simulate the (non-linear) material behaviour.
In Section 2, details of the overall methodology for stab-
ility analysis, including the forward model and the data
assimilation schemes are presented. Section 3 presents a
synthetic example to evaluate the performance of the
data assimilation schemes, with the results presented
in Section 4. These results are followed by a discussion
in Section 5 and conclusions in Section 6.

2. Methodology

The data assimilation framework considered in this
study consists of a forward model that simulates the
geomechanical behaviour of a slope and a specified
data assimilation scheme that assimilates measurements
of surface deformation into this forward model to esti-
mate the geomechanical parameters. The forward model
is a fully coupled hydro-mechanical slope stability
model with a changing external water level, simulated
using the commercial code PLAXIS (PLAXIS 2015).
Unsteady flow generates a simulation from which syn-
thetic measurements can be sampled that reflect a
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changing stress state in the slope. We have selected sur-
face deformations of the slope as the measurements due
to the easy nature of obtaining such data using easily
deployed equipment or remote sensing. We will explore
to what extent different data assimilation schemes can
relate these measurements to model parameters, and
consequently the FoS. A constitutive model called
the hardening soil (HS) model (PLAXIS 2015) is
used to define the material behaviour, following pre-
vious work (Mohsan, Vardon, and Vossepoel 2021)
which demonstrated the benefits of the model over
more commonly used models such as the Mohr–Cou-
lomb model. The forward model is integrated with a
specific data assimilation scheme (the EnKF, ES or
ESMDA) to investigate the performance of the data
assimilation scheme with synthetic twin experiments.
The synthetic measurements for these experiments
are sampled from a realisation of the forward model
referred to as the “truth”. The performance of the
data assimilation schemes is evaluated based on the
comparison between the synthetic (“true”) and esti-
mated model parameters, the model-data misfit
(deformation), the distribution of the estimated FoS
and the computation time. The FoS estimation is the
target metric, but the other metrics give important
insight into the performance of the scheme and there-
fore its further applicability.

2.1. Forward model

The forward model consists of a coupled system of
mechanical and hydraulic equations. For the mechan-
ical behaviour, equilibrium is considered, i.e.:

∇ · s′ + ∇Sp+ rb = 0, (1)

where∇ is the gradient operator,∇· is the divergence, s′

is Bishop’s effective stress tensor (in this case neglecting
the air pressure), S is the effective saturation, p is the
pore pressure, ρ is the density and b are the body accel-
erations (e.g. from gravity).

The constitutive behaviour can be expressed as

s′ = D′e, (2)

where D′ is the effective constitutive matrix and e is the
strain tensor. The substitution of Equation (2) into
Equation (1), recognising that e = 0.5((∇u)+ (∇u)T),
where u is the displacement, yields the al governing
equation. The HS model, used as the constitutive
model in this study, is a non-linear elastoplastic
model, which includes several realistic soil features
such as non-linear elasticity, stress-dependent stiffness,
irreversible non-linear plastic strain and hardening/

softening mechanisms. The HS model uses the follow-
ing parameters: cohesion (c′), friction angle (f′), dila-
tancy angle (ψ), the secant deviatoric stiffness at
reference pressure in a standard drained triaxial test
(Eref50 ), the tangent stiffness at reference pressure for pri-
mary odometer loading (Erefoed), the loading–unloading
stiffness at reference pressure (Eref

ur ), the Poisson’s ratio
for unloading reloading (nur) and a parameter m
which controls the stress-level dependency for the stiff-
ness parameters. In the HS model, the cohesion and
friction angle define the ultimate strength using the
Mohr–Coulomb failure criterion, and non-linear stiff-
nesses are used to represent different volumetric defor-
mations in different conditions (loading due to primary
deviatoric loading, loading due to primary compression
and unloading/reloading). Each stiffness is defined to be
non-linear depending on the minor principal stress (s3)
and depending on the strength parameters. For
example, the stress-dependent stiffness due to primary
deviatoric loading (E50) and can be written as

E50 = Eref
50

c cos (f)− s3 sin (f)
c cos (f)− pref sin (f)

( )m

, (3)

where Eref50 is the reference stiffness modulus corre-
sponding to the reference stress pref . The amount of
stress dependency is given by the power m. For more
details of the HS model, see Schanz, Vermeer, and Bon-
nier (2019).

To model the hydraulic behaviour, the conservation
of mass is considered which can be expressed as

∂(evol)
∂t

= −∇ · v − Q, (4)

where evol is the volumetric strain (which can be deter-
mined from the displacement), v is the velocity vector
and Q is a source term. Furthermore, this equation
neglects the compressibility of the fluid and solid
phases. The velocity of water is incorporated via Darcy’s
Law:

v = −k∇ p
rlg

+ z

( )
, (5)

where k is the hydraulic conductivity matrix, g is the
gravitational constant and z is the elevation.

Both mechanical and hydraulic equations have pri-
mary variables of displacement and fluid pressure, and
are therefore a coupled system of equations.

The equations are discretised in space and time using
standard FEM procedures, and compute the behaviour
of the slope due to the gravity and hydraulic loading.
The horizontal slope deformations are extracted from
this hydro-mechanical analysis. The model calculates

4 M. MOHSAN ET AL.



the results until the time when a stability analysis is
required and a number of measurements are available.
Then a stability analysis is carried out (using the
strength reduction method, where tan(f′) and c′ are
successively reduced until failure), which results in an
estimate of the factor of safety (FoS) which is the ratio
of the original strength to the reduced strength of the
material at failure.

2.2. Data assimilation schemes

EnKF, ES and ESMDA are all ensemble-based data
assimilation schemes used to estimate the parameters
of the system. In all cases, an initial set of realisations
(i.e. an ensemble) is generated by randomly selecting
parameters from a prior distribution that is based
on what is known about the system. Then the model
parameters are estimated based on available
measurements.

The EnKF assimilates the measurements sequentially
in time. In the scheme as applied, the ensemble is run
from the start to a time when the measurements (d1)
are available (see Figure 1a for a schematic of the pro-
cess). These measurements are assimilated into the
model which results in the posterior distribution. To
make the model state consistent with the posterior par-
ameters, the posterior model parameters are used to
rerun the model from the start of the simulation to
the next time when the new measurements (d2) are
available. This new set of measurements is then assimi-
lated into the numerical model to again update par-
ameter estimates and so on. Thus, after each EnKF
update step, the forward model restarts from the begin-
ning of the analysis.

ES is an alternative ensemble-based data assimilation
scheme. ES does not assimilate the data sequentially in
time, but performs a single estimation assimilating all
available measurements (d1 − dn) in the space–time
domain. In this scheme, the model prediction is first
computed for all ensemble members at all time steps.
Then all available measurements are assimilated to
find the global parameter update. Finally, the model is
re-run with the updated parameters to find the final out-
put of the data assimilation framework (see Figure 1b
for the illustration). Both the EnKF and the ES use the
same equations for the posterior, but in the case of the
ES it is applied once for all measurements, whereas for
the EnKF it is applied every time when measurements
are available.

Emerick and Reynolds (2012) proposed ESMDA as
an improvement of ES. In ESMDA, the same data is
assimilated iteratively. To account for the fact that the
scheme assimilates the same data multiple times, it

uses an inflation factor for the error covariance matrix
of measurements. This means that instead of making a
single linear, potentially large update, multiple smaller
linear updates are performed. These iterations can
partly resolve reported problems with non-linearity
and generally lead to more accurate reconstruction of
the “truth” than ES.

2.2.1. Formulation of the data assimilation
schemes
To formulate the data assimilation principles, suppose
we have the model prediction y which is obtained by
running the perfect forward model with pre-defined
input model parameters. To map this model output to
the measurement space for comparison with the
measurements, we use the so-called measurement oper-
ator g, which should be highlighted is an operator and
not a vector of measurements, i.e.

y = g(m(z)), (6)

in which

z = xu
( )T

. (7)

Here y [ RNm is the model forecast mapped to the
measurement locations with Nm is the number of
measurements, m is model operator which relate
input parameters to output, g is the measurement oper-
ator which maps the output to measurement space.
Furthermore, in Equation (7), z [ RNx+Nu is a control
or state vector consisting of the state (x [ RNx) and
(u [ RNu) represents the parameters with Nx the num-
ber of state points and Nu the number of model
parameters.

For a unique given set of parameters, we consider a
single simulation of the model and assume this to be
the “truth” (y). The synthetic measurements are created
from the “truth” and perturbed with randomly selected
measurement errors and hence can be represented as

d = y+ e, (8)

where d [ RNm is the measurement vector and e [ RNm

is the measurement error vector. Measurement errors
are assumed to include instrument errors and represen-
tation errors and are normally distributed with zero
mean and variance defined by the inaccuracies inherent
to the measurement device and the representation error
(for a discussion on representation error, see Janjić et al.
2018).

Bayes’ theorem defines the joint probability ( f ) for z
and y given the measurements d as

f (z, y|d)/ f (d|y)f (y|z)f (z). (9)
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Figure 1. Illustration of the data assimilation schemes: (a) EnKF, (b) ES, (c) ESMDA ((a) and (b) after (Evensen 2009)).
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The marginal pdf of z given d can be found as

f (z|d)/
∫
f (d|y)f (y|z)f (z)dy = f (d|g(z))f (z). (10)

Assuming the priors to be Gaussian distributed,
Equation 10 can be written as

f (z|d)/ exp {− 1
2
J}, (11)

where the cost function J is defined as follows:

J(z) = (z − zf )TC−1
zz (z − zf )+ (g(z)

− d)TC−1
dd (g(z)− d). (12)

In Equation (12), zf is the prior estimate of z,
Czz [ R(Nx+Nu)×(Nx+Nu) is the error covariance of zf ,
and Cdd [ RNm×Nm is the error covariance of measure-
ments. The ensemble consists of simulations with each a
different parameter value. This approach is based on the
assumption that model state error is mainly caused by
uncertain parameters, and that the parameter errors
determine the state errors. The Kalman filter formu-
lation can be derived by assuming the linear operator
and minimisation of the cost function (Equation 12).
For further details, see Evensen, Vossepoel, and van
Leeuwen (2022). Below, the main features of the differ-
ent assimilation schemes are presented, the algorithms
are presented in more detail in the Appendix.

EnKF: In the case of EnKF, multiple realisations of
the forward model are being performed. The Kalman
equation for each of the ensemble member i [ Ne can
be written as

zai = zfi + Ce
zzG

T(GCe
zzG

T − Cdd)
−1(di −G(zfi )), (13)

where za represents the analysis estimate and zf rep-
resents the prior estimate and Ce

zz is termed as the
model covariance matrix. Here

di = d + ei (14)

represents the perturbed measurements for each ith
member, with ei having the same distribution as the
measurement errors e in Equation (8), following the
approach of Burgers, van Leeuwen, and Evensen (1998).

In the implementation of the EnKF in this study, the
update equation (Equation 13) is applied whenever the
measurements are available. At each update step,
elements of Equation (13) consist of the available infor-
mation at that specific assimilation step in which
zai , z

f
i [ RNx+Nu represent the analysis and forecast vec-

tor, respectively, at that specific data assimilation time
for ith ensemble member, Czz [ R(Nx+Nu)×(Nx+Nu) is
the error covariance of zfi at that specific data

assimilation time andCdd [ RNm×Nm is the error covari-
ance of measurements for that specific data assimilation
time.

Ensemble smoother (ES): ES equations are essen-
tially the same equations as those of the EnKF. Just
like the equations for the EnKF, Equation 13, they are
found by equating the cost function gradient equal to
zero to find its minimum and defining the covariances
around its mean (Evensen 2018).

In the case of ES, all measurements are assimilated in
a single step to find a global update which means the
measurement vector(di) in Equation (13) consists of
all information at all data assimilation steps. This
implies that zai , z

f
i [ R(Nx+Nu)∗t , the analysis and forecast

vectors, consist of the state-parameter vector for all time
steps until the end of data assimilation window for a
specific, ith, ensemble member, where
Czz [ R(Nx+Nu)∗t×(Nx+Nu)∗t is the spatio-temporal error
covariance of zfi , and Cdd [ R(Nm×Nm)∗t is the error
covariance of measurements for all data assimilation
steps.

ESMDA: ESDMA can also be derived from Bayes
theory and has the same theoretical basis as ES. How-
ever, rather than computing the analysis in a single iter-
ation, it is obtained in a number of steps, where the
posterior (f (z|d)) is made up of a combination of tem-
pered likelihood functions (

∏Nmda
j=1 f (d|g(z j−1))

1
a j) and

prior (f (z)). This implies:

f (z|d) = f (z)
∏Nmda

j=1

f (d|g(z j−1))
1
a j , (15)

where

∑Nmda

j=1

1
a j

= 1. (16)

In these equations, a j is the tempering parameter for the
jth recursive step to inflate the measurement error to
damp the model update. With this formulation, the
cost function can be written as

J(zi,j+1) = (zi,j+1 − zfi,j)
TC−1

zz (zi,j+1 − zfi,j)

+ (g(zi,j+1)− di

− 



a j

√
e)Ta jC

−1
dd (g(zi,j+1)− di − 




a j
√

e),

(17)

where J(zi,j+1) is the cost function for ensemble i and j + 1
recursive update step. The minimisation of cost function
corresponds to maximisation of the each recursion, that
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is:

zai,j+1 = zfi,j + Ce,j
zzG

T(GCe,j
zzG

T − a jCdd)
−1(di

+ 



a j

√
e− g(zfi,j)). (18)

In each step, the measurement error matrix is inflated
with a j and measurements are perturbed with 




a j
√

e.
The error covariance matrix is updated for each of the
recursive update steps with a new value of a j. The a j par-
ameters should satisfy the Equation (16) condition assim-
ilate the observations in multiple steps, i.e. with multiple
smaller corrections, and at the same time to ensure the
measurements do not obtain too much weight. As the
same data is assimilated in Nmda iterations, a practical
difficulty of the implementation of ESMDA is that
Nmda and its coefficients need to be selected prior to
the data assimilation. Emerick and Reynolds (2013)
suggest choosing α values in decreasing order to ensure
that the initial updates are smaller.

3. Synthetic example

An idealised 2D slope geometry is considered to test and
illustrate the performance of the data assimilation
schemes described in Section 2.2. The geometry of the
slope with mechanical and hydraulic boundary con-
ditions is shown in Figure 2. The black circles on the
crest and slope represent the measurement locations.
The slope undergoes gravity and hydraulic loading
(variable hydraulic boundary conditions). To setup the
initial stress state of the slope system, gravity loading
with steady-state groundwater flow calculations are per-
formed by considering the water level at line CE in

Figure 2. In this study, Van Genuchten-Mualem
(1976) model is used to simulate the behaviour of unsa-
turated soil with the properties mentioned in Table 1.
After the initial stress state, the slope is subjected to
the generally-rising fluctuation (Dw) of the water level.
The fluctuation of (Dw) is shown on the top-right of
Figure 2. The changes in hydraulic boundaries associ-
ated with this water level fluctuation cause vertical and
lateral slope deformations and changes in the factor of
safety that are computed with the forward model.

A so-called truth is defined by selecting a unique simu-
lation of the forward model by specifying “true” par-
ameters (Table 1) and the initial state. True model
evolution in the form of horizontal displacements at
point G (see Figure 2) and the resulting FoS can be
seen in Figure 3. The displacements are seen to increase
as the water level rises, in conjunction with the effective
stress decrease. The FoS is seen to first decrease, most
likely due to the reduction in effective stress and the con-
sequential reduction in shear strength due to the friction
component, and then increase, most likely due to the
reduction in buoyant weight of the material. Both the
reduction in shear strength and buoyant weight are due
to the increase in the water level, with the details of the
geometry and material parameters governing which
impact is dominant. The horizontal deformations on
the crest-slope are sampled from this forward simulation
during a time interval of 150–200 days (with the sample
times indicated in the top right sub-figure of Figure 2 by
red-stars). Considering the millimetre scale accuracy of
measurements devices (such as INSAR, and laser scan-
ners), we have added realistic measurement noise (with
zero mean and 10−7 m variance) to the data, and then

Figure 2. Geometry of the slope (dimensions in m) and black circles represent the measurement points. On the top right, water level
fluctuation is shown. The model forecast at the red stars are computed to perform the data assimilation.
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these synthetic measurements are assimilated into an
FEM model with the same initial conditions and water
level fluctuations as the truth simulation, but with differ-
ent parameter distributions for strength and stiffness as
shown in Table 2.

EnKF, ES and ESMDA are tested in this setup to esti-
mate the two most sensitive parameters, the friction
angle (f′) and secant stiffness at reference pressure
(Eref

50 ) parameters, and then finally the FoS estimation.
For each of the schemes, the ensemble has 50 members.
This ensemble size was demonstrated by Mohsan, Var-
don, and Vossepoel (2021) to be sufficient to reliably
assimilate the data using a similar case study. This high-
lights the potential advantage of ensemble type

approaches. The performance of the data assimilation
schemes is evaluated by comparing their ability to
reconstruct the truth within the assumed accuracy of
the measurements and by comparing computational
performance.

The setup of the experiments is shown in Table 3. In
the first experiment, EnKF is implemented as the data
assimilation scheme, and the measurements are assimi-
lated sequentially in time. For this setup, estimates of
parameter values, displacement and FoS are available
at each assimilation step. There are two variants of the
test case, with a shorter and longer availability of
measurements. For a shorter period (indicated by -s),
measurements are assimilated until 1053 days and for
a longer period (indicated by -l) measurements are
assimilated until 1575 days. In the second test case,
two independent experiments are performed with ES:
ES-s and ES-l, with the same data availability as for
the EnKF test cases. Then, ESMDA is applied in three
different cases (named as ESMDA(x2e), ESMDA(x4e)
and ESMDA(x4d)) to see the effect of choosing the
number of update steps and the effect of α values. For
ESMDA(x2e), there are two iterations by taking equal
α values, while in ESMDA(x4e), there are four iterations
with equal α values. For ESMDA(x4d), the measure-
ments are assimilated in four iterations using decreasing
α values. Furthermore, each of these experiments
(ESMDA(x2e), ESMDA(x4e) and ESMDA(x4d)) are
subdivided into two in the same way as for EnKF and
ES with shorter and longer measurement availabilities.

4. Results

The data assimilation performance is evaluated with the
estimation of the selected parameters (Eref

50 and f′), dis-
placement, FoS estimation and by the computation
time. While FoS estimation is the primary target, the
parameter and displacement estimation are prerequi-
sites for the FoS to be reliably predicted.

4.1. Parameter estimation

Figure 4 presents the parameter estimation (Eref50 and f′)
after assimilating the measurement for the shorter

Table 1. “Truth” model parameters for EnKF, ES, ESMDA.
Parameters Values Unit

Effective friction angle (f′) 25 ◦
Effective cohesion (c′) 5 kPa
Dilatancy angle (ψ) 0 ◦
Eref50 20,000 kPa
Erefoed Eref50 kPa
Erefur 2.5Eref50 kPa
Poisson’s ratio for unloading/reloading (nur) 0.2 –
Stress-level dependency (m) 0.5 –
Unsaturated unit weight (gd) 17 kN/m3

Saturated unit weight (gs) 18.5 kN/m3

Hydraulic conductivity (kx = ky) 0.12 m/day
VGM parameter (ga) 3.83 m−1

VGM parameter (gn) 1.3774 –
VGM parameter (gl) 1.25 –
Saturated volumetric water content (us) 1.0 –
Residual volumetric water content (ur) 0.062 –

*Note: VGM stands for van Genuchten-Mualem model.

Figure 3. Evolution of horizontal displacement (m) at point G on
the slope and FoS evolution based on the true model par-
ameters (see in Table 1) and water level fluctuation (see in
Figure 2)

Table 2. Initial estimation of model parameters.
Parameters Parameter values Distribution Unit

Effective friction angle (f′) m = 30, s = 3 Normal ◦
Eref50 m = 25000, s = 2500 Normal kPa

Table 3. Experimental plan for different data assimilation
schemes.
Test case name Data assimilation scheme α values

EnKF-s, EnKF-l EnKF [–]
ES-s, ES-l ES [–]
ESMDA(x2e)-s, ESMDA(x2e)-l ESMDA(x2e) [2,2]
ESMDA(x4e)-s, ESMDA(x4e)-l ESMDA(x4e) [4,4,4,4]
ESMDA(x4d)-s, ESMDA(x4d)-l ESMDA(x4d) [9.3,7.0,4.0,2.0]
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period. The true parameters, prior parameter distri-
bution, and the posterior estimate using EnKF-s, ES-s,
ESMDA(x2e)-s, ESMDA(x4e)-s and ESMDA(x4d)-s
are presented for both parameters. By construction,
the distribution of the true parameters and the prior
parameter distribution are the same for all test cases.
After the assimilation of measurements, the posterior
parameter mean (μ) and standard deviation (σ) are
computed from the ensemble, and the resulting normal
distributions with these statistical moments are shown
in Figure 4. The mean (μ) obtained from the posterior
distribution of Eref

50 is closer to the true value of Eref
50

than the prior mean for all the data assimilation schemes.
But in most cases, the width of the posterior distribution
of Eref

50 has not changed significantly by assimilating the
measurements for this (shorter) time period. The limited
amount of information from the measurements has thus

resulted in a shift of the distribution relative to the prior,
but has not narrowed the ensemble spread. In the esti-
mation of f′, a significant change from the prior to the
posterior distribution can be seen in all cases. In the
cases of EnKF-s, ESMDA(x4e)-s and ESMDA(x4d)-s:
the posterior mean moves towards the true value and
the standard deviations are smaller than that of the
prior distribution. The parameter estimates of the ES-s
and ES(x2e)-s move in the direction of the mean, but
overshoot significantly the true f′, with the standard
deviation only reducing slightly.

To study the effect of measurement assimilation for a
longer period, Figure 5 presents the parameter esti-
mation results after using the measurements available
until 1575 days. The posterior improves substantially
for the estimation of Eref

50 for all the data assimilation
schemes as compared to the results in Figure 4; the

Figure 4. Estimation of parameters (Eref50 and f′) by EnKF-s, ES-s, ESMDA(x2e)-s, ESMDA(x4e)-s and ESMDA(x4d)-s.

Figure 5. Estimation of parameters (Eref50 and f′) by EnKF-l, ES-l, ESMDA(x2e)-l, ESMDA(x4e)-l and ESMDA(x4d)-l.
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mean estimates of Eref
50 are closer to the true value and

their standard deviation is reduced, although the distri-
bution is still relatively broad. This gives the impression
that when data are assimilated over a longer period, a
more accurate estimate is achieved. On the other
hand, the estimate of f′ changes relatively little com-
pared to the results of the shorter period of assimilation
as presented in Figure 4. This also highlights that the
estimates of f′ in the earlier assimilation steps are
reasonably close to the truth.

4.2. Displacement ensemble estimation

This section presents the displacement evolution based
on the true, prior and estimated parameters. The displa-
cement evaluation is studied in the form of horizontal

displacement of a point G (see Figure 2) on the slope,
which is towards the top of the slope, to capture the lar-
gest displacements. Figures 6 and 7 illustrate the displa-
cements computed using estimated parameters by
assimilating the measurements for shorter and longer
periods, respectively. The black line represents the
true model evolution based on true model parameters,
and the synthetic measurements are represented by
black stars. The prior horizontal displacement ensemble
(in green) is computed using the prior parameter distri-
bution and as a direct result of initially poorly selected
parameter values, it has lower horizontal displacements
than the truth. It should be noted that with another
initial selection this could be different. Detailed results
in the form of the ensemble mean and spread only
from EnKF and ES are presented to keep the figures

Figure 6. Data assimilation estimate of the horizontal displacement at point G on the slope based on true, prior and estimated par-
ameters with EnKF-s, ES-s, ESMDA(x2e)-s, ESMDA(x4e)-s and ESMDA(x4d)-s. The EnKF-s, ESMDA(x4e)-s and ESMDA(x4d)-s means are
overlapping. Furthermore, the mean of ES-s and ESMDA(x2e)-s are also overlapping.

Figure 7. Data assimilation estimate of the horizontal displacement at point G on the slope based on true, prior and estimated par-
ameters with EnKF-l, ES-l, ESMDA(x2e)-l, ESMDA(x4e)-l and ESMDA(x4d)-l. The EnKF-l, ESMDA(x4e)-l and ESMDA(x4d)-l means are
overlapping. Furthermore, the mean of ES-l and ESMDA(x2e)-l are also overlapping.
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readable – and these represent the best and worst per-
forming methods in Section 4.1. For the other exper-
iments (ESMDA(x2e), ESMDA(x4e) and ESMDA
(x4d)), only the mean of the displacement ensemble is
plotted.

It can be seen from Figure 6 that the mean obtained
with EnKF-s, ESMDA(x4e)-s and ESMDA(x4d)-s
experiments are very close to the true value. This is
because a significant update of the parameters
(especially f′) is obtained by assimilating the measure-
ments for a shorter period. In the case of ES-s (and ES
(x2e)-s), f′ overshoots the true value and the posterior
of the ES-s (and ESMDA(x2e)-s) estimation has a wider
spread than that of the EnKF-s estimation (see Figure 4).
The posterior distributions of Eref

50 are similar for all the
assimilation methods and cannot be the main cause of
the differences. Due to the difference in f′ estimation,
the displacement ensembles produced by the ES-s
(and ESMDA(x2e)-s) estimated parameters have a
wider spread and compare not as favourably to the
true displacement as the other posterior distributions.
Furthermore, ES-s and ESMDA(x2e)-s show a larger
displacement magnitude than the truth and EnKF-s
because they underestimate the strength (f′) as com-
pared to the EnKF-s estimation.

Figure 7 presents the displacement ensemble with esti-
mated parameters after assimilating measurements for a
longer period. It can be seen that there is a limited
improvement in the distributions. For example, the ES-l
(ESMDA(x2e)-l) case the posterior ensemble spread of
the displacements is slightly reduced as compared to its
posterior as illustrated in Figure 6. In addition, the ensem-
ble means of ES-l and ESMDA(x2e)-l move slightly
towards the true model evolution. This improvement is
not easily observed for the EnKF-l, ESMDA(x4e)-l and
ESMDA(x4d)-l ensemble predictions of deformation,
which have already experienced relatively large updates
in the first few assimilation steps.

This limited improvement in the simulation of the
displacements is caused by a notable improvement of
Eref
50 and a more limited improvement in f′. It is con-

cluded that in the earlier part of the analysis different
combinations of parameters may result in similar dis-
placements. However, as the time increases, so does
the loading (the water level), which results in further
constraints to the analysis enabling the data assimilation
to better identify the two values of the parameters.

4.3. Factor of safety estimation

Obtaining an accurate estimate of the FoS is the ultimate
goal of this study. As the true distribution of the FoS is
not defined, a narrow distribution, i.e. a precise

estimate, of the FoS is not necessarily the best result.
The FoS estimation is computed by using true par-
ameters, prior parameters and estimated posterior par-
ameters by EnKF, ES, ESMDA, ESMDA(x2e), ESMDA
(x4e) and ESMDA(x4d). Again, the estimated par-
ameters from shorter and longer assimilation periods
are used, with the FoS evaluated in both cases at the
end time, after 1575 days.

Figure 8 shows the FoS at the end of the simulation
time, based on the estimated parameters obtained by
assimilating the measurement for the shorter period. It
can be seen from Figure 8 that the FoS with prior par-
ameters results in a distribution with mean
(m fos = 1.48) and standard deviation (s fos = 0.11). The
true FoS falls within this distribution, yet is significantly
lower than the mean FoS calculated using the prior distri-
bution. The true FoS and prior FoS are computed with
true and prior parameters by using the strength reduction

Figure 8. Probability distribution of the FoS at the end time
(after 1575 days) based on true parameters, prior parameters
and estimated parameters with EnKF-s, ES-s, ESMDA(x2e)-s,
ESMDA(x4e)-s and ESMDA(x4d)-s.

Figure 9. Probability distribution of the FoS at the end time
(after 1575 days) based on true parameters, prior parameters
and estimated parameters with EnKF-l, ES-l, ESMDA(x2e)-l,
ESMDA(x4e)-l and ESMDA(x4d)-l
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method. The FoS estimation is considered to be best if it is
close to true FoS (accurate). The FoS obtained with EnKF-
s is both more accurate and has a smaller standard devi-
ation than ESMDA(x4e)-s, ESMDA(x4d)-s, ESMDA
(x2e)-s and ES-s. ES-s and ESMDA(x2e)-s give approxi-
mations that are less accurate than the other method-
ologies. This FoS estimation can be explained by the
estimation of parameters, especially f′, as the FoS is calcu-
lated by the strength reduction method in which f′ has a
significant contribution.

Figure 9 illustrates FoS at the end of the simulation
time, based on the estimated parameters obtained by
assimilating the measurement for the longer period.
The result is very similar to the one presented in Figure
8. This is because the FoS depends mostly on the shear
strength parameters and has only a slight dependence
on stiffness parameters. There is not a significant
improvement in the estimation of f′ by assimilating
measurements after a shorter period.

4.4. Computation time

For a practical application of the workflow presented in
this study, the computation time of the data assimilation
is important, i.e. the computation time of both the for-
ward analyses and the data assimilation steps. Therefore,
we divide the framework into two parts, i.e. (i) forward
model runs and (ii) data assimilation steps. In this
research, the forward model (FEM analysis) is more com-
putationally expensive than the data assimilation part.
EnKF is a sequential data assimilation method in which
measurements are assimilated whenever they are avail-
able and the forward model is re-run with the resulting
estimated parameters. In ES, the forward model is run
only two times: once with prior parameters and once
more with estimated parameters. In ESMDA, the forward
model is run for Nmda times during the assimilation and
lastly with the estimated parameters. Table 4 shows that
the EnKF needs more forward runs (Nda + 1 = 10)
than ESMDA(x4) (Nmda + 1 = 5) and ES (=2). The for-
ward runs in EnKF have variable simulation times (they
run until the next measurement is available), but this has
a limited impact as the initial solution of the equations
takes the majority of the simulation time. On top of

that, the number of data assimilation steps is also higher
for the EnKF, followed by ESMDA(x4) and ES. Based on
this, the EnKF is theoretically the most computationally
expensive followed by ESMDA(x4d and e) and then ES.

A complicating factor is that the FEM software used
in this study delivers output at intermediate steps but is
not able to do so at predefined data assimilation steps,
without restarting a calculation, i.e. resolving a linear
system of equations. Therefore, the smoothers are
more computationally expensive in practice that in the-
ory. In Figure 10, the total simulation time for each of
the methods considered, normalised to the ES simu-
lation time. The results show that in our implemen-
tation EnKF is 1.43 times more computationally
expensive than ES. The other methods take ≈ 1.6
times (ESMDA(x2e)), ≈ 2.9 times (ESMDA(x4e)) and
≈ 2.6 times (ESMDA(x4d)) more simulation time
than ES.

5. Discussion

There are four important points that can be discussed
based on this study and its future directions. First, the
data assimilation methods (especially EnKF, ESMDA
(x4e) and ESMDA(x4d)) give promising results for
reliable parameter estimation, displacement estimation
and FoS estimation. it is shown that with limited ensem-
ble sizes, data assimilation can be carried out with
detailed numerical simulations, allowing full physics
to be captured. The EnKF provides better estimates of
parameters, state and FoS than the other schemes.
This can be due to the reason that the EnKF deals rela-
tively well with weakly non-linear models and/or its
recursive nature of sequential assimilation. In the
EnKF as implemented in this study, we are sequentially
updating the parameters at each assimilation step and
re-rerun the model with estimated parameters.

Table 4. Breakdown of computation time for different schemes
for one ensemble member (Nda= data assimilation steps,
Nmda=multiple data assimilation ).
Methodology Forward model runs Data assimilation steps

EnKF Nda + 1 Nda
ES 2 1
ESMDA Nmda + 1 Nmda

Figure 10. Computation performance for different data assimi-
lation methods in the present setup of data assimilation.
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Sequential parameter estimation in a realistic case, i.e. in
a case of an imperfect model where model and obser-
vations may not be fully consistent, may however
cause inconsistency between the analysis and the obser-
vations in the intermediate steps of the model, where the
early data may match the prediction less well than at the
end of the simulation. In the case where a model is not
perfect, for example because it does not include all pro-
cesses (e.g. creep), this imperfect match would probably
not hamper the forecast of the model into the immedi-
ate future. Building on this observation, poorly match-
ing initial data may eventually be used to detect and
analyse model error. The ES and ESMDA(x2e) are
shown to not perform well. This can be due to the
reason that the ES is not designed to perform with a
non-linear model. The other methods such as ESMDA
(x4e) and ESMDA(x4d) give good results, using all of
the measurements at the same time. The resulting evol-
ution of deformation can be considered more physically
representative and consistent with the slope having the
same material (behaviour) throughout. The results
suggest that in comparison to ES, the MDA steps in
ESMDA provide corrections for the linear approxi-
mation of ES when applied to a non-linear model. The
ESMDA performance can be enhanced by choosing
more iterations (MDA steps) as we have seen in our
experiments by comparing ESMDA(x2e) and ESMDA
(x4e). It can be seen further that the choice of α values
(in ESMDA) does not make a significant difference in
our study perhaps due to the nature of the perfect
model experiment (synthetic twin). Furthermore, better
approximations of parameter, state and FoS can be
achieved by assimilating the measurements for a longer
period compared to a shorter period.

Second, it is difficult to assimilate the measurements
in an imperfect model. By doing so, one may get unrea-
listic estimates of parameters. Such unrealistic par-
ameter estimates will not be able to provide improved
estimations of the state of the system. Therefore, it is
advised to consider the important physical processes
in the numerical model simulations (or consider the
representation errors in the model) so that the numeri-
cal model prediction qualitatively matches that of the
measurement trend before the assimilation. This may
also affect the choice of assimilation method. The
smoothers attempt to match the data throughout the
simulation time, whereas the EnKF assimilates the
data sequentially and therefore allows the simulation
-especially when the model is imperfect- to progress-
ively drift away from the measurements at early times
as the simulation continues. This implies that to use
smoothers there is a higher requirement for the model
to well represent all processes, or to explicitly account

for model error in the data asimilation formulation.
Naturally, a better representation of all processes will
lead to a higher confidence in the model forecast,
especially at longer terms.

Third, having a forward model software which can
calculate solutions at prescribed timesteps and extract
results at specified intermediate steps can improve the
computation performance of smoothers. It could be
further investigated how interpolation would allow the
performance to be improved while resulting in effective
assimilation.

Fourth, this study is limited to a homogeneous slope.
One may test these data assimilation methodologies by
considering the spatial variability in the slope domain,
frequency of measurements and the period with avail-
able measurements.

6. Conclusion

In this study, different data assimilation schemes
namely EnKF, ES and ESMDA are implemented to esti-
mate selective constitutive model parameters (i.e. Eref

50

and f′) in a slope stability system. These estimated par-
ameters are then used to estimate the state and FoS of
the system. The results of a synthetic twin experiment
show that EnKF estimates an FoS that is close to the
true FoS with a small standard deviation. ESMDA, a
smoother with four iterative assimilation steps, also esti-
mates an FoS close to the truth with a distribution that
has a higher standard deviation. The ES and ESMDA
(with two iterative assimilations) are not able to recon-
struct the true FoS very well, most likely due to the
mostly linear updates of these schemes. The theoretical
computation time required by the ES is the smallest, fol-
lowed by ESMDA with two iterative assimilation steps,
ESMDA with four assimilation steps, and EnKF. Due to
some forward model limitations in the commercial soft-
ware used (i.e. PLAXIS cannot output the results at
specific data assimilation steps without additional com-
putations to resolve the system of equations), ESMDA
needs relatively more computation time than the
EnKF and ES.
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Appendix

In this section, the algorithms for the different data assimila-
tion schemes are presented.

Algorithm 1 Ensemble Kalman Filter (EnKF)
Input: mo

phi , s
o
phi , m

o
e , s

o
e , s

2
obs, Dw, c, Dtruth, G

Output: Za, , F
1 Initialisation
2 Read input and define variables
3 Initialise required vector and matrices
4 eo = N (mo

e , s
o
e ) ⊳ prior Eref50

sampling
5 po = N (mo

phi , s
o
phi) ⊳ prior f′ sampling

6 while t ≤ tassim do
7 Read water level time series Dw(t)
8 while i ≤ Ne do ⊳ loop over

ensembles
9 Instructions to set up realisation i
10 x = hm(et(i), pt(i), Dw, p) ⊳ HM analysis and

extract x
11 f = sa(hm(et(i), pt(i), Dw, p) ⊳ FoS analysis
12 f (i) = f ⊳ save f in vector f
13 Xft[:, i] = x ⊳ save x in matrix
14 Zft = (Xft , e

t, pt)
15 Cezz = cov(Zft)
16 dlt = dt + elt , l = 1, 2, . . . .Ne
17 Zat = Zft + CezzG

T(GCezzG
T + Cdd)

−1(Dt − GZft)

Algorithm 2 Ensemble smoother (ES)
Input: mo

phi , s
o
phi , m

o
e , s

o
e , s

2
obs, Dw, c, Dtruth, G

Output: Z̃
a

1 Initialisation
2 Read input and define variables
3 Initialise required vector and matrices
4 eo = N (mo

e , s
o
e ) ⊳ prior Eref50 sampling

5 po = N (mo
phi , s

o
phi) ⊳ prior f′ sampling

6 uo = (eo , po)T ⊳ prior parameter matrix
7 while i ≤ Ne do ⊳ loop over ensembles
8 while t ≤ tassim do ⊳ loop over timesteps
9 Read water level time series Dw(t)
10 Setup for initial stress state
11 x = hm(eo(i), po(i), Dw, c) ⊳ HM analysis and

extract x
12 f = sa(hm(eo(i), po(i), Dw, c)) ⊳ FoS analysis
13 Af

i [:, t] = x ⊳ save x in matrix
14 f (t) = f ⊳ save f in vector f
15 Zft = (Xft , u

o)T ⊳ develop Zft for all time
steps

16 Z̃ = (Zf1, Z
f
2, . . . · · · Zftassim)T ⊳ stacking all forcast-

parameter matrices
17 C̃

e
zz = cov(Z̃) ⊳ estimate the spatial-

temporal covariance
matrix

18 dlt = dt + elt , l = 1, 2, . . . .Ne
19 Dt = (d1t , d

2
t , d

Ne
t ) ⊳ develop Dt for all time

steps
20 D̃ = (D1, D2, . . . · · ·Dtassim)

T ⊳ stacking all perturbed
observations matrices

21 C̃dd = s2
obsI

22 Read G̃ from file
23 Z̃

a = Z̃+ C̃
e
zzG̃

T
(G̃C̃

e
zzG̃

T + C̃dd)
−1(D̃− G̃Z̃) ⊳ extract estimated

parameters from Z̃
a

Algorithm 3 Ensemble smoother with multiple data
assimilation (ESMDA)
Input: mo

phi , s
o
phi , m

o
e , s

o
e , s

2
obs , Dw, c, Dtruth , G, a

Output: Z̃
a

1 Initialisation
2 Read input and define variables
3 Initialise required vector and matrices
4 eo = N (mo

e , s
o
e ) ⊳ prior Eref50 sampling

5 po = N (mo
phi , s

o
phi) ⊳ prior f′ sampling

6 uo = (eo , po)T ⊳ prior parameter
matrix

7 Select the α vector
8 while k ≤ len(a): do ⊳ loop over α
9 while i ≤ Ne do ⊳ loop over

ensembles
10 while t ≤ tassim do ⊳ loop over

timesteps
11 Read water level time series Dw(t) ⊳ loop over

timesteps
12 Setup for initial stress state
13 x = hm(ek(i), pk(i), Dw, c) ⊳ HM analysis and

extract x
14 f = sa(hm(ek(i), pk(i), Dw, c)) ⊳ FoS analysis
15 Af

i [:, t] = x ⊳ save x in matrix
16 f (t) = f ⊳ save f in vector f
17 Zft = (Xft , u

k)T ⊳ develop Zft for all
time steps

18 Z̃ = (Zf1, Z
f
2, . . . · · · Zftassim)T ⊳ stacking all

forcast-parameter
matrices

19 C̃
e
zz = cov(Z̃) ⊳ estimate the

spatial-temporal
covariance matrix

20 dlt = dt +






a(k)

√
elt , l = 1, 2, . . . .Ne

21 Dt = (d1t , d
2
t , d

Ne
t ) ⊳ Develop Dt for all

time steps
22 D̃ = (D1, D2, . . . · · ·Dtassim)

T ⊳ stacking all
perturbed

measurements
matrices

23 C̃dd = s2
obsI

24 Read G̃ from file
25 Z̃

a = Z̃+ C̃
e
zzG̃

T
(G̃C̃

e
zzG̃

T + a(k)C̃dd)
−1(D̃− G̃Z̃) ⊳ extract estimated

parameters from Z̃
a
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