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Abstract—Deep learning (DL) models are known to be highly
accurate, yet vulnerable to adversarial examples. While earlier
research focused on generating adversarial examples using white-
box strategies, later research focused on black-box strategies,
as models often are not accessible to external attackers. Prior
studies showed that black-box approaches based on approxi-
mate gradient descent algorithms combined with meta-heuristic
search (i.e., the BMI-FGSM algorithm) outperform previously
proposed white- and black-box strategies. In this paper, we
propose a novel black-box approach purely based on differential
evolution (DE), i.e., without using any gradient approximation
method. In particular, we propose two variants of a customized
DE with customized variation operators: (1) a single-objective
(Pixel-SOO) variant generating attacks that fool DL mod-
els, and (2) a multi-objective variant (Pixel-MOO) that also
minimizes the number of changes in generated attacks. Our
preliminary study on five canonical image classification models
shows that Pixel-SOO and Pixel-MOO are more effective than
the state-of-the-art BMI-FGSM in generating adversarial attacks.
Furthermore, Pixel-SOO is faster than Pixel-MOO, while the
latter produces subtler attacks than its single-objective variant.

Index Terms—differential evolution, adversarial examples,
deep learning, search-based software engineering

I. INTRODUCTION

Many systems we encounter in daily life include machine
learning components that make automated decisions or in-
ferences based on observed data patterns. Ever since so-
called deep convolutional neural networks outperformed hand-
crafted methods in the 2012 ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [26], deep learning models
have become mainstream in computer vision, but also in
many other applied machine learning domains, such as natural
language processing and music information retrieval.

Deep learning models have been lauded for yielding high-
accuracy predictions and, thus, have become attractive candi-
dates for integration in real-life systems that may be safety-
critical (e.g. vision components in self-driving cars). At the
same time, they have been criticized for making intolerable
and sometimes incomprehensible prediction errors, jeopardiz-
ing safety. As has been shown in the machine learning world,
they are e.g. inherently vulnerable to so-called adversarial
attacks, in which perceptually small changes to input data can
cause very different, erroneous model predictions [11], [34].

Adversarial examples have been extensively investigated in
the literature, where the idea is to introduce subtle changes

in the data (e.g., changing the pixels in a target image) that
do not change the ground truth but make a DL model predict
incorrect output. Existing approaches to adversarial example
generation can be classified into white-box and black-box
methods. White-box approaches [12], [16], [20], [25], [35],
[37] require access to the model under test (i.e. the model
architecture, neuron weight values, and gradients). Black-box
strategies [19], [23], [31], [32], [39], instead, only require
access to model inputs and outputs. These approaches are
considered more realistic as it reflects what external attackers
can obtain [19], e.g., in the case of remote API access.

Therefore, in this paper, we focus on black-box strategies
and target deep neural network (DNN) models for image
recognition. In this field, the state-of-the-art approach by Lin et
al. [19] uses the Black-box Momentum Iterative Fast Gradient
Sign Method (BMI-FGSM) to approximate the gradient based
on a few data points. These points are obtained by mutating
existing images (seeds) with evolutionary algorithm (EA),
and differential evolution (DE) in particular. Their results
showed that BMI-FGSM outperforms white-box and black-box
approaches previously proposed in the literature.

Despite these undisputed results, we observe that
BMI-FGSM requires thousands of iterations to successfully
generate adversarial attacks, despite the usage of gradient-
based methods. In this paper, we investigate the usage of DE
alone —i.e., without employing gradient-based methods— as
the core technique to generate adversarial attacks in a black-
box fashion. In particular, we introduce three customized
operators for DE that introduce perturbations (pixel changes)
in the target images. We focus on DE as meta-heuristics
since they can outperform gradient-based approaches (e.g.,
reinforcement learning) as reported in recent studies [27].

We introduce two variants of DE: (1) a single-objective vari-
ant (Pixel-SOO) that steers for pixel-based input changes
to cause an output prediction to change gradually; (2) a
multi-objective variant (Pixel-MOO) that additionally seeks
to minimize the number of pixel modifications made to the
original input image. Then, we conduct a preliminary study
focused on answering the following research questions:

RQ1 : How do Pixel-SOO and Pixel-MOO perform com-
pared to the state-of-the-art BMI-FGSM in generating
adversarial attacks?
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RQ2 : What are the strengths and weaknesses of Pixel-SOO
and Pixel-MOO?

The results of our study with five DNN models show that the
proposed DE-based approaches are more effective in generat-
ing adversarial attacks than BMI-FGSM despite not using any
gradient-based methods. In particular, BMI-FGSM struggles
to generate adversarial examples for all DNNs under test;
besides, when successful, it required more generations than
Pixel-MOO and Pixel-SOO. Instead, our approaches are
always able to generate attacks within the same search budget
used for BMI-FGSM. Finally, we discover that Pixel-MOO
and Pixel-SOO provides two different trade-offs. The former
generates attacks with fewer and more subtle changes than the
latter, but requires more generations to converge.

II. RELATED WORK

As discussed in our Introduction, white-box testing [12],
[16], [20], [25], [35], [37] has been extensively researched, but
needs internal model access, which is not always realistic in
practice. Therefore, we will adopt a black-box testing approach
instead, which purely focuses on modifying a system’s input
(in our case, an image) to trigger undesired changes in the
system’s output (in our case, the object classification for
the input image). We will employ evolutionary strategies for
this; beyond images, these have e.g. been proposed on credit
scoring models [10] and speech audio [14], [15].

In literature, various black-box attacks on image recognition
DNNs have been proposed [19], [23], [39]. Nguyen et al. [23]
generate random images that are noise to humans, but are
misclassified as actual objects by a DNN. In our case, we will
seek more adversarial examples, where input is kept as close
to the original as possible (and thus human-recognizable).

Zhou et al. [39] propose a hybrid black-box approach
that combines EAs with the bisection method. The images
are mutated by injecting full black or white pixels. Instead,
Chan and Cheng [4] introduced a black-box approach that
adds Gaussian noise to large portions of the images. Besides,
their work targets object detection models rather than image
recognition. In contrast, our paper investigates the adversarial
example generation in a multi-objective variant where both (1)
the model misclassification and (2) the number of changed
pixels are taken into account.

Several works explicitly focused on minimizing perturba-
tions, such that fewer modifications to an image would already
lead to different system output. One example of this is the
work by Suzuki et al. [32], which proposes a Discrete Cosine
Transform-based method for modifying images. While such
perturbations parametrically are small, they still will affect
many pixels at once. A similar consideration holds for the
work by Sun et al. [31], focusing on minimum visibility of the
modification from a perceptual perspective, but not explicitly
constraining the number of pixels to modify.

On the other end of the extreme, one may search for
attacks that modify as few pixels as possible (and as such will
naturally not stand out, when compared to the total amount
of pixels in an image). For example, Su et al. [30] propose a

single-pixel adversarial attack using DE, executed against the
classical CIFAR-101 [17] and ImageNet object classification
datasets. Comparing the results on these two datasets, a high
success rate is reported for CIFAR-10, but this success rate is
much lower for ImageNet, where single-pixel attacks mainly
succeed in situations where the original classification of the
image was already quite low. This may have to do with the
difference in search space; the test images in CIFAR-10 are
much smaller (32×32 = 1024 pixels) than those in ImageNet
(224× 224 = 50, 176 pixels).

A stronger, yet compact attack is proposed by Lin
et al. [19], who combined DE [29] and the Fast Gra-
dient Sign Method [22] for black-box adversarial sam-
ple generation. Executing a single-objective attack called
Black-box Momentum Iterative Fast Gradient
Sign Method (BMI-FGSM), to generate an efficient and
effective perturbation that is similar to the benign input.
Their approach utilizes double-step size and candidate reuse
whilst approximating the gradient direction. An initial gradient
sign population is generated using DE. The input is then
gradually modified using gradient sign approximation until
an adversarial example is created that is visibly the same as
the original input, but now classified as something different.
Lin et al. [19] showed that BMI-FGSM successfully generates
adversarial examples for large models, outperforming other
state-of-the-art white-box and black-box approaches.

While Lin et al. [19] showed that black-box approaches
based on EAs can be very competitive with their white-
box alternatives, existing approaches have various drawbacks.
First, BMI-FGSM requires a large number of iterations (in
the order of thousands) and population size (hundreds of
individuals). In other words, attackers need to query the model
under attack many times, increasing the chances of detection.
Second, BMI-FGSM combines multiple techniques, making
its implementation less trivial and introducing more hyper-
parameters to tune. Finally, the generated attacks are not
minimal, i.e., the prediction flip is achievable but requires
changing all pixels in the original image (or seed).

In this paper, we introduce a simpler approach purely based
on DE. Furthermore, we introduce both a single- and multi-
objective variant of our approach. The former focuses on
flipping the model prediction, while the latter considers an
additional objective that aims to directly minimize the number
of modified pixels. As our results will show, our approach
requires a much lower number of model queries and introduces
fewer image changes compared to BMI-FGSM.

III. APPROACH

Without loss of generality, an image classifier f is a
mathematical function/model f : I −→ L × Rn, which
takes as input an image i ∈ I and returns a label l ∈ L
and a confidence vector conf ∈ Rn, which contains the
probabilities associated with all labels l ∈ L in descending
order. The first element conf1 is the probability associated with

1https://www.tensorflow.org/datasets/catalog/cifar10
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the most likely (predicted) label l, while the remaining entries
in conf2 . . . confn are related to the other possible labels ∈ L.
We can now reformulate adversarial attack generation as a
search problem:

Definition 1: Let f : I −→ L × R be a trained model
that takes as input an image i ∈ I and returns a predicted
label l ∈ L. Let m : I −→ I be a transformation function
that mutates (i.e. applies changes to) an image i ∈ I . The
problem is finding a mutated image m(i) such that f(m(i)) ̸=
f(i), with the constraints that both i and m(i) share the same
correct label (same ground truth).

Attack generation strategies can be targeted or un-targeted.
The former aims to flip the prediction to a specific label or
classification outcome, while the latter aims to lead the model
toward producing any incorrect outcome. In this paper, we
focus on un-targeted attack generation: for demonstrating the
vulnerability of a machine learning model, it is sufficient to
generate mutated images m(i) that flip the predicted output
to any other label than the ground truth label. Since a clas-
sification model returns both the label and the corresponding
confidence level, we can use the latter to guide the search
toward the flipped prediction. More precisely, given a classifi-
cation model f : I −→ L×R, a seed image i, and its mutated
variant m(i), we optimize the following objective:

min O1 ={
f(m(i))conf

1 − f(m(i))conf
2 if f(i)l1 = f(m(i))l1

−f(m(i))conf
1 if f(i)l1 ̸= f(m(i))l1

(1)
In other words, this objective aims to reduce the confidence

for the most likely prediction/label (f(m(i))conf
1 ), while in-

creasing the confidence for the second-most-likely prediction
(f(m(i))conf

2 ). Therefore, the overall goal is to reduce the
difference between the top-2 labels until the model f flips
the prediction to a different label (condition f(m(i))label1 ̸=
f(m(i))label1 ). In general, Equation 1 takes values in [-1,1]. A
zero value indicates that the models assign equal confidence
scores to the top-2 labels. A negative value indicates that the
model f flips the prediction to a different label, whose confi-
dence level corresponds to the absolute value of Equation 1.

We can expand this to a multi-objective problem where both
“fooling” the model and reducing the number of perturbations
(at the pixel level) are equally important:

Definition 2: The problem is finding a mutated image m(i)
such that f(m(i)) ̸= f(i) and that minimizes the distance
d(i,m(i)), with the constraints that both i and m(i) share the
same correct label (same ground truth).

Beyond flipping the prediction outcome by optimizing for
O1, we now also need an additional objective to guide the
search towards minimizing the difference between the original
image i and its mutated counterpart m(i). To this end, our
second objective counts the number of pixels that differ
between the seed image i and the mutated image m(i):

min O2 = π(m(i[a, b]) ̸= i[a, b]) (2)
= |{ea, b ∈ i : i[a, b] ̸= m (i[a, b])}| (3)

where i[a, b] and m (i[a, b]) denote the pixel values in row a
and column b for the two images i and m(i), respectively.

These two objectives are conflicting. A simple solution for
O1 may consist of changing all pixels in the original figure i
such that the object is no longer recognizable for the model f .
However, such a solution would not be optimal for O2. Vice
versa, a new image with zero alteration would be optimal for
O2, but not flip the prediction as sought by O1.

Given the conflicting nature of our objectives, it is not pos-
sible to find one single solution that simultaneously optimizes
them all. In other words, the problem is inherently multi-
objective where the goal becomes to find the set of optimal
trade-offs between O1 and O2. In particular, we aim to find
Pareto efficient trade-offs based on the concepts of dominance
and Pareto optimality.

A. Single and Multi-objective Differential Evolution

To find adversarial attacks, we rely on differential evolution
(DE) only. Hence, compared to BMI-FGSM, we do not use
any algorithm to approximate the gradient. We consider two
different variants of DE: Pixel-SOO, a traditional single-
objective variant (to optimize O1) and Pixel-MOO, a multi-
objective variant based on the non-dominated sorting algo-
rithm (NSDE) [2] (to optimize O1 and O2).

Both variants iteratively evolve a pool of N randomly
generated adversarial attacks, called population. In each iter-
ation, N offspring attacks are generated from the population
using variation operators. Then, the population for the next
iteration is obtained by combining the previous population
and the offspring attack, forming a pool Q of 2 × N at-
tacks and selecting the N top individuals. The selection is
performed using an environmental selection and represents
the main difference between Pixel-SOO and Pixel-MOO.
In Pixel-SOO, the environmental selection is applied by
selecting the best N individuals among the parent and the
offspring solutions/attacks according to the main objective O1.
This mechanism is elitist since the best attacks can survive
across the generations until new better solutions are found.
In Pixel-MOO, the environmental selection is performed by
applying the fast non-dominated sorting algorithm [8], which
ranks the solutions in Q into sub-dominated fronts based on
the dominance relation.

In the following, we detail (1) the encoding schema, (2) how
we initialize the initial population, (3) the variation operator.

1) Encoding schema: As mentioned before, an adversarial
attack is produced by altering a seed image i. Instead of
representing/encoding an adversarial attack as a completely
new image, we only encode the changes to be applied, also
called the mask. In particular, given the seed image i, we
encode a solution/attack in NSDE as a list of pixels to change:
X = [x1, . . . , xk]. Each entry xj in X is a tuple [a, b, valuej ],
where a and b determine the position of the pixel to change
(i.e., a is the row index and b is the column index), while
valuej indicates the new pixel value in RGB notation.
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2) Initialization: The first step to initializing NSDE in-
volves generating an initial pool of adversarial attacks. To this
aim, we create N attacks by creating an empty mask X = []
and adding some changes using the add operator, one of three
alternative variation operators described below.

3) Variation operator: Given a parent attack X , we design
three types of operators that add, delete, or change entries in
X . Each operator is applied with probability 1/3.

The add operator randomly inserts one entry in X with
probability σ = 1; a second entry is added with probability
σ = 0.5; the third one with probability σ = 0.25; and so on
until no other element is added. To add a new element/entry x
in X , this operator randomly selects one pixel from the origi-
nal seed image i with position rowj and colj and draws three
random (noise) values δ(µ, λ) from a Gaussian distribution
with mean µ and standard deviation λ, that will be applied to
the respective R, G and B channels. Hence, the new entry x
will be equal to [rowj , colj , valuej + δ(µ, λ)].

The delete operator simply deletes one entry/tuple from the
mask X . However, this operator is applied only if X contains
at least two entries. This operator plays a critical role in our
multi-objective formulation as it allows to remove spurious
pixel changes that do not contribute to changing the prediction
results of the model f under test.

The change operator changes the pixel values using the
traditional differential operator. Given a parent image to
mutate X and a donor solution Y , a new solution X ′ is formed
by using the following formula:

X ′[a, b] =

{
R1[a, b] + F · (R2[a, b]− Y [a, b]) if r < CR
X[a, b] otherwise

(4)
where r ∈ [0, 1] is a randomly generated number; R1 and R2

are other solutions within the population. There are various
variants of the differential operator that differ in how X1, X2,
and the donor solution Y are selected. In this paper, we use
the standard DE/rand/1 variant, where rand indicates that
the donor Y is randomly selected, while 1 indicates there is
only one donor solution. Finally, the other solutions R1 and
R2 are always randomly selected from the population.

In Equation 4, F ∈ [0, 2] is called scaling factor and estab-
lishes how far the new solution X ′ is from the original solution
X based on the differentials values of the donor solution Y .
Hence, F balances both exploration and exploitation. Finally,
CR ∈ [0, 1] is the crossover rate and determines how many
pixels in X will be changed.

We apply a small tweak in our context compared to the
traditional differential operator. If the pixel X[a, b] differs from
the original seed solution, Equation 4 may remove this change
if R1[a, b], R2[a, b], and Y [a, b] are identical to the original
seed image. To prevent this case, we set the pixel R1[a, b] =
[0, 0, 0] (in RGB notation) if R1[a, b] is identical to the pixel
of the initial image/seed. The same is done for R2[a, b] and
Y [a, b]. Notice that this tweak is applied only if X[a, b] differs
from the original seed’s pixel in row a and column b.

B. Additional Remarks

BMI-FGSM by Lin et al. [19] and our approach share the
main goal of flipping the label prediction. However, there
are critical differences that are worth highlighting. The first
difference regards the main objective or fitness function. The
main (single) fitness function used by BMI-FGSM aims to
“suppress the probability of the ground-truth label” [19] until
another false label is predicted. Our O1 explicitly maximizes
the confidence level for the false label, even after the prediction
has been flipped (second case in Equation 1).

The most critical difference is within the variation op-
erator. BMI-FGSM combines differential operators and the
iterative fast gradient sign method. Instead, Pixel-MOO and
Pixel-SOO rely on the differential operators but introduce
two novel ways to generate offspring: (1) the add and (2)
delete operators introduced in Section III-A. The latter allows
deleting pixel changes that do not contribute to optimizing O1

(for Pixel-SOO) or that are not Pareto efficient w.r.t. O1 and
O2. (for Pixel-MOO). Finally, Pixel-MOO explores multi-
objective optimization where the mask size is considered as an
explicit objective with the goal of generating minimal adver-
sarial attacks. Instead, BMI-FGSM targets only the prediction
outcome and does not constrain the number of pixels that can
be altered to reach a prediction flip.

IV. EMPIRICAL EVALUATION

To answer our RQs, we run our approach with 5 different,
well-known deep computer vision models from the Keras
python library. We chose VGG16 and VGG19 which are both
classified as “very deep” convolutional neural networks for
large-scale image recognition2 [28], that got a canonical status
due to their strong performance in the ImageNet bench-
mark challenges3. VGG16 was one of the best-performing
models in the 2014 ILSVRC challenge and achieves 92.7%
top-5 test accuracy on the ImageNet dataset. VGG16 and
VGG19 both consist of 3x3 convolutional layers stacked on
top of each other in increasing depth, with VGG16 having
16 convolutional layers, and VGG19 being ‘deeper’ with 19
convolutional layers. Furthermore, ResNet50, ResNet101
and ResNet152 all are based on deep residual learning
for image recognition4 [13]. In our experiments, we use the
ImageNet pre-trained weights released by the original authors
after training on the ILSVRC2012 training set, as released
through Keras [5]. Note that despite these details, we consider
all models as a black-box, given the fact that our approach (and
the baseline) does not need access to the model internals.

A. Dataset

For our experiments, we sample 50 images from the Im-
ageNet ILSVRC2012 Validation data set [26]. We chose the
validation set, due to a lack of ground-truth data availability
for the test set. First, we draw an initial pool of images for

2https://keras.io/api/applications/vgg/
3https://image-net.org/challenges/LSVRC/index.php
4https://keras.io/api/applications/resnet
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the input by selecting 1000 random images from the ImageNet
validation data folder. After pre-processing the images to have
a 224 × 224 input size, we then choose whether to drop or
retain the image based on the prediction confidence by the
VGG19 model and class uniqueness. As for the prediction
confidence, if the correct ground truth label is predicted with
confidence between 0.8 and 0.9, we consider the image to
be a valid image for our experiments: as the ground truth
label is recognized with high confidence, we can be confident
it is visually distinguishable and not ambiguous w.r.t. other
classes; at the same time, for too high confidence, it may be
too obviously one particular image class, and flipping may as
a consequence be hard. By retaining only one image per object
class, we also ensure a reasonably diverse set of images.

B. Implementation and Parameter settings

We have implemented the different DE-based approaches in
Pymoo v0.5.0 [3], using Python 3.10 and Keras 2.2.2. Py-
moo [3] is an open-source framework that allows us to easily
adapt the simple DE and the NSDE for generating adversarial
attacks. Runs are evaluated inside a Docker container on an
AMD EPYC 7713 64-Core Processor running at 2.6 Ghz and
with 256 available CPUs. We had 3 Nvidia A40 GPUs each
with 48 GB GDDR6 running CUDA version 11.6 available
to us. The Dockerfile in our implementation can be rebuilt
on any system, easily modifying the CUDA container for a
different system. Our implementation is available on Zenodo:

https://doi.org/10.5281/zenodo.7741267

Due to issues with running the code from BMI-FGSM, we
were not able to execute it using CUDA [1] (GPU). This meant
we could only run the baseline on CPU, which has likely
resulted in a slower execution time compared to our multi-
objective results which were executed on GPU.

Parameters setting. We set both the multi-, single-objective
DE, and BMI-FGSM to evolve a population size of 20 over
a maximum of 400 generations. When a test image has been
wrongly predicted, we kill the test and allow it to run for
five more generations, so better fronts may still be found. For
the parameter settings, we have chosen the same values as
suggested in the literature [8], [21].

We use the variation operators as described in Section III
with a crossover rate CR = 0.9 and scaling factor F = 0.8,
which are the recommended values in the literature [21]. For
both algorithms, solutions/attacks are selected for reproduction
using the binary-tournament selection [8]. For Pixel-SOO,
the binary selection is based on the single-objective value to
optimize (i.e., O1). Instead, in Pixel-MOO, the selection
relies on dominance to decide which solution wins each
tournament round. Finally, we opted for a relatively small
population size p = 20 (smaller than p=100 used in other
studies [19], [21]) as suggested in the literature from problems
with expensive objective computation [6].

C. Study Design

To answer our first research question, we compare our
multi-objective approach Pixel-MOO to our single-objective

approach Pixel-SOO (only optimizing for O1); next to this,
we compare our single-objective approach to the BMI-FGSM
method by Lin et al. [19]. In this, we try to stay as close
to the implementation by the authors as possible; as a con-
sequence, beyond the parameters setting population size and
generations, we do not modify the authors’ codebase5. The
BMI-FGSM codebase only supports VGG16, ResNet50 and
ResNet101; here, we started our experiments with VGG16. We
execute BMI-FGSM, Pixel-SOO and Pixel-MOO against
each image in our dataset to generate adversarial examples.
For each image, we run each algorithm 10 times, to account
for their random nature. As a consequence, with 50 images,
the end result is a total of 1500 test runs (500 for each
method). For each of the Pixel-SOO and Pixel-MOO
executions, a new random seed was generated and stored for
future replications, together with the results of the generated
attacks. For BMI-FGSM a slight modification was made to
the codebase to output the current prediction data. This data
is stored for each run, along with the adversarial image.

For evaluation, we consider two performance metrics: (1)
the success rate, indicating the percentage out of the 10 runs
for which Pixel-SOO and Pixel-MOO were capable of
causing a change in prediction output, and (2) how many pixels
needed modification (i.e., how many tuples are in mask X)
in the best solution. For the comparison, we considered the
best solution/attack in the final population (last generation)
of Pixel-SOO. Instead, Pixel-MOO provides a set of non-
dominated solutions (front) rather than one single solution. For
our analysis, among all solutions/attacks that lead to flipping
the prediction (i.e., those with negative values for the first
objective O1), we have chosen the one with the lowest number
of changed pixels (second objective O2).

To compare BMI-FGSM and Pixel-MOO, we analyze the
success rate in flipping the prediction and the median number
of changes required to flip the model’s prediction over the
10 runs. We also apply statistical analysis to further assess
whether the observed differences are significant or not. We
use Fisher’s exact test [9] for the success rate, considering the
results of each run (for each algorithm) as a binary/dichotomy
outcome (i.e., the prediction was flipped or not). To assess
the significance of the differences among Pixel-SOO and
Pixel-MOO w.r.t. the number of altered pixels, we use the
Wilcoxon rank sum test [7]. For both statistical tests, we use a
confidence level α = 0.95. Furthermore, we complement the
test for significance with the Vargha-Delaney statistic (Â12) to
measure the effect size of the results [36].

D. Results

Results on VGG16. A full breakdown of the VGG16
results can be seen in Figure 1, which depicts the success rate
of BMI-FGSM, Pixel-SOO and Pixel-MOO in creating
adversarial examples for the 50 images in our experiment.
As we can observe, BMI-FGSM was rarely able to flip the
predictions for VGG16 (median, second, and third quartiles

5https://github.com/jylink/BMI-FGSM
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Fig. 1: Success rate of BMI-FGSM, Pixel-SOO and
Pixel-MOO in flipping the predictions for VGG16.

Seed Perturbations # Generations Runtime (seconds)

Image BMI P-Soo P-Moo BMI P-Soo P-Moo BMI P-Soo P-Moo

00323 4325 25 14 240 10 18 2850 73 98
00344 - 16 13 - 6 12 - 57 77
00624 - 55 51 - 21 42 - 126 237
01204 - 39 29 - 13 22 - 87 124
02431 10620 19 18 20 10 24 227 74 123
05053 - 155 129 - 65 180 - 336 847
05412 - 65 36 - 34 128 - 188 631
05929 - 76 83 - 30 71 - 168 371
06213 - 159 92 - 76 184 - 393 1897
07160 - 70 76 - 27 70 - 153 336
08024 - 35 39 - 19 44 - 117 247
09335 - 17 11 - 9 11 - 69 72
09485 - 137 96 - 70 297 - 363 1749
09654 - 65 46 - 31 111 - 175 532
09931 - 36 22 - 11 22 - 83 104
11100 - 24 11 - 9 17 - 73 88
11177 - 69 55 - 26 68 - 150 326
11189 - 30 19 - 9 15 - 72 88
12820 - 114 100 - 43 95 - 234 473
14504 - 79 72 - 33 139 - 184 710
15116 7391 30 31 240 17 55 2852 105 292
15739 - 57 33 - 25 62 - 144 324
16615 - 39 32 - 12 24 - 83 116
20018 NA 43 39 NA 25 82 NA 147 398
20889 - 112 102 - 65 237 - 335 1138
23090 - 162 134 - 70 217 - 360 1053
23203 10246 151 140 320 64 286 3763 334 1381
23729 - 82 56 - 39 123 - 214 609
24130 - 41 24 - 27 77 - 151 406
25633 - 127 121 - 47 97 - 248 472
26738 - 67 61 - 22 41 - 132 219
27242 4885 12 6 320 4 8 3797 48 48
29251 6593 26 17 320 12 23 3790 84 124
30019 - 64 51 - 23 57 - 136 285
30959 4774 38 32 120 17 30 1449 106 160
32263 12507 23 15 80 7 12 966 61 67
32576 - 81 72 - 38 101 - 205 513
34966 - 45 39 - 17 34 - 109 182
35091 - 34 24 - 11 21 - 80 105
35614 - 83 59 - 45 155 - 235 956
36183 15992 26 22 0 10 16 44 76 104
38221 - 37 20 - 60 93 - 307 1891
41173 - 101 91 - 94 241 - 463 1523
41842 - 173 129 - 81 377 - 408 1903
43541 - 46 36 - 19 32 - 120 180
44582 - 113 119 - 51 201 - 267 1005
44788 - 80 24 - 61 61 - 313 1919
46372 11463 35 28 40 14 30 505 95 156
46979 - 49 39 - 18 31 - 111 158
48219 4244 24 16 320 8 12 1180 66 71
Mean 8872 67 54 178 32 90 1857 176 547

TABLE I: Median number of pixel changes, generations, and
running time required by all approaches to generate

adversarial attacks on VGG16.

being equal to zero), while our approaches based on pure DE
can do so for all images. By comparing Pixel-SOO and
Pixel-MOO, we observe that the former always achieves a
100% success rate while the latter achieves a lower success
rate in 20% of the images. However, both our DE-based
approaches can generate an adversarial attack in at least one
of the ten repetitions.

To better understand the time needed to converge and
how many pixels have been changed by the different algo-
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(a) Original image (b) Mask (c) Final image

Fig. 2: Pixel-SOO vs. BMI-FGSM results for Image
‘ILSVRC2012_val_00000323.JPEG’

rithms, we report in Table I the detailed results for each
image in our benchmark. In particular, we report the run-
ning time, the number of changes (altered pixels), and the
generations required for flipping our image prediction. In
Table I, “−” entries indicate that the corresponding algo-
rithm could not generate an adversarial attack within the
search budget. We can observe that BMI-FGSM success-
fully generated adversarial attacks (at least in one out of
10 runs) for 11 images out of 50. To do so, it changed
thousands of pixels (8872 on average) and up to 15992
pixels for the image ‘ILSVRC2012_val_00036183.JPEG’
(in short, image id = 36183 in Table I). The image
‘ILSVRC2012_val_00020018.JPEG’ is an interesting case
since BMI-FGSM threw an error when loading the image
(highlighted with NA values in Table I).

Instead, both Pixel-SOO and Pixel-MOO were able to
generate adversarial attacks for all the images in at least
1 of the ten individual runs. Indeed, there is no “-” entry
in Table I for these two algorithms. W.r.t. the number of
introduced changes, we can observe that both algorithms
required to change fewer pixels than the state-of-the-art
BMI-FGSM. Pixel-SOO changed on average 67 pixels while
Pixel-MOO generated successful attacks by changing even
fewer pixels (54 pixels on average).

To better understand the type of attacks generated
by Pixel-MOO and the baselines BMI-FGSM, Fig. 2
shows the results of the first image in our dataset
‘ILSVRC2012_val_00000323.JPEG’. This is one of the few
images for which BMI-FGSM could successfully generate an
adversarial attack. The original image was ground-truthed and
classified as a ‘grey fox’ (67). When initially running the
image through BMI-FGSM, the classification was shown as
’garbage truck, dustcart’ (280). This is an incorrect classifica-
tion and may be due to the pre-processing BMI-FGSM applies.
However, it was then able to perform a successful prediction
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Fig. 3: Success rate of both approaches on each model

flip to ’Model T’ (272). while Pixel-SOO successfully
flipped it from the correct class to a ‘coyote’ (58). Fig. 2
depicts (1) the original image, (2) the ‘perturbation mask’,
and (3) the resulting adversarial attacks.

We can observe that, for BMI-FGSM, the median amount
of changed pixels is 4325 and for Pixel-SOO is 25, which
is a remarkable difference. From Fig. 2, we can barely see
any modification in the change matrix, and this is because
BMI-FGSM subtly changes many pixels. Our method, how-
ever, stands out for the smallest amount of perturbations which
involves making larger color differences to the pixel. However,
as we can see by the matrix and the final image, the changes
applied are still very subtle.

On top of having considerably fewer perturbations and a
better success rate, we observe from Table I that the number
of generations required by Pixel-SOO and Pixel-MOO is
also much lower than the generations needed by BMI-FGSM
for converging. BMI-FGSM took on average 240 generations
to reach a prediction flip, while our Pixel-SOO method took
only 10, once again being considerably quicker.

Results on other models. The original BMI-FGSM imple-
mentation (which we have reused) was not compatible with
the other models except for the ResNet models. However,
in our experiment, BMI-FGSM took a considerable amount
of time to complete just a single run (often over 7 hours)
and often could not generate any adversarial example within
the search budget. In the following, we therefore only report
the results for the two DE-based approaches proposed in this
paper, namely Pixel-SOO and Pixel-MOO.

Figure 3 depicts boxplots for the success rate over the
different runs of Pixel-MOO and Pixel-SOO for the five
DNN models in our study. As we can observe, Pixel-SOO is
successful almost 100% of the time, with some outliers only
for ResNet101. Pixel-MOO still achieves a 100% success
rate for more than 50% of the images.

These differences are also confirmed by Fisher’s exact
test, of which the results are reported in Table II. More
specifically, Pixel-MOO and Pixel-SOO are statistically
equivalent in terms of success rate for the large majority of
the images (success rate over ten runs) and across all models.
For around 20% of images, the single-objective variants statis-
tically outperform the multi-objective variant. For ResNet101

TABLE II: Number of times one approach outperforms the
other according to the Fisher’s test (p-value<0.05) w.r.t. the

Success Rate

Model Pixel-MOO wins Equal Pixel-SOO wins

r50 - 44 6
r101 - 33 17
r152 - 42 8
vgg16 - 39 11
vgg19 - 43 7

TABLE III: Number of times one approach outperforms the
other according to the Wilcoxon test (p-value<0.05) and the

Â12 statistics w.r.t. the number of changed pixels.

Model Pixel-MOO wins Equal Pixel-SOO win

Large Medium Small Small Medium Large

r50 28 7 - 15 - - -
r101 33 3 - 13 - 1 -
r152 28 3 - 19 - - -
vgg16 26 6 - 18 - - -
vgg19 29 7 - 14 - - -

in particular, Pixel-SOO frequently has a higher success rate
compared to its multi-objective counterpart. As Pixel-MOO
searches for trade-offs between prediction flip (O1) whilst
preserving as many original pixel values as possible (O2), we
hypothesize it may be slower to reach optima in comparison
to Pixel-SOO, and may perform better when a larger search
budget (i.e., more generations) would be used.

Finally, we compare the attacks generated by Pixel-MOO
and Pixel-SOO w.r.t. the number of pixel perturbations
injected in the seed images. Table III reports the results
of the Wilcoxon rank sum test and the Â12 statistics. The
results indicate that the adversarial attacks generated by
Pixel-MOO contain fewer pixel alterations than those pro-
duced by Pixel-SOO, and the results are statistically signif-
icant in more than 60% of the comparison, with an effect size
being large in the large majority of the significant cases.

Therefore, we can draw some general conclusion:
Pixel-MOO and Pixel-SOO provide two different trade-
offs concerning the speed and magnitude of the image pertur-
bation. Pixel-SOO is faster by producing attacks with less
subtle changes. Instead, Pixel-MOO produced more subtle
attacks but requires more time to converge.

V. THREATS TO VALIDITY

Internal validity. While our image selection procedure
yielded a random draw of images from 50 unique classes,
the ILSVRC2012 classes semantically are not uniformly dis-
tributed (e.g. having multiple classes with sub-species of
dogs). Future sampling strategies could seek to more explicitly
mitigate for this.

External validity. Currently, our approach was only was
tested against (the state-of-the-art) BMI-FGSM. It will be
worthwhile to also test it against further attack approaches,
such as the one-pixel attack [30]. Furthermore, beyond our
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current set of DNN models, more canonical models exist that
can be studied, such as Inception-v3 [33].

Conclusion validity. In some runs, Pixel-MOO fails to
find an adversarial example; further optimizations w.r.t. popu-
lation and generation size may be needed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced two approaches based
on pure differential evolution, namely Pixel-MOO and
Pixel-SOO, with customized differential operators for gen-
erating adversarial example. Our empirical study with mul-
tiple DNN models for image recognition showed that: (1)
both approaches outperform the state-of-the-art BMI-FGSM
in terms of success rate and by applying fewer (yet subtle)
pixel changes, and (2) Pixel-SOO and Pixel-MOO pro-
vide two different trade-offs in terms of convergence speed
(Pixel-SOO is faster) and subtler changes (Pixel-MOO
applies fewer pixel changes).

In our future work, it will be worthwhile to more explicitly
look at the potential difficulty of images due to semantic
ambiguity, which already can show in the initial classification
confidence of a model [18]. Furthermore, we intend to extend
our comparison to multiple deep learning models, and different
search algorithms (e.g., MOEA/D [38] and AGE-MOEA [24])
or combine the strengths of Pixel-MOO and Pixel-SOO
with hybrid approaches.
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