

Delft University of Technology

State4: State-preserving Reconfiguration of P4-programmable Switches

Ji, C.; Kuipers, F.A.

DOI
10.1109/NetSoft57336.2023.10175468
Publication date
2023
Document Version
Final published version
Published in
2023 IEEE 9th International Conference on Network Softwarization

Citation (APA)
Ji, C., & Kuipers, F. A. (2023). State4: State-preserving Reconfiguration of P4-programmable Switches. In
C. J. Bernardos, B. Martini, E. Rojas, F. L. Verdi, Z. Zhu, E. Oki, & H. Parzyjegla (Eds.), 2023 IEEE 9th
International Conference on Network Softwarization: Boosting Future Networks through Advanced
Softwarization, NetSoft 2023 - Proceedings (pp. 134-142). (2023 IEEE 9th International Conference on
Network Softwarization: Boosting Future Networks through Advanced Softwarization, NetSoft 2023 -
Proceedings). IEEE. https://doi.org/10.1109/NetSoft57336.2023.10175468
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/NetSoft57336.2023.10175468
https://doi.org/10.1109/NetSoft57336.2023.10175468

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

State4: State-preserving Reconfiguration of
P4-programmable Switches

Chenxing Ji, Fernando Kuipers
Delft University of Technology
{c.ji, f.a.kuipers}@tudelft.nl

Abstract—To cater to constantly changing network needs,
enabling stateful reconfiguration of Network Functions (NFs) is
crucial. Recently, there has been growing interest in offloading
NFs to programmable network devices. Unfortunately, it is
currently not possible to maintain the full state of NFs during
a switch reconfiguration without consuming network resources
from and to neighboring switches. In this paper, we present
State4, a framework that maintains the state of P4 programs
during the reconfiguration of a P4-programmable network de-
vice, by only using a small amount of local resources on the
switch undergoing reconfiguration. State4 acts on both the in-
switch control-plane and the data-plane. By utilizing the in-switch
local controller, State4 requires no external network resources to
achieve reconfiguration while preserving states. As such, State4
enables on-the-fly reconfiguration of stateful NFs, at minimal
traffic disruption, where previously traffic had to be re-routed.

Index Terms—Stateful Data-plane, Programmable Data-plane
Virtualization, Reconfiguration

I. INTRODUCTION

The emergence of the Programming Protocol-independent
Packet Processor (P4), a domain-specific language used for
programmable network devices, has accelerated research on
programmable data-planes [1]. Compared to traditional net-
work switches, programmable switches enable new protocols
and functionalities to be deployed rapidly without the need to
wait for vendor-specific implementations.

Together with the development of the programmable data-
plane, there has also been significant interest in offloading
Network Functions (NFs) traditionally run on servers to the
programmable data-plane (e.g., load-balancers [2], [3], state-
ful firewalls [4]–[6], or network storage [7]). However, pro-
grammable network devices have been designed to support fast
packet forwarding and struggle to provide multiple network
functionalities over a single pipeline. Yet, since single NF
applications often do not take up all the available resources
of a switch, it is desirable to run multiple NFs on a single
programmable network device for cost and efficiency reasons.
In an attempt to accommodate multiple NFs on a single switch,
researchers have been leveraging virtualization techniques.

In general, programmable data-plane virtualization frame-
works take either a hypervisor approach [8]–[10] or a
compiler-based approach [11], [12]. The hypervisor approach
typically loads a generic hypervisor P4 program and ma-
nipulates table rules to allow NF loading and unloading at
runtime. While the hypervisor approach can preserve runtime
states, such as table rules, it does not support stateful NFs,

because the hypervisor cannot resize and remap registers at
runtime. On the other hand, compiler-based approaches use
static analysis, which allows them to combine programs and
reload the pipeline with a new configuration. The compiler-
based approach allows for more efficient use of resources than
the hypervisor approach, but the reconfiguration of the pipeline
wipes all the state and hence calls for specific procedures
to maintain that state. This means saving the runtime state
and redeploying it after the reconfiguration. However, due to
the high throughput of programmable network devices, the
in-switch state can change rapidly, making it challenging to
recover the previous state after a pipeline reconfiguration.

Our framework, State4, addresses this challenge. State4
scales well since its resource usage is independent of the num-
ber of allocated stateful resources. State4 utilizes a control-
plane plus data-plane approach. First, it inserts P4 code to
clone packets that alter state and send the cloned packets
with state information to a local controller. Next, it uses the
controller to query the state from the control-plane to reduce
overhead. Then, it combines both the cloned state information
and control-plane information to achieve state synchronization
after reconfiguration. Our main contributions are as follows:

1) We propose State4, a framework1 that adds support
for compiler-based stateful NF reconfiguration of P4-
programmable network devices.

2) Our framework includes a mechanism that minimizes
traffic disruption during reconfiguration.

3) We implement and evaluate a prototype of our framework
with bmv2 in Mininet.

II. MOTIVATION

Currently, there are two main approaches for enabling
virtualization on programmable data-plane devices: (1) the
hypervisor approach and (2) the compiler-based approach.
While the compiler-based approach allows for more efficient
use of resources than the hypervisor approach, it is also
presently unable to maintain the functionality of stateful NFs
during a switch update or switch reconfiguration.

While previous research addressed offloading NFs to the
programmable data-plane, applying multiple NFs within a net-
work requires multi-tenancy and dynamic resource allocation,
which the programmable data-plane currently cannot provide

1The source code of our State4 prototype is available at https://gitlab.tudelft.
nl/lois/State4

2023 IEEE 9th International Conference on Network Softwarization (NetSoft)

134

20
23

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
9-

8-
35

03
-9

98
0-

6/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
73

36
.2

02
3.

10
17

54
68

Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

at runtime. Therefore, considerable research has been devoted
to applying virtualization techniques to programmable data-
planes [8]–[13].

In the remainder of this section, we will explain why we
focus on aiding the compiler-based approach over the hypervi-
sor approach. Subsequently, we will discuss the inadequacy of
the current approaches to achieve state synchronization after
a reconfiguration.

A. Hypervisor vs Compiler-based

The hypervisor and compiler-based approaches impact the
statefulness and the runtime resource usage differently:

Statefulness Currently, one of the main differences be-
tween the hypervisor and the compiler-based approaches is
their (in)ability to keep state. With the hypervisor, the hyper-
visor program handles adding functionalities to the data-plane
by adding or removing match-action table entries. Through
this, it is easy for this approach to maintain the state of P4
programs while modifying functionality at runtime. On the
other hand, because the compiler-based approach reconfigures
the pipeline to update NFs, it clears the runtime state.

The hypervisor approach, however, also has issues in sup-
porting stateful P4 programs. Even though some states can
be maintained while changing (at runtime) P4 functionalities,
estimating the number of resources and (re)allocating registers
for each NF is currently infeasible through the hypervisor pro-
grams [8], [9], [14]. This typically leads to over-provisioning
and hence inefficient use of the precious resources on a switch.

Resource Usage Compared to commodity servers with
gigabytes of memory that can easily host NFs, programmable
data-plane devices typically only have SRAMs and TCAMs
in the magnitude of megabytes [15]. This makes resource
efficiency highly crucial on such devices.

The hypervisor approach typically allocates additional
match-action tables for mapping NF programs during runtime.
For instance, Hyper4 [8] pre-allocates match-action tables for
emulating all possible actions, while HyperVDP [9] allocates
dozens of match-action tables and utilizes condition-checking
to apply the tables. Both approaches result in low utilization
of allocated resources. For example, Hyper4 [8] allocates 13
tables at runtime for an L2-forwarding functionality, whereas
a simple L2-forwarding program only requires 2 forwarding
tables. Although follow-up works have reduced that ineffi-
ciency [10], [11], their resource utilization is still significantly
worse than that of a native merge. Hence, hypervisor ap-
proaches are inefficient in terms of resource utilization.

For the compiler-based approach, the required amount of
match-action tables is determined by the NFs needed. In
addition, a compiler-based approach can also perform an
analysis of the NFs to determine the best shareable resources,
leading to reduced resource usage.

Unfortunately, updating functionalities for compiler-based
approaches comes at the cost of traffic disruption during
a pipeline reconfiguration. Although previous research has
explored pipeline manipulation on program reload to mitigate
this problem [13], this approach requires the help of an

additional pipeline, which lowers the resource utilization of
the network. In addition, state synchronization between the
original and the target pipeline causes state inconsistency.
Given the crucial importance of resource efficiency and the
apparent benefits of the compiler-based approach, we have
set out to overcome the existing statefulness hurdle in that
approach, instead of working to improve a hypervisor.

B. State Synchronization

Maintaining state correctness is crucial for stateful NFs, as
they rely on those states to provide their functionality. For
example, consider a network with a port-knocking firewall.
The connection has been established between a client and
a protected server. If the in-switch state is lost during a
reconfiguration, the switch would drop the flow that was
previously going through, because the firewall rule no longer
recognizes the flow. Existing state-of-the-art solutions [13],
[16] aim to tackle this problem through different approaches:

P4NFV [13] takes a controller approach to query runtime
state. However, the querying time for stateful components
increases up to seconds when there is a large number of states.
Therefore, simply querying the state of the NFs of a switch
using the control-plane would lead to state inconsistency. For
example, consider a packet that modifies the current NF state
after the reconfiguration query of the same stateful component.

Swing State [16] uses the data-plane for achieving state
synchronization by cloning and sending state information from
one pipeline to another. Hence, Swing State may suffer from
packet loss and takes up additional network resources (on and
toward the other pipeline). In addition, their work introduced
hard and soft states to reduce the number of states needed for
migration by only migrating hard states and by leaving it to
the developer to write transfer functions for migration.

III. DESIGN CHALLENGES

Resource Constraints The resources on a programmable
network switch are usually quite constrained. For example,
the Intel Tofino3 switch has 200 Megabits of SRAM and 10.3
Megabits of TCAM per pipeline [15]. Given the constrained
resources of programmable switches, our framework should
not demand significant additional resources (i.e., memory).
The amount of NFs that can run on a programmable switch
should ideally remain the same with or without the support
for stateful NFs.

State Consistency Stateful network functions rely on
the states stored to provide correct/accurate functionalities.
If not, then for applications such as NAT [17] and port-
knocking firewall [4], the established benign flows would be
blocked/dropped. Moreover, during a switch reconfiguration,
while maintaining state consistency, it is crucial to minimize
any traffic disruption caused by the unavailability of NFs.
Therefore, programmable switches need to forward packets
in parallel with the state synchronization process, which –
because of the fast-changing in-switch states – is challenging.

135
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

NFs/P4 program

Provide

Code Analyzer

Code
Instrumentor P4C P4 Config

Json

P4
Runtime
Server

P4
Target

Target Data-plane

Operator

Local Controller

Runtime State Retriever
+

Runtime State Synchronizer

State4 Modules P4 Language Modules

Fig. 1: Workflow of State4 for a switch reconfiguration.

IV. FRAMEWORK DESIGN

We have designed a framework to overcome the design
challenges mentioned in Section III. Our system consists of
several modules (further explained below):

• Code Analysis Module (CAM): Scans the provided P4
program to retrieve stateful component information.

• Code Instrumentation Module (CIM): Modifies the pro-
vided new P4 program to perform packet cloning and
send state change information to the local controller
during reconfiguration.

• Runtime State Retrieving Module (RSRM): Reads the
current switch state from the control-plane and receives
state update information from the data-plane.

• Runtime State Synchronization Module (RSSM): Pushes
the received state information and the new configuration
to the switch.

Figure 1 depicts the workflow of a switch reconfiguration
and how the individual modules use the information obtained
by other modules. The operator provides a new P4 program
that is scanned by CAM. CIM then uses the information
gathered by CAM to modify the new P4 program. Hence,
by using State4, any program installed on the switch will
also have been instrumented by CIM and thus is able to
clone packets and send state information to the controller.
When a new program is to be loaded, it also triggers RSRM,
which retrieves the runtime state from the “old” P4 program
through both the control- and data-planes based on CIM’s
information about the P4 code. Last, RSSM analyzes the
state retrieved by RSRM, pushes the state to the runtime of
the new program, and performs the pipeline reconfiguration
configuration swap. We utilize a local controller to reduce
latency between the controller and the data-plane to minimize
state inconsistency and avoid state inconsistency caused by
potential packet loss. Our system defaults to preserving all
states on a programmable switch. However, due to the cost
of synchronization, State4 also allows the network operator
to provide a list of stateful components such that only those
components would be synchronized.

A. Local Controller

State4, for the reconfiguration process, leverages a local
in-switch controller instead of a remote controller elsewhere
in the network. The local controller is directly connected
to the CPU port of the switch, thus having a dedicated
connection and low latency between the communication with
the controller and the switch. For other control-plane function-
alities, the local controller could either interface with a remote
centralized controller or distributively synchronize with the
other local controllers in the network.

B. Code Analysis Module (CAM)

CAM handles retrieving stateful component usage informa-
tion from the P4 source code provided by the network operator.
CAM performs a one-time scan over the provided P4 code
and identifies the name of the stateful components based on
predefined P4 keywords for the provided architecture model,
e.g., “registers.” CAM creates a list of stateful components
for every defined stateful keyword. The information is sent to
CIM for inserting code with the associated components and
to RSRM for reading the current runtime state.

CAM collects information about where the register write
operations are executed and calculates the following: the
total number of registers, the maximum index size of all the
registers, and the maximum possible value any register index
could represent. These values are used by CIM to compute the
size of metadata needed for storing state information.

Since read access does not affect the current state of the
P4 program, CAM does not need to record read access usage.
Write access, on the other hand, does affect the current state
and needs to be recorded by CAM. Therefore, for each write
access to stateful components, CAM records the following
three parts for the code instrumentation module: the name of
the register components, the variable name of the register index
to access, and the variable name of the value to write. The
information is then used by CIM for storing corresponding
values in the metadata for cloning and sending the updated
states during the reconfiguration phase.

C. Code Instrumentation Module (CIM)

CIM deals with the potential state inconsistency caused by
reconfiguration (because states read by the controller may not
be consistent with the state at the configuration swap point).
CIM uses the information gathered by CAM to modify the
code such that only the packets with state updates will be
cloned to minimize the impact on the traffic. Listing 1 gives
an example of the code inserted by CIM to a port-knocking
firewall application. The details of each addition are explained
in the remainder of this subsection. Note that all the code
snippets inside Listing 1 are inserted into the original P4
program by CIM except for Lines 23-24, which is the write
access to a stateful component in the original program.

We further describe CIM for each addition in the list-
ing. Since packets are cloned inside the traffic manager, the
cloned packets are only available during the egress processing.
Therefore, state update information needs to be stored inside

136
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

1 /* Header code */
2 struct packetIn_meta {
3 bit<8> reg_num;
4 bit<24> index_num;
5 bit<80> value;
6 }
7 struct metadata {
8 @field_list(0)
9 packetIn_meta pkIn_meta;

10 }
11 @controller_header(''packet_in'')
12 header packet_in_header_t{
13 bit<8> reg_num;
14 bit<24> index_num;
15 bit<80> value;
16 }
17 /* Ingress code */
18 bit<1> clone;
19 register<bit<1>>((1)) clone_reg;
20 /* Ingress apply logic*/
21 clone_reg.read(clone,0);
22 /* Ingress state write to metadata */
23 pk_reg.write((bit<32>)meta.pk_meta.id,
24 meta.pk_meta.stage);
25 if (clone == 1) {
26 store_info_into_meta_2(8,
27 (bit<24>)meta.pk_meta.id,
28 (bit<80>)meta.pk_meta.stage);
29 clone_preserving_field_list(
30 CloneType.I2E,5,0);
31 }
32

33 /* Egress code */
34 action send_to_controller_with_data(
35 bit<8>reg_num,bit<24>index_num,
36 bit<80>value) {
37 hdr.packet_in.setValid();
38 hdr.packet_in.reg_num = reg_num;
39 hdr.packet_in.index_num = index_num;
40 hdr.packet_in.value = value;
41 }
42 /* Egress apply logic */
43 if (standard_metadata.instance_type == 1) {
44 send_to_controller_with_data(
45 meta.pkIn_meta.reg_num,
46 meta.pkIn_meta.index_num,
47 meta.pkIn_meta.value);
48 truncate(14);
49 } else {
50 hdr.packet_in.setInvalid();
51 }
52

53 /* Deparser code */
54 packet.emit(hdr.packet_in);

Listing 1: Example of inserted code in different P4 code blocks
for a port-knocking firewall application. Comments depict the
location of each line for a v1model program.

the metadata field to be preserved when reaching egress
processing.

The CIM first inserts a struct inside the metadata field
(Lines 2-10) and a custom header (Lines 11-16). The metadata
field is used to preserve information across the ingress and

the egress and the header is used as a packet_in for
the controller. To represent all possible values for any given
register with any index, we use the information obtained by
CAM to calculate the number of bits needed for the maxi-
mum possible value. Both the custom header and the struct
contain three variables to store information, the corresponding
register number nreg num = dlog2 num registerse, the index
of the register nindex num = dlog2 max register sizee, and
the corresponding value nvalue = max index size .

Then a 1-bit register is allocated (Line 19) at the beginning
of the ingress processing to be the indicator of the stateful
reconfiguration: 1=clone and 0=idle. The register value is
controlled by RSRM to clone state updates of the NFs during
the reconfiguration process. A temporary variable clone is
also declared (Line 18) to store the value read from the register.

At the beginning of the ingress processing, CIM adds one
line of code to read the allocated 1-bit register (Line 21) and
stores the read value to an intermediate variable such that the
entire ingress processing has access to read. This ensures a
global state indicator for the P4 program to know whether
the switch is undergoing a switch reconfiguration and whether
information needs to be cloned when state-updating packets
arrive. In addition, CIM also adds an action for storing state-
write information into its corresponding field inside the created
metadata structure.

CIM adds lines of code at each write access (Lines 23-31)
to the state components for cloning purposes. The addition
starts with checking the value read from the 1-bit register
to determine the state. The variable name of the register
component is used along with the state information to store
in the declared metadata field. For the provided example,
the number 8 in Line 26, indicates that this component is
the 8th declared, which is the index value for the pk_reg
component. Since we add the clone operation with a specific
session identifier for forwarding the cloned packet to the CPU
port, the information inside the metadata field is saved, and
the program can access these values after the packet is cloned.

During egress processing, CIM first uses metadata to check
whether the packet belongs to a cloned packet (Line 43), such
that only the cloned packet needs to contain the information
with write access, while the original packet gets forwarded
without getting affected. Then, it adds an action (Lines 34-
41) and applies the action (Lines 44-47) to copy information
embedded inside the metadata field into the header structure
for sending custom packets to the local controller. Finally,
it uses the header structure’s size to truncate the packet’s
size (Line 48) to minimize the amount of data between the
data-plane and the controller. In addition, setting the added
header valid allows the deparser to emit the header information
correctly.

D. Runtime State Retrieving Module (RSRM)

The communication flow among RSRM, RSSM, and the
P4 switch is illustrated in Figure 2. RSRM handles receiving
state information using both the control-plane and the data-

137
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

Listener Control-planeP4 Switch

set clone_reg = 1

cloned state update

register_read

register_write (CP Retriever)

swap_config

load_new_config

set mirroring rule

begin

end

RSRM

RSSM

RSRM
table_read

Data-plane
Listener

Control-plane
Retriever

register_write (DP Listener)

table_write

Fig. 2: Information flow among the programmable switch,
the Runtime State Retrieving Module, and the Runtime State
Synchronization Module.

plane. Thus, this module is split into two different controller
modules: data-plane listener and control-plane retriever.

The data-plane listener waits for a packet_in event, an
event defined by the P4Runtime specification [18], at the CPU
port of the switch. In the meantime, the control-plane retriever
utilizes the result of CAM and queries the control-plane to
retrieve state information from the switch. The remaining part
of this subsection describes the data-plane listener module and
then explains the steps executed for the control-plane retriever.
The data-plane listener starts before the control-plane retriever,
ensuring no state information is lost. After receiving state
information, the listener parses the received data, maps the
state component number to the register name, and saves the
state info for RSSM.

The control-plane retriever first sets the value of the 1-bit
register allocated by CIM to one, indicating an updating
state. Fine-grained instrumentation to each write access will
enable sending the update state to the controller until the
register value is reset to zero, i.e., when a pipeline is re-
configured. In addition, to enable the data-plane listener to
retrieve cloned packets with state information, the control-
plane retriever utilizes the mirroring operation specified
by the Portable Switch Architecture (PSA) [19] to forward
cloned packets to the CPU port of the switch.

The retriever then uses the collected names of the stateful
components to query the current state, i.e., read all the
indices of every register. Then, RSRM saves the received state
information for RSSM to use.

E. Runtime State Synchronization Module (RSSM)

RSSM handles three parts of the reconfiguration process.
It (1) roughly synchronizes the state of the new program to
match the state of the previous program using the RSRM
received from control-plane querying, (2) applies a look-
ahead algorithm to further synchronize the state information

received from the data-plane cloned updates, and (3) reloads
the programmable switch with the new P4 program.

1) Synchronization of control-plane states: First, the RSSM
uses the states read by RSRM from the control-plane to
achieve a rough synchronization between the new and old
configuration. The overall state retrieved from the control-
plane allows State4 to only clone the updates during the
reconfiguration.

2) Look-ahead synchronization: For synchronizing data-
plane cloned state updates, multiple messages could update
the exact same index of the register. Consider a counter that
counts the number of bytes over a single port, the counter value
would be updated for every packet received. Thus, the RSSM
would receive continuous updates with the same index that
have incremental value. For such states, a new update would
overwrite the previous outdated value, and only the newly
updated value is needed for the data-plane. Thus, State4 adopts
a look-ahead mechanism to reduce the number of states that
need to be synchronized for the new program. The look-ahead
mechanism checks if the next state to be processed operates
on the same index of the same state component and, if so,
skips synchronizing the current outdated state.

For reloading the programmable switch, we utilize
the SetForwardingPipelineConfig Remote Proce-
dure Call (RPC) from the P4Runtime specification [18] to
configure the switch with a new P4 pipeline. RSSM utilizes
two actions specified in this RPC: VERIFY_AND_SAVE and
COMMIT.

The VERIFY_AND_SAFE action verifies whether the target
can realize the provided configuration file. If the NFs require
more resources than the target can provide, this action returns
an error to inform the network operator. It also points any
subsequent write requests to the new pipeline configuration,
such that the NF state can be ready. This allows the NF to
start processing right after the configuration swap happens.
Another important factor about this action is that it does not
modify the previous forwarding state. Thus, flows can still be
processed up to this point, and traffic is not affected, and the
state update happening within this process would be forwarded
to RSRM to prevent state inconsistency.

After the VERIFY_AND_SAFE action is finished, RSSM
reads the received data from RSRM to synchronize the states
using the look-ahead mechanism through the control-plane.
Since each state update during the reconfiguration is cloned
and sent to the controller, compared to the state retrieved
through the control-plane, the state information from the data-
plane listener is guaranteed to be up to date. Therefore, these
states from the data-plane listener are sent after all the data
retrieved by the control-plane retriever. RSSM then reads the
received state packets and writes each back to the switch.
RSSM then uses the COMMIT action to realize the previously
saved configuration file, and the pipeline is synchronized and
configured to run the new NFs.

138
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

V. EVALUATION

In this section, we describe our prototype implementation
and evaluate our proposed framework. Our experimental eval-
uation is conducted on a machine with an Intel® Core™ i7-
9750H CPU at 2.60 GHz, 16 GB of memory, and Ubuntu
20.04 LTS. We used CPUnetLOG [20] for throughput mea-
surements. We partially based our plot generation scripts
on [21]. For the implementation of our proposed framework,
we used Python3 in combination with the behavioral model
version 2 (bmv2) [22], a software version of a P4 switch.
To simulate the network, we use Mininet [23]. Our test
topology consists of five hosts plus one server protected by a
firewall. All of the hosts, including the server host, are directly
connected to the bmv2 switch.

Our controller is implemented using a multiprocessing
model such that the listener can perform simultaneously
with the re-synchronization module. One thread acts as
a listening controller and listens to the data-plane up-
dates. Another thread retrieves the state from the control-
plane and then parses the received information to re-
synchronize the switch state. For the communication between
the local controller and the control-plane, we leverage the
register_read and register_write methods pro-
vided by simple_switch_CLI [22] to read and write to
tables and registers. We used this implementation to evaluate
State4 on the following aspects: the ability to preserve state,
the state loss compared to the control-plane approach, and the
cost of the mirroring operation.

A. Evaluated NF

The choice of NFs for the evaluation is critical to reveal
the impact and performance of State4. For the evaluation, the
target bmv2 switch is configured for a realistic scenario with
the following network functions: L2-forwarding, the HULA
load-balancer [2], and a port-knocking firewall [4]. Since these
programs are separate P4 programs and combining various
programs is not the main challenge this paper is trying to
solve, we manually combine these P4 programs into one
program through chaining. The combined program is capable
of performing the functionalities of all three programs. For
the port-knocking firewall, state information is highly critical
as each state change lost would lead to benign flows getting
blocked by the application. Thus, we consider our choice of
NFs to be a meaningful representation to evaluate State4 with.

B. Stateful Reconfiguration Evaluation

This section shows that State4 supports full stateful re-
configuration and also evaluates how our framework impacts
ongoing traffic. We conducted an experiment using the setup
described above to show that State4 supports full stateful
reconfiguration and that merely using a control-plane approach
is insufficient for maintaining state. During the experiment,
four flows that send one packet to the server every second
were established. Among the four flows, one flow was directly
forwarded by the firewall that started at 0s. The other three
flows required port-knocking to establish the connections. Two

2 Port-knocking
start

Port-knocking start

Reconfiguration

Fig. 3: Comparison of received packet count among State4,
Swing State, a control-plane approach, and no state preserva-
tion.

15.40 15.45 15.50 15.55 15.60
Time [s]

0

20

40

60

80

100

120
Th

ro
ug

hp
ut

 [M
bi

t/s
]

Sender 1
Sender 2
Sender 3
Sender 4
Sender 5
Sum

Fig. 4: 200 milliseconds interval zoom-in of the 30 seconds
experiment.

of the three port-knocking flows started around 8s, and the
third port-knocking flow started right before the switch con-
figuration swap at around 19s. Our results for the experiment
are shown in Figure 3.

When no state-preserving mechanism is applied, both table
entries and register state are lost. As a result, all states are lost,
and traffic cannot be received by the receiver. Swing State was
only able to preserve and synchronize the state changes while
in-network data-plane cloning was enabled. Therefore, Swing
State requires constant cloning operations to be able to capture
every state change. In Section V-D, we will explain why this
form of data-plane cloning leads to significant overhead, and
how State4 leads to a significantly reduced cloning overhead.
On the other hand, pulling states from the control-plane also
results in part of the register state information being lost.

139
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

Thus, one flow was dropped and the receiver was unable
to receive all of the packets. Our results show that State4
outperforms both methods. The receiver obtained the exact
packet count, indicating all state was successfully preserved
after the reconfiguration. Figure 3 shows that State4 is able to
preserve more states compared to the state-of-the-art Swing
State [16] and the controller approach by the number of
packets received from the port-knocking flows.

The performance impact evaluation pertains to 5 different
hosts continuously sending packets through the P4 switch
towards the receiving server. In addition, since our approach
differentiates flows that only read the stateful components
from flows that write to the in-switch states, we use three
read-only flows and two flows that write state. Each of the
flows is limited to 20 Mbps, such that they utilize a total of
100 Mbps. Our experiment lasts for 30 seconds and records
the throughput every millisecond. The reconfiguration starts
around 13.5s for around 2 seconds.

Our results show that for a P4 program with 236 KB of
registers and seven tables, the total reconfiguration time taken
is around 1.82 seconds. Figure 4 zooms in on the pipeline
configuration swap phase during the experiment from 15.40 s
to 15.50 s, from which it is clear that traffic disruption caused
by the configuration swap of bmv2 lasts for approximately
20ms. Flow states were also preserved after the disruption.

The traffic disruption shown inside Figure 4 is not intro-
duced by our framework, but an inevitable disruption caused
by the pipeline configuration swap on the bmv2 switch. In
these two experiments, State4 was able to preserve all the
state.

C. Delta-loss Evaluation

We measured and compared the delta-loss difference be-
tween our approach and the control-plane approach adopted
by [13]. To find the exact state difference caused by the two
systems, we collected the number of bytes transmitted over
a single port and compared the number of transmitted bytes
with the value stored inside the data-plane at the end of the
transmission.

We used a register implemented as a counter to collect
the number of bytes transmitted by the specific flow. We
conducted the experiment with a flow at a transmitting rate
varying from 10 Mbps to 120 Mbps that lasted for 30 seconds.
Each experiment was conducted twice to compare the state
divergence between State4 and the control-plane approach.

Figure 5 shows the difference in state loss percentages:
State4 clearly outperforms the controller approach. Our results
show that State4 led to less than 1% of state divergence, which
we deem acceptable as applications utilizing such counter
behavior typically apply sampling [24], [25] or approximation
algorithms [26]–[28] that tolerate slight state divergence.

As shown in Figures 6a and 6b, State4 induces signifi-
cantly less state loss than the control-plane approach. For
the controller-based approach, shown in Figure 6a, the state
inconsistency gap exists between the time that a particular state
is read from the control-plane and the time that data-plane is

20 40 60 80 100 120
mbps

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

St
at

e
di

ve
rg

en
ce

 p
er

ce
nt

ag
e Controller

State4

Fig. 5: Comparison using a packet counter of data-plane state
divergence between the Controller approach and State4.

configured with the new configuration. As a result, all the state
updates between component querying and new configuration
are lost. Furthermore, since all components are queried from
the control-plane, this approach does not scale well. As the
number of state components increases, the increase in total
pulling time yields a significant inconsistency in the data-plane
state.

The state inconsistency introduced by State4 is minor. Since
the control-plane listener and the data-plane processing operate
simultaneously, the data-plane continuously clones and sends
state updates to the listener while the RSSM processes all the
received packets. Figure 6b illustrates the critical period for
State4, during which the RSSM issues the configuration swap
command before the configuration is swapped. State updates
during this period would no longer be processed by the RSSM
as the switch is already switched to the new configuration.

D. Cloning Cost and Impact

Since data-plane cloning introduces overhead to data-plane
processing, it is crucial that we examine the cost of the
cloning operation and how this operation impacts the ongoing
traffic. Furthermore, although Swing State can capture as many
updates as State4 with data-plane cloning enabled, significant
resource overhead and traffic impacts are introduced. There-
fore, we also implemented the data-plane cloning operation of
Swing State and compared our results with it.

To test the cost of the cloning operation to the ongoing
traffic on the bmv2 implementation, we first find the maximum
steady processing throughput of the P4 program. We used a
single flow and found through experiments that our combined
network function implementation is able to perform steadily at
a maximum 600 Mbps. In addition, to identify the maximum
cloning cost, we used a register implemented as a counter such
that every packet processed is associated with a state write
operation. Thus, every packet processed would be cloned and
forwarded to the local controller during the reconfiguration

140
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

time

Data-plane

Control
plane

state_read

Previous configuration New configuration

swap_config
issued

Delta Loss
Operator decides to

run new configuration

(a) State loss in the controller approach.

time

Data-plane

State4

Cloned state infoReconfiguration
Start

Previous configuration New configuration

swap_config
issued

Delta Loss
Operator decides to

run new configuration

(b) State loss in the State4 approach.

Fig. 6: Illustration of state update loss for both controller approach and State4 approach.

0 5 10 15 20 25 30
Time [s]

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Swing State
State4

(a) 300 Mbps throughput.

0 5 10 15 20 25 30
Time [s]

0

100

200

300

400

500

600
Th

ro
ug

hp
ut

 [M
bi

t/s
]

Swing State
State4

(b) 450 Mbps throughput.

0 5 10 15 20 25 30
Time [s]

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Swing State
State4

(c) 600 Mbps throughput.

Fig. 7: Comparison of State4 and Swing State on the impact of the cloning operation, during the reconfiguration phase.

phase. We conducted the reconfiguration experiments with
State4 in terms of flows going at 600 Mbps, 450 Mbps, and
300 Mbps, and compared the results of Swing State at the
same throughput.

Figure 7 illustrates the impact of the cloning operation for
both State4 and Swing State on the ongoing traffic. From
Figure 7a, with traffic less than half of the maximum switch
throughput, traffic was barely impacted by State4 during the
entire phase except for the configuration swap at the switch.
Figures 7b and 7c indicate that State4 outperforms Swing
State when the throughput is over half of the maximum
switch throughput. This is because of the cloning operation
for every packet with state updates, which effectively halves
the throughput at maximum utilization. Moreover, as State4
only clones the packets during the reconfiguration, State4
impacted traffic significantly less than Swing State [16], which
requires constant data-plane cloning and forwarding such that
maximum switch throughput is dropped to half.

In conclusion, we have evaluated the proposed State4 in
terms of the ability to maintain state, the tolerable state
divergence, and the introduced overhead. We argue that our
combined control-data plane approach provides a better way
than Swing State and the controller approach adopted by [13].
State4 minimizes state inconsistency caused by reconfiguration
and causes a limited impact on existing traffic.

We do remark that the performance of our work in hard-

ware switches has not (yet) been evaluated and is related to
the processing capabilities of the local controller. The local
controller should be able to keep up in terms of processing
cloned packets given the relatively high forwarding speeds of
the switch. In case the controller is not able to keep up, the
resulting state divergence of our system would increase. To
further improve the performance in such cases, approximation
mechanisms can be applied (as suggested in [29]) such that
the number of states generated from the data-plane cloning
operation would be significantly reduced.

VI. RELATED WORK

In this section, we describe existing approaches for
stateful reconfiguration and unveil their problems. Previous
works [13], [16] have mainly focused on two approaches
for state-preserving reconfiguration: pulling the state from the
control-plane and sending state update information directly
from the data-plane.

He et al. [30] tried to tackle the inconsistency problem
by applying Control Flow Graph (CFG) pruning to reduce
the number of state components to maintain for a given P4
program. However, the scalability problem persists for the
control-plane approach when NFs request significant resources
for one stateful component.

P4Consist [31] uses both the data-plane and the control-
plane. However, their work targets the detection of inconsis-

141
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

tencies between the control-plane and the data-plane, which is
orthogonal to our work.

FlexCore [32] was proposed to enable partial reconfig-
uration of the programmable device without disruption to
the network. However, their work falls short in terms of
reconfiguring stateful network functions due to the difficulties
of porting the current state to the new program.

Wang et al. [33] proposed a hybrid approach for sup-
porting multi-tenancy with programmable network devices
in the cloud: they combine the hypervisor approach and
the compiler-based approach. To enable multi-tenancy, they
proposed to dynamically allocate a big register array to each
tenant program. Since current hardware does not support
partial reconfiguration, their work requires switches to reload,
and it thus also suffers from state loss during a reconfiguration.

VII. CONCLUSION

This paper has presented a framework for supporting state-
ful programmable switch reconfiguration that combines two
methods: data-plane forwarding and control-plane querying.
We have implemented a prototype and evaluated our pro-
posed framework, called State4, under a realistic scenario
and demonstrated that it only incurs negligible overhead to
memory usage and leads to zero packet loss. Hence, by incor-
porating State4 into programmable data-plane virtualization
systems, the systems can enable NFs to be updated on-the-fly
on the programmable switch.

VIII. ACKNOWLEDGEMENT

This work is part of NExTWORKx, a collaboration between
TU Delft and KPN on future telecommunication networks.
We further thank Adrian Zapletal, Belma Turkovic, and Anup
Bhattacharjee for their valuable feedback.

REFERENCES

[1] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

[2] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA: Scal-
able Load Balancing Using Programmable Data Planes,” in Proceedings
of SOSR, 2016.

[3] C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “MP-HULA:
Multipath Transport Aware Load Balancing Using Programmable Data
Planes,” in Proceedings of the 2018 Morning Workshop on In-Network
Computing, 2018.

[4] E. O. Zaballa, D. Franco, Z. Zhou, and M. S. Berger, “P4Knocking:
Offloading host-based firewall functionalities to the network,” in Con-
ference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), 2020.

[5] M. Caprolu, S. Raponi, R. Di Pietro, and A. Antonopoulos,
“FORTRESS: An Efficient and Distributed Firewall for Stateful Data
Plane SDN,” Sec. and Commun. Netw., 2019.

[6] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful Network-Wide Abstractions for Packet Processing,” in
Proceedings of SIGCOMM, 2016.

[7] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“NetCache: Balancing Key-Value Stores with Fast In-Network Caching,”
in Proceedings of SOSP, 2017.

[8] D. Hancock and J. van der Merwe, “HyPer4: Using P4 to Virtualize the
Programmable Data Plane,” in Proceedings of CoNEXT, 2016.

[9] C. Zhang, J. Bi, Y. Zhou, and J. Wu, “HyperVDP: High-Performance
Virtualization of the Programmable Data Plane,” IEEE Journal on
Selected Areas in Communications, 2019.

[10] P. Zheng, T. Benson, and C. Hu, “P4Visor: Lightweight Virtualization
and Composition Primitives for Building and Testing Modular Pro-
grams,” in Proceedings of CoNEXT, 2018.

[11] R. Parizotto, L. Castanheira, F. Bonetti, A. Santos, and A. Schaeffer-
Filho, “PRIME: Programming In-Network Modular Extensions,” in
IEEE/IFIP Network Operations and Management Symposium, 2020.

[12] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja, “P4VBox: En-
abling P4-Based Switch Virtualization,” IEEE Communications Letters,
2020.

[13] M. He, A. Basta, A. Blenk, N. Deric, and W. Kellerer, “P4NFV: An
NFV architecture with flexible data plane reconfiguration,” in 14th
International Conference on Network and Service Management (CNSM),
2018.

[14] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster, “Composing
Dataplane Programs with P4,” in Proceedings of SIGCOMM, 2020.

[15] Intel, “Intel® Tofino™ Intelligent Fabric Processors,” 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-3-product-brochure.
html

[16] S. Luo, H. Yu, and L. Vanbever, “Swing State: Consistent Updates for
Stateful and Programmable Data Planes,” in Proceedings of SOSR, 2017.

[17] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tulumello, and
G. Bianchi, “Implementing advanced network functions for datacenters
with stateful programmable data planes,” in LANMAN, 2017.

[18] The P4.org API Working Group. (2020) P4Runtime specification,
version 1.3.0. [Online]. Available: https://p4.org/p4-spec/p4runtime/
main/P4Runtime-Spec.html

[19] The P4.org Architecture Working Group. (2018) P4 16 portable
switch architecture (PSA), version 1.0. [Online]. Available: https:
//p4.org/p4-spec/docs/PSA-v1.0.0.html

[20] M. Hock. (2018) CPUnetLOG. [Online]. Available: https://git.scc.kit.
edu/CPUnetLOG/CPUnetLOG

[21] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of tcp bbr congestion
control,” in IFIP Networking, 2018.

[22] The P4 Language Consortium. (2016) BEHAVIORAL MODEL (bmv2).
[Online]. Available: https://github.com/p4lang/behavioral-model

[23] “Mininet: Rapid prototyping for software defined networks,” 2021.
[Online]. Available: https://github.com/mininet/mininet

[24] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
Performance Networks,” SIGCOMM CCR., 2011.

[25] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in NSDI, 2014.

[26] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in Proceedings of SIGCOMM, 2016.

[27] S. L. Feibish, Z. Liu, N. Ivkin, X. Chen, V. Braverman, and J. Rexford,
“Flow-level loss detection with ∆-sketches,” in Proceedings of the
Symposium on SDN Research, 2022.

[28] B. Turkovic, J. Oostenbrink, F. Kuipers, I. Keslassy, and A. Orda,
“Sequential Zeroing: Online Heavy-Hitter Detection on Programmable
Hardware,” in IFIP Networking Conference (Networking), 2020.

[29] X. Chen, H. Liu, Q. Huang, D. Zhang, H. Zhou, C. Wu, X. Liu, and
Q. Yang, “Toward Low-Latency and Accurate State Synchronization
for Programmable Networks,” IEEE/ACM Transactions on Networking,
2022.

[30] M. He, A. Blenk, W. Kellerer, and S. Schmid, “Toward consistent
state management of adaptive programmable networks based on p4,”
in Proceedings of the ACM SIGCOMM 2019 Workshop on Networking
for Emerging Applications and Technologies, 2019, pp. 29–35.

[31] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, and S. Schmid, “P4Consist:
Toward Consistent P4 SDNs,” IEEE Journal on Selected Areas in
Communications, 2020.

[32] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime Programmable Switches,” in NSDI. USENIX
Association, 2022.

[33] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. K. Ports, and
A. Panda, “Multitenancy for Fast and Programmable Networks in the
Cloud,” in 12th USENIX Workshop on HotCloud, 2020.

142
Authorized licensed use limited to: TU Delft Library. Downloaded on September 29,2023 at 12:19:01 UTC from IEEE Xplore. Restrictions apply.

