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ABSTRACT

Mainstream bias, where some users receive poor recommenda-

tions because their preferences are uncommon or simply because

they are less active, is an important aspect to consider regarding

fairness in recommender systems. Existing methods to mitigate

mainstream bias do not explicitly model the importance of these

non-mainstream users or, when they do, it is in a way that is not

necessarily compatible with the data and recommendation model

at hand. In contrast, we use the recommendation utility as a more

generic and implicit proxy to quantify mainstreamness, and pro-

pose a simple user-weighting approach to incorporate it into the

training process while taking the cost of potential recommenda-

tion errors into account. We provide extensive experimental results

showing that quantifying mainstreamness via utility is better able

at identifying non-mainstream users, and that they are indeed bet-

ter served when training the model in a cost-sensitive way. This

is achieved with negligible or no loss in overall recommendation

accuracy, meaning that the models learn a better balance across

users. In addition, we show that research of this kind, which evalu-

ates recommendation quality at the individual user level, may not

be reliable if not using enough interactions when assessing model

performance.
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1 INTRODUCTION

One of the critical limitations of recommender systems based on

collaborative filtering (CF) models [5] is that they are not fair in

how they serve different groups of users [9, 11]. This fairness issue

is a result of the varying quality of users’ neighborhoods (groups
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of users with similar preferences) from which information is taken

to train a CF model [10, 24]. The information collected from large,

coherent, and information-rich neighborhoods will be the dominant

one in steering the process of learning to recommend for all users.

We refer to such dominant neighborhoods as mainstream. Because

the users belonging to such neighborhoods —themainstream users—

are compatible with the learned model, they are optimally served.

For the non-mainstream users, e.g. niche groups who deviate from

the mainstream and whose interaction information is therefore

less rich [11], who are less active compared to the mainstream

users [15], or where the preferences are not well pronounced, the

neighborhoods cannot fully reflect their genuine preferences. All

this will make the non-mainstream users receive recommendations

of a lower quality than the mainstream users. The difference in

the quality of the CF model for these two user groups, further

referred to as the mainstream bias, will result in the continuous

improvement of the performance for the mainstream group, and

continuous decrease of the performance for the rest [12].

While the issue of treating users differently by a recommender

system in general has been addressed by a number of approaches,

making for example assumptions about the relation between users’

gender [14] or demographics [4] and the quality of recommenda-

tion, not many approaches have focused specifically on addressing

the mainstream bias. Li et al. [10] deployed an autoencoder [20] for

feature reconstruction as an adversary to a traditional CF model,

forcing it to deviate from the pure similarity-based learning and

make the learned model more compatible with the non-mainstream

users. More specifically, the autoencoder was deployed to steer the

process of learning the user/item representation space for rating

prediction via optimal reconstruction of the properties of all users,

mainstream and otherwise, assuming this would lead to equal treat-

ment of users during recommendation. Still, a more explicit focus

on the mainstreamness of users is needed to ensure that the bias is

effectively addressed.

Inspired by outlier detection techniques, Zhu and Caverlee [24]

did focus on explicitly quantifying mainstreamness via similarities

of user-preference profiles, and incorporated them to fine-tune the

recommendation process for different user groups. However, in the

absence of ground truth data about mainstreamness, it is difficult to

assess how well these approaches identify non-mainstream users.

In addition, these mainstreamness statistics are model-agnostic

in the sense that they are independent of the recommendation

strategy, effectively ignoring the model’s own capability to reduce

the mainstream bias or even amplify it. As a result, the learning

process could be tailored to the wrong users.

In this paper, we choose to focus there where the effect of main-

streamness is directly observed, that is, the recommendation utility
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Figure 1: Cost functions used in the paper. The contrast de-

notes the relative cost between users with mainstreamness 0

and users with 1 (i.e. x10 means 10 times as much).

provided by the data and recommendation model at hand. If a user

receives poor recommendations it could be because their prefer-

ences deviate from the rest, or because there is not enough data to

properly quantify their similarity to other users or to fully exploit

it. Therefore, we choose utility as an implicit proxy for mainstream-

ness. Through this quantification of user mainstreamness, we make

the training process focus on the non-mainstream ones by assigning

them higher weights. We do so, however, in a cost-sensitiveway [22],

taking the cost of recommendation errors into account while train-

ing the CF model. Our results show that our implicit measurement

of mainstreamness via utility is better able to differentiate niche

users than an explicit approach, and that the cost-sensitive learning

strategy does mitigate the bias by balancing the recommendation

quality across users. Finally, we investigate data requirements for

conducting research on mainstream bias at the individual user level,

and provide suggestions for reliable experimentation in this area.

2 PROPOSED APPROACH

The basis of our approach is a weighted loss function where every

user 𝑢 ∈ U is assigned a weight 𝜔 (𝑢) that informs the learning

process about the importance of every user’s individual recommen-

dation loss. The global loss is thus simply

L =

∑

𝑢∈U

𝜔 (𝑢)L𝑅 (𝑢) , (1)

where the recommendation loss L𝑅 is specific of the model and

learning paradigm. This way, we explicitly tell the learning process

what users to optimize for by means of𝜔 , which, in our case, should

be high for non-mainstream users and low for mainstream users.

2.1 Definition of Weights

As explained in the previous section, we define 𝜔 as a function of

the user mainstreamness𝑚𝑢 . However, rather than simply using

a naïve transformation of𝑚𝑢 , we introduce flexibility through a

cost function that maps user mainstreamness onto a cost value.

In particular, and assuming 𝑚𝑢 ranges between 0 and 1, we use

the density function of a Normal distribution truncated between 0

and 1, with zero mean and variance adjusted to achieve a contrast

ranging between 5 (i.e. users with mainstreamness𝑚𝑢 = 0 have a

cost 5 times as large as users with𝑚𝑢 = 1) and 80 (ie. 80 times as

much). This is a simple choice to make𝜔 smooth and monotonically

decreasing, but other cost functions that emphasize different levels

of mainstreamness are of course possible; we leave this discussion

for further work. Fig. 1 shows some examples. Nonetheless, the

formulation of the cost function may consider various aspects tai-

lored to the business case, as well as different magnitudes for the

contrast between users with low and high mainstreamness. For

example, it would be reasonable to assign very high weights to

non-mainstream users with high activity, or to users with very low

activity as an attempt to reduce the churn rate.

An important point to consider when defining 𝜔 is the distri-

bution of mainstreamness across users. It could be the case that,

given the current data and model, the least mainstream users are

actually fairly mainstream already, so their weight relative to the

most mainstream users should be adjusted via a smaller contrast.

It could also be the case that the dataset is very sparse and there

are simply not enough neighbors around users for the model to

learn a good representation. That is, the majority of users could

be considered non-mainstream, and as a result the cost function

would hardly differentiate among them. Lastly, one could decide

to compute𝑚𝑢 in several different ways (see next Section), which

could potentially lead to quite different mainstreamness score dis-

tributions altogether, ultimately leading to a different set of weight

values even for the same users.

In order to minimize this dependence on the dataset and main-

streamness definition, and ensure that the full co-domain of the cost

function is used, we first normalize the raw mainstreamness scores.

Simply re-scaling between the minimum and maximum could still

lead to a disproportionate use of small parts of the co-domain, and

would also be very sensitive to outlier users. Instead, we use the

rank statistic of𝑚𝑢 normalized in [0, 1]. We achieve this by using

the empirical cumulative distribution function (ecdf)

𝜔 (𝑢) = cost(ecdfU(𝑚𝑢 )) , (2)

where, as mentioned, cost is defined in terms of a truncated Normal

density function.

2.2 Measurement of Mainstreamness

An explicit approach to compute𝑚𝑢 would ideally follow some

notion of mainstreamness, but mainstreamness is itself a complex

construct very hard to define formally [1, 10, 24]. Recently, Zhu and

Caverlee [24] took inspiration from outlier detection techniques to

propose four different definitions:

• Sim: users are mainstream to the extent that their inter-

actions are similar to that of the other users. The Jaccard

coefficient is used to measure the average similarity between

a user and all the others.

• Den: users are mainstream to the extent that there are

enough close neighbors to calculate similarity with. The

local outlier factor algorithm (LOF) [2] is used to identify

niche users.

• Dis: users are mainstream to the extent that their interactions

are common in the dataset, that is, they interact with popular

items. The cosine similarity is used to measure the similarity

between a user and the average user interactions.

1Data available from the authors’ public repository at
https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias.
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Figure 2: Comparison of the fourmainstreamness definitions

proposed by Zhu and Caverlee [24], as applied to the Movie-

Lens 1M dataset.1Density plots illustrate the distributions of

mainstreamness. Scatter plots show the relationship between

pairs of definitions, quantified in the upper-right half via

Pearson correlation scores. Scores are standardized to zero

mean and unit variance for better comparison.

• Deep: similar to Den, niche users are identified by an outlier

detection algorithm. In particular, the deep support vector

data description algorithm (DeepSVDD) [19] is used.

However, it is difficult to assess how well these, or any other

definitions for thatmatter, correlate with the concept ofmainstream-

ness. To illustrate, Fig. 2 compares these four definitions as applied

to the MovieLens 1M dataset. Although they are somewhat corre-

lated to one another, it is evident that they produce very different

scores. For instance, Sim and Dis lead to nicely shaped distribu-

tions, suggesting few users with extreme (non-)mainstreamness.

However, Den and Deep lead to very skewed distributions, even

in the opposite direction, pointing to many users with extreme

scores. This shows that the same user could be considered both

mainstream or non-mainstream, depending on how we choose to

define mainstreamness.

Furthermore, it should be noted that these four definitions of

mainstreamness are agnostic to the recommendation model. How-

ever, the effect of mainstreamness, ultimately, depends on the

model and how it is able to exploit the specifics of the dataset

it is trained on. It is not far-fetched to think of a user, assessed as

non-mainstream, who receives bad recommendations under one

model but good recommendations under a more capable one.

This leads us to consider an alternative, implicitway to quantify

mainstreamness that is not model agnostic. In particular, we decide

to focus there where the effect of mainstreamness is to be observed,

Table 1: Dataset statistics after pre-filtering.

Dataset #users #items #ratings Density

MovieLens 1M [6] 6,040 3,609 562,957 2.583%

BeerAdvocate [13] 8,821 43,663 780,752 0.203%

Amazon Digital Music [16] 14,057 379,171 619,673 0.011%

Amazon Musical Instruments [16] 15,270 585,766 862,798 0.010%

that is, the recommendation utility provided by the recommenda-

tion model at hand. This is where mainstreamness will ultimately

have an impact on. The very nature of collaborative filtering tells us

that if a user receives poor recommendations it is because they are

non-mainstream under the current model: they cannot be properly

represented, either because their preferences are somehow different

from their closest neighbors, or because there are not enough data

to properly quantify their similarity. Therefore, we use utility as a

proxy for mainstreamness. Since utility, just like mainstreamness,

is a complex concept difficult to measure, we decide to simply use

the accuracy of the recommendation model for that user, measured

through a metric like 𝑛𝐷𝐶𝐺 or 𝐴𝑃 .

But there is the question of what accuracy scores we actually

use. In principle, these scores should reflect user mainstreamness

when there is no mechanism to minimize its effect, and they should

be achieved by the recommendation model in the dataset at hand.

Therefore, we decide to use the accuracy achieved, on a validation

set, by the vanilla model whose loss function is as in Eq. (1) but

using no weights. As intended, we thus first see how the model

reacts to mainstreamness as reflected in the observed utility for

users, and then act upon it in a cost-sensitive way.

3 EXPERIMENTAL DESIGN

We carried out a number of experiments to investigate the effective-

ness of the proposed approach in mitigating the mainstreamness

bias, as well as the effect of the contrast applied by the cost func-

tion. In particular, we study contrasts x5, x10, x20, x50 and x80, that

is, the most non-mainstream user has a weight between 5 and 80

times larger than that of the most mainstream user. Fig. 1 details

the cost functions. Regarding the measurement of mainstreamness,

we consider both an explicit and an implicit quantification. For

the former, we follow Zhu and Caverlee [24] and compute Sim

scores. This choice is motivated by the time complexity of their

four approaches (the computation of mainstreamness may quickly

become intractable as the numbers of users and items increase;

while their datasets include a few thousand items, ours span from

a few thousands to over half a million), and their correlation to one

another (Sim is also the one most correlated with the others, in

particular with Deep). For the implicit quantification we compute

utility scores using the metric 𝑛𝐷𝐶𝐺 as an exemplar of recom-

mender systems research; hereafter, we will refer to this definition

of mainstreamness as Util.

We selected four real-world datasets containing user-item rat-

ing interactions from various domains and with different densities,

especially including some highly sparse datasets (see Table 1). In

line with common practice in ranking-oriented recommender sys-

tems research, we see all existing interactions in the datasets as

relevant, and all other unseen interactions as irrelevant. We use
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Figure 3: Correlation between mainstreamness and test nDCG in the baseline model (FM), for each mainstreamness definition.

Density plots illustrate the distribution of mainstreamness. Scatterplots show their relationship with nDCG, quantified via

Pearson correlation scores. Mainstreamness scores are standardized to zero mean and unit variance for better comparison.
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Figure 4: Correlation between user groups, split by mainstreamness, and test nDCG in the baseline model (FM).

LensKit [3] to evenly split the relevant items for each user into

training, validation and test sets. To make the modeling of utility

—and hence mainstreamness— robust, each user has at least five

relevant transactions in each of the three sets; we explain the ratio-

nale for this decision in Section 5. For training the model, we follow

He et al. [7], Wu et al. [23] and randomly sample four irrelevant

items per relevant item in the training partition. For validation and

test, we follow DaisyRec [21] and evaluate the model for each user

by ranking a total of 500 items consisting of their relevant items in

the validation/test partition and a set of randomly sampled irrele-

vant items. Finally, to make sure relevant items are the minority, as

happens in reality, we truncate the number of relevant interactions

to 200. The dataset statistics after processing are shown in Table 1.

Regarding the recommendation model, we deploy a simple but

effective CF model that only utilizes user-item interactions. Specifi-

cally, we choose Factorization Machines (FM) [18], which optimize

the binary cross-entropy (BCE) loss via the Adaptive Moment Es-

timation (Adam) [8] learner, and leave the investigation on other

training paradigms for future work. For each user, the BCE loss

is normalized by dividing by the total number of relevant and

irrelevant items used for training, so that all user losses are on

the same scale in (1). After a fine-tuning process based on grid

search, we fixed several key hyper-parameters including the di-

mension of vectors used for interaction (32), learning rate (0.0001),

L2-regularization coefficient to avoid overfitting (0.001), and batch

size (512).

All models are trained for 300 epochs to ensure full convergence,

and with 3 different random initializations to minimize random

effects due to the sampling process. The whole pipeline is imple-

mented in PyTorch [17], and all experiments are run on one NVIDIA

GeForce GTX 2080Ti GPU 2.

4 RESULTS

4.1 Mainstreamness and Utility

We first examine how Sim and Util differentiate between main-

stream and non-mainstream users. In particular, we are interested

in how well they correlate with the test 𝑛𝐷𝐶𝐺 scores obtained

by the baseline FM model: non-mainstream users should receive

recommendations with low 𝑛𝐷𝐶𝐺 scores, while mainstream users

should receive higher scores.

2All data, code and results are available at
https://github.com/roger-zhe-li/ictir23-cost-sensitive.

138



Mitigating Mainstream Bias in Recommendation via Cost-sensitive Learning ICTIR ’23, July 23, 2023, Taipei, Taiwan

Table 2: Mean nDCG of the baseline model (FM) per user group, and relative percentage improvement of each cost-sensitive

model (e.g. users in group ‘low’ of MovieLens 1M received a score of .3284 with the baseline, and an improvement of +3.89%

with the x80-contrast cost-sensitive model under the Utilmainstreamness definition). Column ‘Overall’ lists the mean across

all users. Green/red for statistically significant gain/loss with respect to the baseline (hierarchical linear model with seed and

user random effects, Bonferroni correction).

MovieLens 1M BeerAdvocate Amazon Digital Music Amazon Musical Instruments
med- med- med- med- med- med- med- med-

Overall low low med high high Overall low low med high high Overall low low med high high Overall low low med high high
FM .5531 .3284 .4621 .5753 .6613 .7388 .6887 .4144 .6051 .7301 .8132 .8809 .3456 .2324 .2695 .3145 .3828 .5289 .3606 .2348 .2772 .3276 .4085 .5552

Si
m

x5 .5465 -0.36 -0.89 -1.62 -1.3 -1.33 .6792 -0.52 -1.72 -1.83 -1.44 -1.13 .3395 +0.65 +0.05 -0.61 -1.8 -4.45 .3581 +1.61 +0.77 -0.09 -1.06 -2.5
x10 .5437 -0.47 -1.32 -2.23 -1.87 -1.94 .6734 -0.81 -2.87 -2.94 -2.27 -1.8 .3368 +0.99 +0.1 -1 -2.67 -6.27 .3577 +3.29 +1.44 +0.08 -1.68 -3.54
x20 .541 -0.53 -1.76 -2.85 -2.41 -2.51 .6666 -1.35 -4.23 -4.13 -3.22 -2.56 .3347 +1.31 +0.09 -1.3 -3.46 -7.69 .3576 +3.33 +1.44 +0.04 -1.72 -3.58
x50 .5376 -0.67 -2.28 -3.64 -3.06 -3.26 .6588 -2.01 -5.65 -5.56 -4.29 -3.54 .3328 +1.63 +0.07 -1.6 -4.13 -8.92 .3576 +3.37 +1.45 +0.03 -1.75 -3.6
x80 .5359 -0.67 -2.55 -4.06 -3.39 -3.59 .6548 -2.55 -6.39 -6.17 -4.84 -4.08 .3316 +3.66 +0.9 -1.78 -5.07 -10.62 .3576 +3.39 +1.45 +0.02 -1.77 -3.61

U
ti
l

x5 .5567 +1.67 +1.81 +0.63 +0.16 -0.13 .6846 +0.63 -0.41 -0.94 -0.83 -0.77 .3454 +1.59 +1.43 +1.2 +0.4 -2.58 .3607 +1.1 +0.96 +0.62 -0.04 -1.19
x10 .5574 +2.38 +2.34 +0.7 +0.11 -0.27 .6807 +0.44 -1.19 -1.66 -1.39 -1.27 .3453 +2.54 +2.09 +1.53 +0.18 -3.5 .3607 +2 +1.52 +0.78 -0.32 -1.8
x20 .5579 +3.05 +2.87 +0.73 0 -0.48 .6762 +0.54 -2.11 -2.67 -2.09 -1.74 .3454 +3.59 +2.78 +1.64 +0.11 -4.25 .3607 +2.63 +1.93 +0.8 -0.53 -2.08
x50 .5579 +3.62 +3.31 +0.68 -0.21 -0.84 .6722 +2 -3.09 -3.86 -2.89 -2.32 .3458 +4.84 +3.67 +1.92 -0.11 -4.9 .3608 +3.94 +2.48 +0.85 -0.83 -2.66
x80 .5577 +3.89 +3.47 +0.63 -0.32 -1.05 .6715 +2.98 -3.2 -4.25 -3.14 -2.54 .346 +5.45 +4 +2.02 -0.18 -5.15 .3608 +4.48 +2.64 +0.88 -0.97 -2.86

Figure 5: Mean nDCG relative percentage improvement be-

tween cost-sensitivemodels and baselinemodel, as a function

ecdf(test nDCG) in the baseline FM model, for a sample data

split. Curves fitted by a LOESS model. Ribbons indicate 95%

confidence intervals.

For each of the four datasets, Fig. 3 compares Sim and Util. We

can first see that both approaches lead to similar distributions

in the Amazon datasets, where there appear to be many non-

mainstream users. However, they somewhat disagree in the BeerAd-

vocate dataset, where Util does not identify many non-mainstream

users to benefit from the cost-sensitive approach. In terms of cor-

relation with the test 𝑛𝐷𝐶𝐺 scores, we can see that Util is much

better correlated, specially in the Amazon datasets. This points to

the possibility that Sim identifies many non-mainstream users to

which the model is still able to offer good recommendations. If the

training process increases their importance by assigning them a

high weight 𝜔 , we may loose the opportunity to focus on those

users that still receive poor recommendations.

In order to assess the effectiveness of the cost-sensitive approach

for the mitigation of the mainstream bias, we will look in the next

Section into different groups of users separated by their mainstream-

ness: group ‘low’ contains the 20% of users with lowest mainstream-

ness scores on the baseline model, group ‘med-low’ contains the

next 20% or users, group ‘med’ contains the middle 20% of users, and

so on with groups ‘med-high’ and ‘high’. An effective mitigation of

the mainstream bias would be reflected in increased performance

for the lower groups, which ideally should be those with lowest

test 𝑛𝐷𝐶𝐺 scores in the baseline model. Fig. 4 shows how well Sim

and Util separate users in these five groups. We can first see that

the groups are indeed correlated with 𝑛𝐷𝐶𝐺 , but we can notice

that this correlation is stronger with Util, specially in the Amazon

datasets (the low groups receive lower utility, and the higher groups

receive higher utility). We can also see that groups tend to overlap

substantially when separated by Sim, potentially misplacing users.

This overlap can be quantified by an ANOVA model of 𝑛𝐷𝐶𝐺 mod-

eled by two factors: dataset and user-group nested within dataset.

Indeed, the user-group effect has a much larger sum of squares (SS)

with Util than with Sim (SS=440 vs SS=218; SS of the dataset effect

is 843). Finally, Fig. 4 also points that the BeerAdvocate dataset may

be hard to further optimize for because the utility scores are already

relatively high.

4.2 Bias Mitigation

An effective mitigation of the mainstream bias would be reflected

in increased performance for the lower groups (i.e. mainly ‘low’

and ‘med-low’), ideally with no detriment to the higher groups and,
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Table 3: Same as Table 2, but user groups defined by Sim scores instead of test nDCG in the baseline model.

MovieLens 1M BeerAdvocate Amazon Digital Music Amazon Musical Instruments
med- med- med- med- med- med- med- med-

Overall low low med high high Overall low low med high high Overall low low med high high Overall low low med high high
FM .5531 .3284 .4621 .5753 .6613 .7388 .6887 .4144 .6051 .7301 .8132 .8809 .3456 .2324 .2695 .3145 .3828 .5289 .3606 .2348 .2772 .3276 .4085 .5552

Si
m

x5 .5465 -0.62 -0.97 -1.16 -1.34 -1.58 .6792 -1.4 -1.39 -1.43 -1.34 -1.35 .3395 -0.04 -0.61 -1.37 -2.16 -4.05 .3581 +0.01 -0.16 -0.52 -0.89 -1.65
x10 .5437 -0.84 -1.42 -1.63 -1.87 -2.31 .6734 -2.23 -2.4 -2.23 -2.14 -2.16 .3368 0 -0.86 -2.03 -3.18 -5.71 .3577 +0.26 -0.08 -0.53 -1.14 -2.11
x20 .541 -1.19 -1.83 -2.12 -2.35 -2.96 .6666 -3.42 -3.54 -3.17 -2.95 -3.06 .3347 -0.05 -1.15 -2.52 -4.01 -6.97 .3576 +0.24 -0.11 -0.57 -1.16 -2.14
x50 .5376 -1.49 -2.35 -2.71 -3.02 -3.84 .6588 -4.71 -4.74 -4.31 -3.92 -4.2 .3328 -0.17 -1.42 -3.01 -4.67 -8 .3576 +0.24 -0.09 -0.58 -1.18 -2.16
x80 .5359 -1.76 -2.68 -2.95 -3.32 -4.19 .6548 -5.34 -5.29 -4.83 -4.46 -4.91 .3316 +0.03 -1.52 -3.34 -5.18 -8.87 .3576 +0.23 -0.1 -0.59 -1.18 -2.17

U
ti
l

x5 .5567 +1.5 +0.99 +0.53 +0.32 +0.26 .6846 -0.46 -0.5 -0.51 -0.66 -0.72 0.3454 +0.12 +0.11 -0.16 +0.07 -0.3 0.3607 -0.01 +0.06 0 -0.04 +0.12
x10 .5574 +2.05 +1.24 +0.67 +0.33 +0.2 .6807 -1.11 -1.16 -1.1 -1.19 -1.22 0.3453 +0.13 +0.06 -0.11 +0 -0.43 0.3607 0 +0.12 +0.01 -0.06 +0
x20 .5579 +2.52 +1.59 +0.71 +0.27 +0.08 .6762 -1.85 -2.03 -1.79 -1.73 -1.72 0.3454 +0.11 +0.06 -0.06 +0.15 -0.5 0.3607 0 +0.14 +0.05 -0.08 +0.01
x50 .5579 +2.92 +1.8 +0.64 +0.12 -0.16 .6722 -2.66 -2.85 -2.53 -2.13 -2.05 0.3458 +0.19 +0.07 +0.13 +0.22 -0.3 0.3608 +0.16 +0.23 -0.03 -0.05 -0.04
x80 .5577 +3.12 +1.86 +0.61 +0.01 -0.33 .6715 -2.92 -3 -2.65 -2.15 -2.05 0.346 +0.23 +0.09 +0.15 +0.29 -0.18 0.3608 +0.16 +0.21 +0.01 -0.02 -0.06

Figure 6: Same as Fig. 5, but plotted against ecdf(𝑚𝑢 ) by Sim

instead of ecdf(test nDCG) in the baseline model.

especially, overall. In the previous section we separated users into

groups by each of Sim and Util, but here we separate them directly

by their test 𝑛𝐷𝐶𝐺 with the baseline model FM, because this better

illustrates how non-mainstream users suffer from the bias.

Table 2 reports the relative percentage improvement in 𝑛𝐷𝐶𝐺

scores per user group, as well as the overall mean score across all

users in the dataset. We can clearly see that the use of Sim benefits

the non-mainstream users only in the two Amazon dataset; in

MovieLens and BeerAdvocate they are even hurt further. In contrast,

Util is always able to improve the utility of non-mainstream users

across datasets, achieving relative 𝑛𝐷𝐶𝐺 improvements of up to 5%

in the Amazon datasets. Improvements on the lower user groups

are generally higher than losses on the higher groups, where users

already receive (very) high recommendation utility anyway and

such minor losses are probably unnoticed. This redistribution of

model performance has a negligible effect on the global performance

of the models, as evidenced by the overall 𝑛𝐷𝐶𝐺 scores. This means

that, with proper selection of the contrast in the cost function, Util

can minimize the mainstream bias at virtually no overall loss in

utility. On the other hand, the use of Sim for training leads to

inferior overall performance on all four datasets.

Fig. 5 presents a more fine-grained picture with one of the three

random initializations in our experiments. Curve segments above

0 represent an improvement by the cost-sensitive models, while

segments below 0 represent a loss. We can confirm that the cost-

sensitive approach indeed makes the models focus on the non-

mainstream users, as shown by the nicely smooth correlation be-

tween observed utility and relative improvement, moderated by

the contrast in the cost function. As expected though, this focus on

the non-mainstream users comes at the cost of a utility loss for the

mainstream users on the right-hand side of the plots. Nevertheless,

when using Util the relative loss for those users is generally much

smaller than the gain for the very non-mainstream users, which

are our main target. The figure also shows that the actual relation

between improvement and utility varies across datasets, as reflected

by the different curve shapes. This is explained by the differences

in the shape of their 𝑛𝐷𝐶𝐺 distributions (see Fig. 3); recall that we

use the 𝑒𝑐𝑑 𝑓 of the scores. In a side-by-side comparison between

Sim and Util, we see that Util offers better performance nearly ev-

erywhere along the 𝑥-axis, but especially for the non-mainstream

users.

In summary, we see that our cost-sensitive approach brings

better balance across users, thus helping in the mitigation of the

mainstream bias. In addition, we confirm that an implicit quantifi-

cation of mainstreamness like Util works better than an explicit

quantification like Sim in steering the learning process towards

better recommendations for the users that receive low utility from

the baseline model. In addition, we note that the mitigation effect

via Util does not decay with increasing data sparsity (refer back to

Table 1).

One could be tempted to argue that Util should obviously offer

better results than Sim when analyzing test 𝑛𝐷𝐶𝐺 because it is
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based on validation 𝑛𝐷𝐶𝐺 scores; test and validation scores should

be highly correlated (we will come back to this in Section 5). After

all, both Table 2 and Fig. 5 analyze results by test 𝑛𝐷𝐶𝐺 . The ar-

gument made above is that differences between mainstream and

non-mainstream users can be immediately identified by test scores,

but for the sake of clarity and to avoid potentially unfair assessment

towards Sim, Table 3 reports the same results but separating users

by Sim, while Fig. 6 does so by plotting against Sim. While the

results are less clear with this partition of users, the table confirms

that models trained with Sim are generally better at mitigating the

bias than those trained with Util. In particular, results for the Beer-

Advocate dataset show that higher contrasts even lead to worse

performance for the lower user groups, suggesting that Sim is per-

haps not properly identifying non-mainstream users. The figure

shows that Util improves over the baseline across all levels of main-

streamness in the Amazon datasets, further suggesting that Sim

identifies as non-mainstream users that are probably not. In sum-

mary, and even though this comparison could in turn be considered

favorable to Sim (note that previously we assessed against test

𝑛𝐷𝐶𝐺 , not against the validation 𝑛𝐷𝐶𝐺 calculated by Util), the re-

sults again support the use of Util to quantify user mainstreamness

and mitigate the bias.

5 DISCUSSION

A key assumption of our approach based on Util is that we can

reliably use utility, measured as the accuracy on a validation set,

to determine the weight that each user should have in the training

process. This implies that the accuracy on the validation set is a

good estimate of the accuracy on the test set, which is where the

effect will ultimately be assessed. If there was a low correlation

between validation and test accuracy, the loss function would apply

high weights for users that do not really need it, limiting or even

altogether canceling the potential of our approach.

Intuitively, howwell validation and test scores correlate is mainly

determined by the amount of data. If only a few interactions are

involved in the calculation of accuracy, the resulting scores will

bear a high degree of noise or random error, thus lowering the

correlation. In principle, we would therefore use as much data as

possible in the validation and test sets. However, wewould generally

prefer to use all that data to actually train the model, but we note

that the validation scores are somehow part of the training process

itself, because they determine the weights.

A balance is therefore necessary, so we need to study the strength

of the validation-test scores correlation as a function of the number

of interactions in their data partitions. We did this by running

the baseline FM model on different data partitions with varying

minimum numbers of relevant items in the training set (3, 4, 5

and 10), and validation and test sets (1, 2, 3, 4 and 5 each). The

actual split was conducted maintaining proportions (i.e. for the

combination of 4/3/3 minimum items per set, a user has 40% of their

relevant items for training, 30% for validation, and 30% for testing).

We then measured the strength of the validation-test correlation

via the RMSE of the scores and their Spearman 𝜌 correlation.

Fig. 7 shows that, as expected, the correlation increases (low

RMSE, high 𝜌) with the number of relevant interactions used in

the validation and test sets. More interestingly, it shows that the

Figure 7: Correlation between validation and test scores as a

function of the amount of data used for training, validation,

and testing, for two sample datasets (most and least dense).

amount of training data has a much smaller and varying effect, so

despite it being a major factor to maximize model performance, it is

not so to robustly assess that performance. The plots indicate that

requiring only one or two interactions in the validation set would

lead to noisy scores; four interactions seem the bare minimum. As

for the training set, the usual practice of having at least as much

data as for validation and testing still applies in this context of

non-time-aware recommendation.

All in all, our suggestion for this line of research on mainstream

bias that works at the individual user level, is to have no less than

four items per user in each of the three standard data partitions.

Because the strength of the correlation is a key factor in our ap-

proach, we decided to require at least five to be on the safe side. In

fact, we also observed that the effect of cost-sensitive learning in

the validation sets is similar to what is reported in Figs. 5 and 6.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we tackled the challenge of mainstream bias in CF-

based recommendation. The main aspect we focused on is to steer

the process of mitigating this bias directly by the utility result-

ing from the recommendation model and data at hand. For this

purpose, we proposed an approach that assigns each user an im-

portance weight during training, with these weights defined in a

cost-sensitive manner. By choosing to steer the model directly to-

wards the users that receive low utility, and not towards those that

appear to be non-mainstream, we avoid the model to focus on users

that already receive high utility even if they were not expected to.

This way, the model does focus on the niche users that suffer from

the bias.

Empirical results show that suchmodels produce amore effective

balance of the recommendation utility among the mainstream and

non-mainstream users, in a way that is consistent across datasets
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with varying properties. In addition, we provide suggestions regard-

ing the minimum number of interactions to require when partition-

ing datasets. Without enough interactions, research on mainstream

bias at the level of individual users might produce unreliable results.

For future work, we will first explore other ways to quantify

mainstreamness. In the implicit measurement sense, an evident

question is whether other metrics such as 𝐴𝑃 , or even the combi-

nation of multiple metrics, work better at identifying niche users.

Additionally, we can think of ways to make the validation-test cor-

relation robust to issues like sample selection bias, for example via

inverse propensity scoring. Another line is to explore more princi-

pled approaches for an explicit quantification through an extensive

study of the factors that influence mainstreamness, such as the

temporal dynamics.

Regarding our cost-sensitive learning approach, we will explore

its generality, to see how it works for underlying models other than

FM or other ranking frameworks such as pairwise and listwise. We

will also investigate the combination of cost-sensitive and adversar-

ial learning strategies to mitigate mainstream bias: cost-sensitive

to tell the model where to focus on, and adversary to tell how.

Finally, we note that our focus in this paper has been on the effect

of mainstream bias mitigation on the users, but one could wonder

about what effect it has on the items. One hypothesis is that non-

mainstream users are better served because the less popular items

are now more likely to be recommended, so it would be interesting

to study whether mitigating one bias amplifies or mitigates other

biases, such as popularity or position.
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